JP2007139108A - Seismic isolation device - Google Patents

Seismic isolation device Download PDF

Info

Publication number
JP2007139108A
JP2007139108A JP2005335228A JP2005335228A JP2007139108A JP 2007139108 A JP2007139108 A JP 2007139108A JP 2005335228 A JP2005335228 A JP 2005335228A JP 2005335228 A JP2005335228 A JP 2005335228A JP 2007139108 A JP2007139108 A JP 2007139108A
Authority
JP
Japan
Prior art keywords
alloy
damping
seismic isolation
isolation device
metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2005335228A
Other languages
Japanese (ja)
Inventor
Takeshi Oba
丈司 大場
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Bridgestone Corp
Original Assignee
Bridgestone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bridgestone Corp filed Critical Bridgestone Corp
Priority to JP2005335228A priority Critical patent/JP2007139108A/en
Publication of JP2007139108A publication Critical patent/JP2007139108A/en
Withdrawn legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a seismic isolation device for sufficiently maintaining vibration damping property without damaging vibration damping alloys. <P>SOLUTION: A plurality of elastically deformable rubber rings 18 and a plurality of disc-shaped metal pates 20 for maintaining rigidity are alternately arranged to form an outside laminate 16. In a space of each of rubber rings 18 partitioned with a metal plate 20 at a central portion of the outside laminate 16, the vibration damping alloy 22 is fitted which is formed of a zinc-aluminum alloy superplastic metal into a cylindrical shape. Thus, the plurality of vibration damping alloys 22 are arranged between the metal plates 20 side by side with the rubber rings 18. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、制振合金を損傷せずに制振特性を十分に維持し得る免震装置震装置に関し、さらには環境に負荷を与えずに従来と同等以上の制振特性を有する免震装置に関する。   The present invention relates to a seismic isolation device capable of maintaining a sufficient damping characteristic without damaging a damping alloy, and further, a seismic isolation device having a damping characteristic equal to or higher than that of a conventional one without giving a load to the environment. About.

従来より、地震の揺れを低減する為の部材として、建築物とこの建築物を支持する地盤との間に配置される免震装置が知られている。そして、この免震装置は、ゴム板と金属製の積層板とを積層した積層ゴムだけでなく、揺れに伴う振動を抑える為の円柱状に形成された制振合金をも構成部材としていて、これらの部材の複合的な作用で地震の揺れを減衰して低減し、建築物側に地震の揺れを伝達し難くしていた。   2. Description of the Related Art Conventionally, seismic isolation devices that are arranged between a building and the ground that supports the building are known as members for reducing earthquake shaking. And this seismic isolation device has not only a laminated rubber obtained by laminating a rubber plate and a metal laminated plate, but also a damping alloy formed in a columnar shape for suppressing vibration caused by shaking, as a constituent member. The combined action of these members attenuated and reduced earthquake shaking, making it difficult to transmit earthquake shaking to the building.

しかし、従来の免震装置では、図7に示すように積層ゴム116を構成するゴム板118及び金属製の積層板120の中央に存在する貫通穴116A内に円柱状の制振合金122が嵌り込んで配置される構造とされていることから、地震が生じて地震による大きな地震波が一旦発生した場合、繰り返しの変位である大きな地震波の入力により、積層板120の内周面が強く接触して制振合金122の表面に傷が付き、最終的には制振合金122が積層板120によって切断される虞を有していた。そして、上記のように積層板120の内周面によって、制振合金122の表面に傷が付いたり切断されたりした場合には、免震装置により十分な制振特性が得られないようになる。   However, in the conventional seismic isolation device, as shown in FIG. 7, the cylindrical damping alloy 122 fits into the rubber plate 118 constituting the laminated rubber 116 and the through-hole 116 </ b> A existing in the center of the metal laminated plate 120. When the earthquake occurs and a large seismic wave is generated due to the earthquake, the inner surface of the laminated plate 120 is in strong contact with the input of the large seismic wave that is a repetitive displacement. There was a possibility that the surface of the damping alloy 122 was damaged, and the damping alloy 122 was eventually cut by the laminated plate 120. When the surface of the damping alloy 122 is scratched or cut by the inner peripheral surface of the laminated plate 120 as described above, sufficient vibration damping characteristics cannot be obtained by the seismic isolation device. .

他方、従来の免震装置の制振合金として、制振特性の面から一般に鉛材が使用されていたが、環境面への配慮が近年重要視されるのに伴い、制振合金を鉛材から他の金属材料に置き換えることが検討されるようになった。しかし、鉛材以外の他の金属材料では塑性変形特性が鉛材と比較して低く、十分な制振特性が得られないことから、他の金属材料を採用し難かった。
特開平1−250547号公報
On the other hand, lead materials are generally used as damping alloys for conventional seismic isolation devices from the viewpoint of damping characteristics. However, as environmental considerations have become important in recent years, damping alloys have been replaced with lead materials. From now on, it is considered to replace with other metal materials. However, other metal materials other than lead materials have low plastic deformation characteristics compared to lead materials, and sufficient vibration damping characteristics cannot be obtained, so it is difficult to employ other metal materials.
JP-A-1-250547

以上より、繰り返しの変位を伴う大きな地震波の入力が免震装置に加わっても、積層板の内周面によって制振合金が損傷せず、制振特性を十分に維持できる免震装置を開発する必要性が生じていた。さらには、環境に負荷を与えずに高い制振特性を有する免震装置を開発する必要性も生じていた。
本発明は上記事実を考慮し、制振合金を損傷せずに制振特性を十分に維持し得る免震装置を提供することが目的であり、さらには環境に負荷を与えずに従来と同等以上の制振特性を有する免震装置を提供することが目的である。
Based on the above, even if a large seismic wave with repeated displacement is applied to the seismic isolation device, we will develop a seismic isolation device that can maintain the damping characteristics sufficiently without damaging the damping alloy by the inner peripheral surface of the laminate. There was a need. In addition, there has been a need to develop a seismic isolation device having high vibration damping characteristics without imposing a burden on the environment.
In view of the above facts, the present invention aims to provide a seismic isolation device that can sufficiently maintain the damping characteristics without damaging the damping alloy, and further, equivalent to the conventional one without giving a load to the environment. An object is to provide a seismic isolation device having the above-described vibration damping characteristics.

請求項1に係る免震装置は、弾性を有した弾性板と剛性を有した硬質板とが交互に積層された形の積層体と、
弾性板と並んだ形で硬質板間にそれぞれ配置される複数の制振合金と、
を有することを特徴とする。
A seismic isolation device according to claim 1 is a laminate in which elastic plates having elasticity and hard plates having rigidity are alternately laminated, and
A plurality of damping alloys respectively arranged between the hard plates in line with the elastic plates;
It is characterized by having.

請求項1に係る免震装置の作用を以下に説明する。
本請求項の免震装置によれば、弾性を有した弾性板と剛性を有した硬質板とが交互に積層されて積層体が形成され、複数の制振合金が弾性板と並んだ形で硬質板間にそれぞれ配置される構成となっている。従って、本請求項に係る免震装置によれば、地震が生じた場合、相互に並列的に配置されてそれぞれ変形する積層体の弾性板と複数の制振合金との間の複合的な作用で地震の揺れを減衰して低減し、建築物側に地震の揺れが伝達され難くなる。
The operation of the seismic isolation device according to claim 1 will be described below.
According to the seismic isolation device of this claim, an elastic plate having elasticity and a hard plate having rigidity are alternately laminated to form a laminated body, and a plurality of damping alloys are arranged side by side with the elastic plate. It is the structure each arrange | positioned between hard boards. Therefore, according to the seismic isolation device according to the present claim, when an earthquake occurs, the combined action between the elastic plate of the laminated body and the plurality of damping alloys that are arranged in parallel with each other and deformed respectively. This attenuates and reduces the earthquake vibration, making it difficult to transmit the earthquake vibration to the building.

つまり、本請求項では、地震が生じて地震による大きな水平方向の繰り返し変位が地震波として免震装置に入力されるのに伴い、積層体の弾性板及び複数の制振合金がこの変位の入力に合わせて変形することで、地震の揺れを減衰して低減する。但し、繰り返しの変位である大きな地震波の入力が免震装置に加わっても、本請求項では、硬質板間に弾性板と並んだ形で複数の制振合金がそれぞれ配置されて、制振合金同士が硬質板により元々分離されていることから、積層板の内周面によって制振合金が損傷せず、制振特性を十分に維持できるようになる。   That is, in this claim, as an earthquake occurs and a large horizontal repetitive displacement due to the earthquake is input to the seismic isolation device as a seismic wave, the elastic plate of the laminated body and the plurality of damping alloys are input to this displacement. By transforming together, the earthquake shake is attenuated and reduced. However, even if a large seismic wave input, which is a repetitive displacement, is applied to the seismic isolation device, in this claim, a plurality of damping alloys are arranged in a form aligned with the elastic plate between the hard plates. Since they are originally separated from each other by the hard plate, the damping alloy is not damaged by the inner peripheral surface of the laminated plate, and the damping characteristics can be sufficiently maintained.

以上より、本請求項の免震装置によれば、制振特性を十分に維持できるので、制振性能を十分且つ安定的に発揮して長期間にわたって地震の揺れを低減できるようになる。これに伴って、本請求項によれば、地震による揺れを長期間確実に減衰して建築物側に揺れが直接伝達されなくなる結果として、建築物の安全性が長期間にわたって向上する。   As described above, according to the seismic isolation device of the present claim, since the vibration damping characteristics can be sufficiently maintained, the vibration damping performance can be sufficiently and stably exhibited, and the vibration of the earthquake can be reduced over a long period of time. Accordingly, according to the present claims, the safety of the building is improved over a long period of time as a result that the shaking due to the earthquake is reliably attenuated for a long time and the shaking is not directly transmitted to the building side.

請求項2に係る免震装置の作用を以下に説明する。
本請求項では請求項1と同様の構成を有して同様に作用するが、さらに、制振合金が、超塑性金属により形成されるという構成を有している。つまり、本請求項では、塑性変形量である破断するまでの伸び量が大きな超塑性金属を制振合金として採用したことで、鉛材を制振合金として用いずとも良好な制振特性が得られるようになる。この為、地震の際に、環境に負荷を与えずに従来の免震装置と同等以上の制振特性を有するようにもなった。
The operation of the seismic isolation device according to claim 2 will be described below.
The present invention has the same configuration as that of the first embodiment and operates in the same manner, but further has a configuration in which the damping alloy is formed of a superplastic metal. In other words, in this claim, a superplastic metal having a large elongation until fracture, which is the amount of plastic deformation, is adopted as the damping alloy, so that excellent damping characteristics can be obtained without using lead material as the damping alloy. Be able to. For this reason, in the event of an earthquake, it has come to have vibration control characteristics equivalent to or better than those of conventional seismic isolation devices without imposing a burden on the environment.

請求項3に係る免震装置の作用を以下に説明する。
本請求項では請求項2と同様の構成を有して同様に作用するが、さらに、超塑性金属が、亜鉛−アルミニウム系合金とされるという構成を有している。つまり、鉛材を含まない亜鉛−アルミニウム系合金を具体的に超塑性金属として用いることで、より確実に制振合金として鉛材を排除しつつ、良好な制振特性が得られるようになった。
The effect | action of the seismic isolation apparatus which concerns on Claim 3 is demonstrated below.
This claim has the same configuration as that of claim 2 and operates in the same manner, but further has a configuration in which the superplastic metal is a zinc-aluminum alloy. In other words, by using a zinc-aluminum-based alloy that does not contain lead as a superplastic metal, good damping characteristics can be obtained while eliminating lead as a damping alloy more reliably. .

請求項4に係る免震装置の作用を以下に説明する。
本請求項では請求項1と同様の構成を有して同様に作用するが、さらに、制振合金が、双晶の金属材料で形成されるという構成を有している。
The effect | action of the seismic isolation apparatus which concerns on Claim 4 is demonstrated below.
This claim has the same configuration as that of claim 1 and operates in the same manner, but further has a configuration in which the damping alloy is formed of a twinned metal material.

つまり、本請求項では、制振合金が双晶の金属材料により形成されるのに伴い、引張力や剪断力が加わった際に、ばね定数が低くなると共に減衰係数が高くなり、従来の制振合金と同等以上の大きな制振特性を有するようになる。この為、地震の際に、環境に負荷を与えずに従来の免震装置と同等以上の制振特性を有するようにもなった。   In other words, in this claim, as the damping alloy is formed of a twinned metal material, when a tensile force or a shearing force is applied, the spring constant is lowered and the damping coefficient is increased, so that the conventional damping alloy is increased. It has large damping characteristics equivalent to or better than vibration alloys. For this reason, in the event of an earthquake, it has come to have vibration control characteristics equivalent to or better than those of conventional seismic isolation devices without imposing a burden on the environment.

請求項5に係る免震装置の作用を以下に説明する。
本請求項では請求項4と同様の構成を有して同様に作用するが、さらに、Cu−Al−Mn合金、Mg−Zr合金、Mn−Cu合金、Mn−Cu−Ni−Fe合金、Cu−Al−Ni合金、Ti−Ni合金、Al−Zn合金、Cu−Zn−Al合金、Mg合金、Cu−Al−Co合金、Cu−Al−Mn−Ni合金、Cu−Al−Mn−Co合金、Cu−Si合金、Fe−Mn−Si合金、Fe−Ni−Co−Ti合金、Fe−Ni−C合金、Fe−Cr−Ni−Mn−Si−Co合金、Ni−Al合金、SUS304の内の何れかを双晶の金属材料として使用するという構成を有している。
The operation of the seismic isolation device according to claim 5 will be described below.
In this claim, it has the same structure as that of claim 4 and acts in the same way, but further, Cu—Al—Mn alloy, Mg—Zr alloy, Mn—Cu alloy, Mn—Cu—Ni—Fe alloy, Cu -Al-Ni alloy, Ti-Ni alloy, Al-Zn alloy, Cu-Zn-Al alloy, Mg alloy, Cu-Al-Co alloy, Cu-Al-Mn-Ni alloy, Cu-Al-Mn-Co alloy , Cu-Si alloy, Fe-Mn-Si alloy, Fe-Ni-Co-Ti alloy, Fe-Ni-C alloy, Fe-Cr-Ni-Mn-Si-Co alloy, Ni-Al alloy, SUS304 Any one of the above is used as a twinned metal material.

つまり、これらの金属の内の何れかが、制振合金を形成する為の双晶の金属材料として使用されることで、環境に負荷を与えずに従来と同等以上の制振特性を有する制振合金がより確実に得られるようになる。   In other words, any one of these metals is used as a twinned metal material for forming a damping alloy, so that it has a damping characteristic equal to or higher than that of the conventional one without giving a load to the environment. A vibration alloy can be obtained more reliably.

請求項6に係る免震装置の作用を以下に説明する。
本請求項では請求項1と同様の構成を有して同様に作用するが、さらに、複数の制振合金が、積層体内に直線的に一列に並んで配置されるという構成を有している。つまり、本請求項では、積層体内に直線的に一列に並んで複数の制振合金が配置されている為、免震装置の製造に際して、複数の弾性板を相互に同一形状にできることになり、これに伴って作業性が高まることで、免震装置の製造コストが低減されるようになる。
The operation of the seismic isolation device according to claim 6 will be described below.
The present invention has the same configuration as that of the first embodiment and operates in the same manner, but further has a configuration in which a plurality of damping alloys are arranged in a straight line in the laminated body. . In other words, in the present claim, since a plurality of damping alloys are arranged in a straight line in the laminated body, a plurality of elastic plates can be made into the same shape with each other when manufacturing the seismic isolation device, Along with this, the workability is improved, so that the manufacturing cost of the seismic isolation device is reduced.

請求項7に係る免震装置の作用を以下に説明する。
本請求項では請求項1と同様の構成を有して同様に作用するが、さらに、制振合金が、積層体内の同一面上に複数配置されるという構成を有している。つまり、本請求項では、積層体内の同一面上に制振合金を複数配置したことで、制振合金による地震の揺れを減衰する機能が高まり、建築物側に地震の揺れがより確実に伝達され難くなる。
The operation of the seismic isolation device according to claim 7 will be described below.
The present invention has the same configuration as that of the first embodiment and operates in the same manner, but further has a configuration in which a plurality of damping alloys are arranged on the same surface in the laminate. In other words, in this claim, by arranging multiple damping alloys on the same surface in the laminated body, the function to attenuate the shaking of the earthquake due to the damping alloy is enhanced, and the shaking of the earthquake is more reliably transmitted to the building side. It becomes difficult to be done.

請求項8に係る免震装置の作用を以下に説明する。
本請求項では請求項1と同様の構成を有して同様に作用するが、さらに、積層体及び複数の制振合金がそれぞれ円筒状に形成され、積層体の内部にこれら複数の制振合金が配置されているという構成を有している。
The operation of the seismic isolation device according to claim 8 will be described below.
The present invention has the same structure as that of the first aspect and operates in the same manner. Further, the laminated body and the plurality of damping alloys are each formed in a cylindrical shape, and the plurality of damping alloys are formed inside the laminated body. Is arranged.

つまり、本請求項では、弾性板と並んだ形で硬質板間にそれぞれ配置される複数の制振合金が、円筒状に形成された積層体の内部に同じく円筒状に形成されて、配置される形とされている。この為、それぞれが円筒状とされていることから、いずれの方向から免震装置に揺れが加わった場合であっても免震装置の制振特性に変化が無く、地震の揺れを一層確実に減衰して低減するようになる。他方、円筒状の積層体内に制振合金が配置されることから、本請求項によれば、免震装置の省スペース化にも寄与することになる。   That is, in this claim, a plurality of damping alloys respectively disposed between the hard plates in a line with the elastic plate are also formed in a cylindrical shape and disposed inside the cylindrical laminate. It is supposed to be a form. For this reason, since each is made into a cylindrical shape, even if the seismic isolation device is shaken from any direction, there is no change in the damping characteristics of the seismic isolation device, and the seismic shaking is more reliably performed. Attenuates and decreases. On the other hand, since the damping alloy is arranged in the cylindrical laminated body, according to this claim, it contributes to space saving of the seismic isolation device.

