JP2007141768A - Battery pack - Google Patents

Battery pack Download PDF

Info

Publication number
JP2007141768A
JP2007141768A JP2005337231A JP2005337231A JP2007141768A JP 2007141768 A JP2007141768 A JP 2007141768A JP 2005337231 A JP2005337231 A JP 2005337231A JP 2005337231 A JP2005337231 A JP 2005337231A JP 2007141768 A JP2007141768 A JP 2007141768A
Authority
JP
Japan
Prior art keywords
battery
secondary battery
secondary batteries
assembled
axial direction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005337231A
Other languages
Japanese (ja)
Other versions
JP4788311B2 (en
Inventor
Satoru Suzuki
哲 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2005337231A priority Critical patent/JP4788311B2/en
Publication of JP2007141768A publication Critical patent/JP2007141768A/en
Application granted granted Critical
Publication of JP4788311B2 publication Critical patent/JP4788311B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

<P>PROBLEM TO BE SOLVED: To provide a battery pack having high space efficiency and capable of conducting charge/discharge in one control system. <P>SOLUTION: The battery pack 100 is equipped with a plurality of first cylindrical secondary batteries 110 and a plurality of second cylindrical secondary batteries 120 having smaller diameter than the first secondary batteries 110. The first secondary batteries 110 and the second secondary batteries 120 are arranged so that these shaft lines become in parallel, so that the second secondary batteries 120 are positioned in gaps between the first secondary batteries 110 adjacent in the diameter direction. The second secondary batteries 120 are made longer than the first secondary batteries 110 in the shaft line direction and have the same capacity as the first secondary batteries 110. Either of the plurality of first secondary batteries 110 and the plurality of second secondary batteries 120 are electrically connected in series. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、複数の二次電池を備える組電池、特に、外径の異なる2種類の円柱状をなす二次電池が複数、その径方向(軸線方向に直交する方向)に並んで配置されてなる組電池に関する。   In the present invention, a plurality of secondary batteries having a plurality of secondary batteries, in particular, two types of secondary batteries having different outer diameters are arranged side by side in the radial direction (direction perpendicular to the axial direction). It is related with the assembled battery.

近年、外径の異なる2種類の円柱状をなす二次電池を複数、その径方向(軸線方向に直交する方向)に並べて配置してなる組電池が提案されている(例えば、特許文献1参照)。
特開2004−355861号公報
In recent years, there has been proposed an assembled battery in which a plurality of two types of secondary batteries having different outer diameters are arranged side by side in the radial direction (a direction orthogonal to the axial direction) (see, for example, Patent Document 1). ).
JP 2004-355861 A

特許文献1では、円柱状をなす複数の二次電池が、収容容器内に所定の間隔をおいて配置されてなる第1の電池群と、円柱状をなす複数の二次電池であって、第1の電池群を構成する二次電池よりも小径の二次電池が、第1の電池群を構成する二次電池の隙間に配置されてなる第2の電池群とを備える電池モジュール(組電池)が提案されている。このように、第1電池群を構成する二次電池を配置したときに必然的に形成される隙間に、小径の二次電池を配置することで、電池モジュールの大きさを変えることなく、単位体積当たりのエネルギー密度を向上させることができると記載されている。   In Patent Document 1, a plurality of secondary batteries having a columnar shape are a first battery group that is arranged in a container with a predetermined interval, and a plurality of secondary batteries having a columnar shape, A battery module comprising a second battery group in which a secondary battery having a smaller diameter than the secondary batteries constituting the first battery group is disposed in a gap between the secondary batteries constituting the first battery group Battery) has been proposed. Thus, by arranging the secondary batteries having a small diameter in the gaps inevitably formed when the secondary batteries constituting the first battery group are arranged, the unit without changing the size of the battery module. It is described that the energy density per volume can be improved.

ところで、特許文献1では、第1の電池群の充放電を制御する第1の電気制御系統と、第2の電池群の充放電を制御する第2の電気制御系統との2つの制御系統により、組電池の充放電を制御するようにしている。ところが、充放電の制御を簡略化するために、1つの制御系統で組電池全体の充放電を制御することが要求されることがある。   By the way, in patent document 1, it is based on two control systems, the 1st electric control system which controls charging / discharging of a 1st battery group, and the 2nd electric control system which controls charging / discharging of a 2nd battery group. The charging / discharging of the assembled battery is controlled. However, in order to simplify the charge / discharge control, it may be required to control the charge / discharge of the entire assembled battery with a single control system.

しかしながら、特許文献1では、第1の電池群を構成する二次電池(第1二次電池とする)に比べて、第2の電池群を構成する二次電池(第2二次電池とする)を小径としていることから、第1二次電池に比べて第2二次電池の電池容量が小さくなっている。このため、第1二次電池と第2二次電池とを直列に接続して、1つの制御系統で安全に充放電を制御するには、電池容量の小さい第2二次電池に充放電の電荷量を合わせなければならいので、エネルギー効率が大きく低下してしまう問題があった。なお、電池容量の大きな第1二次電池に入出力電荷量を合わせることは、電池容量の小さな第2二次電池に過充電・過放電が繰り返されることとなり、非常に危険となる。   However, in Patent Document 1, the secondary battery constituting the second battery group (referred to as the second secondary battery) is compared with the secondary battery constituting the first battery group (referred to as the first secondary battery). ) Has a small diameter, the battery capacity of the second secondary battery is smaller than that of the first secondary battery. For this reason, in order to connect the first secondary battery and the second secondary battery in series and control charging / discharging safely with one control system, charging / discharging is performed on the second secondary battery having a small battery capacity. Since the amount of charge must be matched, there is a problem that energy efficiency is greatly reduced. Note that adjusting the input / output charge amount to the first secondary battery having a large battery capacity is extremely dangerous because the overcharge / overdischarge is repeated in the second secondary battery having a small battery capacity.

