JP2007139143A - High pressure container integrity diagnosis method and its device - Google Patents

High pressure container integrity diagnosis method and its device Download PDF

Info

Publication number
JP2007139143A
JP2007139143A JP2005336752A JP2005336752A JP2007139143A JP 2007139143 A JP2007139143 A JP 2007139143A JP 2005336752 A JP2005336752 A JP 2005336752A JP 2005336752 A JP2005336752 A JP 2005336752A JP 2007139143 A JP2007139143 A JP 2007139143A
Authority
JP
Japan
Prior art keywords
pressure vessel
optical fiber
bragg
wavelength
high pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005336752A
Other languages
Japanese (ja)
Other versions
JP4760327B2 (en
Inventor
Hajime Takeya
元 竹谷
Takeshi Ozaki
毅志 尾崎
Masasane Kume
将実 久米
Hirotsugu Morinaga
洋次 森永
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2005336752A priority Critical patent/JP4760327B2/en
Publication of JP2007139143A publication Critical patent/JP2007139143A/en
Application granted granted Critical
Publication of JP4760327B2 publication Critical patent/JP4760327B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/32Hydrogen storage

Landscapes

  • Spectrometry And Color Measurement (AREA)
  • Filling Or Discharging Of Gas Storage Vessels (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a high pressure container integrity diagnosis method having simple and inexpensive construction using one optical fiber for diagnosing the integrity of a high pressure container even when detecting multipoint deformation. <P>SOLUTION: The optical fiber 3, in which a plurality of Bragg gratings 2 having the same Bragg wavelength is discretely formed, is mounted in close contact with the high pressure container 1 so that the plurality of Bragg gratings are in different positions. After filling gas in the high pressure container 1, a light measuring device 4 connected to the end of the optical fiber 3 and having light injecting/emitting function is used for measuring the wavelength distribution of reflected lights from the Bragg gratings 2 in relation to an emitted light from the light measuring device 4. The integrity of the high pressure container 21 is diagnosed in accordance with the aging variation of the wavelength distribution. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

この発明は、燃料電池の燃料となる水素などのガス貯蔵に用いられる高圧容器の健全性診断方法および高圧容器の健全性診断装置に関するものである。   The present invention relates to a high-pressure vessel soundness diagnosis method and a high-pressure vessel soundness diagnosis device used for storing gas such as hydrogen used as fuel for a fuel cell.

水素などのガス貯蔵に用いられる高圧容器は、ガス充填時には高い内圧で高圧容器が外側へ膨らむように変形し、ガス使用時には内圧が下がるにしたがってもとの形に復元している。そのため、ガスの充填と放出とを繰り返すことで高圧容器の変形が繰り返し起こるために、長期間使用すると高圧容器の材質が劣化して強度が低下し、ガスの漏出や異常な変形、最悪の場合にはガス充填時に破裂を起こす恐れがある。そのため、高圧容器へのガスの充填と放出を繰り返す場合には、高圧容器の強度が十分に備わっているかどうか、つまり高圧容器の健全性を診断することが必要になっている。高圧容器の健全性を診断するひとつの方法として、ガス充填時の高圧容器の変形量を、使用開始(新品)の時に測定しておき、その後のガス充填時の変形量と使用開始時の時の変形量とを比較する方法がある。この方法によれば、ガス充填時の高圧容器の変形量に応じて余寿命を予測したり、寿命に達したと判断したりして高圧容器の健全性を診断することができる。   A high-pressure vessel used for storing gas such as hydrogen is deformed so that the high-pressure vessel expands outward at a high internal pressure when filling with gas, and is restored to its original shape as the internal pressure decreases when using gas. For this reason, the high pressure vessel is repeatedly deformed by repeated filling and releasing of gas, so that the material of the high pressure vessel deteriorates and the strength decreases when used for a long period of time, gas leakage, abnormal deformation, worst case There is a risk of bursting during gas filling. Therefore, when repeatedly filling and releasing the gas into the high-pressure vessel, it is necessary to diagnose whether the high-pressure vessel has sufficient strength, that is, the soundness of the high-pressure vessel. As one method of diagnosing the soundness of a high-pressure vessel, the amount of deformation of the high-pressure vessel at the time of gas filling is measured at the start of use (new), and then the amount of deformation at the time of gas filling and at the time of start of use. There is a method of comparing the amount of deformation. According to this method, the remaining life can be predicted according to the deformation amount of the high-pressure vessel at the time of gas filling, or the soundness of the high-pressure vessel can be diagnosed by determining that the life has been reached.

高圧容器の健全性を診断する方法のひとつとして、フィラメントワインディング法により、それぞれのブラッグ波長が異なる複数のブラッググレーティングを離散的に形成した光ファイバと樹脂を含浸したガラス繊維とを同時に高圧容器の本体であるアルミ製のシリンダ型容器の外表面に巻き付けて、複合材料で強化した高圧容器を成形する方法がある。フィラメントワインディング法とは、ガラス繊維や炭素繊維などの連続した強化繊維に樹脂を含浸し、成形型に巻きつけて、その後に硬化成形する成形方法である。ブラッググレーティングとは、紫外線を用いて光ファイバのコア中に屈折率が周期的に異なるように形成されたグレーティングであり、狭帯域の波長の光を反射する特性があり、この反射光のピーク波長はブラッグ波長と呼ばれている。この方法によれば、ガラス繊維に埋め込まれた光ファイバの周方向巻きの2点と、螺旋方向巻きの2点に位置するそれぞれのブラッググレーティングからの反射光の波長変化によって、各点の光ファイバの歪みを検知することができる。このような方法で、高圧容器の形状変化を光ファイバからの反射光の波長変化で検知することで、高圧容器の健全性を診断することができる(例えば、非特許文献1参照)。   As a method of diagnosing the soundness of a high-pressure vessel, the main body of a high-pressure vessel is made by simultaneously using an optical fiber in which a plurality of Bragg gratings having different Bragg wavelengths are discretely formed and a glass fiber impregnated with resin by a filament winding method. There is a method of forming a high-pressure container reinforced with a composite material by winding it around the outer surface of an aluminum cylinder-type container. The filament winding method is a molding method in which continuous reinforcing fibers such as glass fibers and carbon fibers are impregnated with a resin, wound around a molding die, and then cured and molded. Bragg gratings are gratings that are formed in the core of an optical fiber using ultraviolet rays so that their refractive indices are periodically different, and have the property of reflecting light in a narrow band of wavelengths, and the peak wavelength of this reflected light Is called the Bragg wavelength. According to this method, the optical fiber at each point is obtained by changing the wavelength of the reflected light from each of the two points of the circumferential winding of the optical fiber embedded in the glass fiber and the Bragg grating located at the two points of the spiral winding. Can be detected. By detecting the change in the shape of the high-pressure vessel with the wavelength change of the reflected light from the optical fiber by such a method, the soundness of the high-pressure vessel can be diagnosed (for example, see Non-Patent Document 1).

また、コンクリート製貯蔵容器の健全性を監視する方法として、光ファイバの任意の位置にブラッググレーティングを設けて、このブラッググレーティングで反射されたレーザ光の反射光の波長シフト量を測定し、この波長シフト量からブラッググレーティングの位置における貯蔵容器の歪みを検出する方法がある(例えば、特許文献1参照)。   In addition, as a method of monitoring the soundness of the concrete storage container, a Bragg grating is provided at an arbitrary position of the optical fiber, and the wavelength shift amount of the reflected light of the laser beam reflected by this Bragg grating is measured. There is a method of detecting the distortion of the storage container at the position of the Bragg grating from the shift amount (see, for example, Patent Document 1).

International SAMPE Symposium Exhib. Vol.43, No.1, P444−457(1998)International SAMPE Symposium Exhib. Vol. 43, no. 1, P444-457 (1998) 特開2001−133584号公報(3頁、図3)Japanese Patent Laid-Open No. 2001-133854 (page 3, FIG. 3)

しかしながら、上述のような高圧容器や貯蔵容器の健全性の診断方法では、ブラッググレーティングが形成され位置の歪みを検知するために、各測定点でのブラッググレーティングのブラッグ波長が異なっている必要がある。そのため、大型の高圧容器に従来の方法を適用する場合には、測定点を増やすために1本の光ファイバにブラッグ波長の異なるブラッググレーティングを多数個形成しなければならない。さらには、ある一点の高圧容器の変形に伴う光ファイバの変形に対するブラッググレーティングからの反射光の波長変化が他の点に位置するブラッググレーティングのブラッグ波長を超えて変化してはいけないという制約がある。なぜなら、他の点に位置するブラッググレーティングのブラッグ波長を越えて変化すると、どの位置の変形に対する波長変化かが判断することが困難になるからである。このため、異なるブラッグ波長の波長間隔はある程度広げる必要があり、ブラッグ波長の波長間隔と光源の発光波長幅との関係から、1本の光ファイバに異なるブラッグ波長をもつブラッググレーティングを形成できる数は、約40個である。したがって、40点以上の多数点の変形を検知するためには、複数の光ファイバを用いる必要があり、構造が複雑になるとともに、高コストになるという問題があった。   However, in the method for diagnosing the soundness of a high-pressure vessel or a storage vessel as described above, the Bragg grating needs to have different Bragg wavelengths at each measurement point in order to detect the distortion of the position where the Bragg grating is formed. . Therefore, when the conventional method is applied to a large-sized high-pressure vessel, a large number of Bragg gratings having different Bragg wavelengths must be formed in one optical fiber in order to increase the number of measurement points. Furthermore, there is a restriction that the wavelength change of the reflected light from the Bragg grating with respect to the deformation of the optical fiber accompanying the deformation of one high pressure vessel should not change beyond the Bragg wavelength of the Bragg grating located at another point. . This is because if it changes beyond the Bragg wavelength of the Bragg grating located at another point, it becomes difficult to determine which position the wavelength changes with respect to the deformation. For this reason, it is necessary to widen the wavelength interval of different Bragg wavelengths to some extent, and from the relationship between the wavelength interval of the Bragg wavelength and the emission wavelength width of the light source, the number of Bragg gratings having different Bragg wavelengths in one optical fiber is , About 40. Therefore, it is necessary to use a plurality of optical fibers in order to detect deformation at a large number of 40 points or more, and there is a problem that the structure is complicated and the cost is increased.

この発明は、上記のような課題を解決するためになされたもので、高圧容器の健全性を診断する方法として、多数点の変形を検知する場合でも1本の光ファイバで構成することができ、構造が単純で低コストの高圧容器の健全性診断方法を提供するものである。   The present invention has been made to solve the above-described problems. As a method for diagnosing the soundness of a high-pressure vessel, the present invention can be configured with a single optical fiber even when detecting deformation at multiple points. The present invention provides a method for diagnosing the health of a high-pressure vessel having a simple structure and a low cost.

この発明に係る高圧容器の健全性診断方法は、同一のブラッグ波長を有する複数のブラッググレーティングを離散的に形成した光ファイバを、複数のブラッグクレーティングが異なる位置になるように高圧容器に密接して取り付け、高圧容器へのガス充填後に、光ファイバの端部に接続した光の入出射機能を有する光計測器からの出射光に対するブラッググレーティングからの反射光の波長分布を光計測器で計測し、波長分布の経時変化に基づいて、高圧容器の健全性を診断するものである。   In the method for diagnosing the health of a high-pressure vessel according to the present invention, an optical fiber in which a plurality of Bragg gratings having the same Bragg wavelength are discretely formed is brought into close contact with the high-pressure vessel so that the plurality of Bragg gratings are at different positions. After the gas is filled into the high-pressure vessel, the wavelength distribution of the reflected light from the Bragg grating with respect to the light emitted from the optical measuring instrument having the light input / output function connected to the end of the optical fiber is measured with the optical measuring instrument. The soundness of the high-pressure vessel is diagnosed based on the change over time of the wavelength distribution.

この発明は、高圧容器へのガス充填後の同一のブラッグ波長を有するブラッググレーティングからの反射光の反射ピークの数と位置とを、正常なとき(使用開始時)と使用中(ガスの充填と放出を繰り返し行なった後)とで比較して、高圧容器の健全性を診断するので、構造が単純で、低コストな診断方法および健全性診断機能を有する高圧容器を提供することができる。   In the present invention, the number and position of the reflection peaks of the reflected light from the Bragg grating having the same Bragg wavelength after filling the gas into the high-pressure vessel are normal (at the start of use) and in use (gas filling and Since the soundness of the high-pressure vessel is diagnosed in comparison with the case after the discharge is repeatedly performed, a high-pressure vessel having a simple structure and a low-cost diagnostic method and a soundness diagnosis function can be provided.

実施の形態1.
図1は、この発明の実施の形態1における健全性診断機能を有する高圧容器の模式図である。図1において、高圧容器1は、健全性の診断を行なう対象となる高圧容器であり、高圧容器1の外壁には、同一のブラッグ波長を有するブラッググレーティング2を形成した光ファイバ3が密接して取り付けられている。本実施の形態においては、ブラッググレーティング2は、4個(2a、2b、2cおよび2d)形成されており、それぞれ高圧容器1の外壁の異なる位置に配置されている。光ファイバ3の端部には、光計測器4が接続されている。光計測器4は、内部に光源をもち、この光源からの光を光ファイバ3に入射させ、光ファイバ3に形成されたブラッググレーティング2からの反射光の波長分布を計測することができる。光計測器4には、コンピュータ5が接続されており、このコンピュータ5は、光計測器4を制御するとともに、光計測器4で計測された波長分布を記憶し、波長分布の経時変化に基づいて高圧容器1の健全性を判断する機能を備えている。
Embodiment 1 FIG.
1 is a schematic diagram of a high-pressure vessel having a soundness diagnosis function according to Embodiment 1 of the present invention. In FIG. 1, a high-pressure vessel 1 is a high-pressure vessel to be subjected to soundness diagnosis, and an optical fiber 3 having a Bragg grating 2 having the same Bragg wavelength is in close contact with the outer wall of the high-pressure vessel 1. It is attached. In the present embodiment, four Bragg gratings 2 (2a, 2b, 2c and 2d) are formed, and are arranged at different positions on the outer wall of the high-pressure vessel 1, respectively. An optical measuring instrument 4 is connected to the end of the optical fiber 3. The optical measuring instrument 4 has a light source inside, makes the light from this light source incident on the optical fiber 3, and can measure the wavelength distribution of the reflected light from the Bragg grating 2 formed on the optical fiber 3. A computer 5 is connected to the optical measuring instrument 4, and the computer 5 controls the optical measuring instrument 4, stores the wavelength distribution measured by the optical measuring instrument 4, and is based on the temporal change of the wavelength distribution. The function of judging the soundness of the high-pressure vessel 1 is provided.

次に、本実施の形態における健全性診断方法の動作について説明する。光計測器4から出射された広帯域光が光ファイバ3に導かれ、各ブラッググレーティング2a、2b、2cおよび2dへ入射する。各ブラッググレーティング2a、2b、2cおよび2dからはブラッグ波長の光が反射され、この反射光が光ファイバ3に導かれて光計測器4へ入射する。光計測器4では、反射光の波長分布が計測され、この波長分布をコンピュータ5に伝送する。コンピュータ5では、送られてきた波長分布を記憶するとともに、波長分布の経時変化に基づいて、高圧容器1の健全性を判断する。   Next, the operation of the soundness diagnosis method in the present embodiment will be described. Broadband light emitted from the optical measuring instrument 4 is guided to the optical fiber 3 and is incident on the Bragg gratings 2a, 2b, 2c and 2d. Each Bragg grating 2a, 2b, 2c and 2d reflects light of Bragg wavelength, and this reflected light is guided to the optical fiber 3 and enters the optical measuring instrument 4. In the optical measuring instrument 4, the wavelength distribution of the reflected light is measured, and this wavelength distribution is transmitted to the computer 5. The computer 5 stores the transmitted wavelength distribution and determines the soundness of the high-pressure vessel 1 based on the temporal change of the wavelength distribution.

健全性の診断方法について、さらに詳細に述べる。図2は、本実施の形態における反射光の波長分布を示す特性図である。まず始めに、高圧容器1にガスが充填されていないとき(非充填時)は、高圧容器1は変形していないので、外壁に密着して取り付けられた光ファイバ3も変形していないため、各ブラッググレーティング2a、2b、2cおよび2dのブラッグ波長は同一であり、図2(A)に示すように反射光のピーク波長は重なって観測される。次に、高圧容器1にガスを充填し(充填時)高圧容器1の内圧が上昇すると、高圧容器1の外壁は外側へ膨らむように変形する。外壁の変形量は場所によって異なるために、各ブラッググレーティング2a、2b、2cおよび2d位置の光ファイバ3の変形量も異なることになる。その結果、各ブラッググレーティング2a、2b、2cおよび2dのブラッグ波長の変化量がそれぞれ場所によって異なるために、非充填時には1つであった反射光の反射ピークが分離して、図2(B)に示すように複数の反射ピークが観測されるようになる。図2(B)では、ブラッググレーティング2bと2dとの位置の変形量が同じ場合の例を示しており、この場合はブラッググレーティング2bと2dとからの反射ピークは一致することになる。   The soundness diagnosis method will be described in more detail. FIG. 2 is a characteristic diagram showing the wavelength distribution of the reflected light in the present embodiment. First, when the high-pressure vessel 1 is not filled with gas (when not filled), the high-pressure vessel 1 is not deformed, so the optical fiber 3 attached in close contact with the outer wall is also not deformed. The Bragg wavelengths of the Bragg gratings 2a, 2b, 2c and 2d are the same, and the peak wavelengths of the reflected light are observed as overlapped as shown in FIG. Next, when the high pressure vessel 1 is filled with gas (at the time of filling) and the internal pressure of the high pressure vessel 1 rises, the outer wall of the high pressure vessel 1 is deformed so as to expand outward. Since the deformation amount of the outer wall varies depending on the location, the deformation amount of the optical fiber 3 at each Bragg grating 2a, 2b, 2c, and 2d position also varies. As a result, since the amount of change in the Bragg wavelength of each Bragg grating 2a, 2b, 2c, and 2d varies depending on the location, the reflection peak of the reflected light that was one when not filled is separated, and FIG. A plurality of reflection peaks are observed as shown in FIG. FIG. 2B shows an example in which the amount of deformation at the positions of the Bragg gratings 2b and 2d is the same. In this case, the reflection peaks from the Bragg gratings 2b and 2d match.

コンピュータ5は、光計測器4で観測された反射光の波長分布の経時変化を監視している。各ブラッググレーティング2a、2b、2cおよび2dのブラッグ波長は、高圧容器1の内圧に応じて変化する。このため、高圧容器1が健全な状態であれば、光計測器4で観測される反射光の波長分布は、内圧によって決まる一定の関係を満たすように変化する。つまり、使用開始時に図2(B)に示したような波長分布であった場合、高圧容器1が健全であれば、高圧容器1内に充填されたガスを放出した後に再度ガスを充填したときにも図2(B)と同じ波長分布が再現されるはずであり、反射ピークのずれは発生しない。したがって、長期間に渡って高圧容器1を使用したときに、ガス充填後に反射光の波長分布を観測し、このときの波長分布が使用開始時に測定した波長分布からずれているかどうかをコンピュータ5で監視することにより、高圧容器1の健全性を判断することができる。次の式は、各ブラッググレーティング2a、2b、2cおよび2dの反射光のピーク波長λ2a、λ2b、λ2cおよびλ2d(単位:nm)と高圧容器1の内圧P(単位:MPa)との関係を示したものである。
λ2a(nm)=1545(nm)+α(nm/MPa)×P(MPa)
λ2b(nm)=1545(nm)+α(nm/MPa)×P(MPa)
λ2c(nm)=1545(nm)+α(nm/MPa)×P(MPa)
λ2d(nm)=1545(nm)+α(nm/MPa)×P(MPa)
ここで、1545(nm)はブラッググレーティング2のブラッグ波長であり、α、α、αおよびα(nm/MPa)は、それぞれブラッググレーティング2a、2b、2cおよび2dにおける内圧P(MPa)に対する反射光のピーク波長のシフト量である。
The computer 5 monitors changes with time in the wavelength distribution of the reflected light observed by the optical measuring instrument 4. The Bragg wavelength of each Bragg grating 2 a, 2 b, 2 c and 2 d varies according to the internal pressure of the high-pressure vessel 1. For this reason, if the high-pressure vessel 1 is in a healthy state, the wavelength distribution of the reflected light observed by the optical measuring instrument 4 changes so as to satisfy a certain relationship determined by the internal pressure. In other words, when the wavelength distribution is as shown in FIG. 2B at the start of use, if the high-pressure vessel 1 is healthy, the gas filled in the high-pressure vessel 1 is discharged and then refilled. In addition, the same wavelength distribution as in FIG. 2B should be reproduced, and no deviation of the reflection peak occurs. Therefore, when the high-pressure vessel 1 is used for a long period of time, the wavelength distribution of the reflected light is observed after gas filling, and the computer 5 determines whether or not the wavelength distribution at this time is deviated from the wavelength distribution measured at the start of use. By monitoring, the soundness of the high-pressure vessel 1 can be determined. The following equation shows the peak wavelengths λ 2a , λ 2b , λ 2c and λ 2d (unit: nm) of the reflected light of each Bragg grating 2a, 2b, 2c and 2d and the internal pressure P (unit: MPa) of the high-pressure vessel 1 This shows the relationship.
λ 2a (nm) = 1545 (nm) + α 1 (nm / MPa) × P (MPa)
λ 2b (nm) = 1545 (nm) + α 2 (nm / MPa) × P (MPa)
λ 2c (nm) = 1545 (nm) + α 3 (nm / MPa) × P (MPa)
λ 2d (nm) = 1545 (nm) + α 4 (nm / MPa) × P (MPa)
Here, 1545 (nm) is the Bragg wavelength of the Bragg grating 2, and α 1 , α 2 , α 3 and α 4 (nm / MPa) are the internal pressures P (MPa) at the Bragg gratings 2a, 2b, 2c and 2d, respectively. ) With respect to the peak wavelength of the reflected light.

図2(A)の状態、つまり非充填時には、P=0であるため、λ2a=λ2b=λ2c=λ2d=1545(nm)となる。次に、ガス充填時の図2(B)の状態では、α=αであるため、λ2b=λ2dであるが、例えば、ブラッググレーティング2bの位置に対応する高圧容器1の外壁の変形量が大きくなった場合、つまり外壁を構成する材料強度が劣化した場合には、α≠αとなり、図2(C)に示すように、ブラッググレーティング2bと2dに対応するピークが分離して、反射光の反射ピーク数が3個から4個に変化する。このように、反射光の波長分布の経時変化測定することで、高圧容器1に不健全な状態が生じていることを検知することができる。 In the state shown in FIG. 2A, that is, in the non-filling state, P = 0, so that λ 2a = λ 2b = λ 2c = λ 2d = 1545 (nm). Next, in the state of FIG. 2B at the time of gas filling, since α 2 = α 4 , λ 2b = λ 2d , but for example, the outer wall of the high-pressure vessel 1 corresponding to the position of the Bragg grating 2b When the amount of deformation increases, that is, when the strength of the material constituting the outer wall deteriorates, α 2 ≠ α 4 and the peaks corresponding to the Bragg gratings 2b and 2d are separated as shown in FIG. As a result, the number of reflected peaks of reflected light changes from three to four. Thus, by measuring the change over time of the wavelength distribution of the reflected light, it is possible to detect that an unhealthy state has occurred in the high-pressure vessel 1.

本実施の形態のよれば、同一のブラッグ波長を有する複数のブラッググレーティングを形成した光ファイバを高圧容器に密接して取り付け、高圧容器へのガス充填後に、光計測器からの出射光に対するブラッググレーティングからの反射光の波長分布を光計測器で計測し、波長分布の経時変化に基づいて、高圧容器の健全性を診断しているので、一本の光ファイバで多数の計測点を設けることができる。その結果、構造が単純で、低コストなの診断方法および健全性診断機能を有する高圧容器を得ることができる。   According to the present embodiment, an optical fiber formed with a plurality of Bragg gratings having the same Bragg wavelength is closely attached to a high-pressure vessel, and after filling the gas into the high-pressure vessel, a Bragg grating for light emitted from the optical measuring instrument The wavelength distribution of the reflected light from the light source is measured with an optical measuring instrument, and the soundness of the high-pressure vessel is diagnosed based on the change over time in the wavelength distribution. it can. As a result, it is possible to obtain a high-pressure vessel having a simple structure and a low-cost diagnostic method and a soundness diagnostic function.

なお、本実施の形態においては、ブラッググレーティングを4個形成した例を示したが、原理的にはブラッググレーティングの個数に制約はない。また、そのため測定点が増えても1本の光ファイバで構成することが可能ではあるが、光ファイバの配置が複雑になる場合は、光ファイバを2本以上で構成してもよい。さらには、本実施の形態においては、反射光の波長分布の経時変化を光計測器とコンピュータとの組み合わせで検知する例を示したが、光計測器とコンピュータとの機能を併せもつ1つの制御装置を用いてもよい。   In the present embodiment, an example is shown in which four Bragg gratings are formed. However, in principle, the number of Bragg gratings is not limited. For this reason, even if the number of measurement points is increased, it is possible to configure with one optical fiber. However, when the arrangement of the optical fibers becomes complicated, it may be configured with two or more optical fibers. Furthermore, in the present embodiment, an example has been shown in which a change with time in the wavelength distribution of reflected light is detected by a combination of an optical measuring instrument and a computer. However, a single control having both functions of the optical measuring instrument and the computer is shown. An apparatus may be used.

実施の形態2.
図3は、実施の形態2のおける高圧容器の断面の模式図である。実施の形態1においては、光ファイバを高圧容器の外壁に密着して取り付けたが、本実施の形態では、高圧容器の外壁を繊維強化複合材料により強化し、この繊維強化複合材料に光ファイバを埋設したものである。図3において、アルミ合金製の内部容器6をもつ高圧容器1において、内部容器6の外側が繊維強化複合材料7で補強されており、光ファイバ3は繊維強化複合材料7に埋設されている。繊維強化複合材料として、例えば炭素繊維強化プラスチック材料を用いることができる。このような構造の高圧容器は、フィラメントワインディング法により作製することができる。光ファイバ3には、2a、2b、2cおよび2dの4個のブラッググレーティング形成されている。光ファイバの端部には、光計測器4が接続されており、さらに光計測器4には、コンピュータ5が接続されている。
Embodiment 2. FIG.
FIG. 3 is a schematic diagram of a cross section of the high-pressure vessel in the second embodiment. In Embodiment 1, the optical fiber is attached in close contact with the outer wall of the high-pressure vessel. However, in this embodiment, the outer wall of the high-pressure vessel is reinforced with a fiber-reinforced composite material, and the optical fiber is attached to the fiber-reinforced composite material. It is buried. In FIG. 3, in the high-pressure container 1 having an inner container 6 made of an aluminum alloy, the outside of the inner container 6 is reinforced with a fiber reinforced composite material 7, and the optical fiber 3 is embedded in the fiber reinforced composite material 7. As the fiber reinforced composite material, for example, a carbon fiber reinforced plastic material can be used. The high-pressure container having such a structure can be manufactured by a filament winding method. The optical fiber 3 is formed with four Bragg gratings 2a, 2b, 2c and 2d. An optical measuring instrument 4 is connected to the end of the optical fiber, and a computer 5 is connected to the optical measuring instrument 4.

このように構成された高圧容器においては、実施の形態1と同様な方法によって高圧容器の健全性を診断することができるとともに、繊維強化複合材料7によって光ファイバ3を保護することができる。また、外壁よりも内部に光ファイバ3が設置されているので、外壁まで変形が現れない内部の損傷状況を検知することができ、高圧容器の信頼性がさらに向上する。   In the high-pressure vessel thus configured, the soundness of the high-pressure vessel can be diagnosed by the same method as in the first embodiment, and the optical fiber 3 can be protected by the fiber reinforced composite material 7. Moreover, since the optical fiber 3 is installed inside the outer wall, it is possible to detect an internal damage state in which no deformation appears to the outer wall, and the reliability of the high-pressure vessel is further improved.

なお、本実施の形態においては、繊維強化複合材料として、炭素繊維強化プラスチック材料を用いる例を示したが、他の繊維強化複合材料を用いてもよい。   In the present embodiment, an example in which a carbon fiber reinforced plastic material is used as the fiber reinforced composite material has been described, but other fiber reinforced composite materials may be used.

この発明の実施の形態1による健全性診断機能を有する高圧容器の模式図である。It is a schematic diagram of a high-pressure vessel having a soundness diagnosis function according to Embodiment 1 of the present invention. この発明の実施の形態1における反射光の波長分布を示す特性図である。It is a characteristic view which shows the wavelength distribution of the reflected light in Embodiment 1 of this invention. この発明の実施の形態2における高圧容器の断面の模式図である。It is a schematic diagram of the cross section of the high pressure vessel in Embodiment 2 of this invention.

符号の説明Explanation of symbols

1 高圧容器
2、2a、2b、2c、2d ブラッググレーティング
3 光ファイバ
4 光計測器
5 コンピュータ
6 内部容器
7 繊維強化複合材料
DESCRIPTION OF SYMBOLS 1 High pressure vessel 2, 2a, 2b, 2c, 2d Bragg grating 3 Optical fiber 4 Optical measuring instrument 5 Computer 6 Inner vessel 7 Fiber reinforced composite material

Claims (3)

同一のブラッグ波長を有する複数のブラッググレーティングが離散的に形成された光ファイバを、前記複数のブラッグクレーティングが異なる位置になるように高圧容器に密接して取り付け、
前記高圧容器へのガス充填後に、
前記光ファイバの端部に接続した光の入出射機能を有する光計測器からの出射光に対する前記ブラッググレーティングからの反射光の波長分布を前記光計測器で計測し、
前記波長分布の経時変化に基づいて、
前記高圧容器の健全性を診断することを特徴とする高圧容器の健全性診断方法。
An optical fiber in which a plurality of Bragg gratings having the same Bragg wavelength are discretely formed is closely attached to a high-pressure vessel so that the plurality of Bragg gratings are at different positions,
After filling the high pressure vessel with gas,
Measure the wavelength distribution of the reflected light from the Bragg grating with respect to the light emitted from the optical measuring instrument having a light incident / exit function connected to the end of the optical fiber,
Based on the change over time of the wavelength distribution,
A method for diagnosing the health of a high-pressure vessel, comprising diagnosing the health of the high-pressure vessel.
高圧容器に密接して取り付けられた光ファイバと、
この光ファイバに離散的に形成された同一のブラッグ波長を有する複数のブラッググレーティングと、
この複数のブラッグクレーティングからの反射光の波長分布を計測する機能を有し、前記光ファイバの端部に接続された光計測器と
を備えたことを特徴とする高圧容器の健全性診断測定装置。
An optical fiber closely attached to the high-pressure vessel;
A plurality of Bragg gratings having the same Bragg wavelength formed discretely in the optical fiber;
A function for measuring the wavelength distribution of the reflected light from the plurality of Bragg gratings, and an optical measuring instrument connected to the end of the optical fiber, and a health diagnostic measurement of the high-pressure vessel apparatus.
高圧容器は繊維強化複合材料で外表面が補強された構造をもち、光ファイバは前記繊維強化複合材料に埋設されたことを特徴とする請求項2記載の高圧容器の健全性診断装置。 3. The health diagnostic apparatus for a high pressure container according to claim 2, wherein the high pressure container has a structure in which an outer surface is reinforced with a fiber reinforced composite material, and an optical fiber is embedded in the fiber reinforced composite material.
JP2005336752A 2005-11-22 2005-11-22 High pressure vessel health diagnostic method and high pressure vessel health diagnostic device Expired - Fee Related JP4760327B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005336752A JP4760327B2 (en) 2005-11-22 2005-11-22 High pressure vessel health diagnostic method and high pressure vessel health diagnostic device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005336752A JP4760327B2 (en) 2005-11-22 2005-11-22 High pressure vessel health diagnostic method and high pressure vessel health diagnostic device

Publications (2)

Publication Number Publication Date
JP2007139143A true JP2007139143A (en) 2007-06-07
JP4760327B2 JP4760327B2 (en) 2011-08-31

Family

ID=38202263

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005336752A Expired - Fee Related JP4760327B2 (en) 2005-11-22 2005-11-22 High pressure vessel health diagnostic method and high pressure vessel health diagnostic device

Country Status (1)

Country Link
JP (1) JP4760327B2 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009016626A1 (en) * 2007-07-29 2009-02-05 Rafael-Advanced Defense Systems Ltd. Method and system for measuring pressure of fluids contained in sealed vessels
JP2009103226A (en) * 2007-10-23 2009-05-14 Toyota Motor Corp Impact recording body for fuel tank and impact recording method
KR101353906B1 (en) * 2011-08-05 2014-01-22 김학성 Presure sensing apparatus for gas case
KR101498386B1 (en) * 2013-10-28 2015-03-03 서울과학기술대학교 산학협력단 Monitoring system of cryogenic liquid storage tank using fiber bragg grating sensor
JP2017032126A (en) * 2015-08-06 2017-02-09 ホーチキ株式会社 Disaster prevention facility of hydrogen station
JP2017056960A (en) * 2015-09-15 2017-03-23 玉田工業株式会社 Reinforced plastic lining double shell tank
JP2017509847A (en) * 2014-03-28 2017-04-06 ファーベル・インダストリエ・エス.ピー.エー.Faber Industrie S.P.A. COMPOSITE PRESSURE CONTAINER, AND CYLINDER AND METHOD FOR CONTROLLING THE CONTAINER
EP4141402A1 (en) 2021-08-23 2023-03-01 Airbus Operations GmbH Structural health monitoring method for fluid containers
KR102571451B1 (en) * 2022-05-24 2023-08-29 주식회사 글로비즈 Composite material pressure vessel with strain sensor and method of manufacturing the same

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08145736A (en) * 1994-11-22 1996-06-07 Sumitomo Electric Ind Ltd Optical fiber sensor
JPH1030797A (en) * 1996-07-16 1998-02-03 Sumitomo Electric Ind Ltd Pressure container
JP2001133584A (en) * 1999-11-05 2001-05-18 Mitsubishi Heavy Ind Ltd Concrete storage container and storage system having it
JP2002235899A (en) * 2001-02-09 2002-08-23 High Pressure Gas Safety Institute Of Japan High pressure gas container monitoring system

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08145736A (en) * 1994-11-22 1996-06-07 Sumitomo Electric Ind Ltd Optical fiber sensor
JPH1030797A (en) * 1996-07-16 1998-02-03 Sumitomo Electric Ind Ltd Pressure container
JP2001133584A (en) * 1999-11-05 2001-05-18 Mitsubishi Heavy Ind Ltd Concrete storage container and storage system having it
JP2002235899A (en) * 2001-02-09 2002-08-23 High Pressure Gas Safety Institute Of Japan High pressure gas container monitoring system

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009016626A1 (en) * 2007-07-29 2009-02-05 Rafael-Advanced Defense Systems Ltd. Method and system for measuring pressure of fluids contained in sealed vessels
JP2009103226A (en) * 2007-10-23 2009-05-14 Toyota Motor Corp Impact recording body for fuel tank and impact recording method
KR101353906B1 (en) * 2011-08-05 2014-01-22 김학성 Presure sensing apparatus for gas case
KR101498386B1 (en) * 2013-10-28 2015-03-03 서울과학기술대학교 산학협력단 Monitoring system of cryogenic liquid storage tank using fiber bragg grating sensor
JP2017509847A (en) * 2014-03-28 2017-04-06 ファーベル・インダストリエ・エス.ピー.エー.Faber Industrie S.P.A. COMPOSITE PRESSURE CONTAINER, AND CYLINDER AND METHOD FOR CONTROLLING THE CONTAINER
JP2017032126A (en) * 2015-08-06 2017-02-09 ホーチキ株式会社 Disaster prevention facility of hydrogen station
JP2017056960A (en) * 2015-09-15 2017-03-23 玉田工業株式会社 Reinforced plastic lining double shell tank
EP4141402A1 (en) 2021-08-23 2023-03-01 Airbus Operations GmbH Structural health monitoring method for fluid containers
KR102571451B1 (en) * 2022-05-24 2023-08-29 주식회사 글로비즈 Composite material pressure vessel with strain sensor and method of manufacturing the same
WO2023229123A1 (en) * 2022-05-24 2023-11-30 주식회사 글로비즈 Composite material pressure vessel equipped with strain sensor and manufacturing method therefor

Also Published As

Publication number Publication date
JP4760327B2 (en) 2011-08-31

Similar Documents

Publication Publication Date Title
JP4760327B2 (en) High pressure vessel health diagnostic method and high pressure vessel health diagnostic device
JP5782082B2 (en) Leak detector using optical fiber
US20080319688A1 (en) Usage monitoring system of gas tank
AU2014310509B2 (en) Method for manufacturing a flexible tubular pipe
US20080148853A1 (en) Gas tank having usage monitoring system
RU2742185C2 (en) System and method for prediction of forthcoming pressure vessel damage
US20030209655A1 (en) Optical fiber sensors based on pressure-induced temporal periodic variations in refractive index
JP6599703B2 (en) Underground type reinforced plastic lining double shell tank
JP2013064729A5 (en)
ITTO970654A1 (en) SYSTEM TO CONTROL THE STATE OF STRESS OF HIGH PRESSURE CYLINDERS, PARTICULARLY METHANE GAS CYLINDERS FOR MOTOR VEHICLES.
EP2399154A1 (en) Cable including strain-free fiber and strain-coupled fiber
CN103782150A (en) Optical monitoring device for monitoring curvature of a flexible medical instrument
Kang et al. The embedment of fiber Bragg grating sensors into filament wound pressure tanks considering multiplexing
Munzke et al. Monitoring of type IV composite pressure vessels with multilayer fully integrated optical fiber based distributed strain sensing
JPWO2017212559A1 (en) Cable for measuring material pressure, temperature and strain distribution
JP6133707B2 (en) High pressure tank inspection method, high pressure tank inspection system, and high pressure tank
KR102261561B1 (en) Apparatus and method of total solution for fluid storage tanks management control
US20120236295A1 (en) Method of measuring bending performance of optical fiber
Foedinger et al. Embedded fiber optic sensor arrays for structural health monitoring of filament wound composite pressure vessels
KR20200022431A (en) Fluorophore enhanced multidimensional optical sensor
RU2322649C1 (en) Meter of deformation and modes of measuring of deformation (variants)
JP2011179916A (en) Leakage monitor device
AU2017317614A1 (en) Hydrophone with optimised optical fibre
US20230161102A1 (en) Sensing cable and sensing system
US9671562B2 (en) Monitoring power combiners

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071109

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100921

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101026

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101223

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110510

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110523

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140617

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140617

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees