JP2007140049A - Polyimide belt and method for manufacturing the same - Google Patents

Polyimide belt and method for manufacturing the same Download PDF

Info

Publication number
JP2007140049A
JP2007140049A JP2005332784A JP2005332784A JP2007140049A JP 2007140049 A JP2007140049 A JP 2007140049A JP 2005332784 A JP2005332784 A JP 2005332784A JP 2005332784 A JP2005332784 A JP 2005332784A JP 2007140049 A JP2007140049 A JP 2007140049A
Authority
JP
Japan
Prior art keywords
belt
polyimide
surface roughness
roughening treatment
polyimide belt
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005332784A
Other languages
Japanese (ja)
Inventor
Yoshinari Takayama
嘉也 高山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nitto Denko Corp
Original Assignee
Nitto Denko Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nitto Denko Corp filed Critical Nitto Denko Corp
Priority to JP2005332784A priority Critical patent/JP2007140049A/en
Publication of JP2007140049A publication Critical patent/JP2007140049A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Fixing For Electrophotography (AREA)
  • Photoreceptors In Electrophotography (AREA)
  • Electrostatic Charge, Transfer And Separation In Electrography (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a polyimide belt having a coefficient of friction on the inner face of the belt being hardly influenced by the surface roughness of the surface, achieving stable driving control and eliminating electrification failure by driving, and to provide a method for manufacturing the belt. <P>SOLUTION: The polyimide belt is obtained by imidization by heating a resin solution which essentially comprises a polyamide acid solution containing a fluorine filler by 2 to 20 wt.% and a carbon filler by 3 to 30 wt.%, and is characterized in that when the inner surface of the polyimide belt is subjected to roughening treatment into a surface roughness (Ra) ranging from 0.05 μm to 0.35 μm, the coefficient of friction (μ) on the inner circumference face of the belt before and after the roughening treatment is in the range of 0.05 to 0.25; and that the gradient of an approximated line representing a relation between the coefficient of friction (μ) and the surface roughness (Ra) is in the range of -1/3 to 1/3. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、フッ素フィラー、カーボンフィラーを含有するポリアミド酸溶液を主成分とする樹脂溶液を原料として製造されるポリイミドベルト及びその製造方法に関する。より詳細には、ポリイミドベルト内面の摩擦係数がその面の粗さの影響を受けにくく、安定した駆動制御が可能となるポリイミドベルト及びその製造方法に関する。 The present invention relates to a polyimide belt manufactured using a resin solution mainly composed of a polyamic acid solution containing a fluorine filler and a carbon filler as a raw material, and a method for manufacturing the same. More specifically, the present invention relates to a polyimide belt and a manufacturing method thereof in which the friction coefficient of the inner surface of the polyimide belt is hardly affected by the roughness of the surface, and stable drive control is possible.

従来より、ポリイミド樹脂材料は、その高い機械的強度、耐熱性等の理由から宇宙航空分野から電気電子材料まで幅広い分野において実用化されている。その中でもポリイミド樹脂製シームレス状管状体は、複写機、レーザービームプリンター、ファクシミリ等の電子写真画像形成装置の定着ベルト、転写ベルト、中間転写ベルト、搬送ベルト、感光体ベルト等の機能性ベルト及びこれらの基材として使用されている。   Conventionally, polyimide resin materials have been put to practical use in a wide range of fields from aerospace to electrical and electronic materials because of their high mechanical strength and heat resistance. Among them, seamless tubular bodies made of polyimide resin include functional belts such as fixing belts, transfer belts, intermediate transfer belts, conveyance belts, and photoreceptor belts of electrophotographic image forming apparatuses such as copying machines, laser beam printers, and facsimile machines. It is used as a base material.

特に、定着ベルトでは未定着トナー像を加圧加熱しながら転写体を搬送するため、ロール間の張設に耐えうる強度、ロールの加熱温度に耐えうる耐熱性、ベルト端部で寄りを制御する際、座屈を起こさないような剛性、過剰トナーを分離させるために必要なフレキブル性の要求が強くなっている。更に、最近では、高速高画質を得るために、表面の柔軟性、導電性が求められている。 In particular, the fixing belt conveys the transfer body while pressurizing and heating the unfixed toner image, so that the strength that can withstand the tension between the rolls, the heat resistance that can withstand the heating temperature of the roll, and the deviation at the belt end are controlled. At the same time, there is an increasing demand for rigidity that does not cause buckling and flexibility that is necessary to separate excess toner. Furthermore, recently, in order to obtain high-speed and high-quality images, surface flexibility and conductivity are required.

これらを解決する方法として、熱伝導性無機フィラーをポリアミド酸溶液に混練した後、イミド化促進剤と添加混合した溶液を筒状SUSにキャストし、熱処理することで、熱伝導率と引裂強度に優れたベルトが提案されている(特許文献1参照)。   As a method for solving these problems, after kneading the thermally conductive inorganic filler in the polyamic acid solution, the solution added and mixed with the imidization accelerator is cast into a cylindrical SUS, and heat treated, so that the thermal conductivity and tear strength are improved. An excellent belt has been proposed (see Patent Document 1).

特開2004−138655号公報JP 2004-138655 A

しかしながら、上記特許文献1におけるイミド化促進剤を用いた無機フィラー入りポリアミド酸溶液から得られたベルトは、引裂強度が向上することで成形中及び成形後の割れ、又はつぶれ等は抑制できるようにはなるものの、熱伝導性無機フィラーの影響でベルト駆動時のロールとの滑り性が悪く、過剰に張架しなければならず、ベルト裂けに対しては弱いものとなっていた。 However, the belt obtained from the polyamic acid solution containing an inorganic filler using the imidization accelerator in Patent Document 1 can suppress cracking or crushing during and after molding by improving tear strength. However, due to the influence of the thermally conductive inorganic filler, the slipping property with the roll during driving of the belt is poor, and the belt must be stretched excessively, so that it is weak against belt tearing.

また、上記のベルトは、連続駆動に対し、ベルト内面の粗さが変化したとき、その粗さに対する摩擦係数が大きく変動することで駆動トルクも不安定となり、その結果、画像ずれの問題が発生していた。更に導電性ベルトとして用いる場合に、無機フィラー配合によりベルトの表面抵抗を制御することは困難であり、帯電不具合による放電、ノイズ、紙の張り付きが問題となっていた。   Further, when the roughness of the inner surface of the belt changes with continuous driving, the friction coefficient with respect to the roughness greatly fluctuates, resulting in unstable driving torque, resulting in image misalignment. Was. Furthermore, when used as a conductive belt, it is difficult to control the surface resistance of the belt by blending an inorganic filler, and discharge, noise, and paper sticking due to charging problems have been problems.

そこで、本発明は、上記問題に鑑みてなされたものであって、その目的は、ポリイミドベルト内面の摩擦係数がその面の表面粗さの影響を受けにくく、安定した駆動制御と、その駆動による帯電不具合を解消したポリイミドベルト及びその製造方法を提供することにある。   Therefore, the present invention has been made in view of the above problems, and the object thereof is to make the friction coefficient of the inner surface of the polyimide belt less susceptible to the surface roughness of the surface, and to achieve stable drive control and drive. An object of the present invention is to provide a polyimide belt and a method for manufacturing the same that eliminates a charging problem.

本発明のポリイミドベルトは、ポリイミド樹脂固形分に対し、フッ素フィラーを2〜20重量%、導電性指標が50以上400以下であるカーボンフィラーを3〜30重量%含有するポリアミド酸溶液を主成分とする樹脂溶液を加熱によりイミド転化して得られるポリイミドベルトであって、
表面粗さ(Ra)が0.05μm以上0.35μm以下の範囲でポリイミドベルト内面を粗し処理した際に、粗し処理前後の当該ベルトの内周面の摩擦係数(μ)が0.05以上0.25以下の範囲であり、粗し処理前後の摩擦係数(μ)と表面粗さ(Ra)の近似直線の傾きが−1/3以上1/3以下の関係であることを特徴とする。「近似直線」は、最小二乗法による回帰直線として求めることができる。
The polyimide belt of the present invention is mainly composed of a polyamic acid solution containing 2 to 20% by weight of a fluorine filler and 3 to 30% by weight of a carbon filler having a conductivity index of 50 or more and 400 or less, based on the polyimide resin solid content. A polyimide belt obtained by converting the resin solution to imide by heating,
When the inner surface of the polyimide belt is roughened within a range where the surface roughness (Ra) is 0.05 μm or more and 0.35 μm or less, the friction coefficient (μ) of the inner peripheral surface of the belt before and after the roughening treatment is 0.05. It is a range of 0.25 or less, and the slope of the approximate straight line between the friction coefficient (μ) before and after the roughening treatment and the surface roughness (Ra) is in a relationship of −1/3 to 1/3. To do. The “approximate straight line” can be obtained as a regression line by the least square method.

ここで、ポリイミドベルトの表面抵抗の常用対数が1〜8(Ω/□)であることは好ましい。   Here, it is preferable that the common logarithm of the surface resistance of the polyimide belt is 1 to 8 (Ω / □).

また、「導電性指標」は、以下の式により求められる。
(数1)
導電性指標=(比表面積×DBP吸油量)1/2/(1+揮発分)
ここで、「DBP吸油量」とは、一定重量のカーボンブラック中の空隙容積を液体で置換し、その容量をストラクチャー指標とするものである。より具体的には、カーボンブラック100gあたりに包含される油の量(ml)をいい、油としてフタル酸ジブチル(dibutyl phtalate)を用いたアブソープトメーターによる値(JIS K 6211に記載の吸油量A法(機械法))をいう。「比表面積」は、BET法(粉体粒子表面に吸着占有面積の判った分子を液体窒素の温度で吸着させ、その量から試料の比表面積を求める方法)にて測定される。
Further, the “conductivity index” is obtained by the following formula.
(Equation 1)
Conductivity index = (specific surface area × DBP oil absorption) 1/2 / (1 + volatile content)
Here, the “DBP oil absorption amount” is a value obtained by substituting the void volume in a constant weight of carbon black with a liquid and using the capacity as a structure index. More specifically, it refers to the amount (ml) of oil contained per 100 g of carbon black, and is measured by an absorption meter using dibutyl phthalate as the oil (oil absorption amount described in JIS K 6211). A method (mechanical method)). The “specific surface area” is measured by a BET method (a method in which a specific surface area of a sample is obtained from the amount of molecules adsorbed on the powder particle surface at the temperature of liquid nitrogen by adsorbing the molecules).