本発明は、かかる現状に鑑みてなされたものであって、スペース効率が良好で、且つ、1つの制御系統で充放電を行うことが可能な組電池を提供することを目的とする。   This invention is made | formed in view of this present condition, Comprising: It aims at providing the assembled battery which can perform charging / discharging with one control system | strain with favorable space efficiency.

その解決手段は、円柱状をなす複数の第1二次電池と、上記第1二次電池よりも小径の円柱状をなす複数の第2二次電池と、を備え、上記第1二次電池の径方向に互いに隣り合う上記第1二次電池同士の間隙に、上記第2二次電池が位置するように、上記第1二次電池と上記第2二次電池とが、それらの軸線を互いに平行としつつ配置されてなる組電池であって、上記第2二次電池は、上記第1二次電池よりも軸線方向に長く、上記第1二次電池と電池容量を等しくされてなり、上記組電池は、上記第2二次電池がその軸線方向に配置された数よりも、多数の上記第1二次電池がその軸線方向に並んで配列されてなり、上記複数の第1二次電池と上記複数の第2二次電池とが、いずれも、電気的に直列に接続されてなる組電池である。   The solution includes a plurality of first secondary batteries having a columnar shape and a plurality of second secondary batteries having a columnar shape having a smaller diameter than the first secondary battery, and the first secondary battery. The first secondary battery and the second secondary battery have their axes aligned so that the second secondary battery is positioned in the gap between the first secondary batteries adjacent to each other in the radial direction of An assembled battery arranged parallel to each other, wherein the second secondary battery is longer in the axial direction than the first secondary battery, and has the same battery capacity as the first secondary battery, The assembled battery includes a plurality of the first secondary batteries arranged side by side in the axial direction rather than the number of the second secondary batteries arranged in the axial direction. Each of the battery and the plurality of second secondary batteries is an assembled battery that is electrically connected in series.

本発明の組電池では、第1二次電池の径方向に互いに隣り合う第1二次電池同士の間隙に、第1二次電池よりも小径の第2二次電池が位置するように、第1二次電池と第2二次電池とが、それらの軸線を互いに平行としつつ配置されている。このように外径の異なる2種類の二次電池を組み合わせて配列することにより、スペース効率が良好となる。   In the assembled battery of the present invention, the second secondary battery having a smaller diameter than the first secondary battery is positioned in the gap between the first secondary batteries adjacent to each other in the radial direction of the first secondary battery. The first secondary battery and the second secondary battery are arranged with their axes parallel to each other. Thus, space efficiency is improved by arranging two types of secondary batteries having different outer diameters in combination.

しかも、本発明の組電池では、小径の第2二次電池が、第1二次電池よりも軸線方向に長くなっている。これにより、第1二次電池と第2二次電池との電池容量が等しくされている。このため、第1二次電池と第2二次電池とを、安全に、電気的に直列に接続することができ、1つの制御系統で充放電を行うことが可能となる。   Moreover, in the assembled battery of the present invention, the second secondary battery having a small diameter is longer in the axial direction than the first secondary battery. Thereby, the battery capacity of the 1st secondary battery and the 2nd secondary battery is made equal. For this reason, a 1st secondary battery and a 2nd secondary battery can be electrically connected in series safely, and it becomes possible to charge / discharge with one control system.

ところで、軸線方向長さの異なる2種類の二次電池を、軸線方向に1つずつ配列した場合には、軸線方向長さの短い第1二次電池の軸線方向にスペースが空いてしまい、スペース効率が低下してしまう。これに対し、本発明の組電池では、第2二次電池がその軸線方向に配置された数よりも、多数の第1二次電池がその軸線方向に並んで配列されている。このように、第1二次電池と第2二次電池とについて、軸線方向に配列する数を調整することにより、スペース効率を良好にすることができる。   By the way, when two types of secondary batteries having different axial lengths are arranged one by one in the axial direction, a space is vacated in the axial direction of the first secondary battery having a short axial length. Efficiency will decrease. On the other hand, in the assembled battery of the present invention, more first secondary batteries are arranged side by side in the axial direction than the number of second secondary batteries arranged in the axial direction. As described above, the space efficiency can be improved by adjusting the number of the first secondary battery and the second secondary battery arranged in the axial direction.

例えば、第2二次電池の軸線方向長さが、第1二次電池の軸線方向長さの2倍である場合には、第2二次電池を軸線方向に1つ配置するのに対し、第1二次電池を軸線方向に2つ並べて配置するのが好ましい。このように配列することで、二次電池の径方向のみならず、軸線方向についてもスペースの無駄がなくなるので、スペース効率が良好な組電池となる。
従って、本発明の組電池は、スペース効率が良好で、且つ、1つの制御系統で充放電を行うことが可能な組電池となる。
For example, when the axial length of the second secondary battery is twice the axial length of the first secondary battery, one second secondary battery is arranged in the axial direction. Two first secondary batteries are preferably arranged side by side in the axial direction. By arranging in this way, space is not wasted not only in the radial direction of the secondary battery but also in the axial direction, so that an assembled battery with good space efficiency is obtained.
Therefore, the assembled battery of the present invention is an assembled battery that has good space efficiency and can be charged and discharged by one control system.

なお、第2二次電池がその軸線方向に配置される数は、1つでも良いし、複数であっても良い。
また、第1二次電池及び第2二次電池としては、円柱状をなす二次電池であれば、リチウムイオン二次電池、ニッケル水素二次電池など、いずれの二次電池をも用いることができる。
The number of the second secondary batteries arranged in the axial direction may be one or plural.
In addition, as the first secondary battery and the second secondary battery, any secondary battery such as a lithium ion secondary battery or a nickel metal hydride secondary battery may be used as long as it is a cylindrical secondary battery. it can.

さらに、上記の組電池であって、複数の前記第1二次電池が、その軸線方向に並ぶ第1電池列の長さと、1または複数の前記第2二次電池が、その軸線方向に並ぶ第2電池列の長さとが等しくされてなる組電池とすると良い。   Further, in the above assembled battery, the length of the first battery row in which the plurality of first secondary batteries are arranged in the axial direction and the one or more second secondary batteries are arranged in the axial direction. An assembled battery in which the length of the second battery row is made equal is preferable.

本発明の組電池では、第1電池列の長さと第2電池列の長さとが等しくされている。これにより、軸線方向についてスペースの無駄がなくなるので、スペース効率がさらに良好となる。   In the assembled battery of the present invention, the length of the first battery row is equal to the length of the second battery row. As a result, space is not wasted in the axial direction, and the space efficiency is further improved.

他の解決手段は、上記いずれかの組電池と、上記組電池の充放電を制御する制御手段と、を備える電池システムである。   Another solving means is a battery system comprising any one of the above assembled batteries and a control means for controlling charge / discharge of the assembled battery.

この電池システムは、上記いずれかの組電池を備えている。このため、組電池のスペース効率が良好で、且つ、1つの制御手段(制御系統)により組電池の充放電を行うことができる。   This battery system includes any one of the above assembled batteries. For this reason, the space efficiency of an assembled battery is favorable, and charging / discharging of an assembled battery can be performed by one control means (control system).

次に、本発明の実施例1,2について、図面を参照しつつ説明する。
(実施例1)
図1は、本実施例1にかかる組電池100における各二次電池(第1二次電池110及び第2二次電池120)の配置を示す説明図である。本実施例1の組電池100は、図1に示すように、複数の第1二次電池110と、複数の第2二次電池120とを備えている。この組電池100は、収容ケース10の内部に収容されている。
Next, Embodiments 1 and 2 of the present invention will be described with reference to the drawings.
Example 1
FIG. 1 is an explanatory diagram showing the arrangement of the secondary batteries (the first secondary battery 110 and the second secondary battery 120) in the assembled battery 100 according to the first embodiment. As shown in FIG. 1, the assembled battery 100 according to the first embodiment includes a plurality of first secondary batteries 110 and a plurality of second secondary batteries 120. The assembled battery 100 is housed inside the housing case 10.

第1二次電池110は、図2に示すように、円柱状(外径寸法D1)をなしている。この第1二次電池110は、円筒形状の電池ケース111と、電池ケース111の一方端側(図2において左端側)に位置する正極端子112と、他方端側(図2において右端側)に位置する負極端子113とを有している。また、図示していないが、電池ケース111の内部には、帯状の正極、負極、及びセパレータを捲回してなる捲回体と、電解液とが収容されている。   As shown in FIG. 2, the first secondary battery 110 has a cylindrical shape (outer diameter D1). The first secondary battery 110 includes a cylindrical battery case 111, a positive terminal 112 located on one end side (left end side in FIG. 2) of the battery case 111, and the other end side (right end side in FIG. 2). And a negative electrode terminal 113 which is positioned. Although not shown, the battery case 111 contains a wound body formed by winding a belt-like positive electrode, a negative electrode, and a separator, and an electrolytic solution.

第2二次電池120は、図3に示すように、第1二次電池110よりも小径の円柱状(外径寸法D2)をなしている。この第2二次電池120は、円筒形状の電池ケース121と、電池ケース121の一方端側(図3において左端側)に位置する負極端子123と、他方端側(図3において右端側)に位置する正極端子122とを有している。また、図示していないが、電池ケース121の内部には、帯状の正極、負極、及びセパレータを捲回してなる捲回体が収容されている。   As shown in FIG. 3, the second secondary battery 120 has a cylindrical shape (outer diameter dimension D <b> 2) having a smaller diameter than the first secondary battery 110. The second secondary battery 120 includes a cylindrical battery case 121, a negative electrode terminal 123 located on one end side (left end side in FIG. 3) of the battery case 121, and the other end side (right end side in FIG. 3). And a positive electrode terminal 122 positioned therein. Although not shown, the battery case 121 contains a wound body formed by winding a belt-like positive electrode, a negative electrode, and a separator.

なお、本実施例1では、第2二次電池120の電池容量を、第1二次電池110の電池容量と等しく(具体的には、3〜15Ah)している。また、第2二次電池120の軸線C2に沿う方向(図3において左右方向)の長さL2(以下、単に軸線方向長さL2ともいう)を、第1二次電池110の軸線C1に沿う方向(図2において左右方向)の長さL1(以下、単に軸線方向長さL1ともいう)の2倍としている。   In the first embodiment, the battery capacity of the second secondary battery 120 is equal to the battery capacity of the first secondary battery 110 (specifically, 3 to 15 Ah). Further, a length L2 (hereinafter, also simply referred to as an axial direction length L2) in the direction along the axis C2 of the second secondary battery 120 (hereinafter also referred to simply as the axial direction length L2) is along the axis C1 of the first secondary battery 110. The length L1 in the direction (left-right direction in FIG. 2) (hereinafter also simply referred to as the axial direction length L1) is twice as long.

