JP2007142722A - Wireless communication apparatus and wireless communication method - Google Patents

Wireless communication apparatus and wireless communication method Download PDF

Info

Publication number
JP2007142722A
JP2007142722A JP2005332705A JP2005332705A JP2007142722A JP 2007142722 A JP2007142722 A JP 2007142722A JP 2005332705 A JP2005332705 A JP 2005332705A JP 2005332705 A JP2005332705 A JP 2005332705A JP 2007142722 A JP2007142722 A JP 2007142722A
Authority
JP
Japan
Prior art keywords
communication device
wireless communication
power
transmission
counterpart
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005332705A
Other languages
Japanese (ja)
Other versions
JP4742307B2 (en
Inventor
Kentaro Sawa
健太郎 澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2005332705A priority Critical patent/JP4742307B2/en
Publication of JP2007142722A publication Critical patent/JP2007142722A/en
Application granted granted Critical
Publication of JP4742307B2 publication Critical patent/JP4742307B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To solve the problem of carrier sensing in conventional CSMA/CA systems, wherein there is the possibility that an error is generated on the occurrence of packet collision due to unsatisfied CIR requirements, when desired wave power is small, even when the RSSI is a carrier sense threshold or lower and that the transmission propriety is determined even though the conventional method determines the transmission propriety, by comparing the RSSI being an interference power with the carrier sense level threshold value. <P>SOLUTION: A wireless communication method disclosed herein calculates permissible interference power, on the basis of the reception power of desired waves on the receiver side and the CIR requirements, obtains transmission propriety threshold on the basis of the permissible interference power, and determines whether the transmission is to be executed, by comparing a power on a channel with the transmission propriety threshold. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

この発明は、複数の無線通信機を含む無線通信システムにおいて、受信側におけるデータの衝突による誤りの発生を抑制する無線通信機および無線通信方法に関するものである。 The present invention relates to a wireless communication device and a wireless communication method for suppressing occurrence of errors due to data collision on a receiving side in a wireless communication system including a plurality of wireless communication devices.

IEEE802.11および、IEEE802.11a,b,g方式の従来の無線LANシステムでは、アクセス方式にCSMA/CA(Carrier Sense Multiple Access/Collision Avoidance)方式を用いており、送信を行う前に、他局の信号がチャネル上に存在するか否かを判断するため、キャリアセンスを行っている。図9に、従来のCSMA/CA方式におけるキャリアセンスの例を示す。
端末Xで送信要求が発生した場合、送信を行う前にチャネル上を探索(キャリアセンス)し、チャネル上にキャリアが検知できない場合にはチャネルをアイドル状態と判断し、送信を開始する。一方、端末Xが送信中に端末Yで送信要求が発生した場合、キャリアセンスを行うと端末Xのキャリアが検知される。この場合は、端末Yはチャネルをビジー状態と判断し、送信を控える(例えば、非特許文献1参照)。
In the conventional wireless LAN system of IEEE802.11 and IEEE802.11a, b, g method, the CSMA / CA (Carrier Sense Multiple Access / Collision Avoidance) method is used as an access method, and before transmission, other stations Carrier sense is performed to determine whether or not the signal of the signal exists on the channel. FIG. 9 shows an example of carrier sense in the conventional CSMA / CA system.
When a transmission request is generated at terminal X, the channel is searched (carrier sense) before transmission, and when no carrier is detected on the channel, the channel is determined to be in an idle state and transmission is started. On the other hand, when a transmission request is generated at the terminal Y while the terminal X is transmitting, the carrier of the terminal X is detected by performing carrier sense. In this case, terminal Y determines that the channel is busy and refrains from transmission (see, for example, Non-Patent Document 1).

ここで、キャリアセンスは、自己が測定したRSSI(Received Signal Strength Indicator:受信電界強度)値と所定のキャリアセンスレベル閾値を比較し、RSSI値がキャリアセンスレベル閾値以上の場合には、チャネルをビジー状態と判断し送信を控え衝突を回避するものである。このキャリアセンスレベル閾値は規格で決められており、IEEE802.11b,gでは一定値に、また、IEEE802.11aではプリアンブル信号を検出できたか否かの場合で二つの値をとる。また、干渉時にチャネルを変更することによって、高い信号品質を得る方法も提案されている(例えば、特許文献1参照)。 Here, the carrier sense compares the RSSI (Received Signal Strength Indicator) value measured by itself with a predetermined carrier sense level threshold, and when the RSSI value is equal to or higher than the carrier sense level threshold, the channel is busy. Judgment is made in a state, transmission is avoided, and collision is avoided. This carrier sense level threshold is determined by the standard, and takes two values depending on whether IEEE802.11b, g is a constant value, and IEEE802.11a indicates whether a preamble signal has been detected. In addition, a method of obtaining high signal quality by changing a channel at the time of interference has been proposed (see, for example, Patent Document 1).

特開2003-249935号公報(第2頁〜第7頁)JP 2003-249935 A (pages 2 to 7) 松江、守倉著「IEEE802.11高速無線LAN教科書」IDGジャパン出版、第15頁〜第16頁Matsue, Morikura, “IEEE802.11 High-Speed Wireless LAN Textbook”, IDG Japan Publishing, pages 15-16

以上のように、従来のキャリアセンスは、RSSIを干渉電力として、干渉電力とキャリアセンスレベル閾値を比較することで行うものであるが、受信側における信号の衝突による誤り発生の有無は、希望波電力(本来通信をすべき相手からの受信信号電力)と干渉電力の強度の比CIR(Carrier to Interference Ratio:希望波電力対干渉波電力比)によって決まる。そのため、干渉電力がキャリアセンス閾値以下で送信可能と判定された場合でも、希望波電力が小さい場合には、パケット衝突時に誤りが生じる可能性がある。これは、規定のキャリアセンスレベル閾値は、一定値であり希望波電力の大きさを考慮していないために発生する問題である。 As described above, the conventional carrier sense is performed by using RSSI as the interference power and comparing the interference power and the carrier sense level threshold value. It is determined by a ratio CIR (Carrier to Interference Ratio) between the power (received signal power from the other party to communicate originally) and the intensity of the interference power. Therefore, even when it is determined that transmission is possible with the interference power below the carrier sense threshold, if the desired signal power is small, an error may occur at the time of packet collision. This is a problem that occurs because the prescribed carrier sense level threshold is a constant value and does not consider the magnitude of the desired wave power.

この発明は上記のような問題点を解決するためになされたもので、希望波電力を基準に動的にキャリアセンスレベル閾値を設定することにより、誤りが発生しにくく、スループットが高いシステムを実現することを目的とする。 The present invention was made to solve the above problems, and by setting a carrier sense level threshold dynamically based on the desired wave power, a system that is less prone to error and has a high throughput is realized. The purpose is to do.

この発明は、複数の無線通信機を含む無線通信システムにおける無線通信機であって、当該無線通信機からデータを無線送信しようとする相手である相手側通信機から獲得した該相手側通信機の通信状況に関する獲得情報に基づき、当該無線通信機における希望信号に対する干渉信号の強度の許容値である許容干渉電力を求める許容干渉電力算出手段と、上記許容干渉電力算出手段で算出した許容干渉電力から、当該無線通信機が上記相手側通信機に対してデータ送信を行うか否かの判断基準である送信可否閾値を求める送信可否閾値算出手段と、当該無線通信機が上記相手側通信機との通信に使用しようとするチャネル上の電力である使用予定チャネル上電力と、上記送信可否閾値算出手段で求めた送信可否閾値とに基づいて、上記相手側通信機へのデータ送信を行うか否かを決定する送信可否決定手段とを備えたことを特徴とする無線通信機である。 The present invention relates to a wireless communication device in a wireless communication system including a plurality of wireless communication devices, wherein the counterpart communication device acquired from a counterpart communication device that is a counterpart to which data is wirelessly transmitted from the wireless communication device. Based on the acquired information on the communication status, the allowable interference power calculation means for obtaining the allowable interference power that is the allowable value of the intensity of the interference signal with respect to the desired signal in the wireless communication device, and the allowable interference power calculated by the allowable interference power calculation means A transmission availability threshold value calculating means for obtaining a transmission availability threshold value, which is a criterion for determining whether or not the wireless communication device performs data transmission to the counterpart communication device, and the wireless communication device is connected to the counterpart communication device. Based on the power on the channel to be used, which is the power on the channel to be used for communication, and the transmission availability threshold obtained by the transmission availability threshold calculating means, the other party side Is a wireless communication device, characterized in that a transmission capability determining means for determining whether to perform data transmission to signal machine.

この発明は、送信側の無線通信機が受信側の相手側通信機の通信状況に関する獲得情報に基づいて求めた許容干渉電力から送信可否閾値を決定するので、相手側通信機におけるデータの衝突による誤りを軽減することができるという効果がある。 In this invention, the transmission-side radio communication device determines the transmission permission threshold from the allowable interference power obtained based on the acquired information on the communication status of the reception-side counterpart communication device. There is an effect that errors can be reduced.

実施の形態1.
実施の形態1を図1〜図3を用いて説明する。
図1は、この実施の形態に係る無線通信(無線LAN)システムの構成図、図2はこの実施の形態に係る端末またはアクセスポイントの要部構成図、図3はこの実施の形態のキャリアセンス動作を示すフローチャートである。
Embodiment 1 FIG.
The first embodiment will be described with reference to FIGS.
FIG. 1 is a configuration diagram of a wireless communication (wireless LAN) system according to this embodiment, FIG. 2 is a configuration diagram of a main part of a terminal or access point according to this embodiment, and FIG. 3 is a carrier sense of this embodiment. It is a flowchart which shows operation | movement.

図1に示すこのシステムは、端末(STA)1、端末(STA)2、アクセスポイント(AP)3およびアクセスポイント(AP)4から構成される。端末1とアクセスポイント3および端末2とアクセスポイント4はそれぞれ無線回線で接続され、アクセスポイント3及びアクセスポイント4はそれぞれその周囲にセル5およびセル6を形成する。また、ここでは、説明のため便宜上、セル5とセル6について記載するが、セル数は2つと限らず3つ以上存在してもよい。更に、アクセスポイント3は、端末1に限らず複数の端末とデータ通信を行ってもよい。 The system shown in FIG. 1 includes a terminal (STA) 1, a terminal (STA) 2, an access point (AP) 3 and an access point (AP) 4. The terminal 1 and the access point 3 and the terminal 2 and the access point 4 are connected by wireless lines, respectively, and the access point 3 and the access point 4 form a cell 5 and a cell 6 around them, respectively. For convenience of explanation, the cells 5 and 6 are described here, but the number of cells is not limited to two and may be three or more. Further, the access point 3 may perform data communication not only with the terminal 1 but also with a plurality of terminals.

図2は,上記端末1、2およびアクセスポイント3、4の内部構成の要部ブロック図である。端末およびアクセスポイントは,送受信部7,RSSI測定部8,閾値計算部9,RSSI比較部10,制御部11を含む。   FIG. 2 is a principal block diagram of the internal configuration of the terminals 1 and 2 and the access points 3 and 4. The terminal and the access point include a transmission / reception unit 7, an RSSI measurement unit 8, a threshold calculation unit 9, an RSSI comparison unit 10, and a control unit 11.

次に動作について説明するが、この説明においては、端末からアクセスポイントへ送信した信号のアクセスポイントにおける受信電力と、アクセスポイントから端末へ送信した信号の端末における受信電力とは等しいと仮定している。また端末の受信性能とアクセスポイントの受信性能は等しいと仮定している。   Next, the operation will be described. In this description, it is assumed that the received power at the access point of the signal transmitted from the terminal to the access point is equal to the received power at the terminal of the signal transmitted from the access point to the terminal. . Further, it is assumed that the reception performance of the terminal and the reception performance of the access point are equal.

アクセスポイント3を送信端、端末1を受信端としてアクセスポイント3から端末1へデータ通信を行う場合(すなわち「下りデータ通信」の場合)、アクセスポイント3は、他のアクセスポイントまたは端末がデータ送信中でないかどうかを確認するため、データを送信する前に使用するチャネル上の他の通信機によるキャリアの強度を検出するキャリアセンスを行う。 When data communication is performed from the access point 3 to the terminal 1 using the access point 3 as a transmission end and the terminal 1 as a reception end (that is, in the case of “downlink data communication”), the access point 3 transmits data to other access points or terminals. In order to check whether or not it is in the middle, carrier sense for detecting the strength of the carrier by another communication device on the channel to be used is performed before transmitting data.

この実施の形態では、アクセスポイント3が端末1へデータ送信を行うか否かを決定するためのキャリアの強度の閾値(キャリアセンスレベル閾値)を端末1からの受信電力を基に決定する。 In this embodiment, a threshold value of carrier strength (carrier sense level threshold value) for determining whether or not the access point 3 performs data transmission to the terminal 1 is determined based on the received power from the terminal 1.

アクセスポイント3におけるキャリアセンスのフローチャートを図3に示す。
アクセスポイント3の送受信部7により受信された通信相手である端末1からの信号はRSSI測定部8に送られ、受信電力(RSSI)が獲得情報として測定される(ステップ11)。これと並行して、閾値計算部9でアクセスポイント3自身の所要希望波電力対干渉電力比(所要CIR、CIR:Carrier to Interference Ratio)を計算する(ステップ12)。ここで、所要CIRとは、所望の誤り率を得る事のできるCIRを表す。
A carrier sense flowchart in the access point 3 is shown in FIG.
A signal from the terminal 1 as a communication partner received by the transmission / reception unit 7 of the access point 3 is sent to the RSSI measurement unit 8, and received power (RSSI) is measured as acquired information (step 11). In parallel with this, the threshold calculation unit 9 calculates the required desired signal power to interference power ratio (required CIR, Carrier to Interference Ratio) of the access point 3 itself (step 12). Here, the required CIR represents a CIR capable of obtaining a desired error rate.

次いで、ステップ11で求めたRSSIとステップ12で求めた所要CIRから許容できる干渉電力をRSSI測定部8で計算する(ステップ13)。許容干渉電力の計算を次式に示す。
許容干渉電力=RSSI/所要CIR
ここでは、アクセスポイント3の許容干渉電力を算出する事によって、等価的に端末1での許容干渉電力を算出している。
Next, the allowable interference power is calculated by the RSSI measurement unit 8 from the RSSI obtained in step 11 and the required CIR obtained in step 12 (step 13). The calculation of allowable interference power is shown in the following equation.
Allowable interference power = RSSI / required CIR
Here, by calculating the allowable interference power of the access point 3, the allowable interference power at the terminal 1 is calculated equivalently.

続いて、閾値計算部9はRSSI測定部8から上記の許容干渉電力を受け取り、この許容干渉電力を基にキャリアセンスレベル閾値(CSth)を送信可否閾値として算出する(ステップ14)。算出法は、例えば、
キャリアセンスレベル閾値=許容干渉電力+α:α≦0
とする。
Subsequently, the threshold value calculation unit 9 receives the allowable interference power from the RSSI measurement unit 8, and calculates the carrier sense level threshold value (CSth) as a transmission availability threshold value based on the allowable interference power (step 14). The calculation method is, for example,
Carrier sense level threshold = allowable interference power + α: α ≦ 0
And

ここで制御部11から送信要求がある場合(ステップ15がYESの場合)は、送受信部7がチャネル上を観測し(ステップ16)、観測される受信電界強度値(RSSI: Received Signal Strength Indicator)を使用予定チャネル上電力として測定する(ステップ17)。
このRSSIを、RSSI比較部10で前述したキャリアセンスレベル閾値とを比較し(ステップ18)、観測されたRSSIの方が大きい場合にはチャネルをビジー状態と判断して制御部11に通知し、制御部11の指示により送受信部7は送信を控えて、バックオフ時間経過を待つ(ステップ19)。また、観測されたRSSIの方が小さい場合には、チャネルをアイドル状態と判断して制御部11に通知し、制御部11の指示により送受信部7から送信を行う(ステップ20)。
Here, when there is a transmission request from the control unit 11 (when step 15 is YES), the transmission / reception unit 7 observes the channel (step 16) and the received received signal strength value (RSSI: Received Signal Strength Indicator). Is measured as the power on the channel to be used (step 17).
The RSSI comparison unit 10 compares the RSSI with the carrier sense level threshold value described above (step 18). If the observed RSSI is larger, the channel is determined to be busy, and the control unit 11 is notified. In response to an instruction from the control unit 11, the transmission / reception unit 7 refrains from transmission and waits for the back-off time to elapse (step 19). If the observed RSSI is smaller, the channel is determined to be in an idle state, the control unit 11 is notified, and transmission is performed from the transmission / reception unit 7 according to an instruction from the control unit 11 (step 20).

以上のように、アクセスポイント3における端末1からの受信電力のRSSIおよびアクセスポイント3の所要CIRから許容干渉電力を計算し、キャリアセンスレベルを動的に変更するようにしているので、端末1における衝突が発生しにくくなり衝突による誤りの発生を軽減することができるという効果がある。
また、この実施の形態では、受信局である端末1から送信局であるアクセスポイント3へのフィードバック情報(受信局から送信局への状況通知)のやりとりを使用せず送信局であるアクセスポイント3で閉じた処理を行うため、トラヒックの増加は引き起こさないという効果がある。
As described above, the allowable interference power is calculated from the RSSI of the received power from the terminal 1 at the access point 3 and the required CIR of the access point 3, and the carrier sense level is dynamically changed. There is an effect that the occurrence of an error due to the collision can be reduced because the collision is less likely to occur.
Further, in this embodiment, the access point 3 that is the transmitting station without using the exchange of feedback information (status notification from the receiving station to the transmitting station) from the terminal 1 that is the receiving station to the access point 3 that is the transmitting station. Since the closed process is performed, there is an effect of not causing an increase in traffic.

以上の例では、無線LANシステムにおいてアクセスポイントから端末へデータを送信する場合を説明したが、上記説明における端末1とアクセスポイント3を入れ替えて端末1からアクセスポイント3へデータ通信(上りデータ通信)を行う場合に適用してもよく、上記と同様にアクセスポイント3での誤りの発生を軽減できるという効果を得られる。また無線LANシステムに限らず、他の通信システムに適用できることはいうまでもない。 In the above example, the case where data is transmitted from the access point to the terminal in the wireless LAN system has been described. However, data communication (uplink data communication) from the terminal 1 to the access point 3 by replacing the terminal 1 and the access point 3 in the above description. In the same manner as described above, it is possible to obtain an effect that the occurrence of errors at the access point 3 can be reduced. Needless to say, the present invention can be applied not only to a wireless LAN system but also to other communication systems.

実施の形態2.
実施の形態2を図4、図5を用いて説明する。
実施の形態1は、送信局であるアクセスポイント3での受信電力および所要CIRを基準にキャリアセンスレベル閾値を決定するようにしたものであるが、この実施の形態においては、受信局である端末1の情報を基準にキャリアセンスレベル閾値を変更する例を示す。
Embodiment 2. FIG.
The second embodiment will be described with reference to FIGS.
In the first embodiment, the carrier sense level threshold is determined based on the received power and the required CIR at the access point 3 that is the transmitting station. In this embodiment, the terminal that is the receiving station is used. The example which changes a carrier sense level threshold value on the basis of 1 information is shown.

図4はこの実施の形態2におけるアクセスポイント3における動作を示すフローチャート、図5はこの実施の形態2における通信シーケンスを示す図である。
この実施の形態2における無線通信システムの構成図および端末またはアクセスポイントの要部構成図は、それぞれ実施の形態1で示した図1、2と同様である。
また図4において、実施の形態1で図3に示したフローチャートと同じ動作については同じステップ番号を付し、一部説明を省略する。
FIG. 4 is a flowchart showing an operation at the access point 3 in the second embodiment, and FIG. 5 is a diagram showing a communication sequence in the second embodiment.
The configuration diagram of the radio communication system and the main configuration diagram of the terminal or access point in the second embodiment are the same as those in FIGS. 1 and 2 shown in the first embodiment, respectively.
In FIG. 4, the same operations as those in the flowchart shown in FIG. 3 in the first embodiment are denoted by the same step numbers, and a part of the description is omitted.

この実施の形態2においては、実施の形態1における図3のステップ11で端末1から獲得する受信電力(RSSI値)およびステップ12で獲得するアクセスポイント3での所要CIRの代わりに、図4のステップ21で獲得する端末1からのフィードバック情報21を使用する。フィードバック情報としては、ここでは端末1での受信電力、および端末1での所要CIRを用いるものとする。 In this second embodiment, instead of the received power (RSSI value) acquired from the terminal 1 in step 11 of FIG. 3 in the first embodiment and the required CIR at the access point 3 acquired in step 12, FIG. The feedback information 21 from the terminal 1 acquired in step 21 is used. As feedback information, here, the received power at the terminal 1 and the required CIR at the terminal 1 are used.

次に動作について、図4、図5を用いて説明する。
まず、図5のように送信局であるアクセスポイント3から受信局である端末1に対して任意の(あるいは所定の)データを送信すると、端末1においてこの時の受信電力(RSSI値)を測定する。さらに、端末1で所要CIRを規定する。これら2つの情報を、送信局であるアクセスポイント3へフィードバックする。アクセスポイント3では、フィードバック情報を受け取り(ステップ21)、その情報から許容干渉電力の計算を行う(ステップ13)。この許容干渉電力の計算は、実施の形態1と同様に以下の式に基づいて行われる。
許容干渉電力=RSSI/所要CIR
Next, the operation will be described with reference to FIGS.
First, as shown in FIG. 5, when arbitrary (or predetermined) data is transmitted from the access point 3 serving as a transmitting station to the terminal 1 serving as a receiving station, the terminal 1 measures the received power (RSSI value) at this time. To do. Further, the required CIR is defined by the terminal 1. These two pieces of information are fed back to the access point 3 which is a transmitting station. The access point 3 receives feedback information (step 21), and calculates allowable interference power from the information (step 13). The calculation of the allowable interference power is performed based on the following equation as in the first embodiment.
Allowable interference power = RSSI / required CIR

以後の動作も実施の形態1と同様であり、次いで上記許容干渉電力を基にキャリアセンスレベル閾値CSthを算出する(ステップ14)。
算出されたキャリアセンスレベル閾値CSthと、チャネルで観測されるRSSI値を比較し(ステップ18)、観測されたRSSI値の方が大きい場合(ステップ18がNOの場合)には、チャネルをビジー状態と判断し、送信を控える。また、観測されたRSSI値の方が小さい場合(ステップ18がYESの場合)には、チャネルをアイドル状態と判断し送信を行う(ステップ20)。
Subsequent operations are the same as those in the first embodiment, and then a carrier sense level threshold CSth is calculated based on the allowable interference power (step 14).
The calculated carrier sense level threshold value CSth is compared with the RSSI value observed in the channel (step 18). When the observed RSSI value is larger (when step 18 is NO), the channel is busy. Refrain from sending. If the observed RSSI value is smaller (YES in step 18), the channel is determined to be idle and transmission is performed (step 20).

この実施の形態においては、送信局と受信局の性能差に関わらず、実際に誤りが発生する受信端末での情報を基に、キャリアセンスレベル閾値を設定することができる。そのため、受信端末1における1干渉による誤りをより小さくできるという効果がある。 In this embodiment, the carrier sense level threshold value can be set based on information at the receiving terminal where the error actually occurs regardless of the performance difference between the transmitting station and the receiving station. Therefore, there is an effect that an error due to one interference in the receiving terminal 1 can be further reduced.

この実施の形態においても、アクセスポイントから端末へデータを送信する場合を説明したが、上記説明における端末1とアクセスポイント3を入れ替えて端末1からアクセスポイント3へデータ通信(上りデータ通信)を行う場合に適用してもよく、上記と同様にアクセスポイント3での誤りの発生を軽減できるという効果を得られる。
さらに、許容干渉電力の計算(ステップ13)以降を送信側で行う例を示したが、キャリアセンスレベル閾値の算出までを受信局側である端末1で実施してもよく、同様の効果を発揮する。
Also in this embodiment, the case where data is transmitted from the access point to the terminal has been described. However, data communication (uplink data communication) is performed from the terminal 1 to the access point 3 by exchanging the terminal 1 and the access point 3 in the above description. It may be applied to the case, and the effect of reducing the occurrence of errors at the access point 3 can be obtained in the same manner as described above.
Furthermore, although an example in which the calculation of allowable interference power (step 13) and subsequent steps is performed on the transmission side is shown, the calculation up to the carrier sense level threshold may be performed in the terminal 1 on the reception station side, and the same effect is exhibited. To do.

実施の形態3.
以上の実施の形態では、キャリアセンスレベル閾値を動的に変更し、衝突による誤りを減少させる例を示したが、本実施の形態3は、さらにキャリアセンスレベル閾値の変更後も誤りが頻繁に発生した場合に、キャリアセンスレベル閾値を更に変更する例を示す。
Embodiment 3 FIG.
In the above embodiment, an example in which the carrier sense level threshold is dynamically changed to reduce errors due to collisions has been shown. However, in the third embodiment, errors frequently occur even after the carrier sense level threshold is changed. An example of further changing the carrier sense level threshold when it occurs is shown.

図6は、この実施の形態3におけるアクセスポイント3の動作のフローチャートを示したものである。
ここでは、実施の形態1の動作に対して誤り率によってキャリアセンスレベル閾値を変化させる機能を付加した例を示すものであり、実施の形態1と同様の動作については同じ符号を付して説明を省略する。
FIG. 6 shows a flowchart of the operation of the access point 3 in the third embodiment.
Here, an example is shown in which a function for changing the carrier sense level threshold value according to the error rate is added to the operation of the first embodiment, and the same operations as those of the first embodiment are denoted by the same reference numerals. Is omitted.

ステップ14でキャリアセンスレベル閾値を変更した後も端末1における誤り状況が所定の閾値を越えた場合(ステップ31でYESの場合)に、キャリアセンスレベル閾値を変更する(ステップ32)。キャリアセンスの変更は、例えば、誤り状況が誤り状況閾値を超えていたら1dBずつ下げる、あるいは、誤り状況とキャリアセンスレベル閾値に所定の関係を持たせ、誤り状況が悪くなった場合に、キャリアセンスレベル閾値を低くする、等が考えられる。 Even after the carrier sense level threshold is changed in step 14, if the error status in the terminal 1 exceeds the predetermined threshold (YES in step 31), the carrier sense level threshold is changed (step 32). The carrier sense is changed by, for example, lowering by 1 dB when the error situation exceeds the error situation threshold, or when a predetermined relationship is established between the error situation and the carrier sense level threshold, and the carrier sense is deteriorated. For example, the level threshold value may be lowered.

上記の端末1における誤り状況の検出は送受信部7によって行われ、例えば、誤りの連続発生回数または誤り率に、所定の誤り閾値をあらかじめ設定しておき、端末1がデータを正しく受信した再に端末1から送信されるACK(受信確認応答)の未到達によって誤り状況を検出し、その誤り状況をあらかじめ設定された閾値(例えばACK未到達の頻度)と比較することによってなされる。そして、上記の検出した誤り状況が上記の所定の誤り閾値以上であれば、送受信部7は干渉によって誤りが発生したと判定し、さらにキャリアセンスレベル閾値を低く設定する。上記のように、ACKとは、データの受信局がデータを正しく受信した際に、データの送信局に対して返送するものであり、既存の無線LANに適用されている技術である。 The detection of the error situation in the terminal 1 is performed by the transmission / reception unit 7. For example, a predetermined error threshold is set in advance for the number of consecutive errors or the error rate, and the terminal 1 receives the data correctly. This is done by detecting an error situation by not reaching ACK (reception confirmation response) transmitted from the terminal 1 and comparing the error situation with a preset threshold (for example, frequency of ACK not reached). If the detected error status is equal to or greater than the predetermined error threshold, the transmitting / receiving unit 7 determines that an error has occurred due to interference, and further sets the carrier sense level threshold low. As described above, ACK is a technique applied to an existing wireless LAN, in which a data receiving station returns data to a data transmitting station when the data is correctly received.

この実施の形態によれば、実際に発生した誤りの状況に応じてキャリアセンスレベル閾値を設定することができる。そのため、実施の形態1よりも、誤りに直結した制御を行うことができる。 According to this embodiment, the carrier sense level threshold value can be set according to the actual error situation. For this reason, it is possible to perform control directly related to an error as compared with the first embodiment.

なお上記は実施の形態1を基本としたフローチャートを用いて説明したが、実施の形態2を基本としてもよく、同様の効果を得られる。その場合は図6のステップ11及び12が、実施の形態2で説明した図4のステップ21に置換される。   Although the above has been described using the flowchart based on the first embodiment, the second embodiment may be used as a basis, and the same effect can be obtained. In this case, steps 11 and 12 in FIG. 6 are replaced with step 21 in FIG. 4 described in the second embodiment.

実施の形態4.
上記の実施の形態3は、誤りの発生状況によるキャリアセンスレベル閾値の変更を行っている例を示したが、本実施の形態4では、実施の形態3における誤りの発生状況によるキャリアセンスレベル閾値変更と既存の誤り発生状況による伝送レート制御方式とを組み合わせる例を示す。
Embodiment 4 FIG.
In the third embodiment, the example in which the carrier sense level threshold is changed according to the error occurrence state has been described. In the fourth embodiment, the carrier sense level threshold according to the error occurrence state in the third embodiment is used. An example in which a change and a transmission rate control method according to an existing error occurrence state are combined will be described.

例えば、実施の形態3で説明したように、ACKの未到達頻度から受信側(端末1)における誤りの発生状況を送信側(アクセスポイント3の送受信部7)で把握し、誤り発生状況が高い場合は伝送レートを低下させ、伝送レートを最初に既存の伝送レート制御方式によって最も誤りの発生し難い伝送レート(例えばIEEE802.11aでは6Mbps)までレートを下げる。それでも受信側での誤りが所定値をこえて発生するようであれば、実施の形態1あるいは実施の形態2で説明したように、図3あるいは図4のステップ1からの動作によりキャリアセンスレベル閾値を設定する。 For example, as described in the third embodiment, the occurrence state of an error on the reception side (terminal 1) is grasped by the transmission side (transmission / reception unit 7 of the access point 3) from the ACK non-arrival frequency, and the error occurrence state is high. In this case, the transmission rate is lowered, and the transmission rate is first lowered to a transmission rate (for example, 6 Mbps in IEEE802.11a) where the error is hardly caused by the existing transmission rate control method. If errors still occur on the receiving side exceeding a predetermined value, the carrier sense level threshold value is determined by the operation from step 1 in FIG. 3 or FIG. 4 as described in the first or second embodiment. Set.

または、最初に実施の形態1あるいは実施の形態2のようなキャリアセンスレベル閾値の設定を行い、あらかじめ規定したキャリアセンスレベル閾値の下限値まで達した後に、既存の伝送レート制御を実施するようにしてもよい。この場合は図3、図4のステップ14とステップ15の間にキャリアセンスレベル閾値が下限値に達しているか否かの判定を行うステップを設け、下限値に達していると判定された場合にはステップ15には進まずに既存の伝送レート制御方式を採用するようにすればよい。この判定はアクセスポイント3の送受信部7で実行される。 Alternatively, first, the carrier sense level threshold is set as in the first embodiment or the second embodiment, and the existing transmission rate control is performed after reaching the predetermined lower limit of the carrier sense level threshold. May be. In this case, a step for determining whether or not the carrier sense level threshold value has reached the lower limit value is provided between step 14 and step 15 in FIGS. 3 and 4, and when it is determined that the lower limit value has been reached. Instead of proceeding to step 15, the existing transmission rate control method may be adopted. This determination is executed by the transmission / reception unit 7 of the access point 3.

このように、キャリアセンス閾値変更方式と従来の伝送レート制御方式を組み合わせることによって、実施の形態1あるいは実施の形態2で示したように受信側において衝突により発生する誤りを軽減すると同時に、受信側における希望受信電力の低下から引き起こされる干渉による誤りを回避することができる。 In this way, by combining the carrier sense threshold value changing method and the conventional transmission rate control method, as shown in the first embodiment or the second embodiment, errors generated by a collision on the receiving side are reduced, and at the same time, the receiving side. It is possible to avoid errors due to interference caused by a decrease in the desired received power at.

実施の形態5
以上の実施の形態では、キャリアセンスレベル閾値を変更して、衝突による誤りを軽減させる例を示したが、本実施の形態5では、衝突の発生を抑えるものとして、干渉状況によってRTS/CTS(送信要求/受信確認応答)方式に切り換える例を示す。
Embodiment 5
In the above embodiment, an example in which the carrier sense level threshold value is changed to reduce the error due to the collision has been shown. However, in the fifth embodiment, RTS / CTS ( An example of switching to the (transmission request / reception confirmation response) method is shown.

ここでRTS/CTS方式とは、送信局がデータの送信を行う前にRTS(Request To Send:送信要求)を送信し、受信局がこのRTSを受信してデータ受信可能であればCTS(Clear To Send:受信準備完了)を送信する。すべての端末がRTS及びCTSを監視することで、他端末は送信を控え衝突を回避する方式である。ただし、RTS/CTS方式を用いると、RTS及びCTSによるオーバヘッドが影響して、データ通信速度が低下するという課題点もある。 Here, the RTS / CTS method means that RTS (Request To Send) is transmitted before the transmitting station transmits data, and if the receiving station can receive the RTS and receive data, CTS (Clear To Send: Ready to receive). All terminals monitor RTS and CTS so that other terminals refrain from transmission and avoid collisions. However, when the RTS / CTS method is used, there is a problem that the data communication speed is lowered due to the overhead of RTS and CTS.

図7は、このような場合の、無線LANシステムの動作を示すフローチャートである。まず、キャリアセンスレベル閾値を所定の固定値に設定する(ステップ40)。次いで実施の形態1〜3で説明したキャリアセンスを行う(ステップ15〜18)。その後に干渉状況を検出し(ステップ41)、その干渉状況に応じてRTS/CTS方式に切り換えを行う(ステップ43)。その後、干渉量が緩和されるまでRTS/CTS方式を用い、干渉量の緩和を検出した時点で通常送信であるCSMA/CA方式に戻す(図8)。 FIG. 7 is a flowchart showing the operation of the wireless LAN system in such a case. First, the carrier sense level threshold is set to a predetermined fixed value (step 40). Next, the carrier sense described in the first to third embodiments is performed (steps 15 to 18). Thereafter, the interference state is detected (step 41), and switching to the RTS / CTS method is performed according to the interference state (step 43). Thereafter, the RTS / CTS method is used until the interference amount is reduced, and the CSMA / CA method of normal transmission is restored when the reduction of the interference amount is detected (FIG. 8).

上記ステップ41における干渉状況の検出は、例えば、干渉局となる(自局と異なるSSIDを持つ)アクセスポイントからBeaconを受信した場合になされる。または、干渉となる電力値(RSSI値)に所定のRSSI閾値をあらかじめ設定しておき、あらかじめ設定された閾値を自分宛でない信号のRSSI値と比較することでなされる。そして、上記自分宛でない信号のRSSI値の方が大きい場合にRTS/CTS方式に切り換える。さらに、アクセスポイントでのトラヒック量を報知情報で通知し、この通知されたトラヒック量とあらかじめ設定した所定のトラヒック閾値とを比較することでなされる。そして、受信したトラヒック量が設定されたトラヒック閾値以上の場合にRTS/CTS方式に切り換える。
上記の動作は送受信部7において実行される。
The detection of the interference state in step 41 is performed, for example, when a Beacon is received from an access point that is an interfering station (having a different SSID from the own station). Alternatively, a predetermined RSSI threshold value is set in advance for the power value (RSSI value) that causes interference, and the preset threshold value is compared with the RSSI value of a signal not addressed to the user. Then, when the RSSI value of the signal not addressed to itself is larger, switching to the RTS / CTS system is performed. Furthermore, the traffic volume at the access point is notified by broadcast information, and the notified traffic volume is compared with a predetermined traffic threshold value set in advance. Then, when the received traffic volume is equal to or greater than a set traffic threshold, the RTS / CTS system is switched.
The above operation is performed in the transmission / reception unit 7.

以上のように、通常送信とRTS/CTS方式を干渉状況によって動的に変更することで、必要最低限のオーバヘッドのみで干渉による誤りを回避することができる。 As described above, errors due to interference can be avoided with only the minimum necessary overhead by dynamically changing the normal transmission and the RTS / CTS method according to the interference state.

なお、上記各実施の形態において、アクセスポイント3がこの発明における無線通信機、端末1がこの発明における相手側通信機に該当し、以下、送受信部7がフィードバック情報獲得手段と誤り状況判定手段とデータ伝送レート変更手段と送信方式決定手段、RSSI測定部8が受信電力強度測定手段、閾値計算部9が許容干渉電力算出手段および送信可否閾値算出手段、制御部11が誤り状況判定手段、RSSI比較部10が送信可否決定手段、にそれぞれ該当する。 In each of the above embodiments, the access point 3 corresponds to the wireless communication device in the present invention, and the terminal 1 corresponds to the counterpart communication device in the present invention. Hereinafter, the transmission / reception unit 7 includes feedback information acquisition means, error situation determination means, Data transmission rate changing means and transmission method determining means, RSSI measuring section 8 is received power intensity measuring means, threshold calculating section 9 is allowable interference power calculating means and transmission enable / disable threshold calculating means, control section 11 is error condition determining means, RSSI comparison The unit 10 corresponds to transmission permission / inhibition determining means.

本発明の実施の形態である無線LANシステムの全体構成を示す図である。1 is a diagram illustrating an overall configuration of a wireless LAN system according to an embodiment of the present invention. 本発明の実施の形態である無線LAN装置の内部構成を示す図である。It is a figure which shows the internal structure of the wireless LAN apparatus which is embodiment of this invention. 実施の形態1の無線LANシステムのキャリアセンス手順を示すフローチャートである。3 is a flowchart illustrating a carrier sense procedure of the wireless LAN system according to the first embodiment. 実施の形態2の無線LANシステムのキャリアセンス手順を示すフローチャートである。6 is a flowchart illustrating a carrier sense procedure of the wireless LAN system according to the second embodiment. フィードバック情報を用いる場合の通信シーケンスを示す図である。It is a figure which shows the communication sequence in the case of using feedback information. 実施の形態3の無線LANシステムのキャリアセンス手順を示すフローチャートである。12 is a flowchart illustrating a carrier sense procedure of the wireless LAN system according to the third embodiment. 実施の形態4の無線LANシステムの無線通信方式切り換え手順を示す図である。FIG. 10 is a diagram showing a wireless communication system switching procedure of the wireless LAN system of the fourth embodiment. 実施の形態5の通信方式を切り換える場合の通信シーケンスを示す図である。FIG. 10 is a diagram showing a communication sequence when switching the communication method of the fifth embodiment. 従来のCSMA/CA方式におけるキャリアセンスの例を示す図である。It is a figure which shows the example of the carrier sense in the conventional CSMA / CA system.

符号の説明Explanation of symbols

1,2 端末
3,4 アクセスポイント
5,6 無線セル。
1, 2 Terminal 3, 4 Access point 5, 6 Wireless cell.

Claims (10)

複数の無線通信機を含む無線通信システムにおける無線通信機であって、
当該無線通信機からデータを無線送信しようとする相手である相手側通信機から獲得した該相手側通信機の通信状況に関する獲得情報に基づき、当該無線通信機における希望信号に対する干渉信号の強度の許容値である許容干渉電力を求める許容干渉電力算出手段と、
上記許容干渉電力算出手段で算出した許容干渉電力から、当該無線通信機が上記相手側通信機に対してデータ送信を行うか否かの判断基準である送信可否閾値を求める送信可否閾値算出手段と、
当該無線通信機が上記相手側通信機との通信に使用しようとするチャネル上の電力である使用予定チャネル上電力と、上記送信可否閾値算出手段で求めた送信可否閾値とに基づいて、上記相手側通信機へのデータ送信を行うか否かを決定する送信可否決定手段
とを備えたことを特徴とする無線通信機。
A wireless communication device in a wireless communication system including a plurality of wireless communication devices,
Based on the acquired information on the communication status of the counterpart communication device acquired from the counterpart communication device that is the counterpart to which data is to be wirelessly transmitted from the radio communication device, the interference signal strength tolerance for the desired signal in the radio communication device A permissible interference power calculating means for obtaining a permissible interference power which is a value;
A transmission enable / disable threshold calculating means for obtaining a transmission enable / disable threshold that is a criterion for determining whether or not the wireless communication apparatus performs data transmission to the counterpart communication apparatus from the allowable interference power calculated by the allowable interference power calculating means; ,
Based on the power on the channel to be used, which is the power on the channel that the wireless communication device intends to use for communication with the counterpart communication device, and the transmission availability threshold obtained by the transmission availability threshold calculating means, A wireless communication device comprising: transmission permission / non-permission determining means for determining whether or not to perform data transmission to a side communication device.
(実施の形態1)
上記相手側通信機からの信号の強度を受信電力強度として測定する受信電力強度測定手段を備え、
上記許容干渉電力算出手段は、上記受信電力強度測定手段で測定した受信電力強度を上記獲得情報として上記許容干渉電力を求める、ことを特徴とする請求項1に記載の無線通信機。
(Embodiment 1)
Receiving power strength measuring means for measuring the strength of the signal from the counterpart communication device as received power strength,
2. The wireless communication device according to claim 1, wherein the allowable interference power calculation means obtains the allowable interference power using the reception power intensity measured by the reception power intensity measurement means as the acquired information.
(実施の形態1)
上記許容干渉電力算出手段は、上記受信電力強度測定手段で求めた獲得情報である受信電力強度と、当該無線通信機が所定の誤り率で希望波を受信するために必要な希望波電力と干渉電力の比である所要CIR(Carrier to Interference Ratio)とに基づいて上記許容干渉電力を求める、ことを特徴とする請求項2に記載の無線通信機。
(Embodiment 1)
The allowable interference power calculation means includes interference between a received power intensity that is acquired information obtained by the received power intensity measuring means, and a desired wave power necessary for the wireless communication device to receive a desired wave at a predetermined error rate. The wireless communication device according to claim 2, wherein the allowable interference power is obtained based on a required CIR (Carrier to Interference Ratio) which is a ratio of electric power.
(実施の形態2)
当該無線通信機から送信した信号の上記相手側通信機における受信電力である相手側受信電力と、上記相手側通信機が所定の誤り率で希望波を受信するために必要な希望波電力と干渉電力の比である相手側所要CIRを獲得するフィードバック情報獲得手段を備え、
上記許容干渉電力算出手段は、上記フィードバック情報獲得手段で獲得した相手側受信電力と上記相手側所要CIRとを獲得情報として、上記許容干渉電力を求める
ことを特徴とする請求項1に記載の無線通信機。
(Embodiment 2)
Interference reception power that is received power at the counterpart communication device of the signal transmitted from the wireless communication device and interference with desired wave power necessary for the counterpart communication device to receive a desired wave with a predetermined error rate Provide feedback information acquisition means for acquiring the other party's required CIR which is the ratio of power,
2. The radio according to claim 1, wherein the allowable interference power calculation unit obtains the allowable interference power by using the other party received power acquired by the feedback information acquisition unit and the other party required CIR as acquisition information. Communication machine.
(実施の形態3)
相手側通信機における受信データの誤り状況と所定の誤り状況閾値とを比較する誤り状況判定手段を備え、上記送信可否閾値算出手段は該誤り状況判定手段の判定結果に基づいて上記送信可否閾値を変更する
ことを特徴とする請求項1から4のいずれか1項に記載の無線通信機。
(Embodiment 3)
An error situation determination unit that compares an error situation of received data with a predetermined error situation threshold in a counterpart communication device, and the transmission availability threshold value calculation means calculates the transmission availability threshold value based on a judgment result of the error situation judgment unit. The wireless communication apparatus according to claim 1, wherein the wireless communication apparatus is changed.
(実施の形態3)
上記相手側通信機における受信データの誤り状況は上記相手側受信機から送信されるべきACKの未到達頻度であり、上記誤り状況閾値は該未到達頻度に関する所定の閾値である
ことを特徴とする請求項5に記載の無線通信機。
(Embodiment 3)
The error situation of the received data in the counterpart communication device is an ACK unreachable frequency to be transmitted from the counterpart receiver, and the error situation threshold is a predetermined threshold regarding the non-arrival frequency. The wireless communication device according to claim 5.
(実施の形態4)
上記送信可否閾値に所定の下限値を設け、上記送信可否閾値算出手段で求めた送信可否閾値が上記下限値を超えている場合は、当該無線通信機から相手側通信機へのデータ伝送レートを低下させるデータ伝送レート変更手段を備えた
ことを特徴とする請求項1に記載の無線通信機。
(Embodiment 4)
When a predetermined lower limit value is provided for the transmission permission threshold value and the transmission permission threshold value obtained by the transmission permission threshold value calculation unit exceeds the lower limit value, the data transmission rate from the wireless communication device to the partner communication device is set. The wireless communication device according to claim 1, further comprising a data transmission rate changing means for reducing the data transmission rate.
上記無線通信機および相手側通信機の一方は無線LANシステムにおける端末であり、他方は上記無線LANシステムにおけるアクセスポイントであることを特徴とする請求項1に記載の無線通信機。   2. The wireless communication device according to claim 1, wherein one of the wireless communication device and the counterpart communication device is a terminal in a wireless LAN system, and the other is an access point in the wireless LAN system. (実施の形態5)
複数の無線通信機を含む無線通信システムにおける無線通信機であって、
当該無線通信機が、
当該無線通信機からデータを無線送信しようとする相手である相手側通信機以外の通信機からの干渉信号の強度により、RTS/CTS方式またはCSMA/CA方式のいずれを採用するかを決定する送信方式決定手段を備えた
ことを特徴とする無線通信方法。
(Embodiment 5)
A wireless communication device in a wireless communication system including a plurality of wireless communication devices,
The wireless communication device
Transmission that determines whether to adopt the RTS / CTS method or the CSMA / CA method depending on the strength of an interference signal from a communication device other than the counterpart communication device that is a partner to which data is wirelessly transmitted from the wireless communication device A wireless communication method comprising a method determining means.
複数の無線通信機を含む無線通信システムにおける無線通信機が採用する無線通信方法であって、
当該無線通信機が、
当該無線通信機からデータを無線送信しようとする相手である相手側通信機から獲得した該相手側通信機の通信状況に関する獲得情報に基づき、当該無線通信機における希望信号に対する干渉信号の強度の許容値である許容干渉電力を求める許容干渉電力算出ステップと、
上記許容干渉電力算出ステップで算出した許容干渉電力から、当該無線通信機が上記相手側通信機に対してデータ送信を行うか否かの判断基準である送信可否閾値を求める送信可否閾値算出ステップと、
当該無線通信機が上記相手側通信機との通信に使用しようとするチャネル上の電力である使用予定チャネル上電力と、上記送信可否閾値算出ステップで求めた送信可否閾値とに基づいて、上記相手側通信機へのデータ送信を行うか否かを決定する送信可否決定ステップと
を備えたことを特徴とする無線通信方法。
A wireless communication method employed by a wireless communication device in a wireless communication system including a plurality of wireless communication devices,
The wireless communication device
Based on the acquired information on the communication status of the counterpart communication device acquired from the counterpart communication device that is the counterpart to which data is to be wirelessly transmitted from the radio communication device, the interference signal strength tolerance for the desired signal in the radio communication device An allowable interference power calculation step for obtaining an allowable interference power that is a value;
A transmission availability threshold calculation step for obtaining a transmission availability threshold, which is a criterion for determining whether or not the wireless communication device performs data transmission to the counterpart communication device, from the allowable interference power calculated in the allowable interference power calculation step; ,
Based on the power on the channel scheduled to be used, which is the power on the channel that the wireless communication device intends to use for communication with the communication device on the other side, and the transmission availability threshold obtained in the transmission availability threshold calculation step, A wireless communication method comprising: a transmission permission / inhibition determining step for determining whether or not to perform data transmission to a side communication device.
JP2005332705A 2005-11-17 2005-11-17 Wireless communication device and wireless communication method Expired - Fee Related JP4742307B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005332705A JP4742307B2 (en) 2005-11-17 2005-11-17 Wireless communication device and wireless communication method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005332705A JP4742307B2 (en) 2005-11-17 2005-11-17 Wireless communication device and wireless communication method

Publications (2)

Publication Number Publication Date
JP2007142722A true JP2007142722A (en) 2007-06-07
JP4742307B2 JP4742307B2 (en) 2011-08-10

Family

ID=38205070

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005332705A Expired - Fee Related JP4742307B2 (en) 2005-11-17 2005-11-17 Wireless communication device and wireless communication method

Country Status (1)

Country Link
JP (1) JP4742307B2 (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010177995A (en) * 2009-01-29 2010-08-12 Hitachi Ltd Communication control method of radio communication system, program therefor, and radio communication apparatus controller
JP2011250404A (en) * 2010-05-24 2011-12-08 Denso Corp Communication device and method for controlling message transmission
JP2012044261A (en) * 2010-08-12 2012-03-01 National Institute Of Information & Communication Technology Radio device and radio communication system provided with the same
JP2012508508A (en) * 2008-11-10 2012-04-05 クゥアルコム・インコーポレイテッド Method and apparatus for supporting adaptive distributed traffic scheduling including dynamic transmitter yield threshold
JP2012508507A (en) * 2008-11-10 2012-04-05 クゥアルコム・インコーポレイテッド Method and apparatus for supporting adaptive distributed traffic scheduling including dynamic receiver yield threshold
JP2013038618A (en) * 2011-08-09 2013-02-21 Panasonic Corp Radio communication device
JP2015095689A (en) * 2013-11-08 2015-05-18 日本電信電話株式会社 Communication device and communication control method
WO2015182044A1 (en) 2014-05-26 2015-12-03 Sony Corporation Electronic device and method
WO2016006163A1 (en) 2014-07-11 2016-01-14 Sony Corporation Electronic device and method
JP2016510579A (en) * 2013-02-14 2016-04-07 クアルコム,インコーポレイテッド Receiver measurement support access point control
JP2016536903A (en) * 2013-08-28 2016-11-24 クゥアルコム・インコーポレイテッドQualcomm Incorporated Adaptive RTS / CTS in high efficiency wireless communication
KR20170028894A (en) 2014-07-11 2017-03-14 소니 주식회사 Information processing device, information processing method, and program
WO2018016167A1 (en) * 2016-07-19 2018-01-25 ソニー株式会社 Wireless communication device and wireless communication method

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001308826A (en) * 2000-04-26 2001-11-02 Hitachi Ltd Base station
JP2003023659A (en) * 1998-04-17 2003-01-24 Matsushita Electric Ind Co Ltd Radio communication apparatus and transmission rate control method
JP2004007504A (en) * 2002-03-25 2004-01-08 Agere Systems Inc Method for dynamically setting at least one threshold at access point in wireless local area network, and access point
JP2004023763A (en) * 2002-06-20 2004-01-22 Ntt Docomo Inc Communication control system, communication control method, mobile station and base station
JP2004207921A (en) * 2002-12-25 2004-07-22 Nec Corp Communication apparatus in wireless network, transmission control method, threshold control method, and wireless network system
JP2005136458A (en) * 2003-10-28 2005-05-26 Fujitsu Ltd Base station apparatus for mobile communication system

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003023659A (en) * 1998-04-17 2003-01-24 Matsushita Electric Ind Co Ltd Radio communication apparatus and transmission rate control method
JP2001308826A (en) * 2000-04-26 2001-11-02 Hitachi Ltd Base station
JP2004007504A (en) * 2002-03-25 2004-01-08 Agere Systems Inc Method for dynamically setting at least one threshold at access point in wireless local area network, and access point
JP2004023763A (en) * 2002-06-20 2004-01-22 Ntt Docomo Inc Communication control system, communication control method, mobile station and base station
JP2004207921A (en) * 2002-12-25 2004-07-22 Nec Corp Communication apparatus in wireless network, transmission control method, threshold control method, and wireless network system
JP2005136458A (en) * 2003-10-28 2005-05-26 Fujitsu Ltd Base station apparatus for mobile communication system

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8526461B2 (en) 2008-11-10 2013-09-03 Qualcomm Incorporated Methods and apparatus supporting adaptive decentralized traffic scheduling including a dynamic transmitter yielding threshold
US8582492B2 (en) 2008-11-10 2013-11-12 Qualcomm Incorporated Methods and apparatus supporting adaptive decentralized traffic scheduling including a dynamic receiver yielding threshold
JP2012508508A (en) * 2008-11-10 2012-04-05 クゥアルコム・インコーポレイテッド Method and apparatus for supporting adaptive distributed traffic scheduling including dynamic transmitter yield threshold
JP2012508507A (en) * 2008-11-10 2012-04-05 クゥアルコム・インコーポレイテッド Method and apparatus for supporting adaptive distributed traffic scheduling including dynamic receiver yield threshold
JP2010177995A (en) * 2009-01-29 2010-08-12 Hitachi Ltd Communication control method of radio communication system, program therefor, and radio communication apparatus controller
JP2011250404A (en) * 2010-05-24 2011-12-08 Denso Corp Communication device and method for controlling message transmission
JP2012044261A (en) * 2010-08-12 2012-03-01 National Institute Of Information & Communication Technology Radio device and radio communication system provided with the same
JP2013038618A (en) * 2011-08-09 2013-02-21 Panasonic Corp Radio communication device
JP2016510579A (en) * 2013-02-14 2016-04-07 クアルコム,インコーポレイテッド Receiver measurement support access point control
JP2016536903A (en) * 2013-08-28 2016-11-24 クゥアルコム・インコーポレイテッドQualcomm Incorporated Adaptive RTS / CTS in high efficiency wireless communication
JP2015095689A (en) * 2013-11-08 2015-05-18 日本電信電話株式会社 Communication device and communication control method
WO2015182044A1 (en) 2014-05-26 2015-12-03 Sony Corporation Electronic device and method
US10257858B2 (en) 2014-05-26 2019-04-09 Sony Corporation Electronic device and method
EP3863365A1 (en) 2014-05-26 2021-08-11 Sony Group Corporation Electronic device and method
WO2016006163A1 (en) 2014-07-11 2016-01-14 Sony Corporation Electronic device and method
US10200512B2 (en) 2014-07-11 2019-02-05 Sony Corporation Information processing apparatus and information processing method
US10362601B2 (en) 2014-07-11 2019-07-23 Sony Corporation Information processing device
EP3557851A1 (en) 2014-07-11 2019-10-23 SONY Corporation Information processing apparatus and information processing method
US10868894B2 (en) 2014-07-11 2020-12-15 Sony Corporation Information processing apparatus and information processing method
KR20170028894A (en) 2014-07-11 2017-03-14 소니 주식회사 Information processing device, information processing method, and program
US11381670B2 (en) 2014-07-11 2022-07-05 Sony Corporation Information processing apparatus and information processing method
WO2018016167A1 (en) * 2016-07-19 2018-01-25 ソニー株式会社 Wireless communication device and wireless communication method
JPWO2018016167A1 (en) * 2016-07-19 2019-05-09 ソニー株式会社 Wireless communication apparatus and wireless communication method

Also Published As

Publication number Publication date
JP4742307B2 (en) 2011-08-10

Similar Documents

Publication Publication Date Title
JP4742307B2 (en) Wireless communication device and wireless communication method
US11438925B2 (en) Techniques of improving EDCA mechanism in spatial reuse
KR101414144B1 (en) Output power control for advanced wlan and bluetooth-amp systems
EP3342237B1 (en) Access point (ap) controlled uplink rts/cts configuration and disablement
US9553688B2 (en) Wireless communication apparatus and interference detection method
EP3206313B1 (en) Method and system for detecting idle channel in wireless communication system
US8724651B2 (en) Radio network system, radio communication method, and radio communication device
US9999069B2 (en) MU-MIMO dynamic bandwidth selection
JP5148756B2 (en) Radio station
US9629169B2 (en) Access point coordination for traffic control in wireless networks
US10568134B2 (en) Enhanced clear channel assessment
WO2017121301A1 (en) Data transmission method and device
WO2017019232A1 (en) Out-of-band hidden node detection
US20130107833A1 (en) Wlan transmit modes and coexistence
US10159047B2 (en) Techniques for managing SIFS-bursting in WLAN system
WO2017120741A1 (en) Wireless communication method, apparatus and system
JP2007235533A (en) Interference amount estimating device, method, wireless communication system, and its control method
EP2932756B1 (en) Method for dynamically adjusting channel bandwidth in wireless communications systems
KR20180044386A (en) Wireless communication system and wireless communication method
JP4412033B2 (en) Wireless communication device
JP6578831B2 (en) Wireless communication apparatus and wireless communication method
WO2015068345A1 (en) Wireless lan terminal, wireless lan access point, wireless lan system, and access control method
JP7322524B2 (en) Communication system and communication device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080424

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100720

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100916

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101207

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110107

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110405

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110418

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140520

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140520

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees