JP2007138475A - Recovered solid material conveying system and conveying method in shield machine - Google Patents

Recovered solid material conveying system and conveying method in shield machine Download PDF

Info

Publication number
JP2007138475A
JP2007138475A JP2005331818A JP2005331818A JP2007138475A JP 2007138475 A JP2007138475 A JP 2007138475A JP 2005331818 A JP2005331818 A JP 2005331818A JP 2005331818 A JP2005331818 A JP 2005331818A JP 2007138475 A JP2007138475 A JP 2007138475A
Authority
JP
Japan
Prior art keywords
solid
solid recovery
mud
shield machine
sludge
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005331818A
Other languages
Japanese (ja)
Other versions
JP4741348B2 (en
Inventor
Yoshio Iwai
義雄 岩井
Taizo Nakamura
太三 中村
Tsutomu Otsuka
努 大塚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toda Corp
Aktio Corp
Original Assignee
Toda Corp
Aktio Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toda Corp, Aktio Corp filed Critical Toda Corp
Priority to JP2005331818A priority Critical patent/JP4741348B2/en
Publication of JP2007138475A publication Critical patent/JP2007138475A/en
Application granted granted Critical
Publication of JP4741348B2 publication Critical patent/JP4741348B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Excavating Of Shafts Or Tunnels (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a recovered solid material conveying system in a shield machine improving a solid recovery rate in long-distance excavation to reduce a treatment cost and environmental load. <P>SOLUTION: The shield machine conveys an excavated recovered solid material 50 to the outside of a pit by sludge pumps 42 arranged at predetermined spaces at a sludge pipe 40. The number of blade bodies of the sludge pumps 42a, 42b, 42c is increased every predetermined distance from the shield machine side toward the rear side, and the sludge pipe 40 is provided with a first solid recovery measuring device 44 for measuring the size of the recovered solid material 50. The sludge pipe 40 on the rear side of the sludge pump 42a is provided with second solid recovery measuring devices 46 for measuring the size of the recovered solid material 50, at predetermined spaces, and a control device is provided for adjusting the take-out dimensions of the recovered solid material 50 by controlling the rotating speed of a cutter head based on the measured results of the first and second solid recovery measuring devices 44, 46 and the dissolution rate of the recovered solid material 50 computed from the measured results. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、シールド掘進に際して土粒子の骨格構造を地山状態と同様に保持したままの固形状態で切り出し掘削し、その固形状態の土砂を流体輸送して回収するシールド掘進機における固形回収物の搬送システム及び搬送方法に関する。   The present invention cuts and excavates the skeleton structure of soil particles in the solid state while retaining the skeletal structure in the same manner as the natural ground state during shield excavation, and transports and recovers the solid state sediment by fluid transport. The present invention relates to a transport system and a transport method.

一般に、泥水式シールド掘進機によるトンネル掘削においては、カッタビットの回転によって掘削地山の土砂の骨格構造を破壊し、できるだけ土粒子自体の粒径に近い状態として流体輸送により坑外に搬出するようにしている。   In general, in tunnel excavation with a muddy water shield machine, the skeletal structure of the excavated ground is destroyed by rotating the cutter bit, and is transported out of the mine by fluid transportation as close to the particle size of the soil particles as possible. I have to.

このような場合、輸送媒体としての液体と掘削土砂の固形分(土粒子)とを分離するため、坑外に大規模な処理施設が必要とされる。   In such a case, in order to separate the liquid as the transport medium and the solid content (soil particles) of the excavated sediment, a large-scale processing facility is required outside the mine.

特に、粘性土を多く含む地山を掘削する場合、1次処理設備で粗粒分を分級し、2次処理設備でさらに細粒分を分級するという2段階の処理設備が必要となる上に、2次処理された細粒分は産業廃棄物(汚泥)として取り扱われるため、処理設備の大規模化により発進立坑用地が広大化し、処理費用が増大することとなる。   In particular, when excavating a natural ground that contains a lot of viscous soil, it is necessary to have a two-stage treatment facility that classifies the coarse particles with the primary treatment facility and further classifies the fine particles with the secondary treatment facility. Since the finely treated fine particles are handled as industrial waste (sludge), the start-up shaft site is expanded due to the increase in the size of the processing equipment, resulting in an increase in processing costs.

そのため、本願出願人は、先に、先行ビット及び後行ビットを備えたカッタヘッドの回転により掘進経路にある地山を固形状態で切り出し掘削し、前記切り出し掘削した固形回収物を、排泥ポンプにより、チャンバ内の泥水と共に排泥管内を輸送して坑外に搬出する固形回収技術を提案した(特許文献1参照)。
特開2000−282784号公報
Therefore, the applicant of the present application first cuts and excavates the ground in the excavation path in a solid state by the rotation of the cutter head provided with the preceding bit and the trailing bit, and removes the solid collected by the excavation and excavation into the sludge pump. Thus, a solid recovery technique was proposed in which the inside of the mud pipe is transported together with the mud in the chamber and carried out of the mine (see Patent Document 1).
JP 2000-282784 A

このような固形回収技術においては、長距離掘進(例えば3000m以上)を行う場合、シールド掘進機から最初の排泥ポンプの間に固形回収測定装置を1台設置して固形回収物の切り出し寸法を制御すると共に、管路の摩擦損失に応じた台数の排泥ポンプを設置するようにしているため、長距離での固形回収物の溶解率が大きく、固形回収物の回収率が減少していた。   In such solid recovery technology, when long-distance excavation (for example, 3000 m or more) is performed, one solid recovery measuring device is installed between the shield excavator and the first sludge pump, and the cutout size of the solid recovery product is set. As well as controlling, the number of mud pumps installed according to the friction loss of the pipe line was installed, so that the solid recovery rate was large and the solid recovery rate was decreasing over long distances. .

特に、固形回収物の溶解率を下げるためには、シールド掘進機での固形回収物の切り出し寸法を大きくする必要があるが、標準の排泥ポンプは回転する羽根体の枚数が多いため、固形回収物が閉塞するおそれがあり、固形回収物の切り出し寸法を大きくできない状態となっている。   In particular, in order to lower the dissolution rate of the solid recovered material, it is necessary to increase the cutout size of the solid recovered material in the shield machine, but since the standard mud pump has a large number of rotating blades, There is a possibility that the recovered material may be clogged, and the cutout size of the solid recovered material cannot be increased.

本発明の目的は、長距離掘進においても固形回収物の熔解率を上げることなく輸送して、固形回収率を向上させ、処理費用の削減及び環境負荷低減が可能なシールド掘進機における固形回収物の搬送システム及び搬送方法を提供することにある。   The object of the present invention is to transport the solid recovered material without increasing the melting rate even in long-distance excavation, improve the solid recovered rate, reduce the processing cost and reduce the environmental load, and the solid recovered material in the shielded excavator It is providing the conveyance system and conveyance method of this.

前記目的を達成するため、本発明のシールド掘進機における固形回収物の搬送システムは、先行ビット及び後行ビットを備えたカッタヘッドの回転により掘進経路にある地山を固形状態で切り出し掘削し、前記切り出し掘削した固形回収物を、排泥管に所定間隔で配置した内部に回転する羽根体を有する複数台の排泥ポンプにより、チャンバ内の泥水と共に排泥管内を輸送して坑外に搬出するシールド掘進機における固形回収物の搬送システムであって、
前記排泥ポンプは、シールド掘進機側から後方側にかけて前記各排泥ポンプの前記羽根体の枚数を所定距離ごとに増加させ、
前記シールド掘進機と最初の前記排泥ポンプとの間の排泥管に固形回収物の大きさを測定する第1の固形回収測定装置を設けると共に、当該排泥ポンプから後方の排泥管に後方での固形回収物の大きさを測定する複数台の第2の固形回収測定装置を所定間隔で設け、
前記第1の固形回収測定装置及び第2の固形回収測定装置の測定結果と、その測定結果より演算して得た前記固形回収物の溶解率とに基づき前記カッタヘッドの回転数を制御して固形回収物の切り出し寸法を調整する制御手段を設けたことを特徴とする。
In order to achieve the above object, the solid recovery material transport system in the shield machine according to the present invention cuts and excavates the ground in the excavation path in a solid state by the rotation of the cutter head provided with the leading bit and the trailing bit, The collected solid material excavated and excavated is transported in the mud pipe together with the mud water in the chamber by a plurality