以上説明したように本発明の上記構成によれば、制振合金を損傷せずに制振特性を十分に維持し得る免震装置を提供できるという優れた効果を有するだけでなく、環境に負荷を与えずに従来と同等以上の制振特性を有する免震装置を提供できるという優れた効果を有する。   As described above, according to the above-described configuration of the present invention, not only has an excellent effect of providing a seismic isolation device that can sufficiently maintain the damping characteristics without damaging the damping alloy, but also has an impact on the environment. It has the outstanding effect that it can provide the seismic isolation device which has the vibration control characteristic equivalent to the past, without giving.

本発明に係る免震装置の第1の実施の形態を図1から図3に基づき説明する。図1に示すように、本実施の形態に係る免震装置10の上下部分をそれぞれ円板状に形成された連結板12、14が構成している。この内の下側の連結板12が地盤と当接し、また上側の連結板14が建築物の下部に当接するような構造になっている。   1st Embodiment of the seismic isolation apparatus which concerns on this invention is described based on FIGS. As shown in FIG. 1, the upper and lower portions of the seismic isolation device 10 according to the present embodiment are constituted by connecting plates 12 and 14 each formed in a disc shape. The lower connecting plate 12 is in contact with the ground, and the upper connecting plate 14 is in contact with the lower part of the building.

また、これら一対の連結板12、14の間には、円筒状に形成された積層体である外側積層体16が配置されている。この外側積層体16は、図2に示す中心部分に貫通穴18Aを有することでリング状に形成されるゴム製のゴムリング18と、円盤状に形成される金属製の金属板20とが、交互に複数枚ずつ配置されて円筒状の構造になっている。つまり、本実施の形態では、このゴムリング18が弾性変形し得る弾性板とされると共に、この金属板20が剛性を維持する為の硬質板とされている。   Further, an outer laminated body 16 that is a laminated body formed in a cylindrical shape is disposed between the pair of connecting plates 12 and 14. The outer laminated body 16 has a rubber ring 18 made of a ring by having a through hole 18A in the center portion shown in FIG. 2, and a metal plate 20 made of a metal formed in a disk shape. A plurality of sheets are alternately arranged to form a cylindrical structure. That is, in the present embodiment, the rubber ring 18 is an elastic plate that can be elastically deformed, and the metal plate 20 is a hard plate for maintaining rigidity.

一方、これら一対の連結板12、14は、外側積層体16の上下端にそれぞれ加硫接着されて取り付けられている。また、これら一対の連結板12、14の中心には、それぞれ円形の貫通穴12A、14Aが形成されており、これら一対の連結板12、14の外周側にはねじ止め用のボルト穴12B、14Bがそれぞれ形成されている。   On the other hand, the pair of connecting plates 12 and 14 are attached to the upper and lower ends of the outer laminate 16 by vulcanization bonding. In addition, circular through holes 12A and 14A are formed at the centers of the pair of connecting plates 12 and 14, respectively, and screw holes bolt holes 12B and 12B are provided on the outer peripheral sides of the pair of connecting plates 12 and 14, respectively. 14B is formed.

さらに、この外側積層体16の中心部分の金属板20で仕切られた各ゴムリング18内の各空間には、亜鉛−アルミニウム系合金とされる超塑性金属によって円筒状に形成された制振合金22がそれぞれ嵌まり込んでいる。これにより、外側積層体16内に直線的に一列に複数の制振合金22が並ぶように、各金属板20間に制振合金22がゴムリング18と並んでそれぞれ配置される構造になっている。   Furthermore, in each space in each rubber ring 18 partitioned by the metal plate 20 at the center of the outer laminate 16, a damping alloy formed in a cylindrical shape by a superplastic metal, which is a zinc-aluminum alloy. 22 is fitted in each. As a result, the damping alloy 22 is arranged alongside the rubber ring 18 between the metal plates 20 so that a plurality of damping alloys 22 are arranged in a straight line in the outer laminate 16. Yes.

但し、各ゴムリング18の貫通穴18Aに対応した金属板20の両面の部分には、凹部20Aがそれぞれ設けられていて、各制振合金22の両端部がそれぞれこの凹部20Aに嵌り込んで位置決めされている。以上より、本実施の形態に係る免震装置10では、弾性変形し得る外側積層体16の内部とされるゴムリング18内に、超塑性金属製の複数の制振合金22が、それぞれ配置された構造になっている。   However, the concave portions 20A are respectively provided on both sides of the metal plate 20 corresponding to the through holes 18A of the respective rubber rings 18, and both end portions of the respective damping alloys 22 are respectively fitted into the concave portions 20A for positioning. Has been. As described above, in the seismic isolation device 10 according to the present embodiment, a plurality of damping alloys 22 made of superplastic metal are respectively arranged in the rubber ring 18 that is the inside of the outer laminate 16 that can be elastically deformed. It has a structure.

次に、本実施の形態に係る免震装置10の作用を以下に説明する。
本実施の形態の免震装置10によれば、弾性を有したゴムリング18と剛性を有した金属板20とが交互に積層されて外側積層体16が円筒状に形成されている。また、それぞれ円筒状に形成された複数の制振合金22が、ゴムリング18と並んだ形で金属板20間にそれぞれ配置されることにより、これら複数の制振合金22がこの外側積層体16内に直線的に一列に並んで配置された構造とされている。
Next, the effect | action of the seismic isolation apparatus 10 which concerns on this Embodiment is demonstrated below.
According to the seismic isolation device 10 of the present embodiment, the outer laminated body 16 is formed in a cylindrical shape by alternately laminating the elastic rubber rings 18 and the rigid metal plates 20. In addition, a plurality of damping alloys 22 each formed in a cylindrical shape are arranged between the metal plates 20 in a line with the rubber ring 18, so that the plurality of damping alloys 22 are arranged on the outer laminate 16. The structure is arranged in a straight line inside.

従って、本実施の形態に係る免震装置10によれば、地震が生じた場合、相互に並列的に配置されてそれぞれ変形する外側積層体16のゴムリング18と複数の制振合金22との間の複合的な作用で地震の揺れを減衰して低減し、建築物側に地震の揺れが伝達され難くなる。   Therefore, according to the seismic isolation device 10 according to the present embodiment, when an earthquake occurs, the rubber ring 18 of the outer laminated body 16 and the plurality of damping alloys 22 that are arranged in parallel and deformed in parallel with each other, respectively. The combined action between the two will attenuate and reduce the earthquake vibration, making it difficult to transmit the earthquake vibration to the building.

つまり、本実施の形態では、地震が生じて地震による大きな水平方向Xの繰り返し変位が地震波として免震装置10に入力されるのに伴い、図3に示すように外側積層体16のゴムリング18及び複数の制振合金22がこの変位の入力に合わせて変形することで、地震の揺れを減衰して低減する。   That is, in the present embodiment, as the earthquake occurs and a large horizontal displacement X in the horizontal direction due to the earthquake is input to the seismic isolation device 10 as a seismic wave, as shown in FIG. In addition, the plurality of damping alloys 22 are deformed in accordance with the input of the displacement, so that the shaking of the earthquake is attenuated and reduced.

但し、繰り返しの変位を伴う大きな地震波の入力が免震装置10に加わっても、本実施の形態では、各金属板20間にゴムリング18と並んだ形で、複数の制振合金22がそれぞれ配置されて、制振合金22同士が金属板20により元々分離されていることから、積層板の内周面によって制振合金22が損傷せず、制振特性を十分に維持できるようになる。   However, even if a large seismic wave input with repetitive displacement is applied to the seismic isolation device 10, in this embodiment, the plurality of damping alloys 22 are arranged in parallel with the rubber rings 18 between the metal plates 20. Since the vibration damping alloys 22 are originally separated from each other by the metal plate 20, the vibration damping alloy 22 is not damaged by the inner peripheral surface of the laminated plate, and the vibration damping characteristics can be sufficiently maintained.

以上より、本実施の形態の免震装置10によれば、制振特性を十分に維持できるので、制振性能を十分且つ安定的に発揮して長期間にわたって地震の揺れを低減できるようになる。これに伴って、本実施の形態によれば、地震による揺れを長期間確実に減衰して建築物側に揺れが直接伝達されなくなる結果として、建築物の安全性が長期間にわたって向上する。   As described above, according to the seismic isolation device 10 of the present embodiment, the vibration damping characteristics can be sufficiently maintained, so that the vibration damping performance can be sufficiently and stably exhibited and the vibration of the earthquake can be reduced over a long period of time. . Along with this, according to the present embodiment, the safety of the building is improved over a long period of time as a result that the shaking due to the earthquake is reliably attenuated for a long time and the shaking is not directly transmitted to the building side.

他方、本実施の形態では、亜鉛−アルミニウム系合金とされる超塑性金属により、制振合金が形成されている。つまり、本実施の形態では、塑性変形量である破断するまでの伸び量が大きな超塑性金属の内でも、鉛材を含まない亜鉛−アルミニウム系合金を制振合金22として採用したことで、制振合金22として鉛材を用いずとも良好な制振特性が得られるようになる。この為、地震の際に、環境に負荷を与えずに従来の免震装置と同等以上の制振特性を有するようにもなった。   On the other hand, in the present embodiment, a damping alloy is formed of a superplastic metal that is a zinc-aluminum alloy. That is, in the present embodiment, a zinc-aluminum alloy that does not contain lead material is adopted as the damping alloy 22 even among superplastic metals that have a large amount of elongation until fracture, which is the amount of plastic deformation. Good vibration damping characteristics can be obtained without using a lead material as the vibration alloy 22. For this reason, in the event of an earthquake, it has come to have vibration control characteristics equivalent to or better than those of conventional seismic isolation devices without imposing a burden on the environment.

さらに、本実施の形態では、外側積層体16内に直線的に一列に並んで複数の制振合金22が配置されている為、免震装置10の製造に際して、複数のゴムリング18を相互に同一形状にできることになり、これに伴って作業性が高まることで、免震装置10の製造コストが低減されるようになる。   Furthermore, in the present embodiment, since the plurality of damping alloys 22 are arranged in a straight line in the outer laminated body 16, when the seismic isolation device 10 is manufactured, the plurality of rubber rings 18 are mutually connected. Since the same shape can be obtained, and the workability is improved accordingly, the manufacturing cost of the seismic isolation device 10 is reduced.

また、本実施の形態では、ゴムリング18と並んだ形で金属板20間にそれぞれ配置される複数の制振合金22が、円筒状に形成された外側積層体16の内部に同じく円筒状に形成されて配置される形とされている為、いずれの方向から免震装置10に揺れが加わった場合であっても、免震装置10の制振特性に変化が無く、地震の揺れを一層確実に減衰して低減できるようになる。他方、円筒状の外側積層体16内に制振合金22が配置されることから、本実施の形態によれば、免震装置10の省スペース化にも寄与することになる。   In the present embodiment, a plurality of damping alloys 22 respectively arranged between the metal plates 20 in a line with the rubber ring 18 are also cylindrical in the outer laminated body 16 formed in a cylindrical shape. Since it is formed and arranged, even if a vibration is applied to the seismic isolation device 10 from any direction, there is no change in the damping characteristics of the seismic isolation device 10 and the seismic vibration is further increased. It becomes possible to attenuate and reduce reliably. On the other hand, since the damping alloy 22 is disposed in the cylindrical outer laminate 16, according to the present embodiment, it contributes to space saving of the seismic isolation device 10.

次に、本発明に係る免震装置の第2の実施の形態を図4に基づき説明する。尚、第1の実施の形態で説明した部材と同一の部材には同一の符号を付して、重複した説明を省略する。
本実施の形態では第1の実施の形態と同様に、外側積層体16がゴムリング18と金属板20とを交互に積層して形成され、このゴムリング18と並んだ形で金属板20間に制振合金22がそれぞれ配置されることで、複数の制振合金22が外側積層体16内に直線的に並んで配置されている。
Next, a second embodiment of the seismic isolation device according to the present invention will be described with reference to FIG. In addition, the same code | symbol is attached | subjected to the member same as the member demonstrated in 1st Embodiment, and the duplicate description is abbreviate | omitted.
In the present embodiment, as in the first embodiment, the outer laminated body 16 is formed by alternately laminating rubber rings 18 and metal plates 20, and the metal plates 20 are arranged side by side with the rubber rings 18. The vibration damping alloys 22 are respectively disposed in the outer laminated body 16 so that the plurality of vibration damping alloys 22 are linearly arranged in the outer laminated body 16.

但し、制振合金22が単に一列のみ並んでいるだけでなく、本実施の形態では図4に示すように、この制振合金22が外側積層体16内の同一面上に複数配置される形で、制振合金22が複数列並んで配置された構造とされている。   However, the damping alloys 22 are not only arranged in a single row, but in the present embodiment, as shown in FIG. 4, a plurality of damping alloys 22 are arranged on the same surface in the outer laminate 16. Thus, the damping alloy 22 is arranged in a plurality of rows.

以上より、本実施の形態では、第1の実施の形態と同様な作用を奏するだけでなく、制振合金22が外側積層体16内の同一面上に複数配置されることで、外側積層体16内に直線的に複数列並んで複数の制振合金22がそれぞれ配置されている。この為、免震装置10の製造に際して、複数のゴムリング18を相互に同一形状にできることになって、作業性が高まり免震装置10の製造コストが低減されるだけでなく、複数列存在する制振合金22により地震の揺れを減衰する機能が高まり、建築物側に地震の揺れがより確実に伝達され難くなる。   As described above, in the present embodiment, not only the same effect as in the first embodiment is exhibited, but also the outer laminated body is obtained by arranging a plurality of damping alloys 22 on the same surface in the outer laminated body 16. A plurality of vibration damping alloys 22 are arranged in a plurality of lines in a straight line in 16. For this reason, when manufacturing the seismic isolation device 10, the plurality of rubber rings 18 can have the same shape as each other, not only the workability is increased and the manufacturing cost of the seismic isolation device 10 is reduced, but there are also a plurality of rows. The damping alloy 22 enhances the function of attenuating earthquake vibrations, making it difficult to reliably transmit earthquake vibrations to the building side.

尚、上記各実施の形態では、制振合金用の金属材料として亜鉛−アルミニウム系合金(Zn−22%Al(共析))による超塑性金属を採用したが、アルミニウム−銅系合金(Al−33%Cu(共晶))による超塑性金属を採用しても良く、また、他の種類の超塑性金属を制振合金として採用しても良い。   In each of the above embodiments, a superplastic metal made of a zinc-aluminum alloy (Zn-22% Al (eutectoid)) is used as the metal material for the damping alloy, but an aluminum-copper alloy (Al-- 33% Cu (eutectic)) superplastic metal may be employed, and other types of superplastic metal may be employed as the damping alloy.

一方、上記各実施の形態では、制振合金用の金属材料として超塑性金属を採用したが、制振合金用の金属材料として双晶の金属材料を採用することとしても良い。つまり、双晶の金属材料により制振合金が形成されるのに伴い、引張力や剪断力が加わった際に、ばね定数が低くなると共に減衰係数が高くなり、従来の制振合金と同等以上の大きな制振特性を有するようになる。この為、地震の際に、環境に負荷を与えずに従来の免震装置と同等以上の制振特性を有するようにもなる。   On the other hand, in each of the above embodiments, a superplastic metal is adopted as the metal material for the damping alloy, but a twinned metal material may be adopted as the metal material for the damping alloy. In other words, when a damping alloy is formed of twinned metal materials, when a tensile force or shear force is applied, the spring constant decreases and the damping coefficient increases, which is equal to or higher than that of conventional damping alloys. It has a great vibration damping characteristic. For this reason, in the event of an earthquake, it has vibration control characteristics equivalent to or higher than those of conventional seismic isolation devices without imposing a load on the environment.

さらに、双晶の金属材料として、例えば、Cu−Al−Mn合金、Mg−Zr合金、Mn−Cu合金、Mn−Cu−Ni−Fe合金、Cu−Al−Ni合金、Ti−Ni合金、Al−Zn合金、Cu−Zn−Al合金、Mg合金、Cu−Al−Co合金、Cu−Al−Mn−Ni合金、Cu−Al−Mn−Co合金、Cu−Si合金、Fe−Mn−Si合金、Fe−Ni−Co−Ti合金、Fe−Ni−C合金、Fe−Cr−Ni−Mn−Si−Co合金、Ni−Al合金、SUS304の内の何れかを採用することが考えられる。   Further, as twinned metal materials, for example, Cu-Al-Mn alloy, Mg-Zr alloy, Mn-Cu alloy, Mn-Cu-Ni-Fe alloy, Cu-Al-Ni alloy, Ti-Ni alloy, Al -Zn alloy, Cu-Zn-Al alloy, Mg alloy, Cu-Al-Co alloy, Cu-Al-Mn-Ni alloy, Cu-Al-Mn-Co alloy, Cu-Si alloy, Fe-Mn-Si alloy It is conceivable to employ any one of Fe-Ni-Co-Ti alloy, Fe-Ni-C alloy, Fe-Cr-Ni-Mn-Si-Co alloy, Ni-Al alloy, and SUS304.

つまり、これらの金属の内の何れかが、制振合金を形成する為の双晶の金属材料として採用されることで、環境に負荷を与えずに従来と同等以上の制振特性を有する制振合金がより確実に得られるようになる。   In other words, any one of these metals is adopted as a twinned metal material for forming a damping alloy, so that it has a damping characteristic equal to or higher than that of the conventional one without giving a load to the environment. A vibration alloy can be obtained more reliably.

例えば、Mn−Cu合金、Mn−Cu−Ni−Fe合金等のマンガン系の合金を使用した場合、800℃〜930℃の温度で0.5時間から2時間程度の時間保持して、10時間から20時間程度の時間をかけて徐冷することで、双晶の金属材料が得られる。   For example, when a manganese-based alloy such as an Mn—Cu alloy or an Mn—Cu—Ni—Fe alloy is used, it is held at a temperature of 800 ° C. to 930 ° C. for about 0.5 to 2 hours for 10 hours. And then slowly cooling for about 20 hours to obtain a twinned metal material.

また、Cu−Al−Mn合金、Cu−Al−Ni合金、Cu−Zn−Al合金、Cu−Al−Co合金、Cu−Al−Mn−Ni合金、Cu−Al−Mn−Co合金、Cu−Si合金等の銅系の合金を使用した場合、約900℃の温度で5分から1時間程度の時間保持し、急冷した後、約200℃の温度に再加熱して15分から30分程度の時間保持することで、双晶の金属材料が得られる。   Also, Cu-Al-Mn alloy, Cu-Al-Ni alloy, Cu-Zn-Al alloy, Cu-Al-Co alloy, Cu-Al-Mn-Ni alloy, Cu-Al-Mn-Co alloy, Cu- When using a copper-based alloy such as Si alloy, hold at a temperature of about 900 ° C. for about 5 minutes to 1 hour, rapidly cool, then reheat to a temperature of about 200 ° C. for about 15 to 30 minutes By holding, a twinned metal material can be obtained.

次に、双晶とすることによる制振合金の変形のメカニズムを以下に説明する。
図5(A)に示す金属の原子が均一に整列したマルテンサイト相に横方向から応力を加えることで、図5(B)に示すように変形が始まる。さらに、応力が加わり続けると図5(C)に示すような形に変形する。そして、この図5(C)に示す状態では寸法Sの変形量が生じたことになる。
Next, the deformation mechanism of the damping alloy by using twins will be described below.
By applying stress from the lateral direction to the martensite phase in which the metal atoms shown in FIG. 5 (A) are uniformly aligned, deformation starts as shown in FIG. 5 (B). Further, when the stress continues to be applied, the shape is deformed as shown in FIG. In the state shown in FIG. 5C, the deformation amount of the dimension S is generated.

これに対して、図6(A)に示す一般的な金属では原子が均一に整列しているものの、横方向から応力を加えた場合、図6(B)に示すように原子の配列にずれが生じて、欠陥が発生する。つまり、一般的な金属において原子の配列にずれが生じると、塑性変形することになるので、図6(B)に示す状態に一旦成ると、図6(A)に示す状態に戻ることはない。   In contrast, in the general metal shown in FIG. 6A, the atoms are uniformly aligned, but when stress is applied from the lateral direction, the atoms are not aligned as shown in FIG. 6B. Occurs and a defect occurs. That is, when a deviation occurs in the arrangement of atoms in a general metal, plastic deformation occurs. Therefore, once the state shown in FIG. 6B is reached, the state shown in FIG. 6A is not restored. .

以上より、一般的な金属と異なり、双晶の金属材料では、比較的小さな応力で変形が開始するものの、図5(C)に示す状態まで変形しても塑性変形することが無いので、応力を逆にかければ図5(A)に示す状態に戻るようになる。更に、双晶の金属材料の断面積を小さくして全体へかかる応力が低い段階から変形が発生するようにすることで、全体へかかる応力歪み曲線におけるヒステリシスのばね定数が上昇しないようになる。   As described above, unlike a general metal, a twinned metal material starts deformation with a relatively small stress, but does not undergo plastic deformation even when deformed to the state shown in FIG. If the reverse is applied, the state returns to the state shown in FIG. Furthermore, by reducing the cross-sectional area of the twin metal material so that the deformation is generated from the stage where the stress applied to the whole is low, the spring constant of hysteresis in the stress strain curve applied to the entire is not increased.

尚、上記各実施の形態では、制振合金として超塑性金属や双晶の金属材料を採用したが、これら以外の一般的な他の金属材料を採用しても良い。他方、上記各実施の形態では、免震装置の制振合金に対応する部分の断面積に対し、制振合金の断面積の割合を約20%程度とすることが、相互に並列的に配置されてそれぞれ変形する弾性板と制振合金との間の複合的な作用で最も地震の揺れを低減できるので、この割合を約20%程度とすることが考えられる。   In each of the above embodiments, a superplastic metal or twinned metal material is used as the damping alloy, but other general metal materials other than these may be used. On the other hand, in each of the above embodiments, the ratio of the cross-sectional area of the damping alloy to about 20% with respect to the cross-sectional area of the portion corresponding to the damping alloy of the seismic isolation device is arranged in parallel with each other. Since the seismic vibration can be reduced most by the combined action between the elastic plate and the damping alloy that are deformed, it is conceivable that this ratio is set to about 20%.

本発明の第1の実施の形態に係る免震装置の一部破断した斜視図である。It is the perspective view which fractured | ruptured partially the seismic isolation apparatus which concerns on the 1st Embodiment of this invention. 本発明の第1の実施の形態に係る免震装置の要部拡大断面図である。It is a principal part expanded sectional view of the seismic isolation apparatus which concerns on the 1st Embodiment of this invention. 本発明の第1の実施の形態に係る免震装置の要部拡大断面図であって、水平方向の変位が入力された状態を示す図である。It is a principal part expanded sectional view of the seismic isolation apparatus which concerns on the 1st Embodiment of this invention, Comprising: It is a figure which shows the state into which the horizontal displacement was input. 本発明の第2の実施の形態に係る免震装置を一部破断すると共に上側の連結板を取り除いた状態の斜視図である。It is a perspective view of the state where a seismic isolation device concerning a 2nd embodiment of the present invention was partially fractured, and an upper connecting plate was removed. 本発明の実施の形態に係る制振合金の原子配列を表す説明図であって、(A)はマルテンサイト相を表す図であり、(B)はマルテンサイト相に変形が始まった状態を表す図であり、(C)はマルテンサイト相の変形が終わった状態を表す図である。It is explanatory drawing showing the atomic arrangement | sequence of the damping alloy which concerns on embodiment of this invention, Comprising: (A) is a figure showing a martensitic phase, (B) represents the state which the deformation | transformation started in the martensitic phase. It is a figure and (C) is a figure showing the state which the deformation | transformation of the martensite phase was finished. 一般的な金属の原子配列を表す説明図であって、(A)は原子が均一に整列した状態を表す図であり、(B)は原子の配列の一部にずれが生じた状態を表す図である。It is explanatory drawing showing the atomic arrangement | sequence of a general metal, Comprising: (A) is a figure showing the state in which the atom was arranged uniformly, (B) represents the state which the shift | offset | difference produced in a part of arrangement | sequence of an atom. FIG. 従来技術に係る免震装置の一部破断した斜視図である。It is the partially broken perspective view of the seismic isolation apparatus which concerns on a prior art.