本実施例1では、このような第1二次電池110と第2二次電池120とを、以下のように組み合わせて組電池100を構成している。
具体的には、図1に示すように、複数の第1二次電池110を、収容ケース10の内部に、互いの軸線C1を平行としつつ、径方向(図1において紙面に沿う方向)に間隙を空けて格子状に配列している。さらに、複数の第2二次電池120を、それらの軸線C2を第1二次電池110の軸線C1と互いに平行としつつ、径方向(詳細には、図1において水平方向に対し45度傾いた方向)に互いに隣り合う第1二次電池110の間隙に配置している。
In the first embodiment, the assembled battery 100 is configured by combining the first secondary battery 110 and the second secondary battery 120 as described below.
Specifically, as shown in FIG. 1, a plurality of first secondary batteries 110 are arranged in a radial direction (a direction along the paper surface in FIG. 1) with the axis C <b> 1 being parallel to each other inside the housing case 10. They are arranged in a grid with gaps. Further, the plurality of second secondary batteries 120 are tilted by 45 degrees with respect to the radial direction (specifically, in FIG. 1, with respect to the horizontal direction, with their axis C2 parallel to the axis C1 of the first secondary battery 110). In the direction) between the first secondary batteries 110 adjacent to each other.

このように、本実施例1では、第1二次電池110(外径寸法D1)を配列したときに必然的に生じる間隙に、第1二次電池110よりも小径(外径寸法D2)の第2二次電池120を配置している。このため、本実施例1の組電池100は、第1二次電池110のみを上述のように配列した組電池に比べて、スペース効率が良好になる。換言すれば、第2二次電池120を加えた分、組電池の単位体積当たりのエネルギー密度を向上させることができる。
なお、本実施例1では、第1二次電池110及び第2二次電池120の冷却性を良好とするために、第1二次電池110と第2二次電池120とを、径方向に間隙を空けて配列している。
As described above, in the first embodiment, the first secondary battery 110 (outer diameter dimension D1) has a smaller diameter (outer diameter dimension D2) than the first secondary battery 110 in the gap that is inevitably generated when the first secondary batteries 110 (outer diameter dimension D1) are arranged. A second secondary battery 120 is arranged. For this reason, the assembled battery 100 of the first embodiment is more space efficient than the assembled battery in which only the first secondary batteries 110 are arranged as described above. In other words, the energy density per unit volume of the assembled battery can be improved by adding the second secondary battery 120.
In Example 1, in order to improve the cooling performance of the first secondary battery 110 and the second secondary battery 120, the first secondary battery 110 and the second secondary battery 120 are arranged in the radial direction. Arranged with a gap.

さらに、本実施例1の組電池100では、第1二次電池110と第2二次電池120とを、電気的に直列に接続している。具体的には、図4に示すように、2つの第1二次電池110を軸線方向(図4において左右方向)に並べ、一方の第1二次電池110(図4において右側に位置する第1二次電池110)の正極端子112と、他方の第1二次電池110(図4において左側に位置する第1二次電池110)の負極端子113とを接続して、第1電池列101を形成している。さらに、図5に示すように、このように形成した複数の第1電池列101と、複数の第2二次電池120(本実施例1では、1つの第2二次電池120により第2電池列102が形成されている)とを、導電部材60を介して接続している。このようにして、組電池100を構成する全ての第1二次電池110と第2二次電池120とを、電気的に直列に接続している。   Furthermore, in the assembled battery 100 of the first embodiment, the first secondary battery 110 and the second secondary battery 120 are electrically connected in series. Specifically, as shown in FIG. 4, two first secondary batteries 110 are arranged in the axial direction (left-right direction in FIG. 4), and one first secondary battery 110 (the first secondary battery 110 located on the right side in FIG. 4) is arranged. The first battery array 101 is connected to the positive terminal 112 of the first secondary battery 110) and the negative terminal 113 of the other first secondary battery 110 (the first secondary battery 110 located on the left side in FIG. 4). Is forming. Further, as shown in FIG. 5, the plurality of first battery rows 101 formed in this way and the plurality of second secondary batteries 120 (in the first embodiment, one second secondary battery 120 is used as the second battery. Are formed through a conductive member 60. In this way, all the first secondary batteries 110 and the second secondary batteries 120 constituting the assembled battery 100 are electrically connected in series.

ところで、本実施例1では、前述のように、第1二次電池110の電池容量と、第2二次電池120の電池容量とを等しくしている。このため、第1二次電池110と第2二次電池120とを、安全に、電気的に直列に接続することができ、その上、1つの制御系統で組電池100の充放電を行うことが可能となる(図5参照)。   By the way, in Example 1, as described above, the battery capacity of the first secondary battery 110 and the battery capacity of the second secondary battery 120 are made equal. Therefore, the first secondary battery 110 and the second secondary battery 120 can be safely and electrically connected in series, and the assembled battery 100 is charged and discharged by one control system. (See FIG. 5).

さらに、本実施例1の組電池100では、前述のように、第2二次電池120の軸線方向長さL2を、第1二次電池110の軸線方向長さL1の2倍としている。このため、図4に示すように、第1電池列101(2つの第1二次電池110を直列に接続した電池列)の軸線方向長さと、第2電池列102(第2二次電池120に一致する)の軸線方向長さとが、共に同一のL2となる。これにより、軸線方向についてスペースの無駄がなくなるので、スペース効率が極めて良好となる。   Furthermore, in the assembled battery 100 of the first embodiment, the axial length L2 of the second secondary battery 120 is twice the axial length L1 of the first secondary battery 110 as described above. Therefore, as shown in FIG. 4, the axial length of the first battery row 101 (battery row in which two first secondary batteries 110 are connected in series) and the second battery row 102 (second secondary battery 120). Are equal to each other in the axial direction length. As a result, no space is wasted in the axial direction, and the space efficiency is extremely good.

次に、本実施例1の電池システム200について説明する。
図5に示すように、本実施例1の電池システム200は、上述の組電池100と、組電池100の充放電を制御する制御部210(制御手段)とを備えている。さらに、制御部210は、モータ30に接続されている。これにより、組電池100からモータ30(負荷)への給電(放電)、及びモータ30(発電機)から組電池100への充電を、適切に行うことができる。
Next, the battery system 200 of the first embodiment will be described.
As illustrated in FIG. 5, the battery system 200 according to the first embodiment includes the above-described assembled battery 100 and a control unit 210 (control unit) that controls charging / discharging of the assembled battery 100. Further, the control unit 210 is connected to the motor 30. Thereby, the electric power feeding (discharge) from the assembled battery 100 to the motor 30 (load) and the charging to the assembled battery 100 from the motor 30 (generator) can be performed appropriately.

特に、本実施例1の電池システム200では、組電池100を構成する第1二次電池110と第2二次電池120とを、いずれも直列に接続している。これにより、1つの制御部210(制御手段)により、組電池100全体の充放電を制御することができる。
このため、例えば、第1二次電池のみを直列に接続し、これとは別系統で第2二次電池のみを直列に接続した、2つの制御系統(制御部)を備える電池システム(例えば、特許文献1に開示されている電池システム)に場合に比べて、充放電制御が簡略化できると共に、出力特性も良好になる。また、第1二次電池110と第2二次電池120とを同時に使用できるので、各二次電池(第1二次電池110及び第2二次電池120)の利用効率も高くなる。
In particular, in the battery system 200 of the first embodiment, the first secondary battery 110 and the second secondary battery 120 constituting the assembled battery 100 are both connected in series. Thereby, charging / discharging of the assembled battery 100 whole can be controlled by one control part 210 (control means).
For this reason, for example, a battery system including two control systems (control units) in which only the first secondary battery is connected in series and only the second secondary battery is connected in series in a separate system (for example, Compared with the case of the battery system disclosed in Patent Document 1, the charge / discharge control can be simplified and the output characteristics are also improved. Moreover, since the 1st secondary battery 110 and the 2nd secondary battery 120 can be used simultaneously, the utilization efficiency of each secondary battery (the 1st secondary battery 110 and the 2nd secondary battery 120) also becomes high.

(実施例2)
本実施例2の組電池300は、実施例1の組電池100と比較して、第1二次電池と第2二次電池の寸法及び電池容量、第1電池列をなす第1二次電池の数が異なり、その他についてはほぼ同様である。
図6は、本実施2にかかる組電池300の各二次電池(第1二次電池310及び第2二次電池320)の配置を示す説明図である。本実施例2の組電池300は、図6に示すように、複数の第1二次電池310と、複数の第2二次電池320とを備えている。この組電池300は、収容ケース20の内部に収容されている。
(Example 2)
Compared to the assembled battery 100 of the first embodiment, the assembled battery 300 of the second embodiment has dimensions and battery capacities of the first secondary battery and the second secondary battery, and the first secondary battery forming the first battery array. The number is different, and the others are almost the same.
FIG. 6 is an explanatory diagram showing the arrangement of the secondary batteries (the first secondary battery 310 and the second secondary battery 320) of the assembled battery 300 according to the second embodiment. As shown in FIG. 6, the assembled battery 300 according to the second embodiment includes a plurality of first secondary batteries 310 and a plurality of second secondary batteries 320. The assembled battery 300 is housed inside the housing case 20.

第1二次電池310は、図7に示すように、円柱状(外径寸法D3)をなしている。この第1二次電池310は、円筒形状の電池ケース311と、電池ケース311の一方端側(図7において左端側)に位置する正極端子312と、他方端側(図7において右端側)に位置する負極端子313とを有している。また、図示していないが、電池ケース311の内部には、帯状の正極、負極、及びセパレータを捲回してなる捲回体と、電解液とが収容されている。   As shown in FIG. 7, the first secondary battery 310 has a cylindrical shape (outer diameter D3). The first secondary battery 310 includes a cylindrical battery case 311, a positive electrode terminal 312 located on one end side (left end side in FIG. 7) of the battery case 311, and the other end side (right end side in FIG. 7). And a negative electrode terminal 313 which is positioned. Although not shown, the battery case 311 contains a wound body obtained by winding a belt-like positive electrode, a negative electrode, and a separator, and an electrolytic solution.

第2二次電池320は、図8に示すように、第1二次電池310よりも小径の円柱状(外径寸法D4)をなしている。この第2二次電池320は、円筒形状の電池ケース321と、電池ケース321の一方端側(図8において左端側)に位置する負極端子323と、他方端側(図8において右端側)に位置する正極端子322とを有している。また、図示していないが、電池ケース321の内部には、帯状の正極、負極、及びセパレータを捲回してなる捲回体が収容されている。   As shown in FIG. 8, the second secondary battery 320 has a cylindrical shape (outer diameter dimension D <b> 4) having a smaller diameter than the first secondary battery 310. The second secondary battery 320 includes a cylindrical battery case 321, a negative terminal 323 located on one end side (left end side in FIG. 8) of the battery case 321 and the other end side (right end side in FIG. 8). And a positive electrode terminal 322 positioned therein. Although not shown, the battery case 321 contains a wound body formed by winding a belt-like positive electrode, a negative electrode, and a separator.

なお、本実施例2では、第2二次電池320の電池容量を、第1二次電池310の電池容量と等しく(具体的には、3〜15Ah)している。また、第2二次電池320の軸線C4に沿う方向(図8において左右方向)の長さL4(以下、単に軸線方向長さL4ともいう)を、第1二次電池310の軸線C3に沿う方向(図7において左右方向)の長さL3(以下、単に軸線方向長さL3ともいう)の6倍としている。   In the second embodiment, the battery capacity of the second secondary battery 320 is equal to the battery capacity of the first secondary battery 310 (specifically, 3 to 15 Ah). Further, the length L4 in the direction along the axis C4 of the second secondary battery 320 (left and right direction in FIG. 8) (hereinafter also simply referred to as the axial direction length L4) is along the axis C3 of the first secondary battery 310. The length L3 in the direction (left-right direction in FIG. 7) (hereinafter, also simply referred to as the axial direction length L3) is six times.

本実施例1では、このような第1二次電池310と第2二次電池320とを、以下のように組み合わせて組電池300を構成している。
具体的には、図6に示すように、複数の第1二次電池310を、収容ケース20の内部に、互いの軸線C3を平行としつつ、径方向(図6において紙面に沿う方向)に隣り合う第1二次電池310と接触させて格子状に配列している。さらに、複数の第2二次電池120を、それらの軸線C4を第1二次電池310の軸線C3と互いに平行としつつ、径方向(詳細には、図6において水平方向に対し45度傾いた方向)に互いに隣り合う第1二次電池310の間隙に配置している。
In the first embodiment, the assembled battery 300 is configured by combining the first secondary battery 310 and the second secondary battery 320 as described below.
Specifically, as shown in FIG. 6, the plurality of first secondary batteries 310 are arranged in the radial direction (in the direction along the paper surface in FIG. 6) with the axis C <b> 3 being parallel to each other inside the housing case 20. The first secondary batteries 310 adjacent to each other are arranged in a grid pattern. Further, the plurality of second secondary batteries 120 are tilted by 45 degrees with respect to the radial direction (specifically, in FIG. 6, with respect to the horizontal direction, with their axis C4 parallel to the axis C3 of the first secondary battery 310). In the direction) between the first secondary batteries 310 adjacent to each other.

このように、本実施例1では、複数の第1二次電池310(外径寸法D3)を接触させて配列すると共に、このときに必然的に生じる間隙に、第1二次電池310よりも小径(外径寸法D4)の第2二次電池320を配置している。このため、本実施例1の組電池300は、実施例1の組電池100よりも、さらにスペース効率が良好になり、組電池の単位体積当たりのエネルギー密度が向上する。   As described above, in the first embodiment, the plurality of first secondary batteries 310 (outer diameter D3) are arranged in contact with each other, and the gap inevitably generated at this time is larger than that of the first secondary battery 310. A second secondary battery 320 having a small diameter (outer diameter dimension D4) is arranged. For this reason, the assembled battery 300 of the first embodiment is more space efficient than the assembled battery 100 of the first embodiment, and the energy density per unit volume of the assembled battery is improved.

さらに、本実施例2の組電池300でも、実施例1と同様に、第1二次電池310と第2二次電池320とを、電気的に直列に接続している。具体的には、図9に示すように、6つの第1二次電池110を軸線方向(図9において左右方向)に並べ、軸線方向に隣り合う第1二次電池310の正極端子112と負極端子113とを接続して、第1電池列301を形成している。さらに、図10に示すように、このように形成した複数の第1電池列301と、複数の第2二次電池320(本実施例2では、1つの第2二次電池120により第2電池列302が形成されている)とを、導電部材70を介して接続している。このようにして、組電池300を構成する全ての第1二次電池310と第2二次電池320とを、電気的に直列に接続している。   Further, in the assembled battery 300 of the second embodiment, as in the first embodiment, the first secondary battery 310 and the second secondary battery 320 are electrically connected in series. Specifically, as shown in FIG. 9, six first secondary batteries 110 are arranged in the axial direction (left-right direction in FIG. 9), and the positive terminal 112 and the negative electrode of the first secondary battery 310 adjacent in the axial direction. The terminal 113 is connected to form a first battery row 301. Further, as shown in FIG. 10, the plurality of first battery rows 301 formed in this way and the plurality of second secondary batteries 320 (in the second embodiment, one second secondary battery 120 is used as the second battery). Column 302 is formed) via a conductive member 70. In this way, all the first secondary batteries 310 and the second secondary batteries 320 constituting the assembled battery 300 are electrically connected in series.

ところで、本実施例2でも、実施例1と同様に、第1二次電池310の電池容量と、第2二次電池320の電池容量とを等しくしている。このため、実施例1と同様に、第1二次電池310と第2二次電池320とを、安全に、電気的に直列に接続することができ、その上、1つの制御系統で組電池300の充放電を行うことが可能となる(図10参照)。   By the way, also in this Example 2, the battery capacity of the 1st secondary battery 310 and the battery capacity of the 2nd secondary battery 320 are made equal similarly to Example 1. FIG. For this reason, like the first embodiment, the first secondary battery 310 and the second secondary battery 320 can be safely and electrically connected in series, and in addition, the assembled battery can be connected by one control system. It is possible to charge and discharge 300 (see FIG. 10).

さらに、本実施例2の組電池300では、前述のように、第2二次電池320の軸線方向長さL4を、第1二次電池310の軸線方向長さL3の6倍としている。このため、図9に示すように、第1電池列301(6つの第1二次電池310を直列に接続した電池列)の軸線方向長さと、第2電池列302(第2二次電池320に一致する)の軸線方向長さとが、共に同一のL4となる。これにより、軸線方向についてスペースの無駄がなくなるので、スペース効率が極めて良好となる。   Furthermore, in the assembled battery 300 of the second embodiment, as described above, the axial length L4 of the second secondary battery 320 is six times the axial length L3 of the first secondary battery 310. Therefore, as shown in FIG. 9, the axial length of the first battery row 301 (battery row in which six first secondary batteries 310 are connected in series) and the second battery row 302 (second secondary battery 320). Are equal to each other in the axial direction length. As a result, no space is wasted in the axial direction, and the space efficiency is extremely good.

次に、本実施例2の電池システム400について説明する。
図10に示すように、本実施例2の電池システム400は、上述の組電池300と、組電池300の充放電を制御する制御部410(制御手段)とを備えている。さらに、制御部410は、モータ50に接続されている。これにより、組電池300からモータ50(負荷)への給電(放電)、及びモータ50(発電機)から組電池300への充電を、適切に行うことができる。
Next, the battery system 400 according to the second embodiment will be described.
As illustrated in FIG. 10, the battery system 400 according to the second embodiment includes the above-described assembled battery 300 and a control unit 410 (control unit) that controls charging / discharging of the assembled battery 300. Further, the control unit 410 is connected to the motor 50. As a result, power supply (discharge) from the assembled battery 300 to the motor 50 (load) and charging of the assembled battery 300 from the motor 50 (generator) can be performed appropriately.

特に、本実施例2の電池システム200では、実施例1と同様に、組電池300を構成する第1二次電池310と第2二次電池320とを、いずれも直列に接続している。これにより、1つの制御部410(制御手段)により、組電池300全体の充放電を制御することができる。
このため、例えば、第1二次電池のみを直列に接続し、これとは別系統で第2二次電池のみを直列に接続した、2つの制御系統(制御部)を備える電池システム(例えば、特許文献1に開示されている電池システム)に場合に比べて、充放電制御が簡略化できると共に、出力特性も良好になる。
In particular, in the battery system 200 of the second embodiment, as in the first embodiment, the first secondary battery 310 and the second secondary battery 320 constituting the assembled battery 300 are both connected in series. Thereby, charging / discharging of the assembled battery 300 whole can be controlled by one control part 410 (control means).
For this reason, for example, a battery system including two control systems (control units) in which only the first secondary battery is connected in series and only the second secondary battery is connected in series in a separate system (for example, Compared with the case of the battery system disclosed in Patent Document 1, the charge / discharge control can be simplified and the output characteristics are also improved.

以上において、本発明を実施例1,2に即して説明したが、本発明は上記実施例等に限定されるものではなく、その要旨を逸脱しない範囲で、適宜変更して適用できることはいうまでもない。   In the above, the present invention has been described with reference to the first and second embodiments. However, the present invention is not limited to the above-described embodiments and the like, and it can be applied as appropriate without departing from the scope of the present invention. Not too long.

例えば、実施例1,2の組電池100,300では、1つの第2二次電池120,320で第2電池列102,302を形成したが、第1電池列101,301のように、複数の第2二次電池を軸線方向に並べて第2電池列を形成するようにしても良い。例えば、第2二次電池を軸線方向に2つ並べて第2電池列を形成すると共に、第1二次電池を軸線方向に3つ並べて第1電池列を形成するようにしても良い。但し、1つの制御系統(制御手段)で組電池の充放電を適切に制御するためには、第1二次電池と第2二次電池の電池容量を等しくする必要がある。さらに、軸線方向のスペースの無駄が無く、スペース効率を高めるために、第1電池列の長さと第2電池列の長さが等しくなるように、第1二次電池及び第2二次電池の長さを選択するのが好ましい。   For example, in the assembled batteries 100 and 300 of the first and second embodiments, the second battery rows 102 and 302 are formed by one second secondary battery 120 and 320, but a plurality of like the first battery rows 101 and 301. The second secondary batteries may be arranged in the axial direction to form a second battery row. For example, the second battery array may be formed by arranging two second secondary batteries in the axial direction, and the first battery array may be formed by arranging three first secondary batteries in the axial direction. However, in order to appropriately control charging / discharging of the assembled battery with one control system (control means), it is necessary to make the battery capacities of the first secondary battery and the second secondary battery equal. Further, there is no wasted space in the axial direction, and in order to improve space efficiency, the length of the first battery row and the length of the second battery row are made equal to each other in the first secondary battery and the second secondary battery. It is preferred to select the length.

実施例1にかかる組電池100の各二次電池(第1二次電池110及び第2二次電池120)の配置を示す説明図である。3 is an explanatory diagram showing an arrangement of secondary batteries (first secondary battery 110 and second secondary battery 120) of the assembled battery 100 according to Example 1. FIG. 実施例1にかかる第1二次電池110の側面図である。1 is a side view of a first secondary battery 110 according to Example 1. FIG. 実施例1にかかる第2二次電池120の側面図である。3 is a side view of a second secondary battery 120 according to Example 1. FIG. 実施例1にかかる組電池100の側面図である。1 is a side view of an assembled battery 100 according to Example 1. FIG. 実施例1にかかる電池システム200の構成を示す図である。It is a figure which shows the structure of the battery system 200 concerning Example 1. FIG. 実施例2にかかる組電池300の各二次電池(第1二次電池310及び第2二次電池320)の配置を示す説明図である。FIG. 6 is an explanatory diagram showing an arrangement of secondary batteries (first secondary battery 310 and second secondary battery 320) of the assembled battery 300 according to Example 2; 実施例2にかかる第1二次電池310の側面図である。3 is a side view of a first secondary battery 310 according to Example 2. FIG. 実施例2にかかる第2二次電池320の側面図である。6 is a side view of a second secondary battery 320 according to Example 2. FIG. 実施例2にかかる組電池300の側面図である。6 is a side view of an assembled battery 300 according to Example 2. FIG. 実施例2にかかる電池システム400の構成を示す図である。6 is a diagram showing a configuration of a battery system 400 according to Example 2. FIG.

符号の説明Explanation of symbols

100,300 組電池
101,301 第1電池列
102,302 第2電池列
110,310 第1二次電池
120,320 第2二次電池
200,400 電池システム
100, 300 Battery pack 101, 301 First battery row 102, 302 Second battery row 110, 310 First secondary battery 120, 320 Second secondary battery 200, 400 Battery system

Claims (2)

円柱状をなす複数の第1二次電池と、
上記第1二次電池よりも小径の円柱状をなす複数の第2二次電池と、を備え、
上記第1二次電池の径方向に互いに隣り合う上記第1二次電池同士の間隙に、上記第2二次電池が位置するように、上記第1二次電池と上記第2二次電池とが、それらの軸線を互いに平行としつつ配置されてなる
組電池であって、
上記第2二次電池は、
上記第1二次電池よりも軸線方向に長く、
上記第1二次電池と電池容量を等しくされてなり、
上記組電池は、
上記第2二次電池がその軸線方向に配置された数よりも、多数の上記第1二次電池がその軸線方向に並んで配列されてなり、
上記複数の第1二次電池と上記複数の第2二次電池とが、いずれも、電気的に直列に接続されてなる
組電池。
A plurality of first secondary batteries having a cylindrical shape;
A plurality of second secondary batteries having a cylindrical shape smaller in diameter than the first secondary battery,
The first secondary battery and the second secondary battery so that the second secondary battery is positioned in a gap between the first secondary batteries adjacent to each other in the radial direction of the first secondary battery. Is an assembled battery that is arranged with their axes parallel to each other,
The second secondary battery is
Longer in the axial direction than the first secondary battery,
The battery capacity is made equal to the first secondary battery,
The above assembled battery
More than the number of the second secondary batteries arranged in the axial direction, a larger number of the first secondary batteries are arranged side by side in the axial direction,
An assembled battery in which the plurality of first secondary batteries and the plurality of second secondary batteries are all electrically connected in series.
請求項1に記載の組電池であって、
複数の前記第1二次電池が、その軸線方向に並ぶ第1電池列の長さと、
1または複数の前記第2二次電池が、その軸線方向に並ぶ第2電池列の長さとが等しくされてなる
組電池。
The assembled battery according to claim 1,
A plurality of the first secondary batteries, the length of the first battery row aligned in the axial direction,
The assembled battery in which the length of the 2nd battery row | line | column with which the one or several said 2nd secondary battery is arranged in the axial direction is made equal.
JP2005337231A 2005-11-22 2005-11-22 Assembled battery Expired - Fee Related JP4788311B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005337231A JP4788311B2 (en) 2005-11-22 2005-11-22 Assembled battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005337231A JP4788311B2 (en) 2005-11-22 2005-11-22 Assembled battery

Publications (2)

Publication Number Publication Date
JP2007141768A true JP2007141768A (en) 2007-06-07
JP4788311B2 JP4788311B2 (en) 2011-10-05

Family

ID=38204372

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005337231A Expired - Fee Related JP4788311B2 (en) 2005-11-22 2005-11-22 Assembled battery

Country Status (1)

Country Link
JP (1) JP4788311B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010040226A (en) * 2008-08-01 2010-02-18 Hitachi Koki Co Ltd Battery pack for electric tools
CN103247821A (en) * 2012-02-10 2013-08-14 联想(北京)有限公司 Battery and charging and discharging method
JP2018504748A (en) * 2014-12-29 2018-02-15 ポスコ エナジー カンパニー リミテッド NaNiCl battery and module using the same
US20210391619A1 (en) * 2020-06-15 2021-12-16 Samsung Sdi Co., Ltd. Battery pack, battery module having the battery pack, power supply device having the battery module

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010040226A (en) * 2008-08-01 2010-02-18 Hitachi Koki Co Ltd Battery pack for electric tools
CN103247821A (en) * 2012-02-10 2013-08-14 联想(北京)有限公司 Battery and charging and discharging method
JP2018504748A (en) * 2014-12-29 2018-02-15 ポスコ エナジー カンパニー リミテッド NaNiCl battery and module using the same
US20210391619A1 (en) * 2020-06-15 2021-12-16 Samsung Sdi Co., Ltd. Battery pack, battery module having the battery pack, power supply device having the battery module
CN113809414A (en) * 2020-06-15 2021-12-17 三星Sdi株式会社 Battery pack, battery module having the same, and power supply device having the battery module
EP3926724A3 (en) * 2020-06-15 2021-12-29 Samsung SDI Co., Ltd. Battery pack, battery module having the battery pack, power supply device having the battery module

Also Published As

Publication number Publication date
JP4788311B2 (en) 2011-10-05

Similar Documents

Publication Publication Date Title
US9444083B2 (en) Battery pack
US10847773B2 (en) Battery pack
US8420250B2 (en) Battery module and battery pack including the same
EP3387683B1 (en) Force generating assembly for a battery pack
JP2005332823A (en) Rechargeable battery and battery module using the same
CN108140771B (en) Terminal arrangement for an energy storage device
JP7081025B2 (en) Battery packs, battery modules including battery packs, and power supply devices including battery modules
JP2010040226A (en) Battery pack for electric tools
EP3570343A1 (en) Battery cell, battery module, battery pack comprising same and vehicle
KR102113323B1 (en) Lithium ion secondary battery
EP3367463B1 (en) Battery module, and battery pack and vehicle comprising same
WO2023070677A1 (en) Battery cell, battery, electrical device, and method and device for manufacturing battery cell
JP4788311B2 (en) Assembled battery
KR20150137840A (en) Unit battery module and Battery module having the same
US20110129719A1 (en) Battery Pack and Battery Pack Stack
US9437898B2 (en) Secondary battery including plurality of electrode assemblies
WO2018159762A1 (en) Charging apparatus
KR20160002050A (en) Electrode assembly
CN113785433B (en) Electrode assembly for secondary battery, pouch-shaped secondary battery including the same, and battery pack
US20220140407A1 (en) Modular battery
CN217719795U (en) Battery module and battery pack
US20230352795A1 (en) Assembled battery
CN107278339A (en) Battery list pond and battery system
US20200194742A1 (en) Cap Assembly for Electrochemical Cells
KR20230150655A (en) Bus bar and battery module including same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080303

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110610

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110621

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110704

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140729

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees