JP2006161948A - Base isolation device - Google Patents

Base isolation device Download PDF

Info

Publication number
JP2006161948A
JP2006161948A JP2004353888A JP2004353888A JP2006161948A JP 2006161948 A JP2006161948 A JP 2006161948A JP 2004353888 A JP2004353888 A JP 2004353888A JP 2004353888 A JP2004353888 A JP 2004353888A JP 2006161948 A JP2006161948 A JP 2006161948A
Authority
JP
Japan
Prior art keywords
coil spring
alloy
laminated body
seismic isolation
isolation device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004353888A
Other languages
Japanese (ja)
Inventor
Masami Kikuchi
正美 菊池
Takahisa Shizuku
雫  孝久
Katsuhiro Kobayashi
克宏 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Bridgestone Corp
Original Assignee
Bridgestone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bridgestone Corp filed Critical Bridgestone Corp
Priority to JP2004353888A priority Critical patent/JP2006161948A/en
Priority to US11/294,438 priority patent/US7565774B2/en
Priority to IT000859A priority patent/ITTO20050859A1/en
Publication of JP2006161948A publication Critical patent/JP2006161948A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Buildings Adapted To Withstand Abnormal External Influences (AREA)
  • Vibration Prevention Devices (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a base isolation device having vibration damping property equal to or higher than a conventional one without applying load to environment. <P>SOLUTION: In the center of an outside laminate 16 which consists of elastically deformable rubber rings 18 and metal rings 20 for maintaining rigidity, alternately arranged in numbers, a cylindrical hollow portion 24 exists in which a spirally formed coil spring 22 is fitted. On the inner periphery side of the coil spring 22, an inside laminate 26 is arranged which consists of elastically deformable rubber plates 28 and metal plates 30 for maintaining rigidity, alternately arranged in numbers. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、環境に負荷を与えずに従来と同等以上の制振特性を有する免震装置に関する。   The present invention relates to a seismic isolation device having vibration control characteristics equal to or higher than those of conventional ones without giving a load to the environment.

従来より、地震の揺れを低減する為に、建築物とこの建築物を支持する地盤との間に配置される免震装置が知られている。そして、この免震装置には、弾性体とされるゴム体だけでなく、揺れに伴う振動を抑える為の制振合金が内蔵されていて、これらの部材の複合的な作用で地震の揺れを低減し、建築物側に地震の揺れを伝達し難くしていた。   2. Description of the Related Art Conventionally, seismic isolation devices are known that are arranged between a building and the ground that supports the building in order to reduce earthquake shaking. This seismic isolation device incorporates not only a rubber body, which is an elastic body, but also a damping alloy that suppresses vibrations caused by vibrations. It was reduced and it was difficult to transmit the shaking of the earthquake to the building side.

しかし、従来の免震装置の制振合金として、制振特性の面から一般に鉛材が使用されていたが、環境面への配慮が近年重要視されるのに伴い、他の材料に置き換えることが検討されるようになった。   However, lead materials are generally used as damping alloys for conventional seismic isolation devices from the standpoint of damping characteristics. However, as environmental considerations have become increasingly important in recent years, they should be replaced with other materials. Began to be considered.

この為、鉛材による制振合金の替わりに、例えば双晶合金を加工してコイルバネとしたものをゴム体に内蔵した免振装置も考えられるようになった。但し、単に双晶合金のコイルバネを用いただけの免振装置では、水平方向の変位を免震装置に与えた場合、初回の変位において、中のコイルバネ122が図5(B)に示すように両端部付近で曲がって変位X方向に沿って潰れてしまう結果、安定した制振性能を維持できず、十分な制振効果が得られなかった。   For this reason, instead of the damping alloy made of lead material, for example, a vibration isolator in which a twin spring alloy is processed into a coil spring and incorporated in a rubber body has come to be considered. However, in a vibration isolator that uses only a twin alloy coil spring, when a horizontal displacement is applied to the seismic isolator, the coil spring 122 in the first displacement has both ends as shown in FIG. As a result of bending in the vicinity of the portion and being crushed along the displacement X direction, stable vibration damping performance could not be maintained, and sufficient vibration damping effect could not be obtained.

これに伴い、十分な制振効果が得られるように、コイルバネ内に樹脂材料を充填した構造の免振装置や、特許文献1とされる下記の特開平11−270621公報の免振装置が考えられるようになった。
特開平11−270621公報
Accordingly, a vibration isolator having a structure in which a coil spring is filled with a resin material and a vibration isolator disclosed in Japanese Patent Application Laid-Open No. 11-270621 described below are considered so as to obtain a sufficient vibration damping effect. It came to be able to.
JP-A-11-270621

以上より、免震装置に採用される制振合金として、環境に負荷を与えずに従来の制振合金と同等以上の制振特性を有するものを開発する必要が生じていた。しかし、コイルバネ内に樹脂材料を充填した免振装置や特許文献1の免振装置であっても、制振合金の替わりに用いられるコイルバネが変位に十分に追従できなかった。従って、ゴム体内で回転力が発生してコイルバネが潰れてしまうのに伴って、特に変位限界点での発生力が大きくなってしまう結果、やはり十分な制振性が得られなかった。
本発明は上記事実を考慮し、環境に負荷を与えずに従来と同等以上の制振特性を有する免震装置を提供することが目的である。
From the above, it has become necessary to develop a damping alloy used in a seismic isolation device that has a damping characteristic equal to or higher than that of a conventional damping alloy without imposing a load on the environment. However, even with the vibration isolator in which the coil spring is filled with a resin material or the vibration isolator of Patent Document 1, the coil spring used in place of the damping alloy cannot sufficiently follow the displacement. Therefore, as the rotational force is generated in the rubber body and the coil spring is crushed, the generated force is increased particularly at the displacement limit point. As a result, sufficient damping performance cannot be obtained.
An object of the present invention is to provide a seismic isolation device having a vibration control characteristic equal to or higher than that of the conventional one without giving a load to the environment in consideration of the above facts.

請求項1に係る免震装置は、弾性を有してリング状に形成される第1弾性板と剛性を有してリング状に形成される第1硬質板とが交互に積層された形の外側積層体と、
外側積層体内に配置された金属製のコイルバネと、
弾性を有して円板状に形成される第2弾性板と剛性を有して円板状に形成される第2硬質板とが交互に積層された形とされ且つ、コイルバネの内周側に配置された内側積層体と、
を有したことを特徴とする。
The seismic isolation device according to claim 1 has a shape in which first elastic plates having elasticity and formed in a ring shape and first hard plates having rigidity and a ring shape are alternately stacked. An outer laminate,
A metal coil spring disposed in the outer laminate;
The second elastic plate having elasticity and a second elastic plate formed in a disk shape and the second hard plate having rigidity and a disk shape are alternately laminated, and the inner peripheral side of the coil spring An inner laminate disposed in
It is characterized by having.

請求項1に係る免震装置の作用を以下に説明する。
本請求項の免震装置によれば、弾性を有してリング状に形成される第1弾性板と剛性を有してリング状に形成される第1硬質板とが交互に積層された形の外側積層体内に、金属製のコイルバネが配置された構造とされている。また、弾性を有して円板状に形成される第2弾性板と剛性を有して円板状に形成される第2硬質板とが交互に積層された形の内側積層体が、このコイルバネの内周側に配置された構造ともされている。
The operation of the seismic isolation device according to claim 1 will be described below.
According to the seismic isolation device of this claim, the first elastic plate formed in a ring shape with elasticity and the first hard plate formed in a ring shape with rigidity are alternately stacked. It is set as the structure by which the metal coil springs are arrange | positioned in the outer side laminated body. Further, an inner laminated body having a shape in which a second elastic plate having elasticity and formed in a disk shape and a second hard plate having rigidity and formed in a disk shape are alternately laminated. The structure is also arranged on the inner peripheral side of the coil spring.

従って、本請求項では、変位の入力に合わせて確実に変形するようにコイルバネを採用しているが、このコイルバネの内側に支持材として内側積層体を挿入したものを制振合金の替わりとする形で、これらコイルバネ及び内側積層体を内蔵していることになる。これに伴い、免震装置に変位が入力された際のコイルバネの変形を内側積層体が抑制するので、大きな水平方向の変位が加わってもコイルバネが潰れることがなくなり、繰り返し変位後でも安定した制振性能を発揮して制振性を安定的に保つことができる。   Therefore, in this claim, the coil spring is employed so as to be surely deformed in accordance with the input of the displacement. However, a structure in which an inner laminated body is inserted as a support material inside the coil spring is used as a substitute for the damping alloy. In form, these coil springs and the inner laminate are built in. Along with this, the inner laminated body suppresses the deformation of the coil spring when a displacement is input to the seismic isolation device, so that the coil spring will not be crushed even if a large horizontal displacement is applied, and stable control is possible even after repeated displacement. The vibration control performance can be demonstrated and the vibration control performance can be kept stable.

この結果、本請求項に係る免震装置によれば、地震が生じた場合でも、コイルバネと並列的に配置されて弾性変形するゴム体である外側積層体とこのコイルバネとの間の複合的な作用で確実に地震の揺れを低減し、建築物側に地震の揺れが伝達され難くなる。この一方、本請求項の免震装置は、第2硬質板と第2弾性板とが積層されて形成された内側積層体をコイルバネの内周側に配置したことで、鉛材を用いずとも上記のような制振特性を得られるようになる為、環境に負荷を与えることもなくなる。   As a result, according to the seismic isolation device according to the present claim, even when an earthquake occurs, the composite between the outer laminated body, which is a rubber body that is arranged in parallel with the coil spring and elastically deforms, and the coil spring is combined. The action surely reduces the shaking of the earthquake and makes it difficult to transmit the shaking of the earthquake to the building side. On the other hand, the seismic isolation device according to the present invention arranges the inner laminated body formed by laminating the second hard plate and the second elastic plate on the inner peripheral side of the coil spring without using a lead material. Since the vibration damping characteristics as described above can be obtained, there is no load on the environment.

以上より、本請求項に係る免震装置は、コイルバネの内側に支持材として内側積層体を配置したことで、環境に負荷を与えずに従来の免震装置と同等以上の制振特性を有するようになった。   As described above, the seismic isolation device according to the present invention has a vibration damping characteristic equal to or higher than that of the conventional seismic isolation device without placing a load on the environment by arranging the inner laminated body as a support material inside the coil spring. It became so.

請求項2に係る免震装置の作用を以下に説明する。
本請求項では請求項1と同様の構成を有して同様に作用するが、さらに、コイルバネが双晶の金属材料で形成されたという構成を有している。つまり、本請求項では、弾性変形可能な螺旋状のコイルバネが双晶の金属材料により形成されるのに伴い、このコイルバネを構成する双晶の金属材料に予歪みが与えられることになるので、単純な双晶の合金と比較して、引張力や剪断力が加わった際に、バネ定数が低くなると共に減衰係数が高くなり、従来の制振合金と同等以上の大きな制振特性を有するようになる。
The operation of the seismic isolation device according to claim 2 will be described below.
The present invention has the same configuration as that of the first embodiment and operates in the same manner, but further has a configuration in which the coil spring is formed of a twinned metal material. That is, in this claim, as the helically deformable helical coil spring is formed of a twin metal material, a pre-strain is given to the twin metal material constituting the coil spring. Compared with a simple twin alloy, when a tensile force or shear force is applied, the spring constant decreases and the damping coefficient increases, so that it has a large damping characteristic equivalent to or better than that of a conventional damping alloy. become.

請求項3に係る免震装置の作用を以下に説明する。
本請求項では請求項2と同様の構成を有して同様に作用するが、さらに、Cu−Al−Mn合金、Mg−Zr合金、Mn−Cu合金、Mn−Cu−Ni−Fe合金、Cu−Al−Ni合金、Ti−Ni合金、Al−Zn合金、Cu−Zn−Al合金、Mg合金、Cu−Al−Co合金、Cu−Al−Mn−Ni合金、Cu−Al−Mn−Co合金、Cu−Si合金、Fe−Mn−Si合金、Fe−Ni−Co−Ti合金、Fe−Ni−C合金、Fe−Cr−Ni−Mn−Si−Co合金、Ni−Al合金、SUS304の内の何れかを双晶の金属材料として使用するという構成を有している。
The effect | action of the seismic isolation apparatus which concerns on Claim 3 is demonstrated below.
In this claim, it has the same configuration as in claim 2 and acts in the same way, but further, Cu—Al—Mn alloy, Mg—Zr alloy, Mn—Cu alloy, Mn—Cu—Ni—Fe alloy, Cu -Al-Ni alloy, Ti-Ni alloy, Al-Zn alloy, Cu-Zn-Al alloy, Mg alloy, Cu-Al-Co alloy, Cu-Al-Mn-Ni alloy, Cu-Al-Mn-Co alloy , Cu-Si alloy, Fe-Mn-Si alloy, Fe-Ni-Co-Ti alloy, Fe-Ni-C alloy, Fe-Cr-Ni-Mn-Si-Co alloy, Ni-Al alloy, SUS304 Any one of the above is used as a twinned metal material.

つまり、これらの金属の内の何れかをコイルバネを形成する為の双晶の金属材料として使用することで、環境に負荷を与えずに従来と同等以上の制振特性を有するコイルバネがより確実に得られるようになる。   In other words, by using any one of these metals as a twinned metal material for forming a coil spring, a coil spring having a vibration damping characteristic equal to or higher than that of the conventional one can be more reliably obtained without giving a load to the environment. It will be obtained.

請求項4に係る免震装置の作用を以下に説明する。
本請求項では請求項1と同様の構成を有して同様に作用するが、さらに、外側積層体の内周面が、コイルバネの形状に沿った形に形成されたという構成を有している。つまり、コイルバネを単に外側積層体内に設置しただけでは、外側積層体の内周面から十分な拘束が得られない虞がある為、コイルバネが十分に変形せずに制振効果が小さくなることが考えられる。
The effect | action of the seismic isolation apparatus which concerns on Claim 4 is demonstrated below.
The present invention has the same configuration as that of the first embodiment and operates in the same manner, but further has a configuration in which the inner peripheral surface of the outer laminated body is formed in a shape along the shape of the coil spring. . In other words, if the coil spring is simply installed in the outer laminated body, there is a possibility that sufficient restraint may not be obtained from the inner peripheral surface of the outer laminated body, so that the coil spring is not sufficiently deformed and the damping effect is reduced. Conceivable.

これに対して、本請求項のように外側積層体の内周面をコイルバネの形状に沿った形の連続した凹凸状に形成してコイルバネの変形を最適化することで、コイルバネが潰れずに歪みが効果的にコイルバネに発生するようになる。尚、外側積層体の内周面は、コイルバネの形状に沿って螺旋構造にすることが好ましい。   On the other hand, by forming the inner peripheral surface of the outer laminated body in a continuous uneven shape along the shape of the coil spring as in the present claim and optimizing the deformation of the coil spring, the coil spring is not crushed. Distortion is effectively generated in the coil spring. In addition, it is preferable that the internal peripheral surface of an outer side laminated body is made into a spiral structure along the shape of a coil spring.

請求項5に係る免震装置の作用を以下に説明する。
本請求項では請求項1と同様の構成を有して同様に作用するが、さらに、コイルバネの両端部分が、外側積層体の両端部分に固定具を用いて固定されたという構成を有している。
The operation of the seismic isolation device according to claim 5 will be described below.
The present invention has the same configuration as that of the first embodiment and operates in the same manner, but further has a configuration in which both end portions of the coil spring are fixed to both end portions of the outer laminate using a fixing tool. Yes.

つまり、鉛材に替えて本請求項ではコイルバネが採用されているが、単にコイルバネを外側積層体内に挿入するだけでは、免震装置に大変位が加わった場合、コイルバネの端部とこの端部に対向する免震装置の部分との間に大きな隙間ができる結果、コイルバネが免震装置の変位に追従できず、応力歪み曲線のヒステリシスが充分な大きさにならないことが考えられる。   That is, the coil spring is adopted in this claim instead of the lead material. However, when a large displacement is applied to the seismic isolation device simply by inserting the coil spring into the outer laminated body, the end of the coil spring and this end As a result, a large gap is formed between the part and the part of the seismic isolation device facing the coil spring. As a result, the coil spring cannot follow the displacement of the seismic isolation apparatus, and the hysteresis of the stress strain curve does not become sufficiently large.

従って、コイルバネの両端部分を外側積層体の両端部分に固定具によって固定することで、コイルバネの端部を機械的に拘束して、免震装置の変位にコイルバネを追従させるようにした。   Therefore, the both ends of the coil spring are fixed to the both ends of the outer laminated body by a fixture, so that the end of the coil spring is mechanically restrained so that the coil spring follows the displacement of the seismic isolation device.

請求項6に係る免震装置の作用を以下に説明する。
本請求項では請求項1と同様の構成を有して同様に作用するが、さらに、内側積層体の外周面が、コイルバネの内周側形状に沿った形に形成されたという構成を有している。
The operation of the seismic isolation device according to claim 6 will be described below.
The present invention has the same configuration as that of the first embodiment and operates in the same manner, but further has a configuration in which the outer peripheral surface of the inner laminated body is formed in a shape along the inner peripheral side shape of the coil spring. ing.

つまり、内側積層体をコイルバネ内に単に設置しただけでは、内側積層体の外周面から十分な拘束が得られない虞がある。この為、本請求項のように内側積層体の外周面をコイルバネの形状に沿った形の連続した凹凸状に形成してコイルバネの変形を最適化することで、コイルバネが潰れずに歪みが効果的にコイルバネに発生するようになる。   That is, there is a possibility that sufficient restraint cannot be obtained from the outer peripheral surface of the inner laminate simply by installing the inner laminate in the coil spring. For this reason, the outer peripheral surface of the inner laminated body is formed in a continuous irregular shape along the shape of the coil spring as in the present claim to optimize the deformation of the coil spring, so that the coil spring is not crushed and distortion is effective. Will be generated in the coil spring.

請求項7に係る免震装置の作用を以下に説明する。
本請求項では請求項1と同様の構成を有して同様に作用するが、さらに、コイルバネが複数存在し、これら複数のコイルバネが同軸状に組み合わされて外側積層体内に配置されたという構成を有している。
The operation of the seismic isolation device according to claim 7 will be described below.
The present invention has the same configuration as that of the first embodiment and operates in the same manner, but further has a configuration in which there are a plurality of coil springs and these coil springs are coaxially combined and arranged in the outer laminated body. Have.

つまり、複数のコイルバネが同軸状に組み合わされて配置されることから、大きな水平方向の変位が加わっても、個々のコイルバネがより潰れ難くなり、繰り返し変位後でもより一層安定した制振性能を発揮して、制振性を安定的に保つことができるようになる。   In other words, since multiple coil springs are coaxially combined and arranged, even if a large horizontal displacement is applied, the individual coil springs are more difficult to collapse, and even more stable vibration control performance is exhibited even after repeated displacement. As a result, the vibration damping performance can be stably maintained.

以上説明したように本発明の上記構成によれば、環境に負荷を与えずに従来と同等以上の制振特性を有する免震装置を提供できるという優れた効果を有する。   As described above, according to the above-described configuration of the present invention, there is an excellent effect that it is possible to provide a seismic isolation device having vibration control characteristics equal to or higher than those of the conventional one without giving a load to the environment.

本発明に係る免震装置の実施の形態を図1から図9に基づき説明する。図1及び図2に示すように、本発明の第1の実施の形態に係る免震装置10の上下部分をそれぞれ円板状に形成された連結板12、14が構成している。この内の下側の連結板12が地盤と当接し、また上側の連結板14が建築物の下部に当接するような構造になっている。   An embodiment of the seismic isolation device according to the present invention will be described with reference to FIGS. As shown in FIG.1 and FIG.2, the upper and lower parts of the seismic isolation apparatus 10 which concerns on the 1st Embodiment of this invention comprise the connection plates 12 and 14 each formed in disk shape. The lower connecting plate 12 is in contact with the ground, and the upper connecting plate 14 is in contact with the lower part of the building.

また、これら一対の連結板12、14の間には、中心部分に円筒形の中空部24を有しつつ円筒状に形成された外側積層体16が配置されている。この外側積層体16は、リング状に形成されて弾性変形し得る第1弾性板であるゴム製のゴムリング18と、リング状に形成されて剛性を維持する為の第1硬質板である金属製の金属リング20とが、交互に複数枚ずつ配置された形の構造になっている。   Between the pair of connecting plates 12 and 14, an outer laminated body 16 formed in a cylindrical shape with a cylindrical hollow portion 24 in the center is disposed. The outer laminated body 16 includes a rubber ring 18 made of a rubber that is a first elastic plate that is formed in a ring shape and can be elastically deformed, and a metal that is a first hard plate that is formed in a ring shape and maintains rigidity. A plurality of metal rings 20 made of metal are alternately arranged.

一方、これら一対の連結板12、14は、外側積層体16の上下端にそれぞれ加硫接着されて取り付けられており、また、これら一対の連結板12、14の中心には、それぞれ途中に段部を有した円形の貫通穴12A、14Aが形成されている。但し、これら貫通穴12A、14Aに対応した大きさであって外周側にフランジを有した蓋材32が、ボルト34によるねじ止めによって、一対の連結板12、14にそれぞれ固定されることで、貫通穴12A、14Aがそれぞれ閉鎖されている。   On the other hand, the pair of connecting plates 12 and 14 are attached to the upper and lower ends of the outer laminated body 16 by vulcanization bonding, respectively, and the center of the pair of connecting plates 12 and 14 is stepped in the middle. Circular through holes 12A and 14A having a portion are formed. However, the lid member 32 having a size corresponding to the through holes 12A and 14A and having a flange on the outer peripheral side is fixed to the pair of connecting plates 12 and 14 by screwing with bolts 34, respectively. The through holes 12A and 14A are closed.

この外側積層体16の中心に存在する円筒形の中空部24内には、双晶の金属材料で弾性変形可能な螺旋状のコイルスプリングの形に形成されたコイルバネ22が嵌まり込むように、配置されている。但し、中空部24を形成する外側積層体16の内周面16Aには、このコイルバネ22の外周側形状に対応するように、この外周側形状に沿った螺旋状の凹凸が形成されている。   A coil spring 22 formed in the shape of a helical coil spring that can be elastically deformed with a twinned metal material is fitted into the cylindrical hollow portion 24 present at the center of the outer laminate 16. Has been placed. However, on the inner peripheral surface 16A of the outer laminated body 16 forming the hollow portion 24, spiral irregularities are formed along the outer peripheral side shape so as to correspond to the outer peripheral side shape of the coil spring 22.

図2及び図3に示すように、このコイルバネ22の内周側には、円筒状に形成された内側積層体26が配置されている。この内側積層体26は、円板状に形成されて弾性変形し得る第2弾性板であるゴム製のゴム板28と、円板状に形成されて剛性を維持する為の第2硬質板である金属製の金属板30とが、交互に複数枚ずつ配置された形の構造になっている。但し、この内側積層体26の外周面26Aにも、コイルバネ22の内周側の螺旋形状に沿った螺旋状の凹凸が形成されている。   As shown in FIGS. 2 and 3, an inner laminated body 26 formed in a cylindrical shape is disposed on the inner peripheral side of the coil spring 22. This inner laminated body 26 is a rubber plate 28 made of rubber, which is a second elastic plate that is formed in a disk shape and can be elastically deformed, and a second hard plate that is formed in a disk shape and maintains rigidity. A certain metal metal plate 30 has a structure in which a plurality of metal plates 30 are alternately arranged. However, spiral irregularities along the spiral shape on the inner circumferential side of the coil spring 22 are also formed on the outer circumferential surface 26 </ b> A of the inner laminated body 26.

以上より、本実施の形態では、弾性変形し得る外側積層体16及び内側積層体26が、双晶の金属材料により弾性変形可能となるように螺旋状に形成されたコイルバネ22と、並列的に配置された構造になっている。さらに、コイルバネ22の形状に沿った形に外周面26Aが形成された内側積層体26と、同じくコイルバネ22の形状に沿った形に内周面16Aが形成された外側積層体16とで、コイルバネ22が挟まれた構造ともなっている。   As described above, in the present embodiment, the outer laminated body 16 and the inner laminated body 26 that can be elastically deformed are arranged in parallel with the coil spring 22 that is formed in a spiral shape so as to be elastically deformable by a twinned metal material. It has an arranged structure. Further, the inner laminated body 26 in which the outer peripheral surface 26A is formed in a shape along the shape of the coil spring 22 and the outer laminated body 16 in which the inner peripheral surface 16A is formed in the same shape along the shape of the coil spring 22 are used. 22 is also sandwiched.

他方、図1及び図2に示すように、下側の連結板12及び上側の連結板14にそれぞれ固定された一対の蓋材32の中心には、外側に座ぐり部42Aを有した貫通孔42がそれぞれ形成されており、頭部36Aを座ぐり部42A内に配置した形で締めつけ用ボルト36がそれぞれこの貫通孔42を貫通している。これらの締めつけ用ボルト36の先端側には、ナット38がねじ止められており、またこのナット38上にワッシャ40が乗せられている。   On the other hand, as shown in FIGS. 1 and 2, a through hole having a counterbore portion 42 </ b> A on the outside at the center of a pair of lid members 32 fixed to the lower connecting plate 12 and the upper connecting plate 14, respectively. 42 are formed, and the fastening bolts 36 pass through the through holes 42 in a form in which the head portion 36A is disposed in the counterbore portion 42A. A nut 38 is screwed to the distal end side of these tightening bolts 36, and a washer 40 is placed on the nut 38.

ワッシャ40とこのワッシャ40に対向する蓋材32の対向面との間には、内周側に締めつけ用ボルト36が入った状態で、コイルバネ22の端部とされる一巻分だけが、挟まれている。つまり、本実施の形態では、コイルバネ22の両端部分が、固定具とされる締めつけ用ボルト36、ナット38及びワッシャ40により、連結板12、14及び蓋材32を介して、外側積層体16の両端部分にそれぞれ固定された構造になっている。   Between the washer 40 and the facing surface of the lid member 32 facing the washer 40, only one turn as an end of the coil spring 22 is sandwiched with the tightening bolt 36 on the inner peripheral side. It is. That is, in the present embodiment, both end portions of the coil spring 22 are connected to the outer laminated body 16 via the connecting plates 12 and 14 and the lid member 32 by the fastening bolts 36, nuts 38, and washers 40 serving as fixtures. It has a structure that is fixed to both ends.

そして、コイルバネ22の自由な状態での高さは、外側積層体16の高さより高くされており、これに伴い、外側積層体16内にコイルバネ22が組み付けられた状態では、蓋材32によりコイルバネ22が圧縮されて予歪みがこのコイルバネ22に与えられた形になる。   The height of the coil spring 22 in a free state is higher than the height of the outer laminated body 16, and accordingly, when the coil spring 22 is assembled in the outer laminated body 16, the coil spring 22 is coiled by the lid member 32. 22 is compressed and pre-strain is applied to the coil spring 22.

次に、本実施の形態に係る免震装置10の製造を以下に説明する。
この免震装置10を作製する際には、まず螺旋状のコイルバネ22を作製し、Mn−Cu−Ni−Fe合金の場合は、850℃程度の温度で1時間程度保持した後、空冷により徐冷し、また、Cu−Al−Mn−Co合金の場合は、900℃程度の温度で5分間程度保持した後、急冷後再加熱し200℃で15分間程度保持した後、空冷することで、双晶のコイルバネ22とすることができる。
Next, manufacture of the seismic isolation apparatus 10 which concerns on this Embodiment is demonstrated below.
When this seismic isolation device 10 is manufactured, first, a helical coil spring 22 is prepared. In the case of an Mn—Cu—Ni—Fe alloy, the seismic isolation device 10 is maintained at a temperature of about 850 ° C. for about 1 hour and then gradually cooled by air cooling. In the case of a Cu-Al-Mn-Co alloy, it is cooled for about 5 minutes at a temperature of about 900 ° C., then rapidly cooled and reheated, held at about 200 ° C. for about 15 minutes, and then air-cooled. A twin coil spring 22 can be used.

これとは別に、ゴムリング18と金属リング20とが積層されて形成される外側積層体16を作製すると共に、ゴム板28と金属板30とが積層されて形成される内側積層体26を作製するが、この際に、外側積層体16の上下に一対の連結板12、14を加硫接着してそれぞれ取り付けておくことにする。   Separately, the outer laminate 16 formed by laminating the rubber ring 18 and the metal ring 20 is manufactured, and the inner laminate 26 formed by laminating the rubber plate 28 and the metal plate 30 is manufactured. However, at this time, the pair of connecting plates 12 and 14 are attached to the upper and lower sides of the outer laminated body 16 by vulcanization bonding.

但し、この外側積層体16の高さをコイルバネ22の高さより低くするように、外側積層体16を作製するが、この外側積層体16の内周面16Aにコイルバネ22の外周側形状に沿った螺旋状の凹凸を形成しておくことにし、また、内側積層体26の外周面26Aにもコイルバネ22の内周側形状に沿った螺旋状の凹凸を形成しておくことにする。   However, the outer laminated body 16 is produced so that the height of the outer laminated body 16 is lower than the height of the coil spring 22, but the inner circumferential surface 16 </ b> A of the outer laminated body 16 conforms to the outer peripheral side shape of the coil spring 22. The spiral irregularities are formed, and the spiral irregularities along the inner peripheral side shape of the coil spring 22 are also formed on the outer peripheral surface 26A of the inner laminated body 26.

この後、内側積層体26をコイルバネ22内に入れてから、コイルバネ22の両端部にそれぞれナット38及びワッシャ40を配置した状態で、例えば連結板12の貫通穴12Aを通過させて、外側積層体16の中心に存在する中空部24内にコイルバネ22及び内側積層体26を挿入する。そして、これら連結板12、14に蓋材32をそれぞれねじ止めして取り付けると共に、この締めつけ用ボルト36をナット38にねじ止めすることにより、免震装置10が完成される。   Thereafter, after the inner laminated body 26 is put into the coil spring 22, the nut 38 and the washer 40 are disposed at both ends of the coil spring 22, for example, through the through hole 12 </ b> A of the connecting plate 12, and the outer laminated body. The coil spring 22 and the inner laminated body 26 are inserted into the hollow portion 24 existing at the center of 16. Then, the lid member 32 is screwed and attached to the connecting plates 12 and 14, and the fastening bolt 36 is screwed to the nut 38, whereby the seismic isolation device 10 is completed.

このとき、外側積層体16の高さより高く形成されているコイルバネ22が、蓋材32の連結板12、14へのねじ止に伴って、外側積層体16と同じ高さとなるように圧縮されることで、圧縮されて予歪みがこのコイルバネ22に与えらた状態となる。また、締めつけ用ボルト36の必要量のねじ込みにより、コイルバネ22の端部が締め付けられて、蓋材32側に固定されるようになる。   At this time, the coil spring 22 formed higher than the height of the outer laminated body 16 is compressed so as to have the same height as the outer laminated body 16 as the lid 32 is screwed to the connecting plates 12 and 14. Thus, the coil spring 22 is compressed and pre-strain is applied to the coil spring 22. Further, the end portion of the coil spring 22 is tightened by being screwed in a necessary amount of the tightening bolt 36, and is fixed to the lid member 32 side.

次に、本実施の形態に係る免震装置10の作用を以下に説明する。
本実施の形態の免震装置10によれば、剛性を有してリング状に形成される金属リング20と弾性を有してリング状に形成されるゴムリング18とが交互に積層された形の外側積層体16内に、双晶の金属材料で形成されたコイルバネ22が配置された構造とされている。また、剛性を有して円板状に形成される金属板30と弾性を有して円板状に形成されるゴム板28とが交互に積層された形の内側積層体26が、このコイルバネ22の内周側に配置された構造ともされている。そして、外側積層体16の内周面16A及び内側積層体26の外周面26Aに、図2及び図3に示すように、コイルバネ22の形状に沿った形にそれぞれ凹凸が形成されている。
Next, the effect | action of the seismic isolation apparatus 10 which concerns on this Embodiment is demonstrated below.
According to the seismic isolation device 10 of the present embodiment, the metal ring 20 having a ring shape having rigidity and the rubber ring 18 having a ring shape having elasticity are alternately stacked. The coil spring 22 formed of a twinned metal material is disposed in the outer laminated body 16. Further, an inner laminated body 26 in which a metal plate 30 having a disk shape having rigidity and a rubber plate 28 having a disk shape having elasticity are alternately laminated is provided with this coil spring. 22 is also arranged on the inner peripheral side. And as shown in FIG.2 and FIG.3, the unevenness | corrugation is formed in the inner peripheral surface 16A of the outer side laminated body 16 and the outer peripheral surface 26A of the inner side laminated body 26 in the shape along the shape of the coil spring 22, respectively.

従って、本実施の形態では、変位の入力合わせて確実に変形するようにコイルバネ22を採用しているが、このコイルバネ22の内側に支持材として内側積層体26を挿入したものを制振合金の替わりとする形で、これらコイルバネ22及び内側積層体26を内蔵していることになる。これに伴い、免震装置10に変位が入力された際のコイルバネ22の変形を内側積層体26が抑制するので、図4及び図5(A)に示すように大きな水平方向の変位Xが加わってもコイルバネ22が潰れることがなくなり、繰り返し変位後でも安定した制振性能を発揮して制振性を安定的に保つことができる。   Therefore, in this embodiment, the coil spring 22 is employed so as to be surely deformed in accordance with the input of the displacement. However, a material in which the inner laminate 26 is inserted as a support material inside the coil spring 22 is made of a damping alloy. These coil springs 22 and the inner laminated body 26 are incorporated in a form to be replaced. Accordingly, the inner laminated body 26 suppresses deformation of the coil spring 22 when a displacement is input to the seismic isolation device 10, so that a large horizontal displacement X is applied as shown in FIGS. 4 and 5A. However, the coil spring 22 is not crushed and stable damping performance can be exhibited even after repeated displacement, so that the damping performance can be kept stable.

この結果、本実施の形態に係る免震装置10によれば、地震が生じた場合でも、コイルバネ22と並列的に配置されて弾性変形する外側積層体16とこのコイルバネ22との間の複合的な作用で確実に地震の揺れを低減し、建築物側に地震の揺れが伝達され難くなる。この一方、本実施の形態の免震装置10は、金属板30とゴム板28とが積層されて形成された内側積層体26をコイルバネ22の内周側に配置したことで、鉛材を用いずとも上記のような制振特性を得られるようになる為、環境に負荷を与えることもなくなる。   As a result, according to the seismic isolation device 10 according to the present embodiment, even when an earthquake occurs, the composite between the outer laminated body 16 arranged in parallel with the coil spring 22 and elastically deformed and the coil spring 22 is combined. With this function, the shaking of the earthquake is surely reduced and the shaking of the earthquake becomes difficult to be transmitted to the building side. On the other hand, the seismic isolation device 10 of the present embodiment uses a lead material by arranging the inner laminated body 26 formed by laminating the metal plate 30 and the rubber plate 28 on the inner peripheral side of the coil spring 22. Since the vibration damping characteristics as described above can be obtained at least, there is no load on the environment.

以上より、本実施の形態に係る免震装置10は、コイルバネ22の内側に支持材として内側積層体26を配置したことで、環境に負荷を与えずに従来の免震装置10と同等以上の制振特性を有するようになった。   As described above, the seismic isolation device 10 according to the present embodiment has the inner laminated body 26 disposed as a support material inside the coil spring 22 so that it is equal to or better than the conventional seismic isolation device 10 without giving a load to the environment. It has damping characteristics.

他方、本実施の形態では、外側積層体16の内周面16A及び内側積層体26の外周面26Aが、コイルバネ22の形状に沿った形にそれぞれ形成されている。つまり、コイルバネ22を単に外側積層体16内に設置したり、内側積層体26をコイルバネ22内に単に設置しただけでは、外側積層体16の内周面16Aや内側積層体26の外周面26Aから十分な拘束が得られない虞がある為、コイルバネ22が十分に変形せずに制振効果が小さくなることが考えられる。   On the other hand, in the present embodiment, the inner peripheral surface 16 </ b> A of the outer laminated body 16 and the outer peripheral surface 26 </ b> A of the inner laminated body 26 are each formed in a shape along the shape of the coil spring 22. That is, if the coil spring 22 is simply installed in the outer laminated body 16 or the inner laminated body 26 is simply installed in the coil spring 22, the inner circumferential surface 16A of the outer laminated body 16 and the outer circumferential surface 26A of the inner laminated body 26 are removed. Since there is a possibility that sufficient restraint cannot be obtained, it is conceivable that the coil spring 22 is not sufficiently deformed and the vibration damping effect is reduced.

これに対して、外側積層体16の内周面16A及び内側積層体26の外周面26Aに、本実施の形態のようにコイルバネ22の形状に沿った形の螺旋状に凹凸が形成されるのに伴い、コイルバネ22の変形がこれらの壁面により矯正されて最適化することで、コイルバネ22が潰れずに歪みが効果的にコイルバネ22に発生するようになる。   On the other hand, irregularities are formed on the inner peripheral surface 16A of the outer laminated body 16 and the outer peripheral surface 26A of the inner laminated body 26 in a spiral shape along the shape of the coil spring 22 as in the present embodiment. Accordingly, the deformation of the coil spring 22 is corrected and optimized by the wall surfaces, so that the coil spring 22 is not crushed and distortion is effectively generated in the coil spring 22.

さらに、本実施の形態では、鉛材に替えてコイルバネ22が採用されているが、単にコイルバネ22を外側積層体16内に挿入するだけでは、免震装置10に大変位が加わった場合、コイルバネ22の端部とこの端部に対向する蓋材32との間に大きな隙間ができる結果、コイルバネ22が免震装置10の変位に追従できず、応力歪み曲線のヒステリシスが充分な大きさにならないことが考えられる。   Further, in the present embodiment, the coil spring 22 is adopted instead of the lead material. However, when the large displacement is applied to the seismic isolation device 10 simply by inserting the coil spring 22 into the outer laminated body 16, the coil spring 22 is used. As a result, a large gap is formed between the end of 22 and the lid member 32 facing the end, so that the coil spring 22 cannot follow the displacement of the seismic isolation device 10 and the hysteresis of the stress strain curve does not become sufficiently large. It is possible.

これに対して本実施の形態によれば、外側積層体16の両端部分に、図2に示す締めつけ用ボルト36、ナット38及びワッシャ40からなる固定具を用いて、コイルバネ22の両端部分を固定する構造とした。このことでも、コイルバネ22の端部を機械的に拘束して、図4及び図5(A)に示すように免震装置10の変位にコイルバネ22が確実に追従するようになった。   On the other hand, according to the present embodiment, both end portions of the coil spring 22 are fixed to both end portions of the outer laminated body 16 using the fixing tool including the tightening bolt 36, the nut 38, and the washer 40 shown in FIG. The structure is This also mechanically restrains the end of the coil spring 22 so that the coil spring 22 reliably follows the displacement of the seismic isolation device 10 as shown in FIGS. 4 and 5A.

一方、本実施の形態では、弾性変形可能な螺旋状のコイルバネ22が双晶の金属材料により形成されるのに伴い、このコイルバネ22を構成する双晶の金属材料に予歪みが与えられることになるので、単純な双晶の合金と比較して、引張力や剪断力が加わった際に、バネ定数が低くなると共に減衰係数が高くなり、従来の制振合金と同等以上の大きな制振特性を有するようになる。   On the other hand, in this embodiment, as the spiral coil spring 22 that can be elastically deformed is formed of a twin metal material, a pre-strain is applied to the twin metal material constituting the coil spring 22. Therefore, compared to a simple twin alloy, when a tensile force or shear force is applied, the spring constant is lowered and the damping coefficient is increased, so that the damping characteristics are equal to or greater than those of conventional damping alloys. Will have.

つまり、外部から応力がこのコイルバネ22に付与された場合、予歪みが与えられていて図6の応力歪み曲線中における双晶の変形が生じる領域F1内の点Pまで既に変形されているこのコイルバネ22が、さらに双晶の変形を大きくする形或いは、双晶の変形を小さくする形で、双晶の変形が生じる領域F1内において、矢印Eのように変形することになる。   That is, when a stress is applied to the coil spring 22 from the outside, the coil spring is already deformed up to a point P in the region F1 in which pre-strain is applied and twin deformation occurs in the stress-strain curve of FIG. No. 22 further deforms as indicated by an arrow E in the region F1 in which the deformation of the twin crystal occurs in the form of increasing the deformation of the twin crystal or reducing the deformation of the twin crystal.

このことから、双晶のコイルバネ22に予歪みを与えたことにより、バネ定数の低減が図られ、図6の応力歪み曲線中の領域F1を含んでいるヒステリシス線Fで囲まれた範囲をより大きくできるようになる。そして、これに伴う効果的で良好な制振特性が得られるようになった。   From this, by giving pre-strain to the twin coil spring 22, the spring constant is reduced, and the range surrounded by the hysteresis line F including the region F1 in the stress-strain curve of FIG. You can be bigger. As a result, effective and good vibration damping characteristics can be obtained.

次に、本発明に係る免震装置の第2の実施の形態を図7に基づき説明する。尚、第1の実施の形態で説明した部材と同一の部材には同一の符号を付して、重複した説明を省略する。
本実施の形態に係る免震装置10も第1の実施の形態と同様の構造となっているが、同一径のコイルバネ52が複数(本実施の形態では2つ)存在し、図7に示すようにこれら複数のコイルバネ52が同軸状に組み合わされて、外側積層体16の中央に存在する中空部24内に二重に重なった状態で配置されるようになる。
Next, a second embodiment of the seismic isolation device according to the present invention will be described with reference to FIG. In addition, the same code | symbol is attached | subjected to the member same as the member demonstrated in 1st Embodiment, and the overlapping description is abbreviate | omitted.
The seismic isolation device 10 according to the present embodiment has the same structure as that of the first embodiment, but there are a plurality (two in this embodiment) of coil springs 52 having the same diameter, as shown in FIG. As described above, the plurality of coil springs 52 are coaxially combined so as to be disposed in a double overlapping state in the hollow portion 24 existing at the center of the outer laminated body 16.

つまり、複数のコイルバネ52が同軸状に組み合わされて配置されたことから、大きな水平方向の変位がこの免震装置10に加わっても、個々のコイルバネ52がより潰れ難くなる。この為、繰り返し変位後でもより一層安定した制振性能を発揮して制振性を安定的に保つことができるようになる。   That is, since the plurality of coil springs 52 are coaxially combined and arranged, even if a large horizontal displacement is applied to the seismic isolation device 10, the individual coil springs 52 are more difficult to be crushed. For this reason, even after repeated displacement, it becomes possible to exhibit a more stable damping performance and to keep the damping performance stable.

一方、本実施の形態では、例えば、Cu−Al−Mn合金、Mg−Zr合金、Mn−Cu合金、Mn−Cu−Ni−Fe合金、Cu−Al−Ni合金、Ti−Ni合金、Al−Zn合金、Cu−Zn−Al合金、Mg合金、Cu−Al−Co合金、Cu−Al−Mn−Ni合金、Cu−Al−Mn−Co合金、Cu−Si合金、Fe−Mn−Si合金、Fe−Ni−Co−Ti合金、Fe−Ni−C合金、Fe−Cr−Ni−Mn−Si−Co合金、Ni−Al合金、SUS304の内の何れかを双晶の金属材料として使用することが考えられる。   On the other hand, in this embodiment, for example, a Cu—Al—Mn alloy, a Mg—Zr alloy, a Mn—Cu alloy, a Mn—Cu—Ni—Fe alloy, a Cu—Al—Ni alloy, a Ti—Ni alloy, Al— Zn alloy, Cu-Zn-Al alloy, Mg alloy, Cu-Al-Co alloy, Cu-Al-Mn-Ni alloy, Cu-Al-Mn-Co alloy, Cu-Si alloy, Fe-Mn-Si alloy, Any one of Fe-Ni-Co-Ti alloy, Fe-Ni-C alloy, Fe-Cr-Ni-Mn-Si-Co alloy, Ni-Al alloy, and SUS304 should be used as a twinned metal material. Can be considered.

つまり、これらの金属の内の何れかをコイルバネ22を形成する為の双晶の金属材料として使用することで、環境に負荷を与えずに従来と同等以上の制振特性を有するコイルバネ22がより確実に得られるようになる。   In other words, by using any one of these metals as a twinned metal material for forming the coil spring 22, the coil spring 22 having a vibration damping characteristic equal to or higher than that of the prior art can be obtained without giving a load to the environment. It will surely be obtained.

例えば、Mn−Cu合金、Mn−Cu−Ni−Fe合金等のマンガン系の合金を使用した場合、800℃〜930℃の温度で0.5時間から2時間程度の時間保持して、10時間から20時間程度の時間をかけて徐冷することで、双晶の金属材料が得られる。   For example, when a manganese-based alloy such as an Mn—Cu alloy or an Mn—Cu—Ni—Fe alloy is used, it is held at a temperature of 800 ° C. to 930 ° C. for about 0.5 to 2 hours for 10 hours. And then slowly cooling for about 20 hours to obtain a twinned metal material.

また、Cu−Al−Mn合金、Cu−Al−Ni合金、Cu−Zn−Al合金、Cu−Al−Co合金、Cu−Al−Mn−Ni合金、Cu−Al−Mn−Co合金、Cu−Si合金等の銅系の合金を使用した場合、約900℃の温度で5分から1時間程度の時間保持し、急冷した後、約200℃の温度に再加熱して15分から30分程度の時間保持することで、双晶の金属材料が得られる。   Also, Cu-Al-Mn alloy, Cu-Al-Ni alloy, Cu-Zn-Al alloy, Cu-Al-Co alloy, Cu-Al-Mn-Ni alloy, Cu-Al-Mn-Co alloy, Cu- When using a copper-based alloy such as Si alloy, hold at a temperature of about 900 ° C. for about 5 minutes to 1 hour, rapidly cool, then reheat to a temperature of about 200 ° C. for about 15 to 30 minutes By holding, a twinned metal material can be obtained.

次に、双晶とすることによるコイルバネ22の変形のメカニズムを以下に説明する。
図8(A)に示す金属の原子が均一に整列したマルテンサイト相に横方向から応力を加えることで、図8(B)に示すように変形が始まる。さらに、応力が加わり続けると図8(C)に示すような形に変形する。そして、この図8(C)に示す状態では寸法Sの変形量が生じたことになる。
Next, the deformation mechanism of the coil spring 22 due to twinning will be described below.
Deformation starts as shown in FIG. 8B by applying stress from the lateral direction to the martensite phase in which the metal atoms shown in FIG. Further, when the stress continues to be applied, the shape is deformed as shown in FIG. In the state shown in FIG. 8C, the deformation amount of the dimension S is generated.

これに対して、図9(A)に示す一般的な金属では原子が均一に整列しているものの、横方向から応力を加えた場合、図9(B)に示すように原子の配列にずれが生じて、欠陥が発生する。つまり、一般的な金属において原子の配列にずれが生じると、塑性変形することになるので、図9(B)に示す状態に一旦成ると、図9(A)に示す状態に戻ることはない。   On the other hand, in the general metal shown in FIG. 9A, the atoms are uniformly aligned, but when stress is applied from the lateral direction, the atoms are not aligned as shown in FIG. 9B. Occurs and a defect occurs. In other words, when a deviation occurs in the arrangement of atoms in a general metal, plastic deformation occurs. Therefore, once the state shown in FIG. 9B is reached, the state shown in FIG. 9A is not restored. .

以上より、一般的な金属と異なり、双晶の金属材料では、比較的小さな応力で変形が開始するものの、図8(C)に示す状態まで変形しても塑性変形することが無いので、応力を逆にかければ図8(A)に示す状態に戻るようになる。更に、双晶の金属材料の断面積を小さくして全体へかかる応力が低い段階から変形が発生するようにすることで、全体へかかる応力歪み曲線におけるヒステリシスのバネ定数が上昇しないようになる。   As described above, unlike a general metal, a twinned metal material starts deformation with a relatively small stress, but does not plastically deform even when deformed to the state shown in FIG. If the process is reversed, the state shown in FIG. Further, by reducing the cross-sectional area of the twin metal material so that the deformation is generated from the stage where the stress applied to the whole is low, the spring constant of hysteresis in the stress strain curve applied to the entire is not increased.

尚、上記第2の実施の形態ではコイルバネの数を2つとしたが、コイルバネを3つ以上としても良い。また、上記実施の形態では、コイルバネの材質として双晶の金属材料を採用したが、バネ材として一般的な他の金属材料を採用しても良い。   Although the number of coil springs is two in the second embodiment, three or more coil springs may be used. Moreover, in the said embodiment, although the twin metal material was employ | adopted as a material of a coil spring, you may employ | adopt another general metal material as a spring material.

本発明の第1の実施の形態に係る免震装置の断面図である。It is sectional drawing of the seismic isolation apparatus which concerns on the 1st Embodiment of this invention. 本発明の第1の実施の形態に係る免震装置の断面図であって、コイルバネをも断面とした図である。It is sectional drawing of the seismic isolation apparatus which concerns on the 1st Embodiment of this invention, Comprising: It is the figure which made the coil spring the cross section. 本発明の第1の実施の形態に係る免震装置の内側積層体を拡大して示す断面図である。It is sectional drawing which expands and shows the inner side laminated body of the seismic isolation apparatus which concerns on the 1st Embodiment of this invention. 本発明の第1の実施の形態に係る免震装置に水平方向の変位が加わった状態の断面図である。It is sectional drawing of the state to which the displacement of the horizontal direction was added to the seismic isolation apparatus which concerns on the 1st Embodiment of this invention. 本発明の第1の実施の形態に係る免震装置のコイルバネの変形を従来技術と比較して説明する図であって、(A)は第1の実施の形態のコイルバネを示し、(B)は従来技術のコイルバネを示す。It is a figure explaining the deformation | transformation of the coil spring of the seismic isolation apparatus which concerns on the 1st Embodiment of this invention compared with a prior art, Comprising: (A) shows the coil spring of 1st Embodiment, (B) Shows a prior art coil spring. 本発明の第1の実施の形態に係るコイルバネの応力歪み曲線を表すグラフの図である。It is a figure of the graph showing the stress distortion curve of the coil spring which concerns on the 1st Embodiment of this invention. 本発明の第2の実施の形態に係る免震装置に適用されるコイルバネの正面図である。It is a front view of the coil spring applied to the seismic isolation apparatus which concerns on the 2nd Embodiment of this invention. 本発明の実施の形態に係るコイルバネの原子配列を表す説明図であって、(A)はマルテンサイト相を表す図であり、(B)はマルテンサイト相に変形が始まった状態を表す図であり、(C)はマルテンサイト相の変形が終わった状態を表す図である。It is explanatory drawing showing the atomic arrangement | sequence of the coil spring which concerns on embodiment of this invention, Comprising: (A) is a figure showing a martensitic phase, (B) is a figure showing the state which the deformation | transformation started in the martensitic phase. (C) is a diagram showing a state in which the deformation of the martensite phase is finished. 一般的な金属の原子配列を表す説明図であって、(A)は原子が均一に整列した状態を表す図であり、(B)は原子の配列の一部にずれが生じた状態を表す図である。It is explanatory drawing showing the atomic arrangement | sequence of a general metal, Comprising: (A) is a figure showing the state in which the atom was arranged uniformly, (B) represents the state which the shift | offset | difference produced in a part of arrangement | sequence of an atom. FIG.

符号の説明Explanation of symbols

10 免震装置
16 外側積層体
18 ゴムリング(第1弾性板)
20 金属リング(第1硬質板)
22 コイルバネ
26 内側積層体
28 ゴム板(第2弾性板)
30 金属板(第2硬質板)
36 締めつけ用ボルト(固定具)
38 ナット(固定具)
40 ワッシャ(固定具)
52 コイルバネ
10 Seismic isolation device 16 Outer laminate 18 Rubber ring (first elastic plate)
20 Metal ring (first hard plate)
22 Coil spring 26 Inner laminate 28 Rubber plate (second elastic plate)
30 Metal plate (2nd hard plate)
36 Tightening bolts (fixtures)
38 Nut (fixing tool)
40 Washers (fixtures)
52 Coil spring

Claims (7)

弾性を有してリング状に形成される第1弾性板と剛性を有してリング状に形成される第1硬質板とが交互に積層された形の外側積層体と、
外側積層体内に配置された金属製のコイルバネと、
弾性を有して円板状に形成される第2弾性板と剛性を有して円板状に形成される第2硬質板とが交互に積層された形とされ且つ、コイルバネの内周側に配置された内側積層体と、
を有したことを特徴とする免震装置。
An outer laminated body in which a first elastic plate having elasticity and formed in a ring shape and a first hard plate having rigidity and formed in a ring shape are alternately laminated;
A metal coil spring disposed in the outer laminate;
The second elastic plate having elasticity and a second elastic plate formed in a disk shape and the second hard plate having rigidity and a disk shape are alternately laminated, and the inner peripheral side of the coil spring An inner laminate disposed in
A seismic isolation device characterized by having
コイルバネが双晶の金属材料で形成されたことを特徴とする請求項1記載の免震装置。   2. The seismic isolation device according to claim 1, wherein the coil spring is formed of a twinned metal material. Cu−Al−Mn合金、Mg−Zr合金、Mn−Cu合金、Mn−Cu−Ni−Fe合金、Cu−Al−Ni合金、Ti−Ni合金、Al−Zn合金、Cu−Zn−Al合金、Mg合金、Cu−Al−Co合金、Cu−Al−Mn−Ni合金、Cu−Al−Mn−Co合金、Cu−Si合金、Fe−Mn−Si合金、Fe−Ni−Co−Ti合金、Fe−Ni−C合金、Fe−Cr−Ni−Mn−Si−Co合金、Ni−Al合金、SUS304の内の何れかを双晶の金属材料として使用したことを特徴とする請求項2記載の免震装置。   Cu-Al-Mn alloy, Mg-Zr alloy, Mn-Cu alloy, Mn-Cu-Ni-Fe alloy, Cu-Al-Ni alloy, Ti-Ni alloy, Al-Zn alloy, Cu-Zn-Al alloy, Mg alloy, Cu-Al-Co alloy, Cu-Al-Mn-Ni alloy, Cu-Al-Mn-Co alloy, Cu-Si alloy, Fe-Mn-Si alloy, Fe-Ni-Co-Ti alloy, Fe 3. The exemption according to claim 2, wherein any one of -Ni-C alloy, Fe-Cr-Ni-Mn-Si-Co alloy, Ni-Al alloy, and SUS304 is used as a twinned metal material. Seismic device. 外側積層体の内周面が、コイルバネの形状に沿った形に形成されたことを特徴とする請求項1記載の免震装置。   2. The seismic isolation device according to claim 1, wherein an inner peripheral surface of the outer laminated body is formed in a shape along a shape of the coil spring. コイルバネの両端部分が、外側積層体の両端部分に固定具を用いて固定されたことを特徴とする請求項1記載の免震装置。   The seismic isolation device according to claim 1, wherein both end portions of the coil spring are fixed to both end portions of the outer laminated body using a fixing tool. 内側積層体の外周面が、コイルバネの内周側形状に沿った形に形成されたことを特徴とする請求項1記載の免震装置。   2. The seismic isolation device according to claim 1, wherein the outer peripheral surface of the inner laminate is formed in a shape along the inner peripheral shape of the coil spring. コイルバネが複数存在し、これら複数のコイルバネが同軸状に組み合わされて外側積層体内に配置されたことを特徴とする請求項1記載の免震装置。
The seismic isolation device according to claim 1, wherein there are a plurality of coil springs, and the plurality of coil springs are coaxially combined and arranged in the outer laminated body.
JP2004353888A 2004-12-07 2004-12-07 Base isolation device Pending JP2006161948A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2004353888A JP2006161948A (en) 2004-12-07 2004-12-07 Base isolation device
US11/294,438 US7565774B2 (en) 2004-12-07 2005-12-06 Seismic isolation apparatus
IT000859A ITTO20050859A1 (en) 2004-12-07 2005-12-07 SEISMIC INSULATION SYSTEM THAT DOES NOT DAMAGE THE ENVIRONMENT AND HAS IMPROVED DAMPING CHARACTERISTICS

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004353888A JP2006161948A (en) 2004-12-07 2004-12-07 Base isolation device

Publications (1)

Publication Number Publication Date
JP2006161948A true JP2006161948A (en) 2006-06-22

Family

ID=36664197

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004353888A Pending JP2006161948A (en) 2004-12-07 2004-12-07 Base isolation device

Country Status (1)

Country Link
JP (1) JP2006161948A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008101771A (en) * 2006-09-22 2008-05-01 Bridgestone Corp Vibration absorbing structure
JP2013224563A (en) * 2012-04-23 2013-10-31 Souwa Sekkei:Kk Vibration isolator
KR20180083176A (en) * 2017-01-12 2018-07-20 (주)원방엔지니어링 Vibration isolation switchboard having hollow and elastic resin structure

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008101771A (en) * 2006-09-22 2008-05-01 Bridgestone Corp Vibration absorbing structure
US8317173B2 (en) 2006-09-22 2012-11-27 Bridgestone Corporation Vibration damping system
JP2013224563A (en) * 2012-04-23 2013-10-31 Souwa Sekkei:Kk Vibration isolator
KR20180083176A (en) * 2017-01-12 2018-07-20 (주)원방엔지니어링 Vibration isolation switchboard having hollow and elastic resin structure
KR101918611B1 (en) * 2017-01-12 2018-11-14 (주)원방엔지니어링 Vibration isolation switchboard having hollow and elastic resin structure

Similar Documents

Publication Publication Date Title
US7565774B2 (en) Seismic isolation apparatus
US9410592B2 (en) Apparatus for absorbing shocks
Dolce et al. Implementation and testing of passive control devices based on shape memory alloys
US5842312A (en) Hysteretic damping apparati and methods
JPH1088851A (en) Bearing device for vibration isolation
JP2006207637A (en) Base isolation device
JP2006161948A (en) Base isolation device
JP2009008181A (en) Manufacturing method for base isolation device embedded with plug
WO2014131004A1 (en) Partitioned elastomeric journal bearing assemblies, systems and methods
JP2011233563A (en) Piezoelectric power generation device and antivibration device
JP2006029398A (en) Damping alloy and base isolation device
JP2007120205A (en) Seismic isolator
JP4948763B2 (en) Damping coil spring and vibration damping device
WO2005028910A1 (en) Vibration absorbing alloy member, and rubber vibration isolator, floor vibration damping apparatus, tire, steel cord and rubber sesmic isolatior using the same
JP2006329284A (en) Vibration-absorbing device
JP2006207616A (en) Base isolation device
JP2007113771A (en) Base isolation device and method of manufacturing base isolation device
JP2007139108A (en) Seismic isolation device
JP2000346132A (en) Base isolation device
JP2006233262A (en) Damping alloy and seismic isolation device
JP3503712B2 (en) Lead encapsulated laminated rubber
JP2006275212A (en) Energy absorbing device
US20230407937A1 (en) Methods and devices for absorbing energy
JP2010180936A (en) Layer structure object for damping device
WO2010074229A1 (en) Hysteretic damper

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20071203