JP2007143219A - Battery charging circuit and electric apparatus - Google Patents

Battery charging circuit and electric apparatus Download PDF

Info

Publication number
JP2007143219A
JP2007143219A JP2005330111A JP2005330111A JP2007143219A JP 2007143219 A JP2007143219 A JP 2007143219A JP 2005330111 A JP2005330111 A JP 2005330111A JP 2005330111 A JP2005330111 A JP 2005330111A JP 2007143219 A JP2007143219 A JP 2007143219A
Authority
JP
Japan
Prior art keywords
secondary battery
positive electrode
battery group
electrode side
adjacent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005330111A
Other languages
Japanese (ja)
Other versions
JP4486918B2 (en
Inventor
Kazuhiro Tachibana
和宏 立花
Tatsuo Nishina
辰夫 仁科
Satoshi Tanaka
智 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Bridgestone Cycle Co Ltd
Original Assignee
Bridgestone Cycle Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bridgestone Cycle Co Ltd filed Critical Bridgestone Cycle Co Ltd
Priority to JP2005330111A priority Critical patent/JP4486918B2/en
Publication of JP2007143219A publication Critical patent/JP2007143219A/en
Application granted granted Critical
Publication of JP4486918B2 publication Critical patent/JP4486918B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a battery charging circuit constituted of simple circuitry and capable of enhancing the lifetime and performance of a battery by charging secondary batteries connected in series uniformly. <P>SOLUTION: The battery charging circuit 12 comprises a first battery group 16 consisting of first and second batteries 16A and 16B connected in series, a second battery 18A, a capacitor 22 connected with the positive electrode of the second battery 18A, a first diode 24, second diodes 26A and 26B, third diodes 28A and 28B, and a power supply section 20 for charging the capacitor 22 which is switched to charge the first battery 16A when the capacitor 22 reaches a predetermined charging voltage and switched to charge the capacitor 22 when the first battery 16A reaches a predetermined charging voltage. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、電池充電回路及び電気装置に係り、特に、直列で接続された二次電池を充電する電池充電回路及び該電池充電回路を用いた電気装置に関する。   The present invention relates to a battery charging circuit and an electric device, and more particularly to a battery charging circuit for charging secondary batteries connected in series and an electric device using the battery charging circuit.

従来より、車両駆動用モータの他に、エンジン駆動される発電機を搭載したハイブリッド車が知られており、ハイブリッド車には、複数の二次電池が直列に接続された電池充電回路が搭載されている。電池充電回路では、直列接続された二次電池から出力される電力により駆動用モータを駆動すると共に、発電機からの電力が直列接続された二次電池に充電される。   Conventionally, in addition to a vehicle driving motor, a hybrid vehicle equipped with an engine-driven generator is known, and the hybrid vehicle is equipped with a battery charging circuit in which a plurality of secondary batteries are connected in series. ing. In the battery charging circuit, the driving motor is driven by the power output from the series-connected secondary batteries, and the power from the generator is charged to the series-connected secondary batteries.

近年、このような直列接続された二次電池に対して、新たな用途に適合する様に二次電池の特性改善や新型電池の開発検討が進められている。開発した二次電池が本来の性能を発揮するためには、使用環境条件、充電条件、及び放電条件などが適正となるように制御する必要がある。   In recent years, with respect to such secondary batteries connected in series, improvement of the characteristics of the secondary battery and development of a new battery have been promoted so as to be adapted to new applications. In order for the developed secondary battery to exhibit its original performance, it is necessary to control the use environment condition, the charge condition, the discharge condition, and the like to be appropriate.

特に、充電条件については、放電後の電池にダメージを与えずに、元の容量まで如何に回復させるかが課題となっている。   In particular, the charging condition is how to restore the original capacity without damaging the discharged battery.

このため、充電完了時の検出方法、過充電時の対策などを含め、電池の種類及び用途別にそれぞれ適した充電方法が検討されている。   For this reason, a charging method suitable for each type and use of the battery has been studied, including a detection method at the completion of charging and a countermeasure at the time of overcharging.

ここで、電池を直列接続して放電又は充電を行う場合、全ての電池の容量或いは内部抵抗が常に同じであれば、バランス良く放電及び充電をすることができる。   Here, when discharging or charging by connecting batteries in series, if the capacity or internal resistance of all the batteries is always the same, discharging and charging can be performed in a well-balanced manner.

しかしながら、実際には、電池の容量あるいは内部抵抗には若干のバラツキが発生する。さらに、初期において同じ内部抵抗であったとしてもトリクル充電又はフロート充電により、時間経過に伴って電池の内部抵抗が変化し、電池の容量も変化する。その結果、各電池のバランスが崩れ、セル電圧にバラツキが生じ、電池の寿命を短命化させたり、性能を低下させることになる。   In practice, however, the battery capacity or internal resistance slightly varies. Furthermore, even if the internal resistance is the same in the initial stage, the internal resistance of the battery changes with time due to trickle charging or float charging, and the capacity of the battery also changes. As a result, the balance of each battery is lost, the cell voltage varies, and the life of the battery is shortened or the performance is lowered.

電池のバランスを保つ為に、並列に接続された直列接続電池ブロックに対して、1つの直列接続電池ブロックの充電の後に、別の直列接続電池ブロックを充電する充電制御を行うべく、それぞれの直列接続電池ブロックに直列に充電スイッチを接続し、充電制御手段によって充電スイッチをオンオフ制御する機能と、それぞれの直列電池ブロックの充電完了信号を放電制御手段に出力する構成をしたバックアップ電池の充放電制御装置が知られている(特許文献1)。   In order to maintain the balance of the batteries, each series-connected battery block connected in parallel is charged with one series-connected battery block and then charged with another series-connected battery block in order to perform charge control. Charging switch connected in series to the connected battery block, on / off control of the charging switch by the charging control means, and charging / discharging control of the backup battery configured to output the charging completion signal of each series battery block to the discharging control means An apparatus is known (Patent Document 1).

また、複数の電池セルが直列に接続されて構成されている組電池と、電池セル毎に並列に接続され、電池セルのセル電圧を測定し、またバイパス状態において、この電池セルに充電電流を流さずバイパスさせる電圧調整回路と、組電池に流れる電流を測定する電流センサと、各電池セルのセル電圧の加算値が所定の電圧値となり、かつ、電流センサによって測定された電流が所定の電流値となったことを検出すると、所定の電池セルに対応した電圧調整回路をバイパス状態とし、この電池セルに充電電流が流れないように制御する制御部とを有する電池充電装置が知られている(特許文献2)。
特開2004−364446 特開2005−20866
In addition, an assembled battery composed of a plurality of battery cells connected in series and connected in parallel for each battery cell, the cell voltage of the battery cell is measured, and a charging current is supplied to the battery cell in the bypass state. A voltage adjustment circuit that bypasses without flowing, a current sensor that measures the current flowing in the assembled battery, and the sum of the cell voltages of each battery cell becomes a predetermined voltage value, and the current measured by the current sensor is a predetermined current. 2. Description of the Related Art A battery charging device having a control unit that controls a voltage regulation circuit corresponding to a predetermined battery cell to be in a bypass state and to prevent a charging current from flowing through the battery cell when a value is detected is known. (Patent Document 2).
JP 2004-364446 A JP 2005-20866

しかしながら、特許文献1及び2記載の発明では、装置の部品点数が多く、電池充電回路が複雑化するという問題があった。   However, the inventions described in Patent Documents 1 and 2 have a problem that the number of parts of the device is large and the battery charging circuit is complicated.

本発明は、上記の問題点を解決するためになされたもので、簡易な回路で構成され、かつ、直列接続された二次電池をばらつきなく充電し、電池寿命及び性能を向上させることができる電池充電回路及び電気装置を提供することを目的とする。   The present invention has been made to solve the above-described problems, and can recharge the secondary batteries configured in a simple circuit and connected in series without variation, thereby improving the battery life and performance. An object is to provide a battery charging circuit and an electric device.

上記の目的を達成するために第1の発明に係る電池充電回路は、直列接続された2つの第1の二次電池から構成される第1の二次電池群と、前記第1の二次電池群の2つの第1の二次電池に対応するように設けられた第2の二次電池と、一端が前記第2の二次電池の正極に接続された容量素子と、一端が前記容量素子の前記一端に接続され、かつ、他端が前記第1の二次電池群の正極側に接続されると共に、前記容量素子の一端から前記第1の二次電池群の正極側方向への電流の流れを許容し、該正極側方向と反対方向への電流の流れを阻止する第1の整流素子と、一端が前記2つの第1の二次電池の接続部に接続され、かつ、他端が前記第2の二次電池の負極に接続されると共に、前記第2の二次電池の負極から前記接続部方向への電流の流れを許容し、該接続部方向と反対方向への電流の流れを阻止する第2の整流素子と、一端が前記2つの第1の二次電池の接続部に接続され、かつ、他端が前記第2の二次電池の正極に接続されると共に、前記接続部から前記第2の二次電池の正極方向への電流の流れを許容し、該正極方向と反対方向への電流の流れを阻止する第3の整流素子と、一端が前記第1の二次電池群の正極側に接続され、かつ、他端が前記容量素子の他端に接続されると共に、前記容量素子を充電するように電力を供給し、前記容量素子が充電されて所定の充電電圧になったときに、前記第1の二次電池群の正極側に設けられた前記第1の二次電池を充電するように切り替えられて電力を供給し、前記第1の二次電池群の正極側に設けられた前記第1の二次電池が充電されて前記所定の充電電圧になったときに、前記容量素子を充電するように切り替えられて電力を供給する電源手段とを含んで構成されている。   In order to achieve the above object, a battery charging circuit according to a first invention includes a first secondary battery group composed of two first secondary batteries connected in series, and the first secondary battery. A second secondary battery provided so as to correspond to the two first secondary batteries of the battery group, a capacitive element having one end connected to the positive electrode of the second secondary battery, and one end having the capacity The other end of the element is connected to the positive electrode side of the first secondary battery group, and the other end of the capacitor element is connected to the positive electrode side direction of the first secondary battery group. A first rectifying element that allows current flow and blocks current flow in a direction opposite to the positive electrode side; one end connected to a connection portion of the two first secondary batteries; and the other The end is connected to the negative electrode of the second secondary battery, and the current from the negative electrode of the second secondary battery toward the connecting portion A second rectifying element that allows the current to flow in a direction opposite to the direction of the connection, one end connected to the connection of the two first secondary batteries, and the other end Connected to the positive electrode of the second secondary battery, and allows a current flow from the connecting portion in the positive electrode direction of the second secondary battery, and allows a current flow in a direction opposite to the positive electrode direction. The third rectifying element to be blocked and one end connected to the positive electrode side of the first secondary battery group and the other end connected to the other end of the capacitive element so as to charge the capacitive element So that the first secondary battery provided on the positive electrode side of the first secondary battery group is charged when the capacitor element is charged to a predetermined charging voltage. The first secondary battery provided on the positive electrode side of the first secondary battery group is switched to supply electric power. When it is the predetermined charging voltage is conductive, and is configured to include a power supply means for supplying electric power is switched to charge the capacitive element.

第1の発明に係る電池充電回路によれば、電源手段によって、容量素子を充電するように電力を供給し、容量素子が充電されて所定の充電電圧になったときに、第1の二次電池群の正極側に設けられた第1の二次電池を充電するように切り替えられて電力を供給する。また、このときに、充電された容量素子が放電し、第1の二次電池群の正極側に設けられた第1の二次電池がさらに充電される。   According to the battery charging circuit of the first invention, the power supply means supplies power so as to charge the capacitive element, and when the capacitive element is charged to a predetermined charging voltage, the first secondary It is switched so as to charge the first secondary battery provided on the positive electrode side of the battery group to supply electric power. At this time, the charged capacitive element is discharged, and the first secondary battery provided on the positive electrode side of the first secondary battery group is further charged.

そして、第1の二次電池群の正極側に設けられた第1の二次電池が充電されて所定の充電電圧になったときに、電源手段によって、容量素子を充電するように切り替えられて電力を供給する。このとき、第1の二次電池群の正極側に設けられた第1の二次電池が放電し、第2の二次電池が充電される。そして、第2の二次電池が充電され、充電電圧が高くなると、第2の二次電池が放電し、第1の二次電池群の負極側に設けられた第1の二次電池が充電される。   And when the 1st secondary battery provided in the positive electrode side of the 1st secondary battery group is charged and it becomes a predetermined charging voltage, it switches so that a capacitive element may be charged by a power supply means. Supply power. At this time, the 1st secondary battery provided in the positive electrode side of the 1st secondary battery group discharges, and the 2nd secondary battery is charged. When the second secondary battery is charged and the charging voltage is increased, the second secondary battery is discharged, and the first secondary battery provided on the negative electrode side of the first secondary battery group is charged. Is done.

そして、上記のように、電源手段によって、第1の二次電池群の正極側に設けられた第1の二次電池及び容量素子の何れかを充電するように切り替えながら電力を供給することにより、容量素子、2つの第1の二次電池、及び第2の二次電池の各々が充放電を繰り返し、各々の充電電圧が収束していき、満充電状態になる。   Then, as described above, by supplying power while switching to charge either the first secondary battery or the capacitive element provided on the positive electrode side of the first secondary battery group by the power source means Each of the capacitor element, the two first secondary batteries, and the second secondary battery repeats charging and discharging, and the respective charging voltages converge to reach a fully charged state.

従って、複数の二次電池、容量素子、整流素子、及び電源手段からなる簡易な回路で構成され、かつ、電源手段によって、第1の二次電池群の正極側に設けられた第1の二次電池及び容量素子の何れかを充電するように切り替えながら電力を供給し、容量素子、2つの第1の二次電池、及び第2の二次電池の各々が充放電を繰り返すことにより、直列接続された二次電池がばらつきなく充電され、電池寿命及び性能を向上させることができる。   Accordingly, the first secondary battery is configured by a simple circuit including a plurality of secondary batteries, a capacitor element, a rectifying element, and power supply means, and provided on the positive electrode side of the first secondary battery group by the power supply means. Power is supplied while switching so as to charge either the secondary battery or the capacitive element, and each of the capacitive element, the two first secondary batteries, and the second secondary battery repeats charging and discharging in series. The connected secondary batteries are charged without variation, and the battery life and performance can be improved.

また、第2の発明に係る電池充電回路は、直列接続された複数の第1の二次電池から構成される第1の二次電池群と、前記第1の二次電池群の隣接する2つの第1の二次電池に対応するように設けられた複数の第2の二次電池を直列接続した第2の二次電池群と、一端が前記第2の二次電池群の正極側に接続された容量素子と、一端が前記容量素子の前記一端に接続され、かつ、他端が前記第1の二次電池群の正極側に接続されると共に、前記容量素子の前記一端から前記第1の二次電池群の正極側方向への電流の流れを許容し、該正極側方向と反対方向への電流の流れを阻止する第1の整流素子と、一端が前記第1の二次電池群の隣接する2つの第1の二次電池の接続部に接続され、かつ、他端が前記隣接する2つの第1の二次電池に対応する前記第2の二次電池の負極に接続されると共に、前記第2の二次電池の負極から前記隣接する2つの第1の二次電池の接続部方向への電流の流れを許容し、該接続部方向と反対方向への電流の流れを阻止する複数の第2の整流素子と、一端が前記第1の二次電池群の隣接する2つの第1の二次電池の接続部に接続され、かつ、他端が前記隣接する2つの第1の二次電池に対応する前記第2の二次電池の正極に接続されると共に、前記隣接する2つの第1の二次電池の接続部から前記第2の二次電池の正極方向への電流の流れを許容し、該正極方向と反対方向への電流の流れを阻止する複数の第3の整流素子と、一端が前記第1の二次電池群の正極側に接続され、かつ、他端が前記容量素子の他端に接続されると共に、前記容量素子を充電するように電力を供給し、前記容量素子が充電されて所定の充電電圧になったときに、前記第1の二次電池群の正極側に設けられた前記第1の二次電池を充電するように切り替えられて電力を供給し、前記第1の二次電池群の正極側に設けられた前記第1の二次電池が充電されて前記所定の充電電圧になったときに、前記容量素子を充電するように切り替えられて電力を供給する電源手段とを含んで構成されている。   According to a second aspect of the present invention, there is provided a battery charging circuit including a first secondary battery group composed of a plurality of first secondary batteries connected in series and two adjacent first secondary battery groups. A second secondary battery group in which a plurality of second secondary batteries provided so as to correspond to the first secondary battery are connected in series, and one end is on the positive electrode side of the second secondary battery group The connected capacitive element, one end connected to the one end of the capacitive element, and the other end connected to the positive electrode side of the first secondary battery group, and the first end of the capacitive element from the one end A first rectifying element that allows a current flow in the positive electrode side direction of one secondary battery group and blocks a current flow in a direction opposite to the positive electrode side direction; and one end of the first secondary battery group. Connected to the connection part of two adjacent first secondary batteries in the group, and the other end corresponds to the two adjacent first secondary batteries Is connected to the negative electrode of the second secondary battery, and allows a current flow from the negative electrode of the second secondary battery toward the connecting portion of the two adjacent first secondary batteries, A plurality of second rectifying elements that block current flow in the direction opposite to the connecting portion direction, and one end connected to a connecting portion of two adjacent first secondary batteries of the first secondary battery group And the other end is connected to the positive electrode of the second secondary battery corresponding to the two adjacent first secondary batteries, and the connection portion between the two adjacent first secondary batteries. A plurality of third rectifier elements that allow current flow in the positive electrode direction of the second secondary battery and block current flow in a direction opposite to the positive electrode direction, and one end of the second secondary battery is connected to the first second battery. The secondary battery group is connected to the positive electrode side and the other end is connected to the other end of the capacitive element, and the capacitive element is charged. When the capacitor element is charged and reaches a predetermined charging voltage, the first secondary battery provided on the positive electrode side of the first secondary battery group is charged. When the first secondary battery provided on the positive electrode side of the first secondary battery group is charged and reaches the predetermined charging voltage, the capacitive element is switched to And power supply means for switching to charge and supplying power.

第2の発明の電池充電回路によれば、電源手段によって、容量素子を充電するように電力を供給し、容量素子が充電されて所定の充電電圧になったときに、第1の二次電池群の正極側に設けられた第1の二次電池を充電するように切り替えられて電力を供給する。このときに、充電された容量素子が放電し、第1の二次電池群の正極側に設けられた第1の二次電池がさらに充電される。   According to the battery charging circuit of the second invention, power is supplied by the power supply means so as to charge the capacitive element, and when the capacitive element is charged and reaches a predetermined charging voltage, the first secondary battery is charged. It is switched to charge the first secondary battery provided on the positive electrode side of the group to supply power. At this time, the charged capacitive element is discharged, and the first secondary battery provided on the positive electrode side of the first secondary battery group is further charged.

そして、第1の二次電池群の正極側に設けられた第1の二次電池が充電されて所定の充電電圧になったときに、電源手段によって、容量素子を充電するように切り替えられて電力を供給する。このとき、第1の二次電池群の正極側に設けられた第1の二次電池が放電し、第1の二次電池群の正極側に設けられた隣接する2つの第1の二次電池に対応する第2の二次電池が充電される。そして、この第2の二次電池が充電され、充電電圧が高くなると、この第2の二次電池が放電し、上記の隣接する第1の二次電池の負極側に設けられた第1の二次電池が充電される。   And when the 1st secondary battery provided in the positive electrode side of the 1st secondary battery group is charged and it becomes a predetermined charging voltage, it switches so that a capacitive element may be charged by a power supply means. Supply power. At this time, the first secondary battery provided on the positive electrode side of the first secondary battery group is discharged, and two adjacent first secondary batteries provided on the positive electrode side of the first secondary battery group are discharged. The second secondary battery corresponding to the battery is charged. When the second secondary battery is charged and the charging voltage is increased, the second secondary battery is discharged, and the first secondary battery provided on the negative electrode side of the adjacent first secondary battery is discharged. The secondary battery is charged.

同様に、第1の二次電池群の複数の第1の二次電池の各々及び第2の二次電池群の複数の第2の二次電池の各々が、充電及び放電する。   Similarly, each of the plurality of first secondary batteries in the first secondary battery group and each of the plurality of second secondary batteries in the second secondary battery group are charged and discharged.

そして、上記のように、電源手段によって、第1の二次電池群の正極側に設けられた第1の二次電池及び容量素子の何れかを充電するように切り替えながら電力を供給し、容量素子、直列接続された複数の第1の二次電池、及び直列接続された複数の第2の二次電池の各々が充放電を繰り返し、各々の充電電圧が収束していき、満充電状態になる。   Then, as described above, the power supply means supplies power while switching so as to charge either the first secondary battery or the capacitive element provided on the positive electrode side of the first secondary battery group, and the capacity Each of the element, the plurality of first secondary batteries connected in series, and the plurality of second secondary batteries connected in series repeats charging and discharging, and each charging voltage converges to reach a fully charged state. Become.

従って、複数の二次電池、容量素子、整流素子、及び電源手段からなる簡易な回路で構成され、かつ、電源手段によって、第1の二次電池群の正極側に設けられた第1の二次電池及び容量素子の何れかを充電するように切り替えながら電力を供給し、容量素子、直列接続された複数の第1の二次電池、及び直列接続された複数の第2の二次電池の各々が充放電を繰り返すことにより、直列接続された二次電池がばらつきなく充電され、電池寿命及び性能を向上させることができる。   Accordingly, the first secondary battery is configured by a simple circuit including a plurality of secondary batteries, a capacitor element, a rectifying element, and power supply means, and provided on the positive electrode side of the first secondary battery group by the power supply means. Power is supplied while switching to charge either the secondary battery or the capacitive element, and the capacitive element, the plurality of first secondary batteries connected in series, and the plurality of second secondary batteries connected in series By repeating charging and discharging, the secondary batteries connected in series are charged without variation, and the battery life and performance can be improved.

また、第1の発明及び第2の発明に係る電源手段は、容量素子を充電するように容量素子の他端方向へ所定電流の電力を供給し、容量素子が充電されて所定の充電電圧になったときに、第1の二次電池群の正極側に設けられた第1の二次電池を充電するように第1の二次電池群の正極側方向に切り替えられて所定電流の電力を供給し、第1の二次電池群の正極側に設けられた第1の二次電池が充電されて所定の充電電圧になったときに、容量素子の他端方向に切り替えられて所定電流の電力を供給することができる。これにより、定電流の電力を、電流方向を切り替えながら供給して、直列接続された二次電池をばらつきなく充電することができる
また、第1の発明及び第2の発明に係る電源手段は、容量素子を充電するように所定電圧の電力を供給し、容量素子が充電されて所定の充電電圧になったときに、第1の二次電池群の正極側に設けられた第1の二次電池を充電するように所定電圧の電力を供給し、第1の二次電池群の正極側に設けられた第1の二次電池が充電されて所定の充電電圧になったときに、容量素子を充電するように切り替えられて所定電圧の電力を供給することができる。これにより、定電圧の電力を、充電先を切り替えながら供給して、直列接続された二次電池をばらつきなく充電することができる。
The power supply means according to the first and second aspects of the invention supplies power of a predetermined current toward the other end of the capacitive element so as to charge the capacitive element, and the capacitive element is charged to a predetermined charging voltage. The first secondary battery group is switched to the positive electrode side direction of the first secondary battery group so as to charge the first secondary battery provided on the positive electrode side of the first secondary battery group. When the first secondary battery provided on the positive electrode side of the first secondary battery group is charged and reaches a predetermined charging voltage, it is switched to the other end direction of the capacitive element and the predetermined current is Electric power can be supplied. Thereby, it is possible to supply constant current power while switching the current direction, and to charge the secondary batteries connected in series without variation. Further, the power supply means according to the first invention and the second invention, A first secondary battery provided on the positive electrode side of the first secondary battery group when electric power of a predetermined voltage is supplied so as to charge the capacitive element and the capacitive element is charged to a predetermined charging voltage. When a predetermined voltage is supplied so as to charge the battery, and the first secondary battery provided on the positive electrode side of the first secondary battery group is charged to a predetermined charging voltage, the capacitive element Can be switched to charge the power of a predetermined voltage. As a result, it is possible to supply constant voltage power while switching the charging destination, and charge the secondary batteries connected in series without variation.

また、第3の発明に係る電池充電回路は、直列接続された複数の第1の二次電池から構成される第1の二次電池群と、前記第1の二次電池群の隣接する2つの第1の二次電池に対応するように設けられた複数の第2の二次電池を直列接続した第2の二次電池群と、一端が前記第2の二次電池群の正極側に接続された容量素子と、一端が前記容量素子の前記一端に接続され、かつ、他端が前記第1の二次電池群の正極側に接続されると共に、前記容量素子の前記一端から前記第1の二次電池群の正極側方向への電流の流れを許容し、該正極側方向と反対方向への電流の流れを阻止する第1の整流素子と、一端が前記第1の二次電池群の隣接する2つの第1の二次電池の接続部に接続され、かつ、他端が前記隣接する2つの第1の二次電池に対応する前記第2の二次電池の負極に接続されると共に、前記第2の二次電池の負極から前記隣接する2つの第1の二次電池の接続部方向への電流の流れを許容し、該接続部方向と反対方向への電流の流れを阻止する複数の第2の整流素子と、一端が前記第1の二次電池群の隣接する2つの第1の二次電池の接続部に接続され、かつ、他端が前記隣接する2つの第1の二次電池に対応する前記第2の二次電池の正極に接続されると共に、前記隣接する2つの第1の二次電池の接続部から前記第2の二次電池の正極方向への電流の流れを許容し、該正極方向と反対方向への電流の流れを阻止する複数の第3の整流素子と、一端が前記第1の二次電池群の正極側に接続され、かつ、他端が前記容量素子の他端に接続されると共に、前記容量素子を充電するように電力を供給し、前記容量素子が充電されて所定の充電電圧になったときに、前記電力の供給を停止すると共に、前記第1の二次電池群の正極側に設けられた前記第1の二次電池と前記容量素子とを通電し、前記第1の二次電池群の正極側に設けられた前記第1の二次電池が充電されて前記所定の充電電圧になったときに、前記容量素子を充電するように切り替えられて電力を供給する電源手段とを含んで構成されている。   According to a third aspect of the present invention, there is provided a battery charging circuit including a first secondary battery group composed of a plurality of first secondary batteries connected in series, and two adjacent ones of the first secondary battery group. A second secondary battery group in which a plurality of second secondary batteries provided so as to correspond to the first secondary battery are connected in series, and one end is on the positive electrode side of the second secondary battery group The connected capacitive element, one end connected to the one end of the capacitive element, and the other end connected to the positive electrode side of the first secondary battery group, and the first end of the capacitive element from the one end A first rectifying element that allows a current flow in the positive electrode side direction of one secondary battery group and blocks a current flow in a direction opposite to the positive electrode side direction; and one end of the first secondary battery group. Connected to the connection part of two adjacent first secondary batteries in the group, and the other end corresponds to the two adjacent first secondary batteries Is connected to the negative electrode of the second secondary battery, and allows a current flow from the negative electrode of the second secondary battery toward the connecting portion of the two adjacent first secondary batteries, A plurality of second rectifying elements that block current flow in the direction opposite to the connecting portion direction, and one end connected to a connecting portion of two adjacent first secondary batteries of the first secondary battery group And the other end is connected to the positive electrode of the second secondary battery corresponding to the two adjacent first secondary batteries, and the connection portion between the two adjacent first secondary batteries. A plurality of third rectifier elements that allow current flow in the positive electrode direction of the second secondary battery and block current flow in a direction opposite to the positive electrode direction, and one end of the second secondary battery is connected to the first second battery. The secondary battery group is connected to the positive electrode side and the other end is connected to the other end of the capacitive element, and the capacitive element is charged. And when the capacitance element is charged and reaches a predetermined charging voltage, the supply of power is stopped and the first secondary battery group is provided on the positive electrode side. When the first secondary battery and the capacitive element are energized, and the first secondary battery provided on the positive electrode side of the first secondary battery group is charged to the predetermined charging voltage. And power supply means that is switched to charge the capacitive element and supplies power.

第3の発明の電池充電回路によれば、電源手段によって、容量素子を充電するように電力を供給し、容量素子が充電されて所定の充電電圧になったときに、電力の供給を停止すると共に、第1の二次電池群の正極側に設けられた第1の二次電池と容量素子とを通電する。これにより、充電された容量素子が放電し、第1の二次電池群の正極側に設けられた第1の二次電池が充電される。   According to the battery charging circuit of the third aspect of the invention, the power is supplied by the power supply means so as to charge the capacitive element, and the supply of power is stopped when the capacitive element is charged and reaches a predetermined charging voltage. At the same time, the first secondary battery provided on the positive electrode side of the first secondary battery group and the capacitive element are energized. Thereby, the charged capacitive element is discharged, and the first secondary battery provided on the positive electrode side of the first secondary battery group is charged.

そして、第1の二次電池群の正極側に設けられた第1の二次電池が充電されて所定の充電電圧になったときに、電源手段によって、容量素子を充電するように切り替えられて電力を供給する。このとき、第1の二次電池群の正極側に設けられた第1の二次電池が放電し、第1の二次電池群の正極側に設けられた隣接する2つの第1の二次電池に対応する第2の二次電池が充電される。そして、この第2の二次電池が充電され、充電電圧が高くなると、この第2の二次電池が放電し、上記の隣接する第1の二次電池の負極側に設けられた第1の二次電池が充電される。   And when the 1st secondary battery provided in the positive electrode side of the 1st secondary battery group is charged and it becomes a predetermined charging voltage, it switches so that a capacitive element may be charged by a power supply means. Supply power. At this time, the first secondary battery provided on the positive electrode side of the first secondary battery group is discharged, and two adjacent first secondary batteries provided on the positive electrode side of the first secondary battery group are discharged. The second secondary battery corresponding to the battery is charged. When the second secondary battery is charged and the charging voltage is increased, the second secondary battery is discharged, and the first secondary battery provided on the negative electrode side of the adjacent first secondary battery is discharged. The secondary battery is charged.

同様に、第1の二次電池群の複数の第1の二次電池の各々及び第2の二次電池群の複数の第2の二次電池の各々が、充電及び放電する。   Similarly, each of the plurality of first secondary batteries in the first secondary battery group and each of the plurality of second secondary batteries in the second secondary battery group are charged and discharged.

そして、上記のように、電源手段によって、第1の二次電池群の正極側に設けられた第1の二次電池及び容量素子の何れかを切り替えて充電するように、電力の供給をオンオフすることにより、容量素子、直列接続された複数の第1の二次電池、及び直列接続された複数の第2の二次電池の各々が充放電を繰り返し、各々の充電電圧が収束していき、満充電状態になる。   Then, as described above, the power supply is turned on and off so that either the first secondary battery or the capacitive element provided on the positive electrode side of the first secondary battery group is switched and charged. By doing so, each of the capacitor element, the plurality of first secondary batteries connected in series, and the plurality of second secondary batteries connected in series repeats charging and discharging, and the respective charging voltages converge. The battery is fully charged.

従って、複数の二次電池、容量素子、整流素子、及び電源手段からなる簡易な回路で構成され、かつ、第1の二次電池群の正極側に設けられた第1の二次電池及び容量素子の何れかを切り替えて充電するように、電源手段によって電力の供給をオンオフし、容量素子、直列接続された複数の第1の二次電池、及び直列接続された複数の第2の二次電池の各々が充放電を繰り返すことにより、直列接続された二次電池がばらつきなく充電され、電池寿命及び性能を向上させることができる。   Therefore, the first secondary battery and the capacity that are configured by a simple circuit including a plurality of secondary batteries, a capacitor element, a rectifier element, and power supply means, and are provided on the positive electrode side of the first secondary battery group. The power supply is turned on and off by the power supply means so as to switch and charge any of the elements, and the capacitive element, the plurality of first secondary batteries connected in series, and the plurality of second secondary batteries connected in series When each of the batteries repeats charging and discharging, the secondary batteries connected in series are charged without variation, and the battery life and performance can be improved.

また、上記の第1の二次電池及び第2の二次電池は、略同一の容量とすることできる。これにより、回路の部品の種類数の増加を抑制できるため、回路の構成を簡易にすることができる。   Moreover, said 1st secondary battery and 2nd secondary battery can be made into the substantially the same capacity | capacitance. Thereby, since the increase in the number of types of circuit components can be suppressed, the circuit configuration can be simplified.

第4の発明に係る電池充電回路は、直列接続された複数の第1の二次電池から構成される複数の第1の二次電池部を直列接続した第1の二次電池群と、前記第1の二次電池群の隣接する2つの第1の二次電池部に対応するように設けられ、かつ、前記第1の二次電池部と同数の第2の二次電池から構成される複数の第2の二次電池部を直列接続した第2の二次電池群と、負極が前記第2の二次電池群の正極側に接続された第3の二次電池と、一端が前記第3の二次電池の負極に接続され、かつ、他端が前記第1の二次電池群の正極側に接続されると共に、前記第3の二次電池の負極から前記第1の二次電池群の正極側方向への電流の流れを許容し、該正極側方向と反対方向への電流の流れを阻止する第1の整流素子と、一端が前記第1の二次電池群の隣接する2つの第1の二次電池部の接続部に接続され、かつ、他端が前記隣接する2つの第1の二次電池部に対応する前記第2の二次電池部の負極側に接続されると共に、前記第2の二次電池部の負極側から前記隣接する2つの第1の二次電池部の接続部方向への電流の流れを許容し、該接続部方向と反対方向への電流の流れを阻止する複数の第2の整流素子と、一端が前記第1の二次電池群の隣接する2つの第1の二次電池部の接続部に接続され、かつ、他端が前記隣接する2つの第1の二次電池部に対応する前記第2の二次電池部の正極側に接続されると共に、前記隣接する2つの第1の二次電池部の接続部から前記第2の二次電池部の正極側方向への電流の流れを許容し、該正極側方向と反対方向への電流の流れを阻止する複数の第3の整流素子と、一端が前記第1の二次電池群の正極側に接続され、かつ、他端が前記第3の二次電池の正極に接続されると共に、前記第3の二次電池を充電するように電力を供給し、前記第3の二次電池が充電されて所定の充電電圧になったときに、前記第1の二次電池群の正極側に設けられた前記第1の二次電池を充電するように切り替えられて電力を供給し、前記第1の二次電池群の正極側に設けられた前記第1の二次電池が充電されて前記所定の充電電圧になったときに、前記第3の二次電池を充電するように切り替えられて電力を供給する電源手段とを含んで構成されている。   According to a fourth aspect of the present invention, there is provided a battery charging circuit including: a first secondary battery group in which a plurality of first secondary battery units including a plurality of first secondary batteries connected in series are connected in series; The first secondary battery group is provided so as to correspond to two adjacent first secondary battery units, and includes the same number of second secondary batteries as the first secondary battery units. A second secondary battery group in which a plurality of second secondary battery units are connected in series; a third secondary battery in which a negative electrode is connected to a positive electrode side of the second secondary battery group; The other end is connected to the negative electrode of the third secondary battery and the other end is connected to the positive electrode side of the first secondary battery group, and the first secondary is connected to the negative electrode of the third secondary battery. A first rectifying element that allows a current flow in the positive electrode side direction of the battery group and blocks a current flow in a direction opposite to the positive electrode side direction; and one end of the first secondary element Of the second secondary battery part connected to the connection part of two adjacent first secondary battery parts of the pond group and the other end corresponding to the two adjacent first secondary battery parts. And connected to the negative electrode side, and allows a current to flow from the negative electrode side of the second secondary battery part to the connection part direction of the two adjacent first secondary battery parts. A plurality of second rectifier elements that block current flow in opposite directions, one end of which is connected to a connection portion between two adjacent first secondary battery sections of the first secondary battery group, and The other end is connected to the positive electrode side of the second secondary battery part corresponding to the two adjacent first secondary battery parts, and the connection part between the two adjacent first secondary battery parts To permit the flow of current in the direction of the positive electrode side of the second secondary battery unit and prevent the flow of current in the direction opposite to the direction of the positive electrode side. A third rectifier element, one end of which is connected to the positive electrode side of the first secondary battery group, and the other end of which is connected to the positive electrode of the third secondary battery, and the third second rectifier element. When the third secondary battery is charged to a predetermined charging voltage by supplying power so as to charge the secondary battery, the first battery provided on the positive electrode side of the first secondary battery group 1 is switched to charge one secondary battery to supply electric power, and the first secondary battery provided on the positive electrode side of the first secondary battery group is charged to the predetermined charging voltage. Power supply means that is switched so as to charge the third secondary battery and supplies electric power.

第4の発明に係る電池充電回路によれば、電源手段によって、第3の二次電池を充電するように電力を供給し、第3の二次電池が充電されて所定の充電電圧になったときに、第1の二次電池群の正極側に設けられた第1の二次電池を充電するように切り替えられて電力を供給する。同時に、充電された第3の二次電池が放電し、第1の二次電池群の正極側に設けられた第1の二次電池部の複数の第1の二次電池がさらに充電される。   According to the battery charging circuit of the fourth invention, power is supplied by the power supply means so as to charge the third secondary battery, and the third secondary battery is charged to a predetermined charging voltage. Sometimes, switching is performed to charge the first secondary battery provided on the positive electrode side of the first secondary battery group to supply electric power. At the same time, the charged third secondary battery is discharged, and the plurality of first secondary batteries of the first secondary battery unit provided on the positive electrode side of the first secondary battery group are further charged. .

そして、第1の二次電池群の正極側に設けられた第1の二次電池が充電されて所定の充電電圧になったときに、電源手段によって、第3の二次電池を充電するように切り替えられて電力を供給する。このとき、第1の二次電池群の正極側に設けられた第1の二次電池部の第1の二次電池が放電し、第1の二次電池群の正極側に設けられた隣接する2つの第1の二次電池部に対応する第2の二次電池部の複数の第2の二次電池が充電される。そして、この第2の二次電池部の二次電池が充電され、充電電圧が高くなると、この第2の二次電池部の第2の二次電池が放電し、上記の隣接する第1の二次電池部の負極側に設けられた第1の二次電池部の第1の二次電池が充電される。   Then, when the first secondary battery provided on the positive electrode side of the first secondary battery group is charged and reaches a predetermined charging voltage, the third secondary battery is charged by the power supply means. To supply power. At this time, the first secondary battery of the first secondary battery unit provided on the positive electrode side of the first secondary battery group is discharged and adjacent to the positive electrode side of the first secondary battery group. The plurality of second secondary batteries of the second secondary battery unit corresponding to the two first secondary battery units to be charged are charged. And when the secondary battery of this 2nd secondary battery part is charged and a charge voltage becomes high, the 2nd secondary battery of this 2nd secondary battery part will discharge, and said 1st adjacent 1st The first secondary battery of the first secondary battery part provided on the negative electrode side of the secondary battery part is charged.

同様に、第1の二次電池群の複数の第1の二次電池部の第1の二次電池の各々及び第2の二次電池群の複数の第2の二次電池部の第2の二次電池の各々が、充電及び放電する。   Similarly, each of the first secondary batteries of the plurality of first secondary battery parts of the first secondary battery group and the second of the plurality of second secondary battery parts of the second secondary battery group. Each of the secondary batteries is charged and discharged.

そして、上記のように、電源手段によって、第1の二次電池群の正極側に設けられた第1の二次電池及び第3の二次電池の何れかを充電するように切り替えながら電力を供給することにより、第3の二次電池、直列接続された複数の第1の二次電池部の各々の第1の二次電池、及び直列接続された複数の第2の二次電池部の各々の第2の二次電池が充放電を繰り返し、各々の充電電圧が収束していき、満充電状態になる。   Then, as described above, the power is switched while the power source is switched to charge either the first secondary battery or the third secondary battery provided on the positive electrode side of the first secondary battery group. By supplying the third secondary battery, the first secondary battery of each of the plurality of first secondary battery units connected in series, and the plurality of second secondary battery units connected in series Each second secondary battery repeats charging and discharging, and each charging voltage converges to reach a fully charged state.

従って、複数の二次電池、整流素子、及び電源手段からなる簡易な回路で構成され、かつ、電源手段によって、第1の二次電池群の正極側に設けられた第1の二次電池及び第3の二次電池の何れかを充電するように切り替えながら電力を供給し、第3の二次電池、直列接続された複数の第1の二次電池部の各々の第1の二次電池、及び直列接続された複数の第2の二次電池部の各々の第2の二次電池が充放電を繰り返すことにより、直列接続された二次電池がばらつきなく充電され、電池寿命及び性能を向上させることができる。   Accordingly, the first secondary battery is configured by a simple circuit including a plurality of secondary batteries, a rectifying element, and power supply means, and provided on the positive electrode side of the first secondary battery group by the power supply means, and Power is supplied while switching to charge any of the third secondary batteries, and each of the third secondary batteries and the first secondary batteries of each of the plurality of first secondary battery units connected in series , And the second secondary batteries of each of the plurality of second secondary battery units connected in series are repeatedly charged and discharged, so that the secondary batteries connected in series are charged without variation, and the battery life and performance are improved. Can be improved.

また、第4の発明に係る第1の二次電池乃至第3の二次電池を、略同一の容量とすることができる。これにより、回路の部品の種類数の増加を抑制できるため、回路の構成を簡易にすることができる。   In addition, the first to third secondary batteries according to the fourth invention can have substantially the same capacity. Thereby, since the increase in the number of types of circuit components can be suppressed, the circuit configuration can be simplified.

また、上記の第1の整流素子乃至第3の整流素子を、ダイオードとすることができる。これにより、回路の構成をより簡易なものにすることができる。   Further, the first to third rectifying elements can be diodes. Thereby, the configuration of the circuit can be simplified.

また、第5の発明に係る電池充電回路は、直列接続された複数の第1の二次電池から構成される第1の二次電池群と、前記第1の二次電池群の隣接する2つの第1の二次電池に対応するように設けられた複数の第2の二次電池を直列接続した第2の二次電池群と、前記第1の二次電池群の隣接する2つの第1の二次電池に対応するように設けられた複数の第3の二次電池を直列接続した第3の二次電池群と、一端が前記第2の二次電池群の正極側に接続された第1の容量素子と、一端が前記第3の二次電池群の正極側に接続された第2の容量素子と、一端が前記第1の容量素子の前記一端に接続され、かつ、他端が前記第1の二次電池群の正極側に接続されると共に、前記第1の容量素子の前記一端から前記第1の二次電池群の正極側方向への電流の流れを許容し、該正極側方向と反対方向への電流の流れを阻止する第1の整流素子と、一端が前記第1の二次電池群の隣接する2つの第1の二次電池の接続部に接続され、かつ、他端が前記隣接する2つの第1の二次電池に対応する前記第2の二次電池の負極に接続されると共に、前記第2の二次電池の負極から前記隣接する2つの第1の二次電池の接続部方向への電流の流れを許容し、該接続部方向と反対方向への電流の流れを阻止する複数の第2の整流素子と、一端が前記第1の二次電池群の隣接する2つの第1の二次電池の接続部に接続され、かつ、他端が前記隣接する2つの第1の二次電池に対応する前記第2の二次電池の正極に接続されると共に、前記隣接する2つの第1の二次電池の接続部から前記第2の二次電池の正極方向への電流の流れを許容し、該正極方向と反対方向への電流の流れを阻止する複数の第3の整流素子と、一端が前記第2の容量素子の前記一端に接続され、かつ、他端が前記第1の二次電池群の正極側に接続されると共に、前記第2の容量素子の前記一端から前記第1の二次電池群の正極側方向への電流の流れを許容し、該正極側方向と反対方向への電流の流れを阻止する第4の整流素子と、一端が前記第1の二次電池群の隣接する2つの第1の二次電池の接続部に接続され、かつ、他端が前記隣接する2つの第1の二次電池に対応する前記第3の二次電池の負極に接続されると共に、前記第3の二次電池の負極から前記隣接する2つの第1の二次電池の接続部方向への電流の流れを許容し、該接続部方向と反対方向への電流の流れを阻止する複数の第5の整流素子と、一端が前記第1の二次電池群の隣接する2つの第1の二次電池の接続部に接続され、かつ、他端が前記隣接する2つの第1の二次電池に対応する前記第3の二次電池の正極に接続されると共に、前記隣接する2つの第1の二次電池の接続部から前記第3の二次電池の正極方向への電流の流れを許容し、該正極方向と反対方向への電流の流れを阻止する複数の第6の整流素子と、一端が前記第1の二次電池群の正極側及び前記第2の容量素子の他端に接続され、かつ、他端が前記第1の容量素子の他端に接続されると共に、前記第1の容量素子を充電するように電力を供給し、前記容量素子が充電されて所定の充電電圧になったときに、前記第1の二次電池群の正極側に設けられた前記第1の二次電池及び前記第2の容量素子を充電するように切り替えられて電力を供給し、前記第1の二次電池群の正極側に設けられた前記第1の二次電池が充電されて前記所定の充電電圧になったときに、前記第1の容量素子を充電するように切り替えられて電力を供給する電源手段とを含んで構成されている。   According to a fifth aspect of the present invention, there is provided a battery charging circuit comprising: a first secondary battery group composed of a plurality of first secondary batteries connected in series; and two adjacent ones of the first secondary battery group. A second secondary battery group in which a plurality of second secondary batteries provided so as to correspond to the first secondary battery are connected in series, and two adjacent second batteries of the first secondary battery group A third secondary battery group in which a plurality of third secondary batteries provided to correspond to one secondary battery are connected in series, and one end thereof is connected to the positive electrode side of the second secondary battery group. A first capacitor element, a second capacitor element having one end connected to the positive electrode side of the third secondary battery group, one end connected to the one end of the first capacitor element, and the other An end is connected to the positive electrode side of the first secondary battery group and from the one end of the first capacitor element toward the positive electrode side of the first secondary battery group. A first rectifying element that allows current flow and blocks current flow in a direction opposite to the positive electrode side; and two first secondary batteries whose one ends are adjacent to each other in the first secondary battery group. And the other end is connected to the negative electrode of the second secondary battery corresponding to the two adjacent first secondary batteries, and the negative electrode of the second secondary battery. A plurality of second rectifying elements that allow current flow in the direction of the connecting portion of the two adjacent first secondary batteries from one side and prevent current flow in the direction opposite to the direction of the connecting portion; Is connected to a connection portion between two adjacent first secondary batteries of the first secondary battery group, and the other end corresponds to the two adjacent first secondary batteries. The positive electrode of the second secondary battery is connected to the positive electrode of the secondary battery and from the connection portion of the two adjacent first secondary batteries. A plurality of third rectifier elements that allow a current flow in a direction and prevent a current flow in a direction opposite to the positive electrode direction; one end connected to the one end of the second capacitor element; and The other end is connected to the positive electrode side of the first secondary battery group and allows a current flow from the one end of the second capacitor element toward the positive electrode side of the first secondary battery group. A fourth rectifying element that blocks current flow in a direction opposite to the positive electrode side direction, and one end connected to a connection portion between two adjacent first secondary batteries of the first secondary battery group. And the other end is connected to the negative electrode of the third secondary battery corresponding to the two adjacent first secondary batteries, and the two adjacent ones from the negative electrode of the third secondary battery. Allow the flow of current in the direction of the connection of the first secondary battery, and block the flow of current in the direction opposite to the direction of the connection A plurality of fifth rectifying elements, one end of which is connected to a connection portion of two first secondary batteries adjacent to each other in the first secondary battery group, and the other end of the two first first adjacent batteries. Connected to the positive electrode of the third secondary battery corresponding to the secondary battery of the second, and from the connecting portion of the two adjacent first secondary batteries to the positive electrode direction of the third secondary battery A plurality of sixth rectifying elements that allow current flow in a direction opposite to the positive electrode direction and one end of the first secondary battery group and the second capacitor element. The other end is connected to the other end of the first capacitive element, and power is supplied so as to charge the first capacitive element. The first secondary battery provided on the positive electrode side of the first secondary battery group and the first secondary battery group The capacitor is switched to charge the capacitor element to supply power, and the first secondary battery provided on the positive electrode side of the first secondary battery group is charged to the predetermined charging voltage. In some cases, it is configured to include power supply means that is switched to charge the first capacitor element and supplies electric power.

第5の発明の電池充電回路によれば、電源手段によって、第1の容量素子を充電するように電力を供給し、第1の容量素子が充電されて所定の充電電圧になったときに、第1の二次電池群の正極側に設けられた第1の二次電池及び第2の容量素子を充電するように切り替えられて電力を供給する。同時に、充電された第1の容量素子が放電し、第1の二次電池群の正極側に設けられた第1の二次電池及び第2の容量素子がさらに充電される。   According to the battery charging circuit of the fifth invention, when power is supplied by the power supply means so as to charge the first capacitive element, and when the first capacitive element is charged to a predetermined charging voltage, The first secondary battery group is switched to charge the first secondary battery and the second capacitor element provided on the positive electrode side of the first secondary battery group to supply electric power. At the same time, the charged first capacitor element is discharged, and the first secondary battery and the second capacitor element provided on the positive electrode side of the first secondary battery group are further charged.

そして、第1の二次電池群の正極側に設けられた第1の二次電池が充電されて所定の充電電圧になったときに、電源手段によって、第1の容量素子を充電するように切り替えられて電力を供給する。   Then, when the first secondary battery provided on the positive electrode side of the first secondary battery group is charged and reaches a predetermined charging voltage, the first capacitive element is charged by the power supply means. Switched to supply power.

このとき、第1の二次電池群の正極側に設けられた第1の二次電池が放電し、第1の二次電池群の正極側に設けられた隣接する第1の二次電池に対応する第2の二次電池が充電される。また、第2の容量素子が放電し、第1の二次電池群の正極側に設けられた第1の二次電池が充電される。   At this time, the first secondary battery provided on the positive electrode side of the first secondary battery group is discharged, and the adjacent first secondary battery provided on the positive electrode side of the first secondary battery group is discharged. The corresponding second secondary battery is charged. Further, the second capacitor element is discharged, and the first secondary battery provided on the positive electrode side of the first secondary battery group is charged.

そして、第2の二次電池が充電され、充電電圧が高くなると、第2の二次電池が放電し、上記の隣接する第1の二次電池の負極側に設けられた第1の二次電池が充電される。   When the second secondary battery is charged and the charging voltage is increased, the second secondary battery is discharged, and the first secondary battery provided on the negative electrode side of the adjacent first secondary battery. The battery is charged.

同様に、第1の二次電池群の複数の第1の二次電池の各々及び第2の二次電池群の複数の第2の二次電池の各々が、充電及び放電し、また、第3の二次電池群の複数の第3の二次電池の各々が、第2の二次電池群の複数の第2の二次電池の各々と同様に、充電及び放電する。   Similarly, each of the plurality of first secondary batteries of the first secondary battery group and each of the plurality of second secondary batteries of the second secondary battery group are charged and discharged, and Each of the plurality of third secondary batteries of the third secondary battery group is charged and discharged in the same manner as each of the plurality of second secondary batteries of the second secondary battery group.

そして、上記のように、電源手段によって、第1の二次電池群の正極側に設けられた第1の二次電池及び第1の容量素子の何れかを充電するように切り替えながら電力を供給することにより、第1の容量素子、第2の容量素子、直列接続された複数の第1の二次電池、直列接続された複数の第2の二次電池、及び直列接続された複数の第3の二次電池の各々が充放電を繰り返し、各々の充電電圧が収束していき、満充電状態になる。   Then, as described above, the power is supplied while switching so as to charge either the first secondary battery or the first capacitor element provided on the positive electrode side of the first secondary battery group. By doing so, the first capacitor element, the second capacitor element, the plurality of first secondary batteries connected in series, the plurality of second secondary batteries connected in series, and the plurality of second batteries connected in series Each of the secondary batteries 3 repeats charging / discharging, and each charging voltage converges to reach a fully charged state.

従って、複数の二次電池、容量素子、整流素子、及び電源手段からなる簡易な回路で構成され、かつ、電源手段によって、第1の二次電池群の正極側に設けられた第1の二次電池及び第1の容量素子の何れかを充電するように切り替えながら電力を供給し、第1の容量素子、第2の容量素子、直列接続された複数の第1の二次電池、直列接続された複数の第2の二次電池、及び直列接続された複数の第3の二次電池の各々が充放電を繰り返すことにより、直列接続された二次電池がばらつきなく充電され、電池寿命及び性能を向上させることができる。   Accordingly, the first secondary battery is configured by a simple circuit including a plurality of secondary batteries, a capacitor element, a rectifying element, and power supply means, and provided on the positive electrode side of the first secondary battery group by the power supply means. Power is supplied while switching so as to charge either the secondary battery or the first capacitive element, the first capacitive element, the second capacitive element, the plurality of first secondary batteries connected in series, and the serial connection Each of the plurality of second secondary batteries and the plurality of third secondary batteries connected in series repeats charging and discharging, so that the secondary batteries connected in series are charged without variation, and the battery life and Performance can be improved.

また、第1の二次電池群に対して、対称に容量素子及び二次電池群を2つ設けることにより、電源手段によって供給される電力がどちらに切り替えられていても、第1の二次電池群の正極側に設けられた第1の二次電池を充電することができるため、効率的に二次電池を充電することができる。   Further, by providing two capacitive elements and two secondary battery groups symmetrically with respect to the first secondary battery group, the first secondary battery group can be switched to whichever power is supplied by the power supply means. Since the 1st secondary battery provided in the positive electrode side of the battery group can be charged, a secondary battery can be charged efficiently.

第5の発明に係る第1の整流素子乃至第6の整流素子を、ダイオードとすることができる。これにより、回路の構成をより簡易なものにすることができる。   The first to sixth rectifying elements according to the fifth invention can be diodes. Thereby, the configuration of the circuit can be simplified.

また、第5の発明に係る第1の二次電池乃至第3の二次電池を、略同一の容量とすることができる。これにより、回路の部品の種類数が増えるのを防止し、回路の構成を簡易にすることができる。   In addition, the first to third secondary batteries according to the fifth invention can have substantially the same capacity. As a result, an increase in the number of types of circuit components can be prevented, and the circuit configuration can be simplified.

また、第6の発明に係る電気装置は、上記の電池充電回路と、前記電池充電回路の前記第1の二次電池群に接続され、かつ、前記第1の二次電池群から電力が供給される負荷部とを含んで構成されている。   An electric device according to a sixth aspect of the present invention is connected to the battery charging circuit and the first secondary battery group of the battery charging circuit, and is supplied with power from the first secondary battery group. And a load section to be configured.

第6の発明に係る電気装置によれば、電池充電回路において、第1の二次電池群の第1の二次電池がばらつきなく充電され、充電された第1の二次電池から電力が負荷部に供給され、負荷部が所定の動作を行う。   According to the electric device of the sixth invention, in the battery charging circuit, the first secondary batteries of the first secondary battery group are charged without variation, and power is loaded from the charged first secondary batteries. The load unit performs a predetermined operation.

従って、電池充電回路が、簡易な回路で構成され、かつ、直列接続された二次電池をばらつきなく充電でき、電池寿命及び性能を向上させることができる。また、二次電池がばらつきなく均一に充電されることで放電時も一定の容量を供給することができる。   Therefore, the battery charging circuit is configured with a simple circuit, and the secondary batteries connected in series can be charged without variation, and the battery life and performance can be improved. Further, since the secondary battery is uniformly charged without variation, a constant capacity can be supplied even during discharging.

以上説明したように、本発明の電池充電回路によれば、簡易な回路で構成され、かつ、複数の二次電池に充放電を繰り返させることにより、直列接続された二次電池をばらつきなく充電でき、電池寿命及び性能を向上させることができる、という効果が得られる。   As described above, according to the battery charging circuit of the present invention, it is configured with a simple circuit, and by charging and discharging a plurality of secondary batteries repeatedly, the series-connected secondary batteries are charged without variation. The battery life and performance can be improved.

以下、本発明の第1の実施の形態について図面を参照して詳細に説明する。   Hereinafter, a first embodiment of the present invention will be described in detail with reference to the drawings.

図1に示すように、第1の実施の形態に係る電気装置10は、充電すると共に、直流電源を供給する電池充電回路12と、電池充電回路12から直流電源を供給される負荷部14とから構成されており、負荷部14の一端は、電池充電回路12に接続されており、他端は接地部に接続されている。   As shown in FIG. 1, the electric device 10 according to the first embodiment is charged with a battery charging circuit 12 that supplies DC power and a load unit 14 that is supplied with DC power from the battery charging circuit 12. The load part 14 has one end connected to the battery charging circuit 12 and the other end connected to the grounding part.

電池充電回路12は、従来加速器の高電圧発生用に開発されたコッククロフト・ウォルトン回路において、キャパシタを二次電池に置き換えた構成となっている。具体的には、電池充電回路12は、直列接続され、かつ、容量が略同一(例えば、約0.25mAh)である複数の第1の二次電池16A、16Bから構成される第1の二次電池群16と、直列接続され、かつ、容量が第1の二次電池16A、16Bと略同一である複数の第2の二次電池18A、18Bから構成される第2の二次電池群18と、一端が第1の二次電池群16の正極側に接続され、かつ、第1の二次電池群16の正極側の方向及びこの方向と反対の方向(後述するキャパシタ22側の方向)の何れか一方に所定電流(例えば、0.1mA)の電力を供給する電源部20と、一端が電源部20の他端に接続され、かつ、他端が第2の二次電池群18の正極側に接続されたキャパシタ22とを備えて構成されている。   The battery charging circuit 12 has a configuration in which a capacitor is replaced with a secondary battery in a Cockcroft-Walton circuit that has been conventionally developed for generating a high voltage of an accelerator. Specifically, the battery charging circuit 12 includes a first second battery 16A and 16B that are connected in series and have a plurality of first secondary batteries 16A and 16B having substantially the same capacity (for example, about 0.25 mAh). Second battery group composed of secondary battery group 16 and a plurality of second secondary batteries 18A, 18B connected in series and having substantially the same capacity as first secondary batteries 16A, 16B 18 and one end is connected to the positive electrode side of the first secondary battery group 16, and the direction of the positive electrode side of the first secondary battery group 16 and the direction opposite to this direction (the direction of the capacitor 22 described later) ) For supplying a predetermined current (for example, 0.1 mA) to one of them, one end is connected to the other end of the power source 20, and the other end is the second secondary battery group 18. And a capacitor 22 connected to the positive electrode side.

なお、第2の二次電池群18の第2の二次電池18Aは、第1の二次電池群16の隣接する第1の二次電池16A、16Bに対応するように設けられたものである。   The second secondary battery 18A of the second secondary battery group 18 is provided so as to correspond to the adjacent first secondary batteries 16A and 16B of the first secondary battery group 16. is there.

また、電池充電回路12は、更に、キャパシタ22の他端にアノードが接続され、かつ、電源部20の一端にカソードが接続され、キャパシタ22の他端から電源部20の一端方向への電流の流れを許容し、反対方向の電流の流れを阻止する第1のダイオード24と、第2の二次電池群18の正極側に設けられている第2の二次電池18Aの負極にアノードが接続され、かつ、第1の二次電池群16の第1の二次電池16A、16Bの接続部にカソードが接続され、第2の二次電池18Aの負極から第1の二次電池16A、16Bの接続部方向への電流の流れを許容し、反対方向の電流の流れを阻止する第2のダイオード26Aと、第2の二次電池群18の負極側に設けられている第2の二次電池18Bの負極にアノードが接続され、かつ、第1の二次電池群16の第1の二次電池18Bの負極にカソードが接続された第2のダイオード26Bと、第2の二次電池群18の正極側に設けられた第2の二次電池18Aの正極にカソードが接続され、かつ、第1の二次電池群16の第1の二次電池16A、16Bの接続部にアノードが接続され、第1の二次電池16A、16Bの接続部から第2の二次電池18Aの正極方向への電流の流れを許容し、反対方向の電流の流れを阻止する第3のダイオード28Aと、第2の二次電池群18の負極側に設けられた二次電池18Bの正極にカソードが接続され、かつ、第1の二次電池群18の負極側に設けられた第1の二次電池18Bの負極にアノードが接続された第3のダイオード28Bを備えて構成されている。   Further, the battery charging circuit 12 further has an anode connected to the other end of the capacitor 22 and a cathode connected to one end of the power supply unit 20, and current flowing from the other end of the capacitor 22 toward one end of the power supply unit 20. An anode is connected to the negative electrode of the second secondary battery 18A provided on the positive electrode side of the second secondary battery group 18 and the first diode 24 that allows the flow and prevents the current flow in the opposite direction. In addition, the cathode is connected to the connection portion of the first secondary batteries 16A and 16B of the first secondary battery group 16, and the first secondary batteries 16A and 16B are connected from the negative electrode of the second secondary battery 18A. A second diode 26A that allows a current flow in the direction of the connecting portion of the second and prevents a current flow in the opposite direction, and a second secondary provided on the negative electrode side of the second secondary battery group 18. An anode is connected to the negative electrode of the battery 18B, and A second diode 26B having a cathode connected to the negative electrode of the first secondary battery 18B of the first secondary battery group 16, and a second secondary battery provided on the positive electrode side of the second secondary battery group 18. The cathode is connected to the positive electrode of the battery 18A, and the anode is connected to the connection part of the first secondary batteries 16A and 16B of the first secondary battery group 16, and the first secondary batteries 16A and 16B are connected. A third diode 28A that allows current flow in the positive direction of the second secondary battery 18A from the first portion and blocks current flow in the opposite direction, and is provided on the negative side of the second secondary battery group 18 A third diode in which the cathode is connected to the positive electrode of the secondary battery 18B, and the anode is connected to the negative electrode of the first secondary battery 18B provided on the negative electrode side of the first secondary battery group 18 28B is provided.

また、第1の二次電池群16の負極側には、切替部40が設けられており、第1の二次電池群16から負荷部14への直流電源の供給のオンオフを切り替えるようになっている。   Further, a switching unit 40 is provided on the negative electrode side of the first secondary battery group 16 to switch on / off the supply of DC power from the first secondary battery group 16 to the load unit 14. ing.

また、キャパシタ22には、キャパシタ22の充電電圧を計測するキャパシタ電圧計30が設けられ、第1の二次電池16Aには、第1の二次電池16Aの充電電圧を計測する二次電池電圧計32が設けられている。   The capacitor 22 is provided with a capacitor voltmeter 30 that measures the charging voltage of the capacitor 22, and the first secondary battery 16A has a secondary battery voltage that measures the charging voltage of the first secondary battery 16A. A total of 32 is provided.

電源部20は、供給する電力の電流方向が異なる直流電源34A、34Bと、後述する切替制御部42からの制御信号に基づいて、電流を出力する直流電源34A、34Bの何れか一方から他方へ切り替える切替スイッチ36から構成されている。   The power supply unit 20 changes from one of the DC power supplies 34A and 34B that output current based on a DC power supply 34A and 34B having different current directions of supplied power and a control signal from the switching control unit 42 described later to the other. The changeover switch 36 is configured to be switched.

また、キャパシタ電圧計30の充電電圧と二次電池電圧計32の充電電圧とに基づいて、後述する電源部20の切替スイッチ36を制御する切替制御部42が設けられており、切替制御部42は、キャパシタ電圧計30が所定の充電電圧(例えば、4.3V)を計測したときに、電源部20から出力される電力の電流の方向を第1の二次電池群16の正極側の方向に切り替えるように切替スイッチ36を制御し、二次電池電圧計32が所定の充電電圧(例えば、4.3V)を計測したときに、電源部20から出力される電力の電流の方向を第1の二次電池群16の正極側と反対の方向に切り替えるように切替スイッチ36を制御するようになっている。   Further, a switching control unit 42 that controls a changeover switch 36 of the power supply unit 20 described later is provided based on the charging voltage of the capacitor voltmeter 30 and the charging voltage of the secondary battery voltmeter 32, and the switching control unit 42 is provided. The direction of the electric current output from the power supply unit 20 when the capacitor voltmeter 30 measures a predetermined charging voltage (for example, 4.3 V) is the direction of the positive side of the first secondary battery group 16. When the secondary battery voltmeter 32 measures a predetermined charging voltage (for example, 4.3 V), the direction of the electric current output from the power supply unit 20 is set to the first direction. The changeover switch 36 is controlled so as to switch in the direction opposite to the positive electrode side of the secondary battery group 16.

また、二次電池16A、16B、18A、18Bにおいて、一方の極は、バインダを用いてスラリーとして電極面積1cmに切り出したアルミニウム箔(純度99.99%、厚さ0.1mm、電解コンデンサ用)に活物質(LiMn)及び導電助材(アセチレンブラック)をディップコーティングによって塗布して作製されており、対極には金属Li、電解液には1MLiPF6/EC+DECが用いられて作製されている。 In the secondary batteries 16A, 16B, 18A, and 18B, one electrode is an aluminum foil (purity 99.99%, thickness 0.1 mm, for an electrolytic capacitor) cut into an electrode area of 1 cm 2 as a slurry using a binder. ) And an active material (LiMn 2 O 4 ) and a conductive auxiliary material (acetylene black) are applied by dip coating. Metal Li is used for the counter electrode and 1M LiPF6 / EC + DEC is used for the electrolyte. Yes.

また、第1のダイオード24、第2のダイオード26A、26B、及び第3のダイオード28A、28BはSiダイオードで作製されている。   The first diode 24, the second diodes 26A and 26B, and the third diodes 28A and 28B are made of Si diodes.

次に、第1の実施の形態の作用について説明する。   Next, the operation of the first embodiment will be described.

まず、キャパシタ22側の方向に所定電流の電力を電源部20から供給すると、電流が電源部20からキャパシタ22を通り、第1のダイオード24へ流れ、電源部20へと戻る回路が形成され、キャパシタ22が充電される。   First, when power of a predetermined current is supplied from the power supply unit 20 in the direction of the capacitor 22, a circuit is formed in which the current flows from the power supply unit 20 through the capacitor 22 to the first diode 24 and returns to the power supply unit 20. The capacitor 22 is charged.

そして、キャパシタ22が充電され、キャパシタ電圧計30が所定電圧を計測すると、切替制御部42によって切替スイッチ36を切り替え、電源部20から供給される電力の電流の方向を反転し、電流がキャパシタ22から電源部20、第1の二次電池16Aと通過し、第3のダイオード28Aへと流れる回路が形成されるため、キャパシタ22の放電と電源部20の電力供給とによって、第1の二次電池16Aの充電が起こる。   When the capacitor 22 is charged and the capacitor voltmeter 30 measures a predetermined voltage, the changeover switch 36 switches the changeover switch 36 to reverse the direction of the electric current supplied from the power supply unit 20. Is formed between the power source unit 20 and the first secondary battery 16A, and flows to the third diode 28A. Accordingly, the first secondary battery is discharged by the capacitor 22 and the power source 20 supplies power. The battery 16A is charged.

また、第1の二次電池16Aが充電され、二次電池電圧計32が所定電圧を計測すると、切替制御部42によって切替スイッチ36を切り替え、電源部20から出力される電力の電流の方向を反転し、電流が第1の二次電池16Aから流れ、電源部20、キャパシタ22、第2の二次電池18Aを通過し、第2のダイオード26Aへと流れる回路が形成されるため、キャパシタ22の充電と、第1の二次電池16Aの放電による第2の二次電池18Aの充電が起こる。この第2の二次電池18Aの充電は、電源部20から出力される電力の電流の方向に関らず、第1の二次電池16Aの充電電圧が第2の二次電池18Aの充電電圧より高い間継続する。   Further, when the first secondary battery 16A is charged and the secondary battery voltmeter 32 measures a predetermined voltage, the changeover switch 36 is switched by the changeover control unit 42 to change the direction of the electric current output from the power supply unit 20. Inverted, a current flows from the first secondary battery 16A, passes through the power supply unit 20, the capacitor 22, the second secondary battery 18A, and flows to the second diode 26A, so that the capacitor 22 is formed. And charging of the second secondary battery 18A due to the discharge of the first secondary battery 16A occurs. The charging of the second secondary battery 18A is performed regardless of the direction of the electric current output from the power supply unit 20. The charging voltage of the first secondary battery 16A is equal to the charging voltage of the second secondary battery 18A. Continue for higher.

また、同様に、電源部20から出力される電力の電流の方向に関らず、第2の二次電池18Aの充電電圧が第1の二次電池16Bより高い間、第2の二次電池18Aの放電による第1の二次電池16Bの充電が起こり、第1の二次電池16Bの充電電圧が第2の二次電池18Bより高い間、第1の二次電池16Bの放電による第2の二次電池18Bの充電が起こる。   Similarly, the second secondary battery while the charging voltage of the second secondary battery 18A is higher than that of the first secondary battery 16B, regardless of the direction of the electric current output from the power supply unit 20. While the charging of the first secondary battery 16B occurs due to the discharge of 18A and the charging voltage of the first secondary battery 16B is higher than that of the second secondary battery 18B, the second due to the discharge of the first secondary battery 16B. The secondary battery 18B is charged.

このように、電源部20が出力する電力の電流の方向の反転を繰り返していくと、図2に示すように、キャパシタ22の充電電圧、第1の二次電池16Aの充電電圧、及び第2の二次電池18Aの充電電圧の振幅は小さくなり、満充電状態に収束していく。例えば、900秒後の各部の充電電圧は、キャパシタ22の充電電圧4.16V、第1の二次電池16Aの充電電圧4.10V、第2の二次電池18Aの充電電圧4.13Vであり、充電終了時の第1の二次電池16Aの充電電圧と第2の二次電池18Aの充電電圧との電圧差は0.03Vとなっている。   As described above, when the inversion of the direction of the current of the power output from the power supply unit 20 is repeated, as shown in FIG. 2, the charging voltage of the capacitor 22, the charging voltage of the first secondary battery 16A, and the second The amplitude of the charging voltage of the secondary battery 18A becomes smaller and converges to a fully charged state. For example, the charging voltage of each part after 900 seconds is the charging voltage 4.16V of the capacitor 22, the charging voltage 4.10V of the first secondary battery 16A, and the charging voltage 4.13V of the second secondary battery 18A. The voltage difference between the charging voltage of the first secondary battery 16A and the charging voltage of the second secondary battery 18A at the end of charging is 0.03V.

そして、切替部40がオンされると、充電された第1の二次電池16A、16Bから各充電電圧の総和の電圧が負荷部14に印加される。なお、負荷部14へ電圧を印加しているときにも、電源部20によって、第1の二次電池16A、16B、第2の二次電池18A、18Bを充電するようにしてもよい。   When the switching unit 40 is turned on, the total voltage of the charging voltages is applied to the load unit 14 from the charged first secondary batteries 16A and 16B. Note that the first secondary batteries 16A and 16B and the second secondary batteries 18A and 18B may be charged by the power supply unit 20 even when a voltage is applied to the load unit 14.

以上説明したように、第1の実施の形態に係る電気装置によれば、複数の二次電池、キャパシタ、ダイオード、及び電源部からなる簡易な回路で構成され、かつ、電源部によって、供給する電力の電流方向を、第1の二次電池群の正極側に設けられた第1の二次電池の方向及びキャパシタの方向の何れかに切り替えながら電力を供給し、キャパシタ、直列接続された複数の第1の二次電池、及び直列接続された複数の第2の二次電池の各々が充放電を繰り返すことにより、直列接続された二次電池をばらつきなく充電し、電池寿命及び性能を向上させることができる。   As described above, according to the electric device according to the first embodiment, the electric device is configured by a simple circuit including a plurality of secondary batteries, capacitors, diodes, and a power supply unit, and is supplied by the power supply unit. Supplying power while switching the current direction of power to either the direction of the first secondary battery provided on the positive electrode side of the first secondary battery group or the direction of the capacitor, a plurality of capacitors connected in series Each of the first secondary battery and the plurality of second secondary batteries connected in series repeats charging and discharging, thereby charging the secondary batteries connected in series without variation and improving battery life and performance. Can be made.

また、複数の二次電池を均一に充電することにより、負荷部へ放電する時も一定の容量を供給することができる。   Further, by uniformly charging a plurality of secondary batteries, a constant capacity can be supplied even when discharging to the load section.

また、電池自体が整流回路の役割を果たすことができるので、回路が簡潔となる。   Further, since the battery itself can serve as a rectifier circuit, the circuit is simplified.

また、電池充電回路に設けられた複数の二次電池の全てを、略同一の容量とすることにより、回路の部品の種類数の増加を抑制できるため、回路の構成を簡易にすることができる。   In addition, since all of the plurality of secondary batteries provided in the battery charging circuit have substantially the same capacity, an increase in the number of types of circuit components can be suppressed, so that the circuit configuration can be simplified. .

また、電流の流れを整流するものとしてダイオードを用いることにより、回路の構成をより簡易なものにすることができる。   In addition, the use of a diode for rectifying the current flow can make the circuit configuration simpler.

なお、上記の実施の形態では、第1の二次電池群の二次電池の数と第2の二次電池群の二次電池の数とが同数である場合を例に説明したが、隣接する第1の二次電池に対応する第2の二次電池だけを設けてもよい。その場合には、第2の二次電池群の二次電池の数が、第1の二次電池群の二次電池の数より1つ少なくなるようにすればよい。   In the above embodiment, the case where the number of secondary batteries in the first secondary battery group and the number of secondary batteries in the second secondary battery group are the same is described as an example. Only the second secondary battery corresponding to the first secondary battery may be provided. In that case, the number of secondary batteries in the second secondary battery group may be one less than the number of secondary batteries in the first secondary battery group.

また、第1の二次電池群の二次電池群の数が2つである場合を例に説明したが、負荷部へ供給すべき電力の電圧に応じて、第1の二次電池群の二次電池の数を増やしてもよい。   Moreover, although the case where the number of the secondary battery groups of the first secondary battery group is two has been described as an example, according to the voltage of the power to be supplied to the load unit, the first secondary battery group The number of secondary batteries may be increased.

次に、本発明の第2の実施の形態について説明する。なお、第1の実施の形態と同様の部分については、同一の符号を付して説明を省略する。第2の実施の形態では、電源部がキャパシタ22側の方向への所定電流の出力をオンオフするパルス電流方式となっている点が第1の実施の形態と異なっている。   Next, a second embodiment of the present invention will be described. In addition, about the part similar to 1st Embodiment, the same code | symbol is attached | subjected and description is abbreviate | omitted. The second embodiment is different from the first embodiment in that the power supply unit employs a pulse current method in which an output of a predetermined current in the direction toward the capacitor 22 is turned on and off.

図3に示すように、第2の実施の形態に係る電気装置110において、電池充電回路112の電源部120は、キャパシタ22側の方向への所定電流を出力する直流電源34Aと、直流電源34Aによる所定電流の出力及び通電の何れか一方から他方へ切り替える切替スイッチ136から構成されており、切替スイッチ136は、切替制御部42からの制御信号に基づいて、キャパシタ電圧計30が所定の充電電圧を計測したときに、通電に切り替え、二次電池電圧計32が所定の充電電圧を計測したときに、電源部120からキャパシタ22側の方向へ所定電流を出力するように切り替えるようになっている。   As shown in FIG. 3, in the electric device 110 according to the second embodiment, the power supply unit 120 of the battery charging circuit 112 includes a DC power supply 34A that outputs a predetermined current in the direction toward the capacitor 22, and a DC power supply 34A. The changeover switch 136 is configured to switch from one of the predetermined current output and energization to the other. The changeover switch 136 is configured so that the capacitor voltmeter 30 is set to a predetermined charging voltage based on a control signal from the switching control unit 42. When the secondary battery voltmeter 32 measures a predetermined charging voltage, the secondary battery voltmeter 32 switches to output a predetermined current from the power supply unit 120 toward the capacitor 22 side. .

なお、電気装置110の他の構成は、第1の実施の形態と同様であるため、他の構成に関する説明を省略する。   In addition, since the other structure of the electric apparatus 110 is the same as that of 1st Embodiment, the description regarding another structure is abbreviate | omitted.

次に、第2の実施の形態の作用について説明する。   Next, the operation of the second embodiment will be described.

まず、キャパシタ22側の方向に所定電流を電源部120から出力すると、電流が電源部120からキャパシタ22を通り、第1のダイオード24へ流れ、電源部20へと戻る回路が形成され、キャパシタ22が充電される。   First, when a predetermined current is output from the power supply unit 120 in the direction toward the capacitor 22, a circuit is formed in which the current flows from the power supply unit 120 through the capacitor 22 to the first diode 24 and returns to the power supply unit 20. Is charged.

そして、キャパシタ22が充電され、キャパシタ電圧計30が所定電圧を計測すると、切替制御部42によって切替スイッチ136を切り替え、電源部120を介してキャパシタ22と第1の二次電池16Aとが通電され、充電されたキャパシタ22から、電流が電源部120、第1の二次電池16Aと通過し、第3のダイオード28Aへと流れる回路が形成されるため、キャパシタ22の放電による第1の二次電池16Aの充電が起こる。   When the capacitor 22 is charged and the capacitor voltmeter 30 measures a predetermined voltage, the changeover switch 136 is switched by the changeover control unit 42, and the capacitor 22 and the first secondary battery 16 </ b> A are energized via the power supply unit 120. Since the charged capacitor 22 passes through the power supply unit 120 and the first secondary battery 16A and a circuit that flows to the third diode 28A is formed, the first secondary due to the discharge of the capacitor 22 is formed. The battery 16A is charged.

また、第1の二次電池16Aが充電され、二次電池電圧計32が所定電圧を計測すると、切替制御部42によって切替スイッチ136を切り替え、電源部120から所定電流がキャパシタ22側の方向に出力され、電流が第1の二次電池16Aから流れ、電源部120、キャパシタ22、第2の二次電池18Aを通過し、第2のダイオード26Aへと流れる回路が形成されるため、キャパシタ22の充電と、第1の二次電池16Aの放電による第2の二次電池18Aの充電が起こる。この第2の二次電池18Aの充電は、電源部120から出力される電流のオンオフに関らず、第1の二次電池16Aの充電電圧が第2の二次電池18Aの充電電圧より高い間継続する。   When the first secondary battery 16A is charged and the secondary battery voltmeter 32 measures a predetermined voltage, the switch control unit 42 switches the changeover switch 136 so that the predetermined current from the power supply unit 120 is directed toward the capacitor 22 side. Since the output current flows from the first secondary battery 16A, passes through the power supply unit 120, the capacitor 22, and the second secondary battery 18A, and flows to the second diode 26A, the capacitor 22 is formed. And charging of the second secondary battery 18A due to the discharge of the first secondary battery 16A occurs. In the charging of the second secondary battery 18A, the charging voltage of the first secondary battery 16A is higher than the charging voltage of the second secondary battery 18A, regardless of whether the current output from the power supply unit 120 is on or off. Continue for a while.

また、同様に、電源部120から出力される電流のオンオフに関らず、第2の二次電池18Aの充電電圧が第1の二次電池16Bより高い間、第2の二次電池18Aの放電による第1の二次電池16Bの充電が起こり、第1の二次電池16Bの充電電圧が第2の二次電池18Bより高い間、第1の二次電池16Bの放電による第2の二次電池18Bの充電が起こる。   Similarly, while the charging voltage of the second secondary battery 18A is higher than that of the first secondary battery 16B, regardless of whether the current output from the power supply unit 120 is on or off, the second secondary battery 18A While the first secondary battery 16B is charged by the discharge and the charging voltage of the first secondary battery 16B is higher than that of the second secondary battery 18B, the second secondary battery 16B is discharged by the discharge of the first secondary battery 16B. The secondary battery 18B is charged.

このように、電源部120から出力される電流のオンオフを繰り返していくと、キャパシタ22の充電電圧、第1の二次電池16Aの充電電圧、及び第2の二次電池18Aの充電電圧の振幅は小さくなり、満充電状態に収束していく。   As described above, when the ON / OFF of the current output from the power supply unit 120 is repeated, the amplitude of the charging voltage of the capacitor 22, the charging voltage of the first secondary battery 16A, and the charging voltage of the second secondary battery 18A. Becomes smaller and converges to a fully charged state.

以上説明したように、第2の実施の形態に係る電気装置によれば、複数の二次電池、キャパシタ、ダイオード、及び電源部からなる簡易な回路で構成され、かつ、電源部によって、第1の二次電池群の正極側に設けられた第1の二次電池及びキャパシタの何れかを切り替えて充電するように、電力供給をオンオフし、キャパシタ、直列接続された複数の第1の二次電池、及び直列接続された複数の第2の二次電池の各々が充放電を繰り返すことにより、直列接続された二次電池がばらつきなく充電され、電池寿命及び性能を向上させることができる。   As described above, according to the electric device according to the second embodiment, the electric device is configured by a simple circuit including a plurality of secondary batteries, capacitors, diodes, and a power supply unit, and the first A plurality of first secondary batteries connected in series, with the power supply turned on and off so as to switch and charge either the first secondary battery or the capacitor provided on the positive electrode side of the secondary battery group Each of the battery and the plurality of second secondary batteries connected in series repeats charging and discharging, so that the secondary batteries connected in series are charged without variation, and the battery life and performance can be improved.

次に、第3の実施の形態について説明する。なお、第1の実施の形態と同様の部分については、同一の符号を付して説明を省略する。   Next, a third embodiment will be described. In addition, about the part similar to 1st Embodiment, the same code | symbol is attached | subjected and description is abbreviate | omitted.

第3の実施の形態では、電源部の一端にはキャパシタではなく、二次電池が接続されており、また、複数の二次電池から構成される二次電池部毎にダイオードがたがい違いに接続されている点が第1の実施の形態と異なっている。   In the third embodiment, a secondary battery is connected to one end of the power supply unit instead of a capacitor, and a diode is connected to each secondary battery unit composed of a plurality of secondary batteries. This is different from the first embodiment.

図4に示すように、第3の実施の形態に係る電池充電回路214は、容量が略同一である2つの第1の二次電池216A、216Bが直列接続された第1の二次電池部216、及び容量が第1の二次電池216A、216Bと略同一である第1の二次電池217A、217Bが直列接続された第1の二次電池部217が直列接続された第1の二次電池群250と、容量が第1の二次電池216A、216Bと略同一である第2の二次電池218A、218Bが直列接続された第2の二次電池部218、及び容量が第1の二次電池216A、216Bと略同一である第2の二次電池219A、219Bが直列接続された第2の二次電池部219が直列接続された第2の二次電池群252を備えている。   As shown in FIG. 4, the battery charging circuit 214 according to the third embodiment includes a first secondary battery unit in which two first secondary batteries 216A and 216B having substantially the same capacity are connected in series. 216 and a first secondary battery unit 217 in which first secondary batteries 217A and 217B having substantially the same capacity as the first secondary batteries 216A and 216B are connected in series. Secondary battery group 250, second secondary battery unit 218 in which second secondary batteries 218A and 218B having a capacity substantially the same as that of first secondary batteries 216A and 216B are connected in series, and the capacity is first. A second secondary battery group 252 in which a second secondary battery part 219 in which second secondary batteries 219A and 219B, which are substantially the same as the secondary batteries 216A and 216B, are connected in series, is connected in series. Yes.

更に、電池充電回路214は、一端が第1の二次電池群250の正極側に接続され、かつ、第1の二次電池群250の正極側の方向及びこの方向と反対の方向(後述する第3の二次電池222側の方向)の何れか一方に所定電圧(例えば、4.3V)の電力を供給する電源部220と、正極が電源部220の他端に接続され、かつ、負極が第2の二次電池群18の正極側に接続され、容量が第1の二次電池216A、216Bと略同一である第3の二次電池222とを備えて構成されている。   Furthermore, one end of the battery charging circuit 214 is connected to the positive electrode side of the first secondary battery group 250, and the direction of the positive electrode side of the first secondary battery group 250 and the direction opposite to this direction (described later). A power supply unit 220 that supplies power of a predetermined voltage (for example, 4.3 V) to any one of the third secondary battery 222 side), a positive electrode is connected to the other end of the power supply unit 220, and a negative electrode Is connected to the positive electrode side of the second secondary battery group 18 and includes a third secondary battery 222 having a capacity substantially the same as that of the first secondary batteries 216A and 216B.

これにより、第1の二次電池部216、217及び第2の二次電池部218、219の容量が、第3の二次電池222の容量の2倍となっている。   Thereby, the capacity | capacitance of the 1st secondary battery part 216,217 and the 2nd secondary battery part 218,219 is twice the capacity | capacitance of the 3rd secondary battery 222. FIG.

なお、第2の二次電池群252の第2の二次電池部218は、第1の二次電池群250の隣接する第1の二次電池部216、217に対応するように設けられたものである。   The second secondary battery unit 218 of the second secondary battery group 252 is provided so as to correspond to the adjacent first secondary battery units 216 and 217 of the first secondary battery group 250. Is.

また、電池充電回路214は、更に、第3の二次電池222の負極にアノードが接続され、かつ、電源部220の一端にカソードが接続され、第3の二次電池222の負極から電源部220の一端方向への電流の流れを許容し、反対方向の電流の流れを阻止する第1のダイオード224と、第2の二次電池群252の正極側に設けられている第2の二次電池部218の負極側にアノードが接続され、かつ、第1の二次電池群250の第1の二次電池部216、217の接続部にカソードが接続され、第2の二次電池部218の負極側から第1の二次電池部216、217の接続部方向への電流の流れを許容し、反対方向の電流の流れを阻止する第2のダイオード226Aと、第2の二次電池群252の負極側に設けられている第2の二次電池部219の負極側にアノードが接続され、かつ、第1の二次電池群250の第1の二次電池部217の負極側にカソードが接続された第2のダイオード226Bと、第2の二次電池群252の正極側に設けられた第2の二次電池部218の正極側にカソードが接続され、かつ、第1の二次電池群250の第1の二次電池216、217の接続部にアノードが接続され、第1の二次電池部216、217の接続部から第2の二次電池部218の正極側方向への電流の流れを許容し、反対方向の電流の流れを阻止する第3のダイオード228Aと、第2の二次電池群252の負極側に設けられた二次電池219の正極側にカソードが接続され、かつ、第1の二次電池群252の負極側に設けられた第1の二次電池部217の負極にアノードが接続された第3のダイオード228Bを備えて構成されている。   The battery charging circuit 214 further has an anode connected to the negative electrode of the third secondary battery 222 and a cathode connected to one end of the power supply unit 220, and the power supply unit starts from the negative electrode of the third secondary battery 222. A first diode 224 that allows current flow in one end direction of 220 and blocks current flow in the opposite direction; and a second secondary provided on the positive electrode side of the second secondary battery group 252. The anode is connected to the negative electrode side of the battery unit 218, the cathode is connected to the connection part of the first secondary battery part 216, 217 of the first secondary battery group 250, and the second secondary battery part 218 is connected. A second diode 226A that allows current flow in the direction from the negative electrode side toward the connection portion of the first secondary battery parts 216 and 217 and blocks current flow in the opposite direction, and a second secondary battery group The second secondary battery provided on the negative electrode side of 252 A second diode 226B having an anode connected to the negative electrode side of 219 and a cathode connected to the negative electrode side of the first secondary battery unit 217 of the first secondary battery group 250; The cathode is connected to the positive electrode side of the second secondary battery unit 218 provided on the positive electrode side of the battery group 252 and the connection part of the first secondary batteries 216 and 217 of the first secondary battery group 250 Is connected to the anode, and allows a current flow from the connection part of the first secondary battery part 216, 217 toward the positive side of the second secondary battery part 218, and prevents a current flow in the opposite direction. The cathode is connected to the positive electrode side of the secondary battery 219 provided on the negative electrode side of the third diode 228A and the second secondary battery group 252, and provided on the negative electrode side of the first secondary battery group 252. The anode is connected to the negative electrode of the first secondary battery unit 217 formed It is configured to include a third diode 228B which.

また、第1の二次電池群250の負極側には、切替部40が設けられており、第1の二次電池群250から負荷部14への直流電源の供給のオンオフを切り替えるようになっている。   In addition, a switching unit 40 is provided on the negative electrode side of the first secondary battery group 250 so as to switch on / off the supply of DC power from the first secondary battery group 250 to the load unit 14. ing.

電源部220は、例えば、交流電源となっており、所定周波数で所定電圧の交流電圧を出力するようになっている。   The power supply unit 220 is, for example, an AC power supply, and outputs an AC voltage having a predetermined voltage at a predetermined frequency.

次に、第3の実施の形態に係る作用について説明する。   Next, the operation according to the third embodiment will be described.

まず、第3の二次電池222側の方向に所定の正電圧の電力を電源部220から供給すると、電流が電源部220から第3の二次電池222を通り、第1のダイオード224へ流れ、電源部220へと戻る回路が形成され、第3の二次電池222が充電される。   First, when power of a predetermined positive voltage is supplied from the power supply unit 220 in the direction toward the third secondary battery 222, current flows from the power supply unit 220 through the third secondary battery 222 to the first diode 224. A circuit returning to the power supply unit 220 is formed, and the third secondary battery 222 is charged.

そして、第3の二次電池222が充電され、所定のタイミングで、電源部220から出力される電圧の正負が反転し、電流が第3の二次電池222から電源部220、第1の二次電池216A、216Bと通過し、第3のダイオード228Aへと流れる回路が形成されるため、第3の二次電池222の放電と電源部220からの電源供給とにより、第1の二次電池216A、216Bの充電が起こる。なお、所定のタイミングは、例えば、第3の二次電池222が所定の充電電圧になるようなタイミングである。   Then, the third secondary battery 222 is charged, and at a predetermined timing, the polarity of the voltage output from the power supply unit 220 is reversed, and the current is supplied from the third secondary battery 222 to the power supply unit 220, the first second battery. Since a circuit that passes through the secondary batteries 216A and 216B and flows to the third diode 228A is formed, the first secondary battery is discharged by the discharge of the third secondary battery 222 and the power supply from the power supply unit 220. Charging of 216A, 216B occurs. The predetermined timing is, for example, a timing at which the third secondary battery 222 reaches a predetermined charging voltage.

また、第1の二次電池216A、216Bが充電され、所定のタイミングで、電源部220から出力される電圧の正負が反転し、電流が第1の二次電池216A、216Bから流れ、電源部220、第3の二次電池222、第2の二次電池218A、218Bを通過し、第2のダイオード226Aへと流れる回路が形成されるため、第3の二次電池222の充電と、第1の二次電池216A、216Bの放電による第2の二次電池218A、218Bの充電が起こる。この第2の二次電池218A、218Bの充電は、電源部220から供給される電力の電圧の正負に関らず、第1の二次電池216A、216Bの充電電圧が第2の二次電池218A、218Bの充電電圧より高い間継続する。   Further, the first secondary batteries 216A and 216B are charged, and at a predetermined timing, the polarity of the voltage output from the power supply unit 220 is reversed, and the current flows from the first secondary batteries 216A and 216B. 220, the third secondary battery 222, the second secondary batteries 218A and 218B, and a circuit that flows to the second diode 226A is formed. Therefore, the charging of the third secondary battery 222, Charging of the second secondary batteries 218A and 218B occurs due to the discharge of the first secondary batteries 216A and 216B. The charging of the second secondary batteries 218A and 218B is performed regardless of whether the voltage of the power supplied from the power supply unit 220 is positive or negative, and the charging voltage of the first secondary batteries 216A and 216B is the second secondary battery. It continues while being higher than the charging voltage of 218A, 218B.

また、同様に、電源部220から供給される電力の電圧の正負に関らず、第2の二次電池218A、218Bの充電電圧が第1の二次電池217A、217Bより高い間、第2の二次電池218A、218Bの放電による第1の二次電池217A、217Bの充電が起こり、第1の二次電池217A、217Bの充電電圧が第2の二次電池219A、219Bより高い間、第1の二次電池217A、217Bの放電による第2の二次電池219A、219Bの充電が起こる。   Similarly, while the charging voltage of the second secondary batteries 218A and 218B is higher than that of the first secondary batteries 217A and 217B, regardless of whether the voltage of the power supplied from the power supply unit 220 is positive or negative, Charging of the first secondary batteries 217A and 217B due to the discharge of the secondary batteries 218A and 218B, and the charging voltage of the first secondary batteries 217A and 217B is higher than that of the second secondary batteries 219A and 219B, Charging of the second secondary batteries 219A and 219B occurs due to the discharge of the first secondary batteries 217A and 217B.

このように、電源部220が供給する電力の電圧の正負の反転を繰り返していくと、図5に示すように、第3の二次電池222の充電電圧、第1の二次電池216A、216Bの充電電圧、及び第2の二次電池218A、218Bの充電電圧の振幅は小さくなり、満充電状態に収束していく。例えば、充電終了時の各部の充電電圧は、第3の二次電池222の充電電圧3.90V、第1の二次電池216Aの充電電圧4.30V、第1の二次電池216Bの充電電圧4.18V、第2の二次電池218Aの充電電圧3.90V、第2の二次電池218B4.00Vとなっている。   As described above, when the inversion of the voltage of the power supplied by the power supply unit 220 is repeated, as shown in FIG. 5, the charging voltage of the third secondary battery 222, the first secondary batteries 216A, 216B. And the amplitudes of the charging voltages of the second secondary batteries 218A and 218B become smaller and converge to a fully charged state. For example, the charging voltage of each part at the end of charging is the charging voltage of 3.90 V for the third secondary battery 222, the charging voltage of 4.30 V for the first secondary battery 216A, and the charging voltage for the first secondary battery 216B. 4.18V, the charging voltage of the second secondary battery 218A is 3.90V, and the second secondary battery 218B is 4.00V.

以上説明したように、第3の実施の形態に係る電気装置によれば、複数の二次電池、ダイオード、及び電源部からなる簡易な回路で構成され、かつ、電源部によって、第1の二次電池群の正極側に設けられた第1の二次電池及び第3の二次電池の何れかを充電するように切り替えながら電力を供給し、第3の二次電池、直列接続された複数の第1の二次電池部の各々の第1の二次電池、及び直列接続された複数の第2の二次電池の各々の第2の二次電池が充放電を繰り返すことにより、直列接続された二次電池をばらつきなく充電し、電池寿命及び性能を向上させることができる
なお、第1の二次電池部及び第2の二次電池部の各々を構成する二次電池が2つである場合を例に説明したが、これに限定されるものではなく、3つ以上であってもよい。
As described above, the electric device according to the third embodiment is configured by a simple circuit including a plurality of secondary batteries, diodes, and a power supply unit. Power is supplied while switching to charge either the first secondary battery or the third secondary battery provided on the positive electrode side of the secondary battery group, and the third secondary battery is connected in series. The first secondary battery of each of the first secondary battery parts and the second secondary batteries of each of the plurality of second secondary batteries connected in series repeat charging and discharging, thereby being connected in series. The secondary battery can be charged without variation and the battery life and performance can be improved. In addition, there are two secondary batteries constituting each of the first secondary battery part and the second secondary battery part. Although a case has been described as an example, it is not limited to this. Also good.

また、定電圧の交流電圧の電力を供給する場合を例に説明したが、定電流の電力を、電流方向を切り替えながら供給するようにしてもよい。   Moreover, although the case where the electric power of the constant voltage AC voltage is supplied has been described as an example, the electric power of the constant current may be supplied while switching the current direction.

次に、第4の実施の形態について説明する。なお、第1の実施の形態と同様の部分については、同一符号を付して説明を省略する。   Next, a fourth embodiment will be described. In addition, about the part similar to 1st Embodiment, the same code | symbol is attached | subjected and description is abbreviate | omitted.

第4の実施の形態では、第1の二次電池群に対して、キャパシタ及び第2の二次電池群と対称にキャパシタ及び二次電池群を更に設けた点が第1の実施の形態と異なっている。   The fourth embodiment is different from the first embodiment in that the capacitor and the secondary battery group are further provided symmetrically with the capacitor and the second secondary battery group with respect to the first secondary battery group. Is different.

図6に示すように、第4の実施の形態に係る電池充電回路314は、直列接続され、かつ、容量が略同一である複数の第1の二次電池16A、16B、16C、16Dから構成される第1の二次電池群16と、直列接続され、かつ、容量が第1の二次電池16A〜16Dと略同一である第2の二次電池18A、18B、18Cから構成される第2の二次電池群18と、電源部20と、第1のキャパシタ320とを備えて構成されている。   As shown in FIG. 6, the battery charging circuit 314 according to the fourth embodiment includes a plurality of first secondary batteries 16A, 16B, 16C, and 16D that are connected in series and have substantially the same capacity. First secondary battery group 16 and second secondary batteries 18A, 18B and 18C connected in series and having substantially the same capacity as the first secondary batteries 16A to 16D. 2 secondary battery group 18, power supply unit 20, and first capacitor 320.

なお、第2の二次電池18A〜18Cの各々は、隣接する第1の二次電池16A、16B、隣接する第1の二次電池16B、16C、隣接する第1の二次電池16C、16Dの各々に対応して設けられている。   Each of the second secondary batteries 18A to 18C includes an adjacent first secondary battery 16A, 16B, an adjacent first secondary battery 16B, 16C, and an adjacent first secondary battery 16C, 16D. Are provided corresponding to each of the above.

更に、電池充電回路314は、直列接続され、かつ、容量が第1の二次電池16A〜16Dと略同一である第3の二次電池318A、318B、318Cから構成される第3の二次電池群318と、一端が電源部20の一端に接続され、かつ、他端が第3の二次電池群318の正極側に接続された第2のキャパシタ322とを備えて構成されている。また、第3の二次電池318A〜318Cの各々は、隣接する第1の二次電池16A、16B、隣接する第1の二次電池16B、16C、隣接する第1の二次電池16C、16Dの各々に対応して設けられている。   Furthermore, the battery charging circuit 314 is connected in series and has a third secondary battery 318 </ b> A, 318 </ b> B, 318 </ b> C having a capacity substantially the same as that of the first secondary batteries 16 </ b> A to 16 </ b> D. The battery group 318 is configured to include a second capacitor 322 having one end connected to one end of the power supply unit 20 and the other end connected to the positive electrode side of the third secondary battery group 318. Each of the third secondary batteries 318A to 318C includes an adjacent first secondary battery 16A, 16B, an adjacent first secondary battery 16B, 16C, and an adjacent first secondary battery 16C, 16D. Are provided corresponding to each of the above.

また、電池充電回路314は、第1のダイオード24、第2のダイオード26A〜26C、及び第3のダイオード28A〜28Dを備えて構成されている。   The battery charging circuit 314 includes a first diode 24, second diodes 26A to 26C, and third diodes 28A to 28D.

また、電池充電回路314は、第2のキャパシタ322の一端にアノードが接続され、かつ、第1の二次電池群16の正極側にカソードが接続されると共に、第2のキャパシタ322の一端から第1の二次電池群16の正極側方向への電流の流れを許容し、反対方向への電流の流れを阻止する第4のダイオード324と、カソードが、第1の二次電池群16の隣接する2つの第1の二次電池16A、16Bの接続部に接続され、かつ、アノードが、隣接する2つの第1の二次電池16A、16Bに対応する第3の二次電池318Aの負極に接続されると共に、第3の二次電池318Aの負極から隣接する2つの第1の二次電池16A、16Bの接続部方向への電流の流れを許容し、反対方向への電流の流れを阻止する第5のダイオード326Aと、アノードが、第1の二次電池群16の隣接する2つの第1の二次電池16A、16Bの接続部に接続され、かつ、カソードが、隣接する2つの第1の二次電池16A、16Bに対応する第3の二次電池318Aの正極に接続されると共に、隣接する2つの第1の二次電池16A、16Bの接続部から第3の二次電池318Aの正極方向への電流の流れを許容し、反対方向への電流の流れを阻止する第6のダイオード328Aとを備えている。   Further, the battery charging circuit 314 has an anode connected to one end of the second capacitor 322 and a cathode connected to the positive electrode side of the first secondary battery group 16, and from one end of the second capacitor 322. A fourth diode 324 that allows a current flow in the positive electrode side direction of the first secondary battery group 16 and blocks a current flow in the opposite direction, and a cathode of the first secondary battery group 16 A negative electrode of a third secondary battery 318A connected to a connection portion between two adjacent first secondary batteries 16A and 16B and having an anode corresponding to the two adjacent first secondary batteries 16A and 16B. Is connected to the negative electrode of the third secondary battery 318A, and allows a current flow in the direction of the connecting portion of the two adjacent first secondary batteries 16A and 16B, and allows a current flow in the opposite direction. Blocking fifth diode 326 And the anode is connected to the connecting portion of the two adjacent first secondary batteries 16A, 16B of the first secondary battery group 16, and the cathode is the two adjacent first secondary batteries 16A. , 16B corresponding to the positive electrode of the third secondary battery 318A and the current in the positive direction of the third secondary battery 318A from the connection portion of the two adjacent first secondary batteries 16A, 16B. And a sixth diode 328A that prevents current flow in the opposite direction.

また、隣接する2つの第1の二次電池16B、16Cや第1の二次電池16C、16Dに対応する第1の二次電池16B、16Cについても、同様に第5のダイオード326B、326C、第6のダイオード328B、328Cが設けられている。   Similarly, for the first secondary batteries 16B, 16C corresponding to the two adjacent first secondary batteries 16B, 16C and the first secondary batteries 16C, 16D, the fifth diodes 326B, 326C, Sixth diodes 328B and 328C are provided.

また、第1の二次電池群16の負極側には、切替部40が設けられており、第1の二次電池群16から負荷部14への直流電源の供給のオンオフを切り替えるようになっている。   Further, a switching unit 40 is provided on the negative electrode side of the first secondary battery group 16 to switch on / off the supply of DC power from the first secondary battery group 16 to the load unit 14. ing.

電源部20は、第1のキャパシタ320の充電電圧と第1の二次電池16Aの充電電圧とに基づいて、切替制御部42によって、供給する電力の電流方向が切り替えられ、第1のキャパシタ320が所定の充電電圧になったときに、電源部20から供給される電力の電流方向を第1の二次電池群16の正極側の方向(第2のキャパシタ322の方向)に切り替えるように切替スイッチ36を制御し、第1の二次電池16Aが所定の充電電圧になったときに、電源部20から供給される電力の電流方向を第1のキャパシタ320の方向に切り替えるように切替スイッチ36を制御するようになっている。   In the power supply unit 20, the current direction of the power to be supplied is switched by the switching control unit 42 based on the charging voltage of the first capacitor 320 and the charging voltage of the first secondary battery 16 </ b> A. Is switched so as to switch the current direction of the power supplied from the power supply unit 20 to the positive side of the first secondary battery group 16 (the direction of the second capacitor 322) when becomes a predetermined charging voltage. The switch 36 is controlled so that the current direction of the power supplied from the power supply unit 20 is switched to the direction of the first capacitor 320 when the first secondary battery 16A reaches a predetermined charging voltage. Is to control.

次に、第4の実施の形態の作用について説明する。   Next, the operation of the fourth embodiment will be described.

まず、第1のキャパシタ320側の方向の電流を電源部20から出力すると、電流が電源部20から第1のキャパシタ320を通り、第1のダイオード24へ流れ、電源部20へと戻る回路が形成され、第1のキャパシタ320が充電される。   First, when a current in the direction toward the first capacitor 320 is output from the power supply unit 20, a circuit flows from the power supply unit 20 through the first capacitor 320 to the first diode 24 and returns to the power supply unit 20. Once formed, the first capacitor 320 is charged.

そして、第1のキャパシタ320が充電され、第1のキャパシタ320が所定の充電電圧になると、切替制御部42によって切替スイッチ36を切り替え、電源部20から供給される電力の電流方向を反転し、電流が電源部20から第2のキャパシタ322を通り、第4のダイオード324を通り電源部20へ戻る回路が形成され、キャパシタ22の放電と電源部20の電力供給とにより、第2のキャパシタ322が充電される。これと同時に、電流が第1のキャパシタ320から第1の二次電池16A及び第3のダイオード28Aを通過し、第2のキャパシタ322に戻る回路が形成されるため、キャパシタ22の放電と電源部20の電力供給とにより、第1の二次電池16Aの充電が起こる。   Then, when the first capacitor 320 is charged and the first capacitor 320 reaches a predetermined charging voltage, the switch control unit 42 switches the changeover switch 36 to reverse the current direction of the power supplied from the power supply unit 20, A circuit is formed in which a current passes from the power supply unit 20 through the second capacitor 322 and returns to the power supply unit 20 through the fourth diode 324, and the second capacitor 322 is discharged by the discharge of the capacitor 22 and the power supply of the power supply unit 20. Is charged. At the same time, a circuit is formed in which the current passes from the first capacitor 320 through the first secondary battery 16A and the third diode 28A and returns to the second capacitor 322. With the power supply of 20, charging of the first secondary battery 16A occurs.

また、第1の二次電池16Aが充電され、充電電圧が高くなると、第1の二次電池16Aから始まり、第1のキャパシタ320、第2の二次電池18Aを通過し、第2のダイオード26Aへと流れる回路が形成されるため、第1の二次電池16Aの放電による第2の二次電池18Aの充電が起こる。この第2の二次電池18Aの充電は、第1の二次電池16Aの充電電圧が第2の二次電池18Aの充電電圧より高い間継続する。   When the first secondary battery 16A is charged and the charging voltage is increased, the first diode starts from the first secondary battery 16A, passes through the first capacitor 320 and the second secondary battery 18A, and the second diode. Since the circuit that flows to 26A is formed, the second secondary battery 18A is charged by the discharge of the first secondary battery 16A. The charging of the second secondary battery 18A is continued while the charging voltage of the first secondary battery 16A is higher than the charging voltage of the second secondary battery 18A.

また、同様に、第2の二次電池18Aの充電電圧が第1の二次電池16Bより高い間、第2の二次電池18Aの放電による第1の二次電池16Bの充電が起こり、第1の二次電池16Bの充電電圧が第2の二次電池18Bより高い間、第1の二次電池16Bの放電による第2の二次電池18Bの充電が起こる。第1の二次電池16C、16D及び第2の二次電池18Cについても、上記と同様に充電が起こる。   Similarly, while the charging voltage of the second secondary battery 18A is higher than that of the first secondary battery 16B, the charging of the first secondary battery 16B due to the discharge of the second secondary battery 18A occurs, While the charging voltage of the first secondary battery 16B is higher than that of the second secondary battery 18B, the second secondary battery 18B is charged by the discharge of the first secondary battery 16B. The first secondary batteries 16C and 16D and the second secondary battery 18C are charged in the same manner as described above.

また、電源部20から第2のキャパシタ322の方向に電流が出力されると、第2のキャパシタ322から第1の二次電池16A及び第6のダイオード328Aを通り、キャパシタ322に戻る回路が形成され、第2のキャパシタ322の放電による第1の二次電池16Aの充電が起こる。   When a current is output from the power supply unit 20 in the direction of the second capacitor 322, a circuit is formed that returns from the second capacitor 322 to the capacitor 322 through the first secondary battery 16A and the sixth diode 328A. Then, charging of the first secondary battery 16A occurs by discharging the second capacitor 322.

また、第1の二次電池16Aが充電され、充電電圧が高くなると、第1の二次電池16Aから始まり、第2のキャパシタ322、第3の二次電池318Aを通過し、第5のダイオード326Aへと流れる回路が形成されるため、第1の二次電池16Aの放電による第3の二次電池318Aの充電が起こる。この第3の二次電池318Aの充電は、第1の二次電池16Aの充電電圧が第3の二次電池318Aの充電電圧より高い間継続する。   When the first secondary battery 16A is charged and the charging voltage becomes high, the first diode starts from the first secondary battery 16A, passes through the second capacitor 322, the third secondary battery 318A, and the fifth diode. Since a circuit flowing to 326A is formed, charging of the third secondary battery 318A due to discharge of the first secondary battery 16A occurs. The charging of the third secondary battery 318A is continued while the charging voltage of the first secondary battery 16A is higher than the charging voltage of the third secondary battery 318A.

また、同様に、第3の二次電池318Aの充電電圧が第1の二次電池16Bより高い間、第3の二次電池318Aの放電による第1の二次電池16Bの充電が起こり、第1の二次電池16Bの充電電圧が第3の二次電池318Bより高い間、第1の二次電池16Bの放電による第3の二次電池318Bの充電が起こる。第1の二次電池16C、16D及び第3の二次電池318Cについても、上記と同様に充電が起こる。   Similarly, while the charging voltage of the third secondary battery 318A is higher than that of the first secondary battery 16B, the charging of the first secondary battery 16B due to the discharge of the third secondary battery 318A occurs, While the charging voltage of the first secondary battery 16B is higher than that of the third secondary battery 318B, the third secondary battery 318B is charged by the discharge of the first secondary battery 16B. The first secondary batteries 16C and 16D and the third secondary battery 318C are charged in the same manner as described above.

このように、電源部20が供給する電力の電流方向の反転を繰り返していくと、第1のキャパシタ320、第2のキャパシタ322、第1の二次電池16A〜16Dの充電電圧、第2の二次電池18A〜18C、及び第3の二次電池318A〜318Cの充電電圧の振幅は小さくなり、満充電状態に収束していく。   As described above, when the reversal of the current direction of the power supplied by the power supply unit 20 is repeated, the charging voltage of the first capacitor 320, the second capacitor 322, and the first secondary batteries 16A to 16D, the second The amplitudes of the charging voltages of the secondary batteries 18A to 18C and the third secondary batteries 318A to 318C become smaller and converge to a fully charged state.

以上説明したように第4の実施の形態に係る電気装置によれば、複数の二次電池、キャパシタ、ダイオード、及び電源部からなる簡易な回路で構成され、かつ、電源部によって、第1の二次電池群の正極側に設けられた第1の二次電池及び第1のキャパシタの何れかを充電するように、電力の電流方向を切り替えながら電力を供給し、第1のキャパシタ、第2のキャパシタ、直列接続された複数の第1の二次電池、直列接続された複数の第2の二次電池、及び直列接続された複数の第3の二次電池の各々が充放電を繰り返すことにより、直列接続された二次電池をばらつきなく充電し、電池寿命及び性能を向上させることができる。   As described above, according to the electric device according to the fourth embodiment, the electric device includes a simple circuit including a plurality of secondary batteries, capacitors, diodes, and a power supply unit. Power is supplied while switching the current direction of the power so as to charge either the first secondary battery or the first capacitor provided on the positive electrode side of the secondary battery group, the first capacitor, the second capacitor The capacitor, the plurality of first secondary batteries connected in series, the plurality of second secondary batteries connected in series, and the plurality of third secondary batteries connected in series are repeatedly charged and discharged. Thus, the secondary batteries connected in series can be charged without variation, and the battery life and performance can be improved.

また、第1の二次電池群に対してキャパシタ及び二次電池群を対称に2つ設けることにより、電源部によって供給される電力の電流方向が何れの方向となっていても、第1の二次電池群の正極側に設けられた第1の二次電池を充電することができるため、効率的に二次電池を充電することができる。   In addition, by providing two capacitors and secondary battery groups symmetrically with respect to the first secondary battery group, the first current can be supplied regardless of the direction of the current supplied by the power supply unit. Since the 1st secondary battery provided in the positive electrode side of the secondary battery group can be charged, a secondary battery can be charged efficiently.

なお、二次電池の極及びダイオードの向きを反転させてもよく、その場合には、図7に示すように、第1の二次電池群16の負極側に電源部20を接続し、第2の二次電池群18の負極側に第1のキャパシタ320を接続し、第3の二次電池群318の負極側に第2のキャパシタ322を接続する。また、第1の二次電池群16の負極側から第1のキャパシタ320の一端方向への電流の流れを許容し、反対方向への電流の流れを阻止するように第1のダイオード24を設け、第1の二次電池群16の隣接する2つの第1の二次電池16A、16Bの接続部から、第2の二次電池18Aの正極方向への電流の流れを許容し、反対方向への電流の流れを阻止するように第2のダイオード26Aを設け、また、第2の二次電池18Aの負極から第1の二次電池群16の隣接する2つの第1の二次電池16A、16Bの接続部方向への電流の流れを許容し、反対方向への電流の流れを阻止するように第3のダイオード28Aを設ける。また、他の第1のダイオード26B、26C、第2のダイオード28B、28Cも同様に設ける。また、第1の二次電池群16と第3の二次電池群318とに介在する第4のダイオード324、第5のダイオード326A〜326C、第6のダイオード328A〜328Cを上記と対称に設ければよい。   Note that the orientation of the electrodes and diodes of the secondary battery may be reversed. In this case, as shown in FIG. 7, the power source unit 20 is connected to the negative electrode side of the first secondary battery group 16 and the first The first capacitor 320 is connected to the negative electrode side of the second secondary battery group 18, and the second capacitor 322 is connected to the negative electrode side of the third secondary battery group 318. In addition, a first diode 24 is provided so as to allow current flow from the negative electrode side of the first secondary battery group 16 toward one end of the first capacitor 320 and to block current flow in the opposite direction. The flow of current in the positive direction of the second secondary battery 18A is allowed from the connecting portion of the two adjacent first secondary batteries 16A and 16B of the first secondary battery group 16 in the opposite direction. The second diode 26A is provided so as to block the current flow of the second secondary battery 18A, and two adjacent first secondary batteries 16A of the first secondary battery group 16 from the negative electrode of the second secondary battery 18A, A third diode 28A is provided to allow current flow in the direction of 16B connection and to block current flow in the opposite direction. Further, the other first diodes 26B and 26C and the second diodes 28B and 28C are provided in the same manner. Further, the fourth diode 324, the fifth diodes 326A to 326C, and the sixth diodes 328A to 328C interposed between the first secondary battery group 16 and the third secondary battery group 318 are provided symmetrically with the above. Just do it.

本発明の第1の実施の形態に係る電気装置の構成を示す回路図である。It is a circuit diagram which shows the structure of the electric apparatus which concerns on the 1st Embodiment of this invention. 本発明の第1の実施の形態に係るキャパシタ、第1の二次電池、第2の二次電池の充電電圧の変化を示すグラフである。It is a graph which shows the change of the charging voltage of the capacitor which concerns on the 1st Embodiment of this invention, a 1st secondary battery, and a 2nd secondary battery. 本発明の第2の実施の形態に係る電気装置の構成を示す回路図である。It is a circuit diagram which shows the structure of the electric apparatus which concerns on the 2nd Embodiment of this invention. 本発明の第3の実施の形態に係る電気装置の構成を示す回路図である。It is a circuit diagram which shows the structure of the electric apparatus which concerns on the 3rd Embodiment of this invention. 本発明の第3の実施の形態に係る第1の二次電池、第2の二次電池の充電電圧の変化を示すグラフである。It is a graph which shows the change of the charge voltage of the 1st secondary battery which concerns on the 3rd Embodiment of this invention, and a 2nd secondary battery. 本発明の第4の実施の形態に係る電池充電回路の構成を示す回路図である。It is a circuit diagram which shows the structure of the battery charging circuit which concerns on the 4th Embodiment of this invention. 本発明の第4の実施の形態のもう一つの実施の形態に係る電池充電回路の構成を示す回路図である。It is a circuit diagram which shows the structure of the battery charging circuit which concerns on another embodiment of the 4th Embodiment of this invention.

符号の説明Explanation of symbols

10、110 電気装置
12、112、214、314 電池充電回路
14 負荷部
16A、16B、16C 第1の二次電池
16 第1の二次電池群
18A、18B、18C 第2の二次電池
18 第2の二次電池群
20、120 電源部
22 キャパシタ
24 第1のダイオード
26A、26B 第2のダイオード
28A、28B 第3のダイオード
30 キャパシタ電圧計
32 二次電池電圧計
34A、34B 直流電源
36、136 切替スイッチ
42 切替制御部
216、217 第1の二次電池部
216A、216B、217A、217B 第1の二次電池
218、219 第2の二次電池部
218A、218B、219A、219B 第2の二次電池
220 電源部
222 第3の二次電池
224 第1のダイオード
226A、226B 第2のダイオード
228A、228B 第3のダイオード
250 第1の二次電池群
252 第2の二次電池群
318 第3の二次電池群
318A、318B、318C 第3の二次電池
320 第1のキャパシタ
322 第2のキャパシタ
324 第4のダイオード
326A、326B、326C 第5のダイオード
328A、328B、328C 第6のダイオード
10, 110 Electric device 12, 112, 214, 314 Battery charging circuit 14 Load section 16A, 16B, 16C First secondary battery 16 First secondary battery group 18A, 18B, 18C Second secondary battery 18 Second 2 Secondary battery group 20, 120 Power supply unit 22 Capacitor 24 First diode 26A, 26B Second diode 28A, 28B Third diode 30 Capacitor voltmeter 32 Secondary battery voltmeter 34A, 34B DC power supply 36, 136 Changeover switch 42 Switching control part 216, 217 First secondary battery part 216A, 216B, 217A, 217B First secondary battery 218, 219 Second secondary battery part 218A, 218B, 219A, 219B Second second Secondary battery 220 Power supply unit 222 Third secondary battery 224 First diode 226A, 226B Second diode 228 A, 228B Third diode 250 First secondary battery group 252 Second secondary battery group 318 Third secondary battery group 318A, 318B, 318C Third secondary battery 320 First capacitor 322 Second Capacitor 324 fourth diode 326A, 326B, 326C fifth diode 328A, 328B, 328C sixth diode

Claims (13)

直列接続された2つの第1の二次電池から構成される第1の二次電池群と、
前記第1の二次電池群の2つの第1の二次電池に対応するように設けられた第2の二次電池と、
一端が前記第2の二次電池の正極に接続された容量素子と、
一端が前記容量素子の前記一端に接続され、かつ、他端が前記第1の二次電池群の正極側に接続されると共に、前記容量素子の一端から前記第1の二次電池群の正極側方向への電流の流れを許容し、該正極側方向と反対方向への電流の流れを阻止する第1の整流素子と、
一端が前記2つの第1の二次電池の接続部に接続され、かつ、他端が前記第2の二次電池の負極に接続されると共に、前記第2の二次電池の負極から前記接続部方向への電流の流れを許容し、該接続部方向と反対方向への電流の流れを阻止する第2の整流素子と、
一端が前記2つの第1の二次電池の接続部に接続され、かつ、他端が前記第2の二次電池の正極に接続されると共に、前記接続部から前記第2の二次電池の正極方向への電流の流れを許容し、該正極方向と反対方向への電流の流れを阻止する第3の整流素子と、
一端が前記第1の二次電池群の正極側に接続され、かつ、他端が前記容量素子の他端に接続されると共に、前記容量素子を充電するように電力を供給し、前記容量素子が充電されて所定の充電電圧になったときに、前記第1の二次電池群の正極側に設けられた前記第1の二次電池を充電するように切り替えられて電力を供給し、前記第1の二次電池群の正極側に設けられた前記第1の二次電池が充電されて前記所定の充電電圧になったときに、前記容量素子を充電するように切り替えられて電力を供給する電源手段と、
を含む電池充電回路。
A first secondary battery group composed of two first secondary batteries connected in series;
A second secondary battery provided to correspond to the two first secondary batteries of the first secondary battery group;
A capacitive element having one end connected to the positive electrode of the second secondary battery;
One end is connected to the one end of the capacitive element, the other end is connected to the positive side of the first secondary battery group, and the positive electrode of the first secondary battery group is connected from one end of the capacitive element. A first rectifying element that allows a current flow in a lateral direction and prevents a current flow in a direction opposite to the positive electrode side direction;
One end is connected to the connection part of the two first secondary batteries, and the other end is connected to the negative electrode of the second secondary battery, and the connection is made from the negative electrode of the second secondary battery. A second rectifying element that allows a current flow in the direction of the part and prevents a current flow in the direction opposite to the direction of the connection part
One end is connected to the connection part of the two first secondary batteries, and the other end is connected to the positive electrode of the second secondary battery, and from the connection part, the second secondary battery is connected to the positive electrode of the second secondary battery. A third rectifying element that allows a current flow in the positive electrode direction and prevents a current flow in a direction opposite to the positive electrode direction;
One end is connected to the positive electrode side of the first secondary battery group, the other end is connected to the other end of the capacitor element, and power is supplied so as to charge the capacitor element. Is switched to charge the first secondary battery provided on the positive electrode side of the first secondary battery group to supply electric power when the battery is charged and reaches a predetermined charging voltage, When the first secondary battery provided on the positive electrode side of the first secondary battery group is charged and reaches the predetermined charging voltage, it is switched to charge the capacitive element to supply electric power. Power supply means to
Including battery charging circuit.
直列接続された複数の第1の二次電池から構成される第1の二次電池群と、
前記第1の二次電池群の隣接する2つの第1の二次電池に対応するように設けられた複数の第2の二次電池を直列接続した第2の二次電池群と、
一端が前記第2の二次電池群の正極側に接続された容量素子と、
一端が前記容量素子の前記一端に接続され、かつ、他端が前記第1の二次電池群の正極側に接続されると共に、前記容量素子の前記一端から前記第1の二次電池群の正極側方向への電流の流れを許容し、該正極側方向と反対方向への電流の流れを阻止する第1の整流素子と、
一端が前記第1の二次電池群の隣接する2つの第1の二次電池の接続部に接続され、かつ、他端が前記隣接する2つの第1の二次電池に対応する前記第2の二次電池の負極に接続されると共に、前記第2の二次電池の負極から前記隣接する2つの第1の二次電池の接続部方向への電流の流れを許容し、該接続部方向と反対方向への電流の流れを阻止する複数の第2の整流素子と、
一端が前記第1の二次電池群の隣接する2つの第1の二次電池の接続部に接続され、かつ、他端が前記隣接する2つの第1の二次電池に対応する前記第2の二次電池の正極に接続されると共に、前記隣接する2つの第1の二次電池の接続部から前記第2の二次電池の正極方向への電流の流れを許容し、該正極方向と反対方向への電流の流れを阻止する複数の第3の整流素子と、
一端が前記第1の二次電池群の正極側に接続され、かつ、他端が前記容量素子の他端に接続されると共に、前記容量素子を充電するように電力を供給し、前記容量素子が充電されて所定の充電電圧になったときに、前記第1の二次電池群の正極側に設けられた前記第1の二次電池を充電するように切り替えられて電力を供給し、前記第1の二次電池群の正極側に設けられた前記第1の二次電池が充電されて前記所定の充電電圧になったときに、前記容量素子を充電するように切り替えられて電力を供給する電源手段と、
を含む電池充電回路。
A first secondary battery group composed of a plurality of first secondary batteries connected in series;
A second secondary battery group in which a plurality of second secondary batteries provided so as to correspond to two adjacent first secondary batteries of the first secondary battery group are connected in series;
A capacitive element having one end connected to the positive electrode side of the second secondary battery group;
One end is connected to the one end of the capacitive element, and the other end is connected to the positive electrode side of the first secondary battery group, and from the one end of the capacitive element to the first secondary battery group. A first rectifying element that allows a current flow in the positive electrode direction and prevents a current flow in a direction opposite to the positive electrode direction;
One end of the second secondary battery is connected to a connection portion between two adjacent first secondary batteries of the first secondary battery group, and the other end corresponds to the two adjacent first secondary batteries. Connected to the negative electrode of the secondary battery of the second secondary battery, and allows a current to flow from the negative electrode of the second secondary battery toward the connection part of the two adjacent first secondary batteries, and the direction of the connection part A plurality of second rectifying elements that block current flow in the opposite direction;
One end of the second secondary battery is connected to a connection portion between two adjacent first secondary batteries of the first secondary battery group, and the other end corresponds to the two adjacent first secondary batteries. Connected to the positive electrode of the secondary battery, and allows a current to flow from the connecting portion of the two adjacent first secondary batteries toward the positive electrode of the second secondary battery, A plurality of third rectifying elements for blocking current flow in opposite directions;
One end is connected to the positive electrode side of the first secondary battery group, the other end is connected to the other end of the capacitor element, and power is supplied so as to charge the capacitor element. Is switched to charge the first secondary battery provided on the positive electrode side of the first secondary battery group to supply electric power when the battery is charged and reaches a predetermined charging voltage, When the first secondary battery provided on the positive electrode side of the first secondary battery group is charged and reaches the predetermined charging voltage, it is switched to charge the capacitive element to supply electric power. Power supply means to
Including battery charging circuit.
前記電源手段は、前記容量素子を充電するように前記容量素子の前記他端方向へ所定電流の電力を供給し、前記容量素子が充電されて所定の充電電圧になったときに、前記第1の二次電池群の正極側に設けられた前記第1の二次電池を充電するように該正極側方向に切り替えられて前記所定電流の電力を供給し、前記第1の二次電池群の正極側に設けられた前記第1の二次電池が充電されて前記所定の充電電圧になったときに、前記容量素子の前記他端方向に切り替えられて前記所定電流の電力を供給する請求項1又は2記載の電池充電回路。   The power supply means supplies power of a predetermined current in the direction of the other end of the capacitive element so as to charge the capacitive element, and when the capacitive element is charged to a predetermined charging voltage, Switching to the positive electrode side direction so as to charge the first secondary battery provided on the positive electrode side of the secondary battery group to supply power of the predetermined current, The power of the predetermined current is supplied by switching to the other end direction of the capacitive element when the first secondary battery provided on the positive electrode side is charged and reaches the predetermined charging voltage. The battery charging circuit according to 1 or 2. 前記電源手段は、前記容量素子を充電するように所定電圧の電力を供給し、前記容量素子が充電されて所定の充電電圧になったときに、前記第1の二次電池群の正極側に設けられた前記第1の二次電池を充電するように切り替えられて前記所定電圧の電力を供給し、前記第1の二次電池群の正極側に設けられた前記第1の二次電池が充電されて前記所定の充電電圧になったときに、前記容量素子を充電するように切り替えられて前記所定電圧の電力を供給する請求項1又は2記載の電池充電回路。   The power supply means supplies power of a predetermined voltage so as to charge the capacitor element, and when the capacitor element is charged and reaches a predetermined charge voltage, the power source means is connected to the positive electrode side of the first secondary battery group. The first secondary battery provided on the positive electrode side of the first secondary battery group is switched to charge the provided first secondary battery to supply electric power of the predetermined voltage. 3. The battery charging circuit according to claim 1, wherein when the battery is charged and reaches the predetermined charging voltage, the battery is switched so as to charge the capacitive element to supply the electric power of the predetermined voltage. 直列接続された複数の第1の二次電池から構成される第1の二次電池群と、
前記第1の二次電池群の隣接する2つの第1の二次電池に対応するように設けられた複数の第2の二次電池を直列接続した第2の二次電池群と、
一端が前記第2の二次電池群の正極側に接続された容量素子と、
一端が前記容量素子の前記一端に接続され、かつ、他端が前記第1の二次電池群の正極側に接続されると共に、前記容量素子の前記一端から前記第1の二次電池群の正極側方向への電流の流れを許容し、該正極側方向と反対方向への電流の流れを阻止する第1の整流素子と、
一端が前記第1の二次電池群の隣接する2つの第1の二次電池の接続部に接続され、かつ、他端が前記隣接する2つの第1の二次電池に対応する前記第2の二次電池の負極に接続されると共に、前記第2の二次電池の負極から前記隣接する2つの第1の二次電池の接続部方向への電流の流れを許容し、該接続部方向と反対方向への電流の流れを阻止する複数の第2の整流素子と、
一端が前記第1の二次電池群の隣接する2つの第1の二次電池の接続部に接続され、かつ、他端が前記隣接する2つの第1の二次電池に対応する前記第2の二次電池の正極に接続されると共に、前記隣接する2つの第1の二次電池の接続部から前記第2の二次電池の正極方向への電流の流れを許容し、該正極方向と反対方向への電流の流れを阻止する複数の第3の整流素子と、
一端が前記第1の二次電池群の正極側に接続され、かつ、他端が前記容量素子の他端に接続されると共に、前記容量素子を充電するように電力を供給し、前記容量素子が充電されて所定の充電電圧になったときに、前記電力の供給を停止すると共に、前記第1の二次電池群の正極側に設けられた前記第1の二次電池と前記容量素子とを通電し、前記第1の二次電池群の正極側に設けられた前記第1の二次電池が充電されて前記所定の充電電圧になったときに、前記容量素子を充電するように切り替えられて電力を供給する電源手段と、
を含む電池充電回路。
A first secondary battery group composed of a plurality of first secondary batteries connected in series;
A second secondary battery group in which a plurality of second secondary batteries provided so as to correspond to two adjacent first secondary batteries of the first secondary battery group are connected in series;
A capacitive element having one end connected to the positive electrode side of the second secondary battery group;
One end is connected to the one end of the capacitive element, and the other end is connected to the positive electrode side of the first secondary battery group, and from the one end of the capacitive element to the first secondary battery group. A first rectifying element that allows a current flow in the positive electrode direction and prevents a current flow in a direction opposite to the positive electrode direction;
One end of the second secondary battery is connected to a connection portion between two adjacent first secondary batteries of the first secondary battery group, and the other end corresponds to the two adjacent first secondary batteries. Connected to the negative electrode of the secondary battery of the second secondary battery, and allows a current to flow from the negative electrode of the second secondary battery toward the connection part of the two adjacent first secondary batteries, and the direction of the connection part A plurality of second rectifying elements that block current flow in the opposite direction;
One end of the second secondary battery is connected to a connection portion between two adjacent first secondary batteries of the first secondary battery group, and the other end corresponds to the two adjacent first secondary batteries. Connected to the positive electrode of the secondary battery, and allows a current to flow from the connecting portion of the two adjacent first secondary batteries toward the positive electrode of the second secondary battery, A plurality of third rectifying elements for blocking current flow in opposite directions;
One end is connected to the positive electrode side of the first secondary battery group, the other end is connected to the other end of the capacitor element, and power is supplied so as to charge the capacitor element. When the battery is charged and reaches a predetermined charging voltage, the supply of the power is stopped, and the first secondary battery and the capacitive element provided on the positive electrode side of the first secondary battery group Is switched to charge the capacitive element when the first secondary battery provided on the positive electrode side of the first secondary battery group is charged and reaches the predetermined charging voltage. Power supply means to be supplied with power,
Including battery charging circuit.
前記第1の二次電池及び前記第2の二次電池は、略同一の容量である請求項1〜請求項5の何れか1項記載の電池充電回路。   The battery charging circuit according to claim 1, wherein the first secondary battery and the second secondary battery have substantially the same capacity. 直列接続された複数の第1の二次電池から構成される複数の第1の二次電池部を直列接続した第1の二次電池群と、
前記第1の二次電池群の隣接する2つの第1の二次電池部に対応するように設けられ、かつ、前記第1の二次電池部と同数の第2の二次電池から構成される複数の第2の二次電池部を直列接続した第2の二次電池群と、
負極が前記第2の二次電池群の正極側に接続された第3の二次電池と、
一端が前記第3の二次電池の負極に接続され、かつ、他端が前記第1の二次電池群の正極側に接続されると共に、前記第3の二次電池の負極から前記第1の二次電池群の正極側方向への電流の流れを許容し、該正極側方向と反対方向への電流の流れを阻止する第1の整流素子と、
一端が前記第1の二次電池群の隣接する2つの第1の二次電池部の接続部に接続され、かつ、他端が前記隣接する2つの第1の二次電池部に対応する前記第2の二次電池部の負極側に接続されると共に、前記第2の二次電池部の負極側から前記隣接する2つの第1の二次電池部の接続部方向への電流の流れを許容し、該接続部方向と反対方向への電流の流れを阻止する複数の第2の整流素子と、
一端が前記第1の二次電池群の隣接する2つの第1の二次電池部の接続部に接続され、かつ、他端が前記隣接する2つの第1の二次電池部に対応する前記第2の二次電池部の正極側に接続されると共に、前記隣接する2つの第1の二次電池部の接続部から前記第2の二次電池部の正極側方向への電流の流れを許容し、該正極側方向と反対方向への電流の流れを阻止する複数の第3の整流素子と、
一端が前記第1の二次電池群の正極側に接続され、かつ、他端が前記第3の二次電池の正極に接続されると共に、前記第3の二次電池を充電するように電力を供給し、前記第3の二次電池が充電されて所定の充電電圧になったときに、前記第1の二次電池群の正極側に設けられた前記第1の二次電池を充電するように切り替えられて電力を供給し、前記第1の二次電池群の正極側に設けられた前記第1の二次電池が充電されて前記所定の充電電圧になったときに、前記第3の二次電池を充電するように切り替えられて電力を供給する電源手段と、
を含む電池充電回路。
A first secondary battery group in which a plurality of first secondary battery units composed of a plurality of first secondary batteries connected in series are connected in series;
The first secondary battery group is provided so as to correspond to two adjacent first secondary battery units, and includes the same number of second secondary batteries as the first secondary battery units. A plurality of second secondary battery units connected in series;
A third secondary battery having a negative electrode connected to the positive electrode side of the second secondary battery group;
One end is connected to the negative electrode of the third secondary battery, the other end is connected to the positive electrode side of the first secondary battery group, and the first secondary battery is connected to the first secondary battery from the negative electrode of the third secondary battery. A first rectifying element that allows a current flow in the positive electrode side direction of the secondary battery group and prevents a current flow in a direction opposite to the positive electrode direction;
One end is connected to a connection portion between two first secondary battery portions adjacent to each other in the first secondary battery group, and the other end corresponds to the two adjacent first secondary battery portions. A current flow from the negative electrode side of the second secondary battery unit toward the connection part of the two adjacent first secondary battery units is connected to the negative electrode side of the second secondary battery unit. A plurality of second rectifying elements that permit and prevent current flow in a direction opposite to the connection direction;
One end is connected to a connection portion between two first secondary battery portions adjacent to each other in the first secondary battery group, and the other end corresponds to the two adjacent first secondary battery portions. A current flow is connected to the positive electrode side of the second secondary battery unit and from the connection part of the two adjacent first secondary battery units to the positive electrode side of the second secondary battery unit. A plurality of third rectifying elements that allow and prevent current flow in a direction opposite to the positive electrode side direction;
One end is connected to the positive electrode side of the first secondary battery group, and the other end is connected to the positive electrode of the third secondary battery, and power is charged so as to charge the third secondary battery. And charging the first secondary battery provided on the positive electrode side of the first secondary battery group when the third secondary battery is charged and reaches a predetermined charging voltage. When the first secondary battery provided on the positive electrode side of the first secondary battery group is charged and reaches the predetermined charging voltage, the third secondary battery group is supplied with electric power. Power supply means that is switched to charge the secondary battery and supplies power;
Including battery charging circuit.
前記第1の二次電池乃至前記第3の二次電池は、略同一の容量である請求項7記載の電池充電回路。   The battery charging circuit according to claim 7, wherein the first to third secondary batteries have substantially the same capacity. 前記第1の整流素子乃至前記第3の整流素子は、ダイオードである請求項1〜請求項8の何れか1項記載の電池充電回路。   The battery charging circuit according to any one of claims 1 to 8, wherein the first to third rectifying elements are diodes. 直列接続された複数の第1の二次電池から構成される第1の二次電池群と、
前記第1の二次電池群の隣接する2つの第1の二次電池に対応するように設けられた複数の第2の二次電池を直列接続した第2の二次電池群と、
前記第1の二次電池群の隣接する2つの第1の二次電池に対応するように設けられた複数の第3の二次電池を直列接続した第3の二次電池群と、
一端が前記第2の二次電池群の正極側に接続された第1の容量素子と、
一端が前記第3の二次電池群の正極側に接続された第2の容量素子と、
一端が前記第1の容量素子の前記一端に接続され、かつ、他端が前記第1の二次電池群の正極側に接続されると共に、前記第1の容量素子の前記一端から前記第1の二次電池群の正極側方向への電流の流れを許容し、該正極側方向と反対方向への電流の流れを阻止する第1の整流素子と、
一端が前記第1の二次電池群の隣接する2つの第1の二次電池の接続部に接続され、かつ、他端が前記隣接する2つの第1の二次電池に対応する前記第2の二次電池の負極に接続されると共に、前記第2の二次電池の負極から前記隣接する2つの第1の二次電池の接続部方向への電流の流れを許容し、該接続部方向と反対方向への電流の流れを阻止する複数の第2の整流素子と、
一端が前記第1の二次電池群の隣接する2つの第1の二次電池の接続部に接続され、かつ、他端が前記隣接する2つの第1の二次電池に対応する前記第2の二次電池の正極に接続されると共に、前記隣接する2つの第1の二次電池の接続部から前記第2の二次電池の正極方向への電流の流れを許容し、該正極方向と反対方向への電流の流れを阻止する複数の第3の整流素子と、
一端が前記第2の容量素子の前記一端に接続され、かつ、他端が前記第1の二次電池群の正極側に接続されると共に、前記第2の容量素子の前記一端から前記第1の二次電池群の正極側方向への電流の流れを許容し、該正極側方向と反対方向への電流の流れを阻止する第4の整流素子と、
一端が前記第1の二次電池群の隣接する2つの第1の二次電池の接続部に接続され、かつ、他端が前記隣接する2つの第1の二次電池に対応する前記第3の二次電池の負極に接続されると共に、前記第3の二次電池の負極から前記隣接する2つの第1の二次電池の接続部方向への電流の流れを許容し、該接続部方向と反対方向への電流の流れを阻止する複数の第5の整流素子と、
一端が前記第1の二次電池群の隣接する2つの第1の二次電池の接続部に接続され、かつ、他端が前記隣接する2つの第1の二次電池に対応する前記第3の二次電池の正極に接続されると共に、前記隣接する2つの第1の二次電池の接続部から前記第3の二次電池の正極方向への電流の流れを許容し、該正極方向と反対方向への電流の流れを阻止する複数の第6の整流素子と、
一端が前記第1の二次電池群の正極側及び前記第2の容量素子の他端に接続され、かつ、他端が前記第1の容量素子の他端に接続されると共に、前記第1の容量素子を充電するように電力を供給し、前記容量素子が充電されて所定の充電電圧になったときに、前記第1の二次電池群の正極側に設けられた前記第1の二次電池及び前記第2の容量素子を充電するように切り替えられて電力を供給し、前記第1の二次電池群の正極側に設けられた前記第1の二次電池が充電されて前記所定の充電電圧になったときに、前記第1の容量素子を充電するように切り替えられて電力を供給する電源手段と、
を含む電池充電回路。
A first secondary battery group composed of a plurality of first secondary batteries connected in series;
A second secondary battery group in which a plurality of second secondary batteries provided so as to correspond to two adjacent first secondary batteries of the first secondary battery group are connected in series;
A third secondary battery group in which a plurality of third secondary batteries provided to correspond to two adjacent first secondary batteries of the first secondary battery group are connected in series;
A first capacitive element having one end connected to the positive electrode side of the second secondary battery group;
A second capacitive element having one end connected to the positive electrode side of the third secondary battery group;
One end is connected to the one end of the first capacitor element, the other end is connected to the positive electrode side of the first secondary battery group, and the first capacitor element is connected to the first capacitor element from the one end of the first capacitor element. A first rectifying element that allows a current flow in the positive electrode side direction of the secondary battery group and prevents a current flow in a direction opposite to the positive electrode direction;
One end of the second secondary battery is connected to a connection portion between two adjacent first secondary batteries of the first secondary battery group, and the other end corresponds to the two adjacent first secondary batteries. Connected to the negative electrode of the secondary battery of the second secondary battery, and allows a current to flow from the negative electrode of the second secondary battery toward the connection part of the two adjacent first secondary batteries, and the direction of the connection part A plurality of second rectifying elements that block current flow in the opposite direction;
One end of the second secondary battery is connected to a connection portion between two adjacent first secondary batteries of the first secondary battery group, and the other end corresponds to the two adjacent first secondary batteries. Connected to the positive electrode of the secondary battery, and allows a current to flow from the connecting portion of the two adjacent first secondary batteries toward the positive electrode of the second secondary battery, A plurality of third rectifying elements for blocking current flow in opposite directions;
One end is connected to the one end of the second capacitor element, the other end is connected to the positive electrode side of the first secondary battery group, and the first capacitor element is connected to the first capacitor element from the one end of the second capacitor element. A fourth rectifying element that allows a current flow in the positive electrode side direction of the secondary battery group and prevents a current flow in a direction opposite to the positive electrode side direction;
One end of the third secondary battery is connected to a connection portion of two adjacent first secondary batteries of the first secondary battery group, and the other end corresponds to the two adjacent first secondary batteries. Connected to the negative electrode of the second secondary battery, and allows a current to flow from the negative electrode of the third secondary battery toward the connection portion of the two adjacent first secondary batteries, and the direction of the connection portion. A plurality of fifth rectifying elements that block current flow in the opposite direction;
One end of the third secondary battery is connected to a connection portion of two adjacent first secondary batteries of the first secondary battery group, and the other end corresponds to the two adjacent first secondary batteries. Connected to the positive electrode of the secondary battery, and allows a current to flow from the connecting portion of the two adjacent first secondary batteries to the positive direction of the third secondary battery, A plurality of sixth rectifier elements for blocking current flow in opposite directions;
One end is connected to the positive electrode side of the first secondary battery group and the other end of the second capacitor element, and the other end is connected to the other end of the first capacitor element. When power is supplied so as to charge the capacitor element, and the capacitor element is charged to a predetermined charging voltage, the first second battery provided on the positive electrode side of the first secondary battery group. The secondary battery and the second capacitive element are switched to charge and supply electric power, and the first secondary battery provided on the positive electrode side of the first secondary battery group is charged and the predetermined battery is charged. Power supply means that is switched to charge the first capacitive element and supplies power when the charging voltage is
Including battery charging circuit.
前記第1の整流素子乃至前記第6の整流素子は、ダイオードである請求項10項記載の電池充電回路。   The battery charging circuit according to claim 10, wherein the first to sixth rectifying elements are diodes. 前記第1の二次電池乃至前記第3の二次電池は、略同一の容量である請求項10又は11記載の電池充電回路。   The battery charging circuit according to claim 10 or 11, wherein the first to third secondary batteries have substantially the same capacity. 請求項1〜請求項12の何れか1項記載の電池充電回路と、
前記電池充電回路の前記第1の二次電池群に接続され、かつ、前記第1の二次電池群から電力が供給される負荷部と、
を含む電気装置。
The battery charging circuit according to any one of claims 1 to 12,
A load unit connected to the first secondary battery group of the battery charging circuit and supplied with power from the first secondary battery group;
Including electrical equipment.
JP2005330111A 2005-11-15 2005-11-15 Battery charging circuit and electric device Active JP4486918B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005330111A JP4486918B2 (en) 2005-11-15 2005-11-15 Battery charging circuit and electric device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005330111A JP4486918B2 (en) 2005-11-15 2005-11-15 Battery charging circuit and electric device

Publications (2)

Publication Number Publication Date
JP2007143219A true JP2007143219A (en) 2007-06-07
JP4486918B2 JP4486918B2 (en) 2010-06-23

Family

ID=38205416

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005330111A Active JP4486918B2 (en) 2005-11-15 2005-11-15 Battery charging circuit and electric device

Country Status (1)

Country Link
JP (1) JP4486918B2 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4831380A (en) * 1971-08-30 1973-04-24
JPH0989963A (en) * 1995-09-19 1997-04-04 Toshiba Corp Dc high voltage generating device and its failure identifying device
JPH09215357A (en) * 1996-01-30 1997-08-15 Fujitsu Towa Electron Kk Power supply utilizing optical energy
JPH1132443A (en) * 1997-07-09 1999-02-02 Sanken Electric Co Ltd Charging device
JP2001351799A (en) * 2000-06-07 2001-12-21 Nissin High Voltage Co Ltd High-frequency power supply for electron beam irradiation apparatus

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4831380A (en) * 1971-08-30 1973-04-24
JPH0989963A (en) * 1995-09-19 1997-04-04 Toshiba Corp Dc high voltage generating device and its failure identifying device
JPH09215357A (en) * 1996-01-30 1997-08-15 Fujitsu Towa Electron Kk Power supply utilizing optical energy
JPH1132443A (en) * 1997-07-09 1999-02-02 Sanken Electric Co Ltd Charging device
JP2001351799A (en) * 2000-06-07 2001-12-21 Nissin High Voltage Co Ltd High-frequency power supply for electron beam irradiation apparatus

Also Published As

Publication number Publication date
JP4486918B2 (en) 2010-06-23

Similar Documents

Publication Publication Date Title
KR101677679B1 (en) Power management circuit for rechargeable battery stack
US7061207B2 (en) Cell equalizing circuit
US6812591B2 (en) Power control device with electric double layer capacitor unit cells
KR101775547B1 (en) Battery system comprising different kinds of cells and power device comprising the same
EP3286816B1 (en) A power supply system
US8754545B2 (en) High efficiency backup-power circuits for switch-mode power supplies
WO2011036147A2 (en) Method and system for balancing electrical cells
KR101632005B1 (en) Cell balancing device connected by alternating current and control method thereof
US9006932B2 (en) Power supply system and electronic device
JP2020171165A (en) Battery control unit and battery system
JP2010273519A (en) Method of controlling charging and discharging
JP5744598B2 (en) Balance correction device and power storage system
JP2012034446A (en) Power storage device and energy balance adjusting method
JP5219652B2 (en) Power supply
JP5503957B2 (en) Vehicle power supply
US20200119563A1 (en) Battery management
JPWO2006061894A1 (en) Power supply
JP4486918B2 (en) Battery charging circuit and electric device
JP5718702B2 (en) Balance correction device and power storage system
US20210359536A1 (en) Battery charger
KR101509323B1 (en) Second battery charging circuit using linear regulator
US11050346B2 (en) Power generation device
US20130249489A1 (en) Battery charging circuit
KR20200085075A (en) Static power output circuit
CN111052535A (en) Solar power generation/storage unit and solar power generation/storage system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20081113

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100125

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100323

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100329

R150 Certificate of patent or registration of utility model

Ref document number: 4486918

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130402

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140402

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150402

Year of fee payment: 5