符号の説明Explanation of symbols

10 免震装置
16 外側積層体(積層体)
18 ゴムリング(弾性板)
20 金属板(硬質板)
22 制振合金
10 Seismic isolation device 16 Outer laminate (laminate)
18 Rubber ring (elastic plate)
20 Metal plate (hard plate)
22 Damping alloy

Claims (8)

弾性を有した弾性板と剛性を有した硬質板とが交互に積層された形の積層体と、
弾性板と並んだ形で硬質板間にそれぞれ配置される複数の制振合金と、
を有することを特徴とする免震装置。
A laminate in which elastic plates having elasticity and rigid plates having rigidity are alternately laminated;
A plurality of damping alloys respectively arranged between the hard plates in line with the elastic plates;
A seismic isolation device characterized by comprising:
制振合金が、超塑性金属により形成されることを特徴とする請求項1記載の免震装置。   The seismic isolation device according to claim 1, wherein the damping alloy is made of a superplastic metal. 超塑性金属が、亜鉛−アルミニウム系合金とされることを特徴とする請求項2記載の免震装置。   The seismic isolation device according to claim 2, wherein the superplastic metal is a zinc-aluminum alloy. 制振合金が、双晶の金属材料で形成されることを特徴とする請求項1記載の免震装置。   The seismic isolation device according to claim 1, wherein the damping alloy is made of a twinned metal material. Cu−Al−Mn合金、Mg−Zr合金、Mn−Cu合金、Mn−Cu−Ni−Fe合金、Cu−Al−Ni合金、Ti−Ni合金、Al−Zn合金、Cu−Zn−Al合金、Mg合金、Cu−Al−Co合金、Cu−Al−Mn−Ni合金、Cu−Al−Mn−Co合金、Cu−Si合金、Fe−Mn−Si合金、Fe−Ni−Co−Ti合金、Fe−Ni−C合金、Fe−Cr−Ni−Mn−Si−Co合金、Ni−Al合金、SUS304の内の何れかを双晶の金属材料として使用したことを特徴とする請求項4記載の免震装置。   Cu-Al-Mn alloy, Mg-Zr alloy, Mn-Cu alloy, Mn-Cu-Ni-Fe alloy, Cu-Al-Ni alloy, Ti-Ni alloy, Al-Zn alloy, Cu-Zn-Al alloy, Mg alloy, Cu-Al-Co alloy, Cu-Al-Mn-Ni alloy, Cu-Al-Mn-Co alloy, Cu-Si alloy, Fe-Mn-Si alloy, Fe-Ni-Co-Ti alloy, Fe 5. An exemption according to claim 4, wherein any one of -Ni-C alloy, Fe-Cr-Ni-Mn-Si-Co alloy, Ni-Al alloy and SUS304 is used as a twinned metal material. Seismic device. 複数の制振合金が、積層体内に直線的に一列に並んで配置されることを特徴とする請求項1記載の免震装置。   The seismic isolation device according to claim 1, wherein the plurality of damping alloys are arranged in a straight line in the laminated body. 制振合金が、積層体内の同一面上に複数配置されることを特徴とする請求項1記載の免震装置。   The seismic isolation device according to claim 1, wherein a plurality of damping alloys are arranged on the same surface in the laminate. 積層体及び複数の制振合金がそれぞれ円筒状に形成され、積層体の内部にこれら複数の制振合金が配置されていることを特徴とする請求項1記載の免震装置。
2. The seismic isolation device according to claim 1, wherein the laminated body and the plurality of damping alloys are each formed in a cylindrical shape, and the plurality of damping alloys are arranged inside the laminated body.
JP2005335228A 2005-11-21 2005-11-21 Seismic isolation device Withdrawn JP2007139108A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005335228A JP2007139108A (en) 2005-11-21 2005-11-21 Seismic isolation device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005335228A JP2007139108A (en) 2005-11-21 2005-11-21 Seismic isolation device

Publications (1)

Publication Number Publication Date
JP2007139108A true JP2007139108A (en) 2007-06-07

Family

ID=38202233

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005335228A Withdrawn JP2007139108A (en) 2005-11-21 2005-11-21 Seismic isolation device

Country Status (1)

Country Link
JP (1) JP2007139108A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110159691A (en) * 2019-06-05 2019-08-23 西北工业大学 A kind of big damping isolator of complex stiffness
JP7468126B2 (en) 2020-05-08 2024-04-16 富士電機株式会社 Semiconductor Device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110159691A (en) * 2019-06-05 2019-08-23 西北工业大学 A kind of big damping isolator of complex stiffness
CN110159691B (en) * 2019-06-05 2020-12-08 西北工业大学 Composite rigidity large damping vibration isolator
JP7468126B2 (en) 2020-05-08 2024-04-16 富士電機株式会社 Semiconductor Device

Similar Documents

Publication Publication Date Title
JP2006207637A (en) Base isolation device
JP2007120205A (en) Seismic isolator
DK1994324T3 (en) Højpassivt subdued vibrationsisoleringsbeslag low profile and multiple axes
EP3443600A1 (en) Displacement connectors of high bending stiffness and piezoelectric actuators made of such
JP2007139108A (en) Seismic isolation device
EP2959179A1 (en) Partitioned elastomeric journal bearing assemblies, systems and methods
JP2006275212A (en) Energy absorbing device
JP2006029398A (en) Damping alloy and base isolation device
EP3312097B1 (en) Light passive attenuator for spacecraft
JP2006329284A (en) Vibration-absorbing device
JP2006207616A (en) Base isolation device
JP2007113771A (en) Base isolation device and method of manufacturing base isolation device
JP4594183B2 (en) Laminated support
JP2006161948A (en) Base isolation device
JP2007046722A (en) Damping device, damping structure building, seismic isolator, and multi-span damping structure
JP5030445B2 (en) Seismic isolation device
JP2007132499A (en) Base isolation device
JP2006233262A (en) Damping alloy and seismic isolation device
WO2010074229A1 (en) Hysteretic damper
JP4581832B2 (en) Composite viscoelastic damper
JP3503712B2 (en) Lead encapsulated laminated rubber
JP2017203297A (en) Base-isolation construction and method of designing base-isolation construction
US20230407937A1 (en) Methods and devices for absorbing energy
JP4604828B2 (en) Seismic isolation rubber laminate
JP2010180936A (en) Layer structure object for damping device

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20071203

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20071206

A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20090203