本願発明のポリイミドベルトは、ベルト内面の摩擦係数がその面の表面粗さの影響を受けにくく、安定した駆動制御と、その駆動による帯電不具合を解消したものとなる。   In the polyimide belt of the present invention, the friction coefficient of the inner surface of the belt is not easily affected by the surface roughness of the surface, and stable driving control and charging problems due to the driving are eliminated.

また、本願発明のポリイミドベルトの外面側に、ゴム弾性層及び/又はフッ素樹脂離型層を形成し、これを定着ベルトに用いることは好ましい実施態様である。   In addition, it is a preferred embodiment that a rubber elastic layer and / or a fluororesin release layer is formed on the outer surface side of the polyimide belt of the present invention and used for the fixing belt.

また、本発明のポリイミドベルトの製造方法は、ポリイミド樹脂固形分に対し、フッ素フィラーを2〜20重量%、導電性指標が50以上400以下であるカーボンフィラーを3〜30重量%含有するポリアミド酸溶液を主成分とする樹脂溶液を調製する調製工程と、樹脂溶液を筒状金型内面に塗布する塗布工程と、塗布されて形成された樹脂皮膜表面を均一化するために遠心成形する遠心成形工程と、遠心成形後に、溶媒除去、イミド転化するイミド転化工程と、を含むポリイミドベルトの製造方法であって、
表面粗さ(Ra)が0.05μm以上0.35μm以下の範囲で得られたポリイミドベルト内面を粗し処理した際に、粗し処理前後の当該ベルトの内周面の摩擦係数(μ)が0.05以上0.25以下の範囲であり、粗し処理前後の摩擦係数(μ)と表面粗さ(Ra)の近似直線の傾きが−1/3以上1/3以下の関係であることを特徴とする。
In addition, the method for producing a polyimide belt of the present invention comprises a polyamide acid containing 2 to 20% by weight of a fluorine filler and 3 to 30% by weight of a carbon filler having a conductivity index of 50 or more and 400 or less based on the polyimide resin solid content. A preparation step for preparing a resin solution containing the solution as a main component, a coating step for applying the resin solution to the inner surface of the cylindrical mold, and centrifugal molding for uniforming the surface of the resin film formed by coating. A process for removing the solvent after centrifuging, and an imide conversion step for converting the imide,
When a polyimide belt inner surface obtained with a surface roughness (Ra) in the range of 0.05 μm or more and 0.35 μm or less is roughened, the friction coefficient (μ) of the inner peripheral surface of the belt before and after the roughening treatment is The range is from 0.05 to 0.25, and the slope of the approximate straight line between the coefficient of friction (μ) before and after the roughening treatment and the surface roughness (Ra) is in the range of −1/3 to 1/3. It is characterized by.

この製造方法で得られたポリイミドベルトは、上記の記載の通り、ベルト内面の摩擦係数がその面の表面粗さの影響を受けにくく、安定した駆動制御と、その駆動による帯電不具合を解消したものとなる。   As described above, the polyimide belt obtained by this manufacturing method is such that the friction coefficient of the belt inner surface is not easily affected by the surface roughness of the surface, and stable driving control and charging problems due to the driving are eliminated. It becomes.

以下、本発明に関し詳細に説明する。 Hereinafter, the present invention will be described in detail.

<ポリイミドベルトの原料>
本発明における樹脂溶液の主成分であるポリアミド酸溶液は、公知のものを使用することができ、酸二無水物とジアミンを溶媒中で重合反応させてなるポリアミド酸溶液が使用される。芳香族ポリイミド樹脂であると、得られるベルトの機械的強度や耐熱性が好適なものが得られる。
<Raw material for polyimide belt>
As the polyamic acid solution which is the main component of the resin solution in the present invention, a known polyamic acid solution can be used, and a polyamic acid solution obtained by polymerizing an acid dianhydride and a diamine in a solvent is used. When the aromatic polyimide resin is used, a belt having suitable mechanical strength and heat resistance can be obtained.

好適な酸二無水物の例として、ピロメリット酸二無水物、3,3’,4,4’−ベンゾフェノンテトラカルボン酸二無水物、3,3’,4,4’−ビフェニルテトラカルボン酸二無水物、2,3,3’,4−ビフェニルテトラカルボン酸二無水物、2,3,6,7−ナフタレンテトラカルボン酸二無水物、1,2,5,6−ナフタレンテトラカルボン酸二無水物、1,4,5,8−ナフタレンテトラカルボン酸二無水物等が挙げられる。   Examples of suitable acid dianhydrides include pyromellitic dianhydride, 3,3 ′, 4,4′-benzophenone tetracarboxylic dianhydride, 3,3 ′, 4,4′-biphenyltetracarboxylic acid dianhydride. Anhydride, 2,3,3 ′, 4-biphenyltetracarboxylic dianhydride, 2,3,6,7-naphthalenetetracarboxylic dianhydride, 1,2,5,6-naphthalenetetracarboxylic dianhydride Products, 1,4,5,8-naphthalenetetracarboxylic dianhydride and the like.

一方、ジアミンの例としては、4,4’−ジアミノジフェニルエーテル、4,4’−ジアミノジフェニルメタン、3,3’−ジアミノジフェニルメタン、3,3’−ジクロロベンジジン、4,4’−ジアミノジフェニルスルフィド、3,3’−ジアミノジフェニルスルフォン、1,5−ジアミノナフタレン、m−フェニレンジアミン、p−フェニレンジアミン、3,3’−ジメチル4,4’−ビフェニルジアミン、ベンジジン、3,3’−ジメチルベンジジン、3,3’−ジメトキシベンジジン、4,4’−ジアミノジフェニルスルフォン、4,4’−ジアミノジフェニルスルフィド、4,4’−ジアミノジフェニルプロパン等が挙げられる。   On the other hand, examples of the diamine include 4,4′-diaminodiphenyl ether, 4,4′-diaminodiphenylmethane, 3,3′-diaminodiphenylmethane, 3,3′-dichlorobenzidine, 4,4′-diaminodiphenyl sulfide, 3 , 3′-diaminodiphenylsulfone, 1,5-diaminonaphthalene, m-phenylenediamine, p-phenylenediamine, 3,3′-dimethyl4,4′-biphenyldiamine, benzidine, 3,3′-dimethylbenzidine, 3 , 3′-dimethoxybenzidine, 4,4′-diaminodiphenylsulfone, 4,4′-diaminodiphenyl sulfide, 4,4′-diaminodiphenylpropane, and the like.

これらの酸無水物とジアミンを重合反応させる際の溶媒としては適宜なものを用いうるが、溶解性等の点から極性溶媒が好ましく用いられ、具体的には、N,N−ジメチルホルムアミド、N,N−ジメチルアセトアミド、N,N−ジエチルホルムアミド、N,N−ジエチルアセトアミド、N,N−ジメチルメトキシアセトアミド、ジメチルスルホキシド、ヘキサメチルホスホルトリアミド、N−メチル−2−ピロリドン、ピリジン、ジメチルスルホキシド、テトラメチレンスルホン、ジメチルテトラメチレンスルホン等が考えられる。これらは単独で用いても構わないし、併せて用いても差し支えない。   A suitable solvent can be used for the polymerization reaction of these acid anhydrides and diamines, but polar solvents are preferably used from the viewpoint of solubility and the like. Specifically, N, N-dimethylformamide, N , N-dimethylacetamide, N, N-diethylformamide, N, N-diethylacetamide, N, N-dimethylmethoxyacetamide, dimethyl sulfoxide, hexamethylphosphortriamide, N-methyl-2-pyrrolidone, pyridine, dimethyl sulfoxide, Tetramethylene sulfone, dimethyltetramethylene sulfone, etc. are conceivable. These may be used alone or in combination.

さらに、上記有機極性溶媒にクレゾール、フェノール、キシレノール等のフェノール類、ベンゾニトリル、ジオキサン、ブチロラクトン、キシレン、シクロヘキサン、ヘキサン、ベンゼン、トルエン等を単独もしくは併せて混合することもできる。   Furthermore, phenols such as cresol, phenol and xylenol, benzonitrile, dioxane, butyrolactone, xylene, cyclohexane, hexane, benzene, toluene and the like can be mixed alone or in combination with the organic polar solvent.

上記の酸無水物(a)とジアミン(b)とを有機極性溶媒中で反応させることによりポリアミド酸溶液が得られる。その際のモノマー濃度(溶媒中における(a)+(b)の濃度)は、種々の条件に応じて設定されるが、5〜30重量%が好ましい。また、反応温度は80℃以下に設定することが好ましく、特に好ましくは5〜50℃であり、反応時間は0.5〜10時間が好ましい。   A polyamic acid solution is obtained by reacting the acid anhydride (a) and the diamine (b) in an organic polar solvent. The monomer concentration (concentration of (a) + (b) in the solvent) at that time is set according to various conditions, but is preferably 5 to 30% by weight. The reaction temperature is preferably set to 80 ° C. or less, particularly preferably 5 to 50 ° C., and the reaction time is preferably 0.5 to 10 hours.

塗布するポリアミド酸溶液の粘度は10〜10000ポイズ、好ましくは50〜5000ポイズ(B型粘度計、23℃)程度が好ましい。粘度が10ポイズ以下であるといわゆるタレや塗布層のハジキが生じ易くなり、塗膜厚の均一性が得られ難くなるため好ましくない。一方、10000ポイズを超えると、吐出の際に高い圧力をかける必要があり、また遠心成形によるレベリング効果が出にくいので好ましくない。   The viscosity of the polyamic acid solution to be applied is preferably about 10 to 10000 poise, preferably about 50 to 5000 poise (B-type viscometer, 23 ° C.). If the viscosity is 10 poises or less, so-called sagging or repellency of the coating layer is likely to occur, and it becomes difficult to obtain a uniform coating thickness. On the other hand, if it exceeds 10,000 poise, it is necessary to apply a high pressure at the time of discharge, and the leveling effect by centrifugal molding is difficult to be obtained, which is not preferable.

また、ポリアミド酸溶液に添加されるフッ素フィラー及び、フッ素樹脂離型層の材料としては、分子内にフッ素原子を含むものであればよく特に限定されるものではない。具体的にはポリテトラフルオロエチレン(PTFE)とその変性物、テトラフルオロエチレン−パーフルオロアルキルビニルエーテル共重合体(PFA)、テトラフルオロエチレン−エチレン共重合体(ETFE)、テトラフルオロエチレン−ヘキサフルオロプロピレン共重合体(FEP)、テトラフルオロエチレン−フッ化ビニリデン共重合体(TFE/VdF)、テトラフルオロエチレン−ヘキサフルオロプロピレン−パーフルオロアルキルビニルエーテル共重合体(EPA)、ポリクロロトリフルオロエチレン(PCTFE)、クロロトリフルオロエチレン−エチレン共重合体(ECTFE)、クロロトリフルオロエチレン−フッ化ビニリデン共重合体(CTFE/VdF)、ポリフッ化ビニリデン(PVdF)、ポリフッ化ビニル(PVF)などが挙げられる。耐摩耗性、トナーとの離型性、耐熱性の点からPTFE、PFA、又はこれら混合系が好ましい。   In addition, the fluorine filler added to the polyamic acid solution and the material of the fluororesin release layer are not particularly limited as long as they contain fluorine atoms in the molecule. Specifically, polytetrafluoroethylene (PTFE) and its modified product, tetrafluoroethylene-perfluoroalkyl vinyl ether copolymer (PFA), tetrafluoroethylene-ethylene copolymer (ETFE), tetrafluoroethylene-hexafluoropropylene Copolymer (FEP), tetrafluoroethylene-vinylidene fluoride copolymer (TFE / VdF), tetrafluoroethylene-hexafluoropropylene-perfluoroalkyl vinyl ether copolymer (EPA), polychlorotrifluoroethylene (PCTFE) , Chlorotrifluoroethylene-ethylene copolymer (ECTFE), chlorotrifluoroethylene-vinylidene fluoride copolymer (CTFE / VdF), polyvinylidene fluoride (PVdF), polyvinyl fluoride ( VF) and the like. PTFE, PFA, or a mixed system thereof is preferred from the viewpoints of wear resistance, releasability from toner, and heat resistance.

フッ素フィラーの添加量はポリイミド樹脂系組成物中のポリイミド樹脂固形分に対し2〜20重量%、より好ましくは4〜15重量%である。20重量%を超えると弾性率が極端に低くなり好ましくない。2重量%より小さいと摩擦係数が高くなり好ましくない。   The addition amount of the fluorine filler is 2 to 20% by weight, more preferably 4 to 15% by weight, based on the polyimide resin solid content in the polyimide resin composition. If it exceeds 20% by weight, the elastic modulus becomes extremely low, which is not preferable. If it is less than 2% by weight, the coefficient of friction increases, which is not preferable.

また、本発明におけるカーボンフィラーとしては、例えばチャンネルブラック、ファーネスブラック、ケッチェンブラック、アセチレンブラック等が挙げられ、これらは単独使用することもでき、または複数種類のカーボンブラックを併用してもよい。また、その用途によっては酸化処理、グラフト処理等の酸化劣化を防止したものや溶媒への分散性を向上させたものを用いると好ましい。   In addition, examples of the carbon filler in the present invention include channel black, furnace black, ketjen black, acetylene black, and the like. These may be used alone or a plurality of types of carbon black may be used in combination. In addition, depending on the application, it is preferable to use one that prevents oxidative degradation such as oxidation treatment or graft treatment, or that has improved dispersibility in a solvent.

カーボンの導電性指標は50以上400以下が好ましい。50以下では、表面抵抗の常用対数が8(Ω/□)以下のものを得ることが難しく、400以上となるカーボンは分散性に劣り好ましくない。以下に、本発明に用いることができるカーボンの例を示す。   The conductivity index of carbon is preferably 50 or more and 400 or less. If it is 50 or less, it is difficult to obtain a surface resistance having a common logarithm of 8 (Ω / □) or less, and carbon having a surface resistance of 400 or more is not preferable because of poor dispersibility. Examples of carbon that can be used in the present invention are shown below.

Figure 2007140049
Figure 2007140049

カーボンフィラーの含有量については、その目的に応じ、添加するカーボンブラックの種類により適宜決定されるが、画像形成装置用機能性ベルトとしてはその機械的強度等から、ポリイミド樹脂系組成物中のポリイミド樹脂固形分に対し3〜30重量%、より好ましくは10〜25重量%である。3重量%より小さいと、フッ素フィラーとの組み合わせで、粗し処理前後の摩擦係数(μ)と表面粗さ(Ra)の近似直線の傾きが−1/3以上1/3以下の関係を維持することが難しくなるだけでなく、ベルトの表面抵抗の常用対数が8(Ω/□)を超え、電気的トラブルが発生する。30重量%を超えると、機械的強度が弱くなり、駆動において裂けやすくなる。   The content of the carbon filler is appropriately determined depending on the type of carbon black to be added depending on the purpose, but as a functional belt for an image forming apparatus, the polyimide in the polyimide resin-based composition is used due to its mechanical strength. It is 3 to 30% by weight, more preferably 10 to 25% by weight, based on the resin solid content. If it is less than 3% by weight, the relationship between the friction coefficient (μ) before and after the roughening treatment and the slope of the approximate straight line of the surface roughness (Ra) is maintained in the range of −1/3 to 1/3 in combination with the fluorine filler. Not only is it difficult to do this, but the common logarithm of the surface resistance of the belt exceeds 8 (Ω / □), causing electrical trouble. If it exceeds 30% by weight, the mechanical strength is weakened and it tends to tear during driving.

<ポリイミドベルトの製造方法>
本発明のポリイミドベルトの製造方法は、好ましくは以下の工程を含む。
(1)ポリイミド樹脂系組成物中のポリイミド樹脂固形分に対し、フッ素フィラーを2〜20重量%、導電性指標が50以上400以下であるカーボンフィラーを3〜30重量%含有するポリアミド酸溶液を主成分とする樹脂溶液を調製する調製工程。
(2)樹脂溶液を筒状金型内面に塗布する塗布工程。
(3)塗布されて形成された樹脂皮膜表面を均一化するために遠心成形する遠心成形工程。
(4)遠心成形後に、溶媒除去、イミド転化するイミド転化工程。
<Manufacturing method of polyimide belt>
The method for producing a polyimide belt of the present invention preferably includes the following steps.
(1) A polyamic acid solution containing 2 to 20% by weight of a fluorine filler and 3 to 30% by weight of a carbon filler having a conductivity index of 50 or more and 400 or less relative to the solid content of the polyimide resin in the polyimide resin composition. A preparation process for preparing a resin solution having a main component.
(2) A coating process for coating the resin solution on the inner surface of the cylindrical mold.
(3) Centrifugal molding step for centrifugal molding to make the surface of the resin film formed by application uniform.
(4) Imide conversion step of removing solvent and converting imide after centrifugal molding.

塗布工程は、ポリアミド酸溶液を主成分とする樹脂溶液を円筒状金型の内表面に、円筒状金型が回転しながらディスペンサーの供給部の軸方向に移動することにより塗布する方法が例示されるが、特にこれに限定されず、例えば、ディスペンサー等で、ポリアミド酸溶液を主成分とする樹脂溶液を金型の内表面に付着させた後、剛球等で所定の厚さに仕上げても良い。   The coating process is exemplified by a method in which a resin solution containing a polyamic acid solution as a main component is applied to the inner surface of the cylindrical mold by moving the cylindrical mold in the axial direction of the dispenser while rotating. However, the present invention is not particularly limited thereto. For example, a resin solution containing a polyamic acid solution as a main component may be attached to the inner surface of the mold with a dispenser or the like, and then finished to a predetermined thickness with a hard sphere or the like. .

遠心成形工程は、樹脂溶液が塗布された金型を回転させる遠心成形であり、塗布された樹脂皮膜を平滑化及び脱泡する。   The centrifugal molding step is centrifugal molding in which a mold to which a resin solution is applied is rotated, and the applied resin film is smoothed and defoamed.

ここで、遠心成形するために行う金型周方向の回転数は、金型の直径、樹脂溶液(或いはその主成分であるポリアミド酸溶液)の粘度及び塗布状態にもよるが、100rpm以上5000rpm以下が好ましい。100rpm以下だと、遠心力による塗布膜のレベリング効果、脱泡効果が得られにくく、5000rpmを超えると機械的に負荷が大きくなり振動による金型の偏芯が起こり、金型長手方向の塗布厚が不均一となり好ましくない。   Here, the rotational speed in the circumferential direction of the mold performed for centrifugal molding depends on the diameter of the mold, the viscosity of the resin solution (or the polyamic acid solution that is the main component thereof), and the application state, but is 100 rpm or more and 5000 rpm or less. Is preferred. If it is 100 rpm or less, the leveling effect and defoaming effect of the coating film due to centrifugal force are difficult to obtain, and if it exceeds 5000 rpm, the mechanical load increases and the mold is eccentric due to vibration, and the coating thickness in the longitudinal direction of the mold Is not preferable.

イミド転化工程は、樹脂皮膜を加熱或いは溶媒抽出等により固化または硬化し、更に高温で加熱することでイミド転化する。なお、遠心成形後のイミド転化は、金型をイミド転化温度以上まで上げてポリイミドベルトを形成しても良いし、金型内の樹脂皮膜を加熱固化させた状態で止めたベルトを金型から取り出し、このベルトを金属パイプに挿し代えてから、イミド転化を行っても良い。   In the imide conversion step, the resin film is solidified or cured by heating or solvent extraction, and further imide conversion is performed by heating at a high temperature. In addition, the imide conversion after centrifugal molding may be performed by raising the mold to the imide conversion temperature or higher to form a polyimide belt, or the belt that is stopped in a state where the resin film in the mold is heated and solidified is removed from the mold. The imide conversion may be performed after taking out and replacing the belt with a metal pipe.

本発明のポリイミドベルトにおいて、ベルトの厚みを、50μm以上200μm以下となるように設定するのが好ましい。ベルトの厚みが50μmより薄いと、寄り制御で掛かる負荷にベルト端部の剛性が負け、ベルトが座屈しやすくなり好ましくない。200μmを超えると張設するロールの1つである分離ロールで、ベルトの曲率半径が大きくなることで、ベルト上のトナーが十分離形されず好ましくない。   In the polyimide belt of the present invention, the thickness of the belt is preferably set to be 50 μm or more and 200 μm or less. When the thickness of the belt is less than 50 μm, the rigidity of the belt end portion loses the load applied by the shift control, and the belt tends to buckle, which is not preferable. When the thickness exceeds 200 μm, the separation roll, which is one of the rolls to be stretched, is not preferable because the belt has a large radius of curvature and the toner on the belt is not sufficiently separated.

本発明のポリイミドベルトへのフィラーの添加は、少なくともフッ素フィラーとカーボンフィラーの2種類である。その他フィラーとして、アルミニウム等の金属、ポリアニリン等の導電ポリマー等が例示され、適宜、1種又は2種以上を用いることができる。   The addition of the filler to the polyimide belt of the present invention is at least two types of fluorine filler and carbon filler. Other fillers include metals such as aluminum, conductive polymers such as polyaniline, and the like, and one or more can be used as appropriate.

カーボンフィラーを含有せずにフッ素フィラーを含有したポリイミドベルトでは内面の粗さ(Ra)と摩擦係数(μ)は、比例関係にあり、粗し処理前後の内面の粗さ(Ra)と摩擦係数(μ)の最小二乗法の回帰直線の傾き(μ/Ra)はフィラー部数にもよるが1/3を超え、摩擦係数が粗さによって大きく左右される。これは、実使用において、経時的に変化する内面粗さばらつきによって摩擦係数もばらつき、その結果、ベルト駆動が不均一となり、画像ムラが生じることとなり好ましくない。   In polyimide belts that contain fluorine filler but not carbon filler, the inner surface roughness (Ra) and friction coefficient (μ) are in a proportional relationship, and the inner surface roughness (Ra) and friction coefficient before and after roughening treatment. The slope (μ / Ra) of the regression line of the least square method of (μ) exceeds 1/3 although it depends on the number of filler parts, and the friction coefficient is greatly influenced by the roughness. This is not preferable because, in actual use, the coefficient of friction also varies due to variations in the inner surface roughness that changes with time, resulting in uneven belt driving and image unevenness.

一方、フッ素フィラーを含有せずにカーボンフィラーを含有したポリイミドベルトでは内面の粗さ(Ra)と摩擦係数(μ)は、反比例関係にあり、内面の粗さ(Ra)と摩擦係数(μ)の最小二乗法の回帰直線の傾き(μ/Ra)はフィラー部数にもよるが−1/3未満となり、摩擦係数(μ)が内面粗さ(Ra)によって大きく左右される。これに対しては、ベルト成形後にベルト内面に対し粗し処理を実施すれば、実使用の経時変化による内面粗さ(Ra)のばらつきと、それによる摩擦係数(μ)のばらつきも低減できる。しかし、根本的に滑り性の悪いカーボン分散ポリイミドベルトでは、内面粗さ(Ra)を0.2μm以上粗さないと実用的に良好な駆動状態が得られる摩擦係数0.25以下を得ることができないため、粗し処理を施す必要がある。しかしそのための粗し処理は煩雑であり、精度も得られにくいものとなっていた。   On the other hand, in the polyimide belt containing the carbon filler without containing the fluorine filler, the inner surface roughness (Ra) and the friction coefficient (μ) are in inverse proportion, and the inner surface roughness (Ra) and the friction coefficient (μ). The slope (μ / Ra) of the regression line of the least square method is less than −1/3 depending on the number of filler parts, and the friction coefficient (μ) is greatly influenced by the inner surface roughness (Ra). On the other hand, if the roughening process is performed on the inner surface of the belt after forming the belt, it is possible to reduce the variation in the inner surface roughness (Ra) due to the actual change over time and the variation in the friction coefficient (μ). However, a carbon-dispersed polyimide belt with fundamentally poor slipperiness can obtain a friction coefficient of 0.25 or less, which provides a practically good driving state unless the inner surface roughness (Ra) is roughened by 0.2 μm or more. Since this is not possible, it is necessary to perform roughening treatment. However, the roughening process for that purpose is complicated, and accuracy is difficult to obtain.

そこで本発明においては、フッ素フィラー2〜20重量%とカーボンフィラー3〜30重量%の2種類をポリイミドベルトに分散させることで、内面粗さ(Ra)0.05μm以上0.35μm以下の範囲で、摩擦係数(μ)0.05以上0.25以下に制御し、内面の粗さ(Ra)と摩擦係数(μ)の最小二乗法の回帰直線の傾き(μ/Ra)が−1/3〜1/3の関係を得ることができる。   Therefore, in the present invention, the inner surface roughness (Ra) is in the range of 0.05 μm or more and 0.35 μm or less by dispersing two types of fluorine filler 2 to 20 wt% and carbon filler 3 to 30 wt% in the polyimide belt. The coefficient of friction (μ) is controlled to be 0.05 or more and 0.25 or less, and the slope (μ / Ra) of the regression line of the least square method of the inner surface roughness (Ra) and the friction coefficient (μ) is −1/3. A relationship of ~ 1/3 can be obtained.

ここで摩擦係数(μ)は0.05より小さいと、張架するロールとスリップを生じ、0.25を超えると過剰の駆動力を加えることで裂けやすくなり好ましくない。   Here, if the coefficient of friction (μ) is less than 0.05, a stretched roll and a slip are generated, and if it exceeds 0.25, it is not preferable because an excessive driving force is applied to cause tearing.

本発明における「粗し処理」は、ポリイミドベルトの特性を評価するためになされるものであり、具体的処理方法は、適宜設定されるが、例えば、サンドペーパー、サンドブラスト等の研磨方法が例示される。そして、再現性を得るためには、例えば、研磨材質、粗さ、荷重、速度、回数等を設定することが好ましい。一例を挙げれば、研磨材としてサンドペーパー#1000、ラッピングフィルム(3M社、粒度9μm)を用い、荷重を1kg/Φ50mm円柱とし、研磨回数を10回とする方法が例示される。   The “roughening treatment” in the present invention is performed in order to evaluate the characteristics of the polyimide belt, and a specific treatment method is appropriately set. For example, a polishing method such as sandpaper and sandblasting is exemplified. The In order to obtain reproducibility, for example, it is preferable to set the polishing material, roughness, load, speed, number of times, and the like. As an example, there is exemplified a method in which sandpaper # 1000 and a lapping film (3M company, particle size 9 μm) are used as the abrasive, the load is 1 kg / Φ50 mm cylinder, and the number of polishing is 10 times.

本発明のポリイミドベルトにゴム弾性層及びフッ素樹脂離型層を積層する方法は、スプレーコート、浸漬、ディスペンサー塗布等が挙げられる。   Examples of the method for laminating the rubber elastic layer and the fluororesin release layer on the polyimide belt of the present invention include spray coating, dipping, and dispenser application.

また、積層工程は、ポリイミドベルトを成形した後、外側にゴム弾性層、フッ素樹脂離型層を重ねていく工程をとっても良いし、金型内面にフッ素樹脂離型層、ゴム弾性層、ポリイミドの順で積層し、ベルト化した後金型から取り出す工程をとっても良い。これら工程はベルトの寸法精度、特性、成形コストに応じて自由に選べる。   In addition, the lamination process may take a process of forming a polyimide belt and then laminating a rubber elastic layer and a fluororesin release layer on the outside, or a fluororesin release layer, a rubber elastic layer, and a polyimide on the inner surface of the mold. The steps of stacking in order and taking out from the mold after forming a belt may be taken. These processes can be freely selected according to the dimensional accuracy, characteristics and molding cost of the belt.

また、フッ素樹脂離型層の積層の際には、ゴム弾性層との接着力を強化するために中間にプライマーを施しても良い。更にフッ素樹脂離型層はチューブ状のものをゴム弾性層上に被せた後、加熱収縮させて積層させても良い。   In addition, when laminating the fluororesin release layer, a primer may be provided in the middle in order to strengthen the adhesive force with the rubber elastic layer. Further, the fluororesin release layer may be laminated by covering the rubber elastic layer on the rubber elastic layer and then shrinking by heating.

なお、ゴム弾性層の原料としては、天然ゴム、合成ゴム、シリコーンゴム等から適宜選択される。   The raw material for the rubber elastic layer is appropriately selected from natural rubber, synthetic rubber, silicone rubber and the like.

[実施例]
以下、本発明の構成と効果を具体的に示す実施例等について説明する。なお、実施例等における評価・試験項目は下記のようにして測定を行った。なお、本発明はこの実施例に限定されるものではない。
1.引張弾性率
測定機:オリエンテックUTM1000テンシロン、又は相当品
チャック間隔:30mm
引張速度:100mm/分
引張弾性率算出法:応力−歪み曲線の最大接線の傾きより算出
試験片:JIS K 6301の3号形ダンベルで打ち抜いたものを使用する。
2.引裂強度
JIS K 7128−1トラウザー引裂法に準じて行う。ベルト軸方向に試験片の長さを取り、幅の中央に75±1mmのスリットを入れる。次いで、試験片の足をチャックに装着し、引っ張り試験機により下記の条件で引っ張る。
試験片:長さ150mm×幅75mm(75±1mmのスリットを入れる)
引張速度:20mm/分
3.表面粗さ(Ra)
測定機:サーフコム554A(東京精密社)
測定長さ:4mm
速度:0.3mm/sec
触針荷重:70mg
カットオフ:0.8mm
Ra:算術平均粗さ
4.摩擦係数
測定機:オリエンテックAFT−15B
相手材:φ10鋼球
速度:150mm/分
荷重:200g
5.表面抵抗
ロレスタ−GP(三菱化学)に接続した4探針プローブ(MCP−TP03P)をベルト表面に押し当て測定した。
[Example]
Examples and the like specifically showing the configuration and effects of the present invention will be described below. The evaluation and test items in the examples and the like were measured as follows. In addition, this invention is not limited to this Example.
1. Tensile modulus measuring machine: Orientec UTM1000 Tensilon or equivalent chuck spacing: 30 mm
Tensile speed: 100 mm / min Calculation method of tensile elastic modulus: Calculated from the slope of the maximum tangent of the stress-strain curve. Test piece: A punched piece with a JIS K 6301 No. 3 dumbbell is used.
2. Tear strength Measured according to the JIS K 7128-1 trouser tear method. Take the length of the test piece in the belt axis direction, and put a slit of 75 ± 1 mm in the center of the width. Next, the leg of the test piece is attached to the chuck and pulled under the following conditions by a tensile tester.
Test piece: length 150 mm x width 75 mm (with a 75 ± 1 mm slit)
2. Tensile speed: 20 mm / min Surface roughness (Ra)
Measuring instrument: Surfcom 554A (Tokyo Seimitsu Co., Ltd.)
Measurement length: 4mm
Speed: 0.3mm / sec
Stylus load: 70mg
Cut-off: 0.8mm
Ra: arithmetic average roughness Friction coefficient measuring machine: Orientec AFT-15B
Mating material: φ10 steel ball Speed: 150 mm / min Load: 200 g
5. A four-probe probe (MCP-TP03P) connected to a surface resistance Loresta-GP (Mitsubishi Chemical) was pressed against the belt surface for measurement.

<実施例1>
(KCAタイプ)
N−メチル−2−ピロリドン(NMP)にバルカン22wt%(XC−72、キャボット社、導電性指標=85)、PTFE粉末(KTL−8 喜多村社)4wt%を順次投入し、十分攪拌した後、酸成分として3,3’,4,4’−ビフェニルテトラカルボン酸二無水物を、アミン成分としてp−フェニレンジアミンの略当モルを溶解(モノマー濃度20重量%)し、室温で攪拌しながら反応させ、次いで70℃に加温しつつ攪拌して23℃におけるB型粘度計による粘度が2000ポイズのポリアミド酸溶液を作製した。
<Example 1>
(KCA type)
To N-methyl-2-pyrrolidone (NMP), 22 wt% of Vulcan (XC-72, Cabot Corporation, conductivity index = 85) and 4 wt% of PTFE powder (KTL-8 Kitamura) were sequentially added and stirred sufficiently. 3,3 ′, 4,4′-biphenyltetracarboxylic dianhydride is dissolved as an acid component, and approximately equimolar amount of p-phenylenediamine is dissolved as an amine component (monomer concentration: 20% by weight), and the reaction is conducted at room temperature with stirring. Then, the mixture was stirred while heating to 70 ° C. to prepare a polyamic acid solution having a viscosity of 2000 poise measured at 23 ° C. using a B-type viscometer.

更に、ポリアミド酸溶液の1wt%に相当するイソキノリンを常温にて攪拌混合した。   Furthermore, isoquinoline corresponding to 1 wt% of the polyamic acid solution was stirred and mixed at room temperature.

次いで、長方形状のダイス型ディスペンサーを固定しつつ、長さ600mm、直径80mmφの円筒状金型を回転させながら上記ポリアミド酸溶液を主成分とする樹脂溶液を円筒状金型内面の一方端から他方端まで供給しつつ移動させ円筒状金型内面にスパイラル状に塗布し、そのまま金型を3000rpmで3分間回転させながら塗膜面のラッピング部分の凹凸をレベリングし、均一な塗膜面を得た。   Next, while fixing the rectangular die-type dispenser, while rotating the cylindrical mold having a length of 600 mm and a diameter of 80 mmφ, the resin solution containing the polyamic acid solution as a main component is transferred from one end of the inner surface of the cylindrical mold to the other. While feeding to the end, it was spirally applied to the inner surface of the cylindrical mold, and the unevenness of the wrapping part of the coating surface was leveled while rotating the mold at 3000 rpm for 3 minutes to obtain a uniform coating surface. .

次いで金型を60rpmで回転させながら、220℃まで段階的に加熱し、溶媒の除去を行った。円筒状金型からイミド転化前のベルト基材を離型し、アルミパイプに差し替え、400℃で20min加熱し、イミド転化を行った。   Next, while rotating the mold at 60 rpm, the solvent was removed stepwise to 220 ° C. to remove the solvent. The belt base material before imide conversion was released from the cylindrical mold, replaced with an aluminum pipe, and heated at 400 ° C. for 20 minutes to perform imide conversion.

以上により得られたポリイミドベルト寸法は、長さ580mm、直径80mmφ、厚さ75μmとなった。表面抵抗の常用対数は3.8(Ω/□)、引裂強度は6.3N/mm、引張弾性率は5000Mpaであった。   The dimensions of the polyimide belt obtained as described above were 580 mm in length, 80 mm in diameter, and 75 μm in thickness. The common logarithm of the surface resistance was 3.8 (Ω / □), the tear strength was 6.3 N / mm, and the tensile modulus was 5000 Mpa.

次に、このベルトにメチルシリコーンゴム(東レダウコーニング、DX35−2083)をスプレーコートした後、加熱し200μmの弾性層を形成した。更に、このシリコーンゴム上にプライマー(三井デュポンフロロケミカル、PRM−027−3)及びFEP分散塗料(三井デュポンフロロケミカル、ENA−020−45)をスプレーコートと加熱を行って、夫々10μm、20μmの離型層を形成し定着ベルトを作成した。   Next, this belt was spray-coated with methyl silicone rubber (Toray Dow Corning, DX35-2083) and then heated to form a 200 μm elastic layer. Further, a primer (Mitsui Dupont Fluorochemical, PRM-027-3) and a FEP dispersion paint (Mitsui Dupont Fluorochemical, ENA-020-45) are spray coated and heated on the silicone rubber, respectively, to 10 μm and 20 μm, respectively. A release layer was formed to prepare a fixing belt.

この定着ベルトを直径40mmのアルミニウム製加熱ロールと直径20mmのアルミニウム製ロールで張設させ、加熱ロールに当節する定着ベルト部に反対側から直径40mmのシリコーンゴムで被覆したアルミニウム製加圧ロールを圧力0.2Mpaかけることにより、ニップ幅を10mmに設定した。加熱ロール温度170℃、定着ベルトの線速120mm/secとし、定着ベルト面にトナーが来るように記録紙を流した。   The fixing belt is stretched between an aluminum heating roll having a diameter of 40 mm and an aluminum roll having a diameter of 20 mm, and an aluminum pressure roll covered with silicone rubber having a diameter of 40 mm is attached to the fixing belt portion that is associated with the heating roll from the opposite side. The nip width was set to 10 mm by applying a pressure of 0.2 Mpa. The recording paper was poured such that the heating roll temperature was 170 ° C. and the linear velocity of the fixing belt was 120 mm / sec, so that the toner came to the surface of the fixing belt.

その結果、トナー定着後、剥離オフセットを起こさなかった。また10万枚印刷した後も、ベルトの駆動は安定しており、画像ずれ、端部破損、座屈、層間剥離は見られなかった。   As a result, no release offset occurred after toner fixing. Even after printing 100,000 sheets, the driving of the belt was stable, and image shift, edge damage, buckling, and delamination were not observed.

ここで、このポリイミドベルトに粗し処理を行った際の摩擦係数(μ)と表面粗さ(Ra)の関係を以下に示す。粗し処理前の摩擦係数(μ)が0.18のとき表面粗さ(Ra)が0.11μmであり、第一段階の粗し処理後の摩擦係数(μ)が0.17のとき表面粗さ(Ra)が0.19μmであり、第二段階の粗し処理後の摩擦係数(μ)が0.16のとき表面粗さ(Ra)が0.26μmであった。この3点について最小二乗法の回帰直線を求めたときの傾き(μ/Ra)が−0.159(小数点4以下切り捨て)であった(図1(a)参照)。「粗し処理」は、研磨材としてサンドペーパー#1000、ラッピングフィルム(3M社、粒度9μm)を用い、荷重を1kg/Φ50mm円柱とし、研磨回数を5回として第1段階の粗し処理とし、再度研磨回数を5回として第2段階の粗し処理とした。摩擦係数と表面粗さは、粗し処理前、第一段階の粗し処理後、第二段階の粗し処理後に測定した。 Here, the relationship between the friction coefficient (μ) and the surface roughness (Ra) when the polyimide belt is roughened is shown below. When the friction coefficient before the roughening treatment (μ 0 ) is 0.18, the surface roughness (Ra 0 ) is 0.11 μm, and the friction coefficient (μ 1 ) after the first roughening treatment is 0.17 μm. The surface roughness (Ra 1 ) was 0.19 μm, and when the coefficient of friction (μ 3 ) after the second stage roughening treatment was 0.16, the surface roughness (Ra 3 ) was 0.26 μm. It was. The slope (μ / Ra) when the least squares regression line was determined for these three points was −0.159 (rounded down to four decimal places) (see FIG. 1A). “Roughening treatment” uses sandpaper # 1000 as a polishing material, a wrapping film (3M company, particle size 9 μm), a load of 1 kg / Φ50 mm cylinder, a number of polishing times 5 times, and a first-stage roughening treatment. Again, the number of times of polishing was set to 5 times for the second-stage roughening treatment. The friction coefficient and the surface roughness were measured before the roughening treatment, after the first roughening treatment, and after the second roughening treatment.

<実施例2>
(KCAタイプ)
N−メチル−2−ピロリドン(NMP)にバルカン22wt%(XC−72、キャボット社、導電性指標=85)、PTFE粉末(KTL−8 喜多村社)8wt%を順次投入し、十分攪拌した後、酸成分として3,3’,4,4’−ビフェニルテトラカルボン酸二無水物を、アミン成分としてp−フェニレンジアミンの略当モルを溶解(モノマー濃度20重量%)し、室温で攪拌しながら反応させ、次いで70℃に加温しつつ攪拌して23℃におけるB型粘度計による粘度が2000ポイズのポリアミド酸溶液を作製した。
<Example 2>
(KCA type)
To N-methyl-2-pyrrolidone (NMP), 22 wt% of Vulcan (XC-72, Cabot Corporation, conductivity index = 85) and PTFE powder (KTL-8 Kitamura) 8 wt% were sequentially added, and after sufficient stirring, 3,3 ′, 4,4′-biphenyltetracarboxylic dianhydride is dissolved as an acid component, and approximately equimolar amount of p-phenylenediamine is dissolved as an amine component (monomer concentration: 20% by weight), and the reaction is conducted at room temperature with stirring. Then, the mixture was stirred while heating to 70 ° C. to prepare a polyamic acid solution having a viscosity of 2000 poise measured at 23 ° C. using a B-type viscometer.

更に、ポリアミド酸溶液の1wt%に相当するイソキノリンを常温にて攪拌混合した。   Furthermore, isoquinoline corresponding to 1 wt% of the polyamic acid solution was stirred and mixed at room temperature.

次いで、長方形状のダイス型ディスペンサーを固定しつつ、長さ600mm、直径80mmφの円筒状金型を回転させながら上記ポリアミド酸溶液を主成分とする樹脂溶液を円筒状金型内面の一方端から他方端まで供給しつつ移動させ円筒状金型内面にスパイラル状に塗布し、そのまま金型を3000rpmで3分間回転させながら塗膜面のラッピング部分の凹凸をレベリングし、均一な塗膜面を得た。   Next, while fixing the rectangular die-type dispenser, while rotating the cylindrical mold having a length of 600 mm and a diameter of 80 mmφ, the resin solution containing the polyamic acid solution as a main component is transferred from one end of the inner surface of the cylindrical mold to the other. While feeding to the end, it was spirally applied to the inner surface of the cylindrical mold, and the unevenness of the wrapping part of the coating surface was leveled while rotating the mold at 3000 rpm for 3 minutes to obtain a uniform coating surface. .

次いで金型を60rpmで回転させながら、220℃まで段階的に加熱し、溶媒の除去を行った。円筒状金型からイミド転化前のベルト基材を離型し、アルミパイプに差し替え、400℃20min加熱し、イミド転化を行った。   Next, while rotating the mold at 60 rpm, the solvent was removed stepwise to 220 ° C. to remove the solvent. The belt base material before imide conversion was released from the cylindrical mold, replaced with an aluminum pipe, and heated at 400 ° C. for 20 minutes to perform imide conversion.

得られたポリイミドベルト寸法は、長さ580mm、直径80mmφ、厚さ75μmとなった。また、このポリイミドベルトの特性は、表面抵抗の常用対数4.0(Ω/□)、引裂強度5.9N/mm、引張弾性率4000Mpaであった。   The obtained polyimide belt had a length of 580 mm, a diameter of 80 mmφ, and a thickness of 75 μm. The characteristics of the polyimide belt were a common logarithm of surface resistance of 4.0 (Ω / □), a tear strength of 5.9 N / mm, and a tensile modulus of 4000 Mpa.

次に、このベルトにメチルシリコーンゴム(東レダウコーニング、DX35−2083)をスプレーコートした後、加熱し200μmの弾性層を形成した。更に、このシリコーンゴム上にプライマー(三井デュポンフロロケミカル、PRM−027−3)及びFEP分散塗料(三井デュポンフロロケミカル、ENA−020−45)をスプレーコートと加熱を行って、夫々10μm、20μmの離型層を形成し定着ベルトを作成した。   Next, this belt was spray-coated with methyl silicone rubber (Toray Dow Corning, DX35-2083) and then heated to form a 200 μm elastic layer. Further, a primer (Mitsui Dupont Fluorochemical, PRM-027-3) and a FEP dispersion paint (Mitsui Dupont Fluorochemical, ENA-020-45) are spray coated and heated on the silicone rubber, respectively, to 10 μm and 20 μm, respectively. A release layer was formed to prepare a fixing belt.

この定着ベルトを直径40mmのアルミニウム製加熱ロールと直径20mmのアルミニウム製ロールで張設させ、加熱ロールに当節する定着ベルト部に反対側から直径40mmのシリコーンゴムで被覆したアルミニウム製加圧ロールを圧力0.2Mpaかけることにより、ニップ幅を10mmに設定した。加熱ロール温度170℃、定着ベルトの線速120mm/secとし、定着ベルト面にトナーが来るように記録紙を流した。   The fixing belt is stretched between an aluminum heating roll having a diameter of 40 mm and an aluminum roll having a diameter of 20 mm, and an aluminum pressure roll covered with silicone rubber having a diameter of 40 mm is attached to the fixing belt portion that is associated with the heating roll from the opposite side. The nip width was set to 10 mm by applying a pressure of 0.2 Mpa. The recording paper was poured such that the heating roll temperature was 170 ° C. and the linear velocity of the fixing belt was 120 mm / sec, so that the toner came to the surface of the fixing belt.

その結果、トナー定着後、剥離オフセットを起こさなかった。また10万枚印刷した後も、ベルトの駆動は安定しており、画像ずれ、端部破損、座屈、層間剥離は見られなかった。   As a result, no release offset occurred after toner fixing. Even after printing 100,000 sheets, the driving of the belt was stable, and image shift, edge damage, buckling, and delamination were not observed.

このポリイミドベルトに粗し処理を行った際の摩擦係数(μ)と表面粗さ(Ra)の関係を以下に示す。粗し処理前の摩擦係数(μ)が0.10のとき表面粗さ(Ra)が0.09μmであり、第一段階の粗し処理後の摩擦係数(μ)が0.11のとき表面粗さ(Ra)が0.14μmであり、第二段階の粗し処理後の摩擦係数(μ)が0.11のとき表面粗さ(Ra)が0.21μmであった。この3点について最小二乗法の回帰直線を求めたときの傾き(μ/Ra)が0.081(小数点4以下切り捨て)であった(図1(b)参照)。粗し処理方法は、実施例1と同様である。 The relationship between the friction coefficient (μ) and the surface roughness (Ra) when the polyimide belt is roughened is shown below. When the friction coefficient (μ 0 ) before the roughening treatment is 0.10, the surface roughness (Ra 0 ) is 0.09 μm, and the friction coefficient (μ 1 ) after the first roughening treatment is 0.11. The surface roughness (Ra 1 ) was 0.14 μm, and when the coefficient of friction (μ 3 ) after the second-stage roughening treatment was 0.11, the surface roughness (Ra 3 ) was 0.21 μm. It was. The slope (μ / Ra) when the least squares regression line was determined for these three points was 0.081 (rounded down to four decimal places) (see FIG. 1B). The roughening treatment method is the same as that in the first embodiment.

<比較例1>
(KUCAタイプ)
N−メチル−2−ピロリドン(NMP)にファーネスブラック22wt%(スペシャルブラック4、デグサ社、導電性指標=15)、PTFE粉末(KTL−8 喜多村社)4wt%を順次投入し、十分攪拌した後、酸成分として3,3’,4,4’−ビフェニルテトラカルボン酸二無水物を、アミン成分としてp−フェニレンジアミンと4,4’−ジアミノジフェニルエーテルの混合物(モル比8:2)の略当モルを溶解(モノマー濃度20重量%)し、室温で攪拌しながら反応させ、次いで70℃に加温しつつ攪拌して23℃におけるB型粘度計による粘度が2000ポイズのポリアミド酸溶液を作製した。
<Comparative Example 1>
(KUCA type)
To N-methyl-2-pyrrolidone (NMP), furnace black 22 wt% (special black 4, Degussa, conductivity index = 15) and PTFE powder (KTL-8 Kitamura) 4 wt% were sequentially added and stirred sufficiently. 3,3 ′, 4,4′-biphenyltetracarboxylic dianhydride as the acid component, and a mixture (molar ratio 8: 2) of p-phenylenediamine and 4,4′-diaminodiphenyl ether as the amine component. Mole was dissolved (monomer concentration 20% by weight), reacted while stirring at room temperature, then stirred while heating to 70 ° C. to prepare a polyamic acid solution having a viscosity of 2000 poise measured at 23 ° C. using a B-type viscometer. .

更に、ポリアミド酸溶液の1wt%に相当するイソキノリンを常温にて攪拌混合した。   Furthermore, isoquinoline corresponding to 1 wt% of the polyamic acid solution was stirred and mixed at room temperature.

次いで、長方形状のダイス型ディスペンサーを固定しつつ、長さ600mm、直径80mmφの円筒状金型を回転させながら上記ポリアミド酸溶液を主成分とする樹脂溶液を円筒状金型内面の一方端から他方端まで供給しつつ移動させ円筒状金型内面にスパイラル状に塗布し、そのまま金型を1000rpmで3分間回転させながら塗膜面のラッピング部分の凹凸をレベリングし、均一な塗膜面を得た。次いで金型を30rpmで回転させながら、350℃まで段階的に加熱し、溶媒の除去とイミド転化を行った。次いで金型から離型し、得られたポリイミドベルト寸法は、長さ580mm、直径80mmφ、厚さ75μmとなった。また、このポリイミドベルトの特性は、表面抵抗の常用対数10.5(Ω/□)、引裂強度7.1N/mm、引張弾性率4500Mpaであった。   Next, while fixing the rectangular die-type dispenser, while rotating the cylindrical mold having a length of 600 mm and a diameter of 80 mmφ, the resin solution containing the polyamic acid solution as a main component is transferred from one end of the inner surface of the cylindrical mold to the other. While moving to the end, it was applied spirally to the inner surface of the cylindrical mold, and the unevenness of the wrapping part of the coating surface was leveled while rotating the mold at 1000 rpm for 3 minutes to obtain a uniform coating surface. . Next, while rotating the mold at 30 rpm, it was heated stepwise to 350 ° C. to remove the solvent and perform imide conversion. Next, the mold was released from the mold, and the resulting polyimide belt had a length of 580 mm, a diameter of 80 mmφ, and a thickness of 75 μm. The characteristics of the polyimide belt were a common logarithm of surface resistance of 10.5 (Ω / □), a tear strength of 7.1 N / mm, and a tensile modulus of 4500 Mpa.

次に、このベルトにメチルシリコーンゴム(東レダウコーニング、DX35−2083)をスプレーコートした後、加熱し200μmの弾性層を形成した。更に、このシリコーンゴム上にプライマー(三井デュポンフロロケミカル、PRM−027−3)及びFEP分散塗料(三井デュポンフロロケミカル、ENA−020−45)をスプレーコートと加熱を行って、夫々10μm、20μmの離型層を形成し定着ベルトを作成した。   Next, this belt was spray-coated with methyl silicone rubber (Toray Dow Corning, DX35-2083) and then heated to form a 200 μm elastic layer. Further, a primer (Mitsui Dupont Fluorochemical, PRM-027-3) and a FEP dispersion paint (Mitsui Dupont Fluorochemical, ENA-020-45) are spray coated and heated on the silicone rubber, respectively, to 10 μm and 20 μm, respectively. A release layer was formed to prepare a fixing belt.

この定着ベルトを直径40mmのアルミニウム製加熱ロールと直径20mmのアルミニウム製ロールで張設させ、加熱ロールに当節する定着ベルト部に反対側から直径40mmのシリコーンゴムで被覆したアルミニウム製加圧ロールを圧力0.2Mpaかけることにより、ニップ幅を10mmに設定した。加熱ロール温度170℃、定着ベルトの線速120mm/secとし、定着ベルト面にトナーが来るように記録紙を流した。その結果、トナー定着後、画像欠陥であるチリが発生した。   The fixing belt is stretched between an aluminum heating roll having a diameter of 40 mm and an aluminum roll having a diameter of 20 mm, and an aluminum pressure roll covered with silicone rubber having a diameter of 40 mm is attached to the fixing belt portion that is associated with the heating roll from the opposite side. The nip width was set to 10 mm by applying a pressure of 0.2 Mpa. The recording paper was poured such that the heating roll temperature was 170 ° C. and the linear velocity of the fixing belt was 120 mm / sec. As a result, after the toner was fixed, dust that was an image defect occurred.

このポリイミドベルトに粗し処理を行った際の摩擦係数(μ)と表面粗さ(Ra)の関係を以下に示す。粗し処理前の摩擦係数(μ)が0.19のとき表面粗さ(Ra)が0.08μmであり、第一段階の粗し処理後の摩擦係数(μ)が0.17のとき表面粗さ(Ra)が0.15μmであり、第二段階の粗し処理後の摩擦係数(μ)が0.16のとき表面粗さ(Ra)が0.23μmであった。この3点について最小二乗法の回帰直線を求めたときの傾き(μ/Ra)が−0.202(小数点4以下切り捨て)であった(図1(c)参照)。粗し処理方法は、実施例1と同様である。 The relationship between the friction coefficient (μ) and the surface roughness (Ra) when the polyimide belt is roughened is shown below. When the friction coefficient (μ 0 ) before the roughening treatment is 0.19, the surface roughness (Ra 0 ) is 0.08 μm, and the friction coefficient (μ 1 ) after the first roughening treatment is 0.17. The surface roughness (Ra 1 ) was 0.15 μm, and when the coefficient of friction (μ 3 ) after the second-stage roughening treatment was 0.16, the surface roughness (Ra 3 ) was 0.23 μm. It was. The slope (μ / Ra) when the least squares regression line was calculated for these three points was −0.202 (rounded down to the fourth decimal place) (see FIG. 1C). The roughening treatment method is the same as that in the first embodiment.

<比較例2>
(KCタイプ)
実施例1のPTFE粉末を入れないこと以外は実施例1と同様とした。得られたポリイミドベルト寸法は、長さ580mm、直径80mmφ、厚さ75μmとなった。また、このポリイミドベルトの特性は、表面抵抗の常用対数3.6(Ω/□)、引裂強度6.8N/mm、引張弾性率5700Mpaであった。
<Comparative example 2>
(KC type)
Example 1 was the same as Example 1 except that the PTFE powder of Example 1 was not added. The obtained polyimide belt had a length of 580 mm, a diameter of 80 mmφ, and a thickness of 75 μm. The characteristics of the polyimide belt were a common logarithm of surface resistance of 3.6 (Ω / □), a tear strength of 6.8 N / mm, and a tensile modulus of 5700 MPa.

同様に弾性層と離型層を形成した定着ベルトを定着部に組み込み、記録紙を流したところ、3000枚でベルト端部と中央部で駆動速度がばらつき、画像ずれが生じるとともに、ベルト端部の破損が始まり、2万枚で座屈した。   Similarly, when a fixing belt formed with an elastic layer and a release layer is incorporated in the fixing section and the recording paper is flowed, the driving speed varies between the belt end portion and the center portion of 3000 sheets, image deviation occurs, and the belt end portion Began to break and buckled with 20,000 sheets.

ここで、このポリイミドベルトに粗し処理を行った際の摩擦係数(μ)と表面粗さ(Ra)の関係を以下に示す。粗し処理前の摩擦係数(μ)が0.34のとき表面粗さ(Ra)が0.08μmであり、第一段階の粗し処理後の摩擦係数(μ)が0.27のとき表面粗さ(Ra)が0.16μmであり、第二段階の粗し処理後の摩擦係数(μ)が0.25のとき表面粗さ(Ra)が0.24μmであった。この3点について最小二乗法の回帰直線を求めたときの傾き(μ/Ra)が−0.553(小数点4以下切り捨て)であった(図1(d)参照)。粗し処理方法は、実施例1と同様である。 Here, the relationship between the friction coefficient (μ) and the surface roughness (Ra) when the polyimide belt is roughened is shown below. When the friction coefficient (μ 0 ) before the roughening treatment is 0.34, the surface roughness (Ra 0 ) is 0.08 μm, and the friction coefficient (μ 1 ) after the first roughening treatment is 0.27. The surface roughness (Ra 1 ) was 0.16 μm, and when the coefficient of friction (μ 3 ) after the second-stage roughening treatment was 0.25, the surface roughness (Ra 3 ) was 0.24 μm. It was. The slope (μ / Ra) when the least squares regression line was determined for these three points was −0.553 (rounded down to the fourth decimal place) (see FIG. 1D). The roughening treatment method is the same as that in the first embodiment.

<比較例3>
(KA絶縁タイプ)
実施例1のカーボンを入れないこと以外は実施例1と同様とした。得られたポリイミドベルト寸法は、長さ580mm、直径80mmφ、厚さ75μmとなった。また、このポリイミドベルトの特性は、絶縁性(表面抵抗1014Ω/□以上)、引裂強度8.4N/mm、引張弾性率4900Mpaであった。
<Comparative Example 3>
(KA insulation type)
Example 1 was the same as Example 1 except that no carbon was added. The obtained polyimide belt had a length of 580 mm, a diameter of 80 mmφ, and a thickness of 75 μm. The characteristics of the polyimide belt were insulating properties (surface resistance of 10 14 Ω / □ or more), tear strength of 8.4 N / mm, and tensile modulus of 4900 Mpa.

同様に弾性層と離型層を形成した定着ベルトを定着部に組み込み、記録紙を流したところ、3000枚でベルト端部と中央部で駆動速度がばらつき、画像ずれが生じるとともに、剥離オフセット等、帯電不具合(放電、ノイズ、紙の張り付き)が生じた。   Similarly, when a fixing belt formed with an elastic layer and a release layer is incorporated in the fixing section and the recording paper is flowed, the driving speed varies at the belt end portion and the central portion with 3000 sheets, image displacement occurs, and peeling offset, etc. , Charging failure (discharge, noise, paper sticking) occurred.

このポリイミドベルトに粗し処理を行った際の摩擦係数(μ)と表面粗さ(Ra)の関係を以下に示す。粗し処理前の摩擦係数(μ)が0.08のとき表面粗さ(Ra)が0.12μmであり、第一段階の粗し処理後の摩擦係数(μ)が0.10のとき表面粗さ(Ra)が0.18μmであり、第二段階の粗し処理後の摩擦係数(μ)が0.15のとき表面粗さ(Ra)が0.26μmであった。この3点について最小二乗法の回帰直線を求めたときの傾き(μ/Ra)が0.484(小数点4以下切り捨て)であった(図1(e)参照)。粗し処理方法は、実施例1と同様である。 The relationship between the friction coefficient (μ) and the surface roughness (Ra) when the polyimide belt is roughened is shown below. When the friction coefficient (μ 0 ) before the roughening treatment is 0.08, the surface roughness (Ra 0 ) is 0.12 μm, and the friction coefficient (μ 1 ) after the first roughening treatment is 0.10. The surface roughness (Ra 1 ) was 0.18 μm, and when the friction coefficient (μ 3 ) after the second-stage roughening treatment was 0.15, the surface roughness (Ra 3 ) was 0.26 μm. It was. The slope (μ / Ra) when the least-squares regression line was determined for these three points was 0.484 (rounded down to the fourth decimal place) (see FIG. 1 (e)). The roughening treatment method is the same as that in the first embodiment.

<比較例4>
(KCAタイプ)
実施例1のPTFE粉末を1wt%に変更したこと以外は実施例1と同様とした。得られたポリイミドベルト寸法は、長さ580mm、直径80mmφ、厚さ75μmとなった。また、このポリイミドベルトの特性は、表面抵抗の常用対数3.7(Ω/□)、引裂強度6.7N/mm、引張弾性率5500Mpaであった。
<Comparative example 4>
(KCA type)
Example 1 was the same as Example 1 except that the PTFE powder of Example 1 was changed to 1 wt%. The obtained polyimide belt had a length of 580 mm, a diameter of 80 mmφ, and a thickness of 75 μm. The characteristics of this polyimide belt were a common logarithm of surface resistance of 3.7 (Ω / □), a tear strength of 6.7 N / mm, and a tensile elastic modulus of 5500 Mpa.

同様に弾性層と離型層を形成した定着ベルトを定着部に組み込み、記録紙を流したところ1万枚でベルト端部と中央部で駆動速度がばらつき、画像ずれが生じるとともに、ベルト端部の破損が始まり、3万枚で座屈した。   Similarly, a fixing belt formed with an elastic layer and a release layer is incorporated in the fixing unit, and when recording paper is flowed, the driving speed varies at the belt end and the center with 10,000 sheets, and image misalignment occurs. Began to break and buckled with 30,000 sheets.

このポリイミドベルトに粗し処理を行った場合の摩擦係数(μ)と表面粗さ(Ra)の関係を以下に示す。粗し処理前の摩擦係数(μ)が0.18のとき表面粗さ(Ra)が0.24μmであり、第一段階の粗し処理後の摩擦係数(μ)が0.20のとき表面粗さ(Ra)が0.18μmであり、第二段階の粗し処理後の摩擦係数(μ)が0.21のとき表面粗さ(Ra)が0.16μmであった。この3点について最小二乗法の回帰直線を求めたときの傾き(μ/Ra)が−0.365(小数点4以下切り捨て)であった(図1(f)参照)。粗し処理方法は、実施例1と同様である。 The relationship between the friction coefficient (μ) and the surface roughness (Ra) when this polyimide belt is roughened is shown below. When the friction coefficient before the roughening treatment (μ 0 ) is 0.18, the surface roughness (Ra 0 ) is 0.24 μm, and the friction coefficient (μ 1 ) after the first roughening treatment is 0.20. The surface roughness (Ra 1 ) was 0.18 μm, and when the coefficient of friction (μ 3 ) after the second-stage roughening treatment was 0.21, the surface roughness (Ra 3 ) was 0.16 μm. It was. The slope (μ / Ra) when the least squares regression line was determined for these three points was −0.365 (rounded down to the fourth decimal place) (see FIG. 1F). The roughening treatment method is the same as that in the first embodiment.

以上の実施例によれば、本発明のポリイミドベルトは、フッ素フィラー2〜20重量%とカーボンフィラー3〜30重量%を含有するポリアミド酸溶液を主成分とする樹脂溶液をイミド転化し、内面摩擦係数(μ)が0.05以上0.25以下であり、そのときの粗さRaが0.05〜0.35μmの範囲にあり、且つ、内面摩擦係数(μ)と表面粗さ(Ra)の最小二乗法の回帰直線を求めたときの傾き(μ/Ra)が−1/3〜1/3の範囲であり、表面抵抗の常用対数が1〜8(Ω/□)であるポリイミドベルトであって、このポリイミドベルトにゴム弾性層もしくはフッ素樹脂離型層を少なくともどちらか1つ積層したベルトを電子写真用画像形成装置の定着ベルトとして使用した場合、剥離オフセット、画像ずれがなく、耐久性に優れた性能が得られる。   According to the above embodiment, the polyimide belt of the present invention is an imide-converted resin solution mainly composed of a polyamic acid solution containing 2 to 20% by weight of a fluorine filler and 3 to 30% by weight of a carbon filler. The coefficient (μ) is 0.05 or more and 0.25 or less, the roughness Ra at that time is in the range of 0.05 to 0.35 μm, and the inner surface friction coefficient (μ) and the surface roughness (Ra) Polyimide belt having a slope (μ / Ra) in the range of −1/3 to 1/3 and a common logarithm of surface resistance of 1 to 8 (Ω / □) when a regression line of the least square method is obtained When a belt in which at least one of a rubber elastic layer or a fluororesin release layer is laminated on this polyimide belt is used as a fixing belt of an electrophotographic image forming apparatus, there is no peeling offset and no image shift and durability. Excellent Performance can be obtained.

内面摩擦係数と表面粗さの関係を示す図Diagram showing the relationship between the coefficient of internal friction and surface roughness

Claims (4)

ポリイミド樹脂固形分に対し、フッ素フィラーを2〜20重量%、導電性指標が50以上400以下であるカーボンフィラーを3〜30重量%含有するポリアミド酸溶液を主成分とする樹脂溶液を加熱によりイミド転化して得られるポリイミドベルトであって、
表面粗さ(Ra)が0.05μm以上0.35μm以下の範囲で前記ポリイミドベルト内面を粗し処理した際に、粗し処理前後の当該ベルトの内周面の摩擦係数(μ)が0.05以上0.25以下の範囲であり、粗し処理前後の摩擦係数(μ)と表面粗さ(Ra)の近似直線の傾きが−1/3以上1/3以下の関係であることを特徴とするポリイミドベルト。
A polyimide resin solution containing 2 to 20% by weight of a fluorine filler and 3 to 30% by weight of a carbon filler having a conductivity index of 50 or more and 400 or less is heated to form an imide resin by heating. A polyimide belt obtained by conversion,
When the inner surface of the polyimide belt is roughened in a range where the surface roughness (Ra) is 0.05 μm or more and 0.35 μm or less, the friction coefficient (μ) of the inner peripheral surface of the belt before and after the roughening treatment is 0. The range is from 05 to 0.25, and the slope of the approximate straight line between the coefficient of friction (μ) before and after the roughening treatment and the surface roughness (Ra) is in the range of −1/3 to 1/3. A polyimide belt.
前記ポリイミドベルトの表面抵抗の常用対数が1〜8(Ω/□)であることを特徴とする請求項1に記載のポリイミドベルト。   The polyimide belt according to claim 1, wherein a common logarithm of surface resistance of the polyimide belt is 1 to 8 (Ω / □). 請求項1又は請求項2に記載のポリイミドベルトの外面側に、ゴム弾性層及び/又はフッ素樹脂離型層を形成してなる定着ベルト。   A fixing belt formed by forming a rubber elastic layer and / or a fluororesin release layer on the outer surface side of the polyimide belt according to claim 1. ポリイミド樹脂固形分に対し、フッ素フィラーを2〜20重量%、導電性指標が50以上400以下であるカーボンフィラーを3〜30重量%含有するポリアミド酸溶液を主成分とする樹脂溶液を調製する調製工程と、
前記樹脂溶液を筒状金型内面に塗布する塗布工程と、
前記塗布されて形成された樹脂皮膜表面を均一化するために遠心成形する遠心成形工程と、
前記遠心成形後に、溶媒除去、イミド転化するイミド転化工程と、を含むポリイミドベルトの製造方法であって、
表面粗さ(Ra)が0.05μm以上0.35μm以下の範囲で前記製造方法で得られたポリイミドベルト内面を粗し処理した際に、粗し処理前後の当該ベルトの内周面の摩擦係数(μ)が0.05以上0.25以下の範囲であり、粗し処理前後の摩擦係数(μ)と表面粗さ(Ra)の近似直線の傾きが−1/3以上1/3以下の関係であることを特徴とするポリイミドベルトの製造方法。
Preparation for preparing a resin solution mainly composed of a polyamic acid solution containing 2 to 20% by weight of a fluorine filler and 3 to 30% by weight of a carbon filler having a conductivity index of 50 or more and 400 or less with respect to the polyimide resin solid content Process,
An application step of applying the resin solution to the inner surface of the cylindrical mold;
Centrifugal molding process for centrifugal molding to homogenize the resin film surface formed by application,
After the centrifugal molding, solvent removal, an imide conversion step of imide conversion, and a polyimide belt manufacturing method comprising:
Friction coefficient of the inner peripheral surface of the belt before and after roughening treatment when the inner surface of the polyimide belt obtained by the production method is roughened within a range of surface roughness (Ra) of 0.05 μm or more and 0.35 μm or less. (Μ) is in the range of 0.05 to 0.25, and the slope of the approximate straight line between the friction coefficient (μ) before and after the roughening treatment and the surface roughness (Ra) is −1/3 to 1/3. The manufacturing method of the polyimide belt characterized by the above-mentioned.
JP2005332784A 2005-11-17 2005-11-17 Polyimide belt and method for manufacturing the same Pending JP2007140049A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005332784A JP2007140049A (en) 2005-11-17 2005-11-17 Polyimide belt and method for manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005332784A JP2007140049A (en) 2005-11-17 2005-11-17 Polyimide belt and method for manufacturing the same

Publications (1)

Publication Number Publication Date
JP2007140049A true JP2007140049A (en) 2007-06-07

Family

ID=38202996

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005332784A Pending JP2007140049A (en) 2005-11-17 2005-11-17 Polyimide belt and method for manufacturing the same

Country Status (1)

Country Link
JP (1) JP2007140049A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150160588A1 (en) * 2013-12-10 2015-06-11 Oki Data Corporation Image forming apparatus
JP2018054758A (en) * 2016-09-27 2018-04-05 コニカミノルタ株式会社 Fixing belt, fixing device, and image forming apparatus
JP2019112502A (en) * 2017-12-21 2019-07-11 信越ポリマー株式会社 High heat-resistant and high slidable film and method for producing the same

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02231129A (en) * 1988-09-09 1990-09-13 Hokushin Ind Inc Seamless belt
JPH11231684A (en) * 1998-02-18 1999-08-27 Fuji Xerox Co Ltd Image forming device, intermediate transfer body and fixing belt
JP2001131410A (en) * 1999-11-08 2001-05-15 Gunze Ltd Semiconductive polyamic acid composition and its use
JP2004206074A (en) * 2002-10-11 2004-07-22 Ricoh Co Ltd Transfer method, transfer device, image forming method, and image forming apparatus
JP2005181767A (en) * 2003-12-19 2005-07-07 Kaneka Corp Method for manufacturing polyimide endless belt

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02231129A (en) * 1988-09-09 1990-09-13 Hokushin Ind Inc Seamless belt
JPH11231684A (en) * 1998-02-18 1999-08-27 Fuji Xerox Co Ltd Image forming device, intermediate transfer body and fixing belt
JP2001131410A (en) * 1999-11-08 2001-05-15 Gunze Ltd Semiconductive polyamic acid composition and its use
JP2004206074A (en) * 2002-10-11 2004-07-22 Ricoh Co Ltd Transfer method, transfer device, image forming method, and image forming apparatus
JP2005181767A (en) * 2003-12-19 2005-07-07 Kaneka Corp Method for manufacturing polyimide endless belt

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150160588A1 (en) * 2013-12-10 2015-06-11 Oki Data Corporation Image forming apparatus
US9417564B2 (en) * 2013-12-10 2016-08-16 Oki Data Corporation Image forming apparatus having rollers, belt and a tension applying unit
JP2018054758A (en) * 2016-09-27 2018-04-05 コニカミノルタ株式会社 Fixing belt, fixing device, and image forming apparatus
JP2019112502A (en) * 2017-12-21 2019-07-11 信越ポリマー株式会社 High heat-resistant and high slidable film and method for producing the same
JP7079089B2 (en) 2017-12-21 2022-06-01 信越ポリマー株式会社 High heat resistance and high sliding film and its manufacturing method

Similar Documents

Publication Publication Date Title
JP5491031B2 (en) Polyimide tube, method for producing the same, method for producing polyimide varnish, and fixing belt
WO2009081630A1 (en) Polyimide tube, process for producing the same and fixing belt
JP4903008B2 (en) Semiconductive tubular film used in image forming apparatus and method for producing the same
US20080149211A1 (en) Tubing and Process for Production Thereof
US9335689B2 (en) Polyimide tube, method for producing same, and fixing belt
WO2011016500A1 (en) Intermediate transfer belt
JP5784104B2 (en) Semiconductive polyimide resin belt and method of manufacturing semiconductive polyimide resin belt
JP2008158053A (en) Fixing belt
JP2007140049A (en) Polyimide belt and method for manufacturing the same
JP5916433B2 (en) Belt for image forming apparatus
JP2012177889A (en) Belt for image forming apparatus
JP5376843B2 (en) Multilayer elastic belt used in image forming apparatus
JP2002162836A (en) Electrically semiconductive seamless belt
JP2011209578A (en) Tubular body and method for manufacturing the same
JP2004279458A (en) Fixing belt
JP5121426B2 (en) Semiconductive copolymer polyimide belt, method for producing the same, and intermediate transfer belt
JP5241942B2 (en) Intermediate transfer belt
JP5101137B2 (en) Polyimide belt and manufacturing method thereof
JP2012177888A (en) Belt for image forming apparatus
JP2001040102A (en) Tubular article
JP5058222B2 (en) Intermediate transfer belt
JP3352134B2 (en) Fixing belt
JP2001215821A (en) Fixing belt and method of producing the same
JP2011070199A (en) Seamless belt and method of manufacturing the same
JP5473844B2 (en) Belt for image forming apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20071113

Free format text: JAPANESE INTERMEDIATE CODE: A621

RD03 Notification of appointment of power of attorney

Effective date: 20091222

Free format text: JAPANESE INTERMEDIATE CODE: A7423

A977 Report on retrieval

Effective date: 20100616

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Effective date: 20100702

Free format text: JAPANESE INTERMEDIATE CODE: A131

A521 Written amendment

Effective date: 20100825

Free format text: JAPANESE INTERMEDIATE CODE: A523

RD13 Notification of appointment of power of sub attorney

Effective date: 20111125

Free format text: JAPANESE INTERMEDIATE CODE: A7433

A521 Written amendment

Effective date: 20111125

Free format text: JAPANESE INTERMEDIATE CODE: A821

A131 Notification of reasons for refusal

Effective date: 20120110

Free format text: JAPANESE INTERMEDIATE CODE: A131

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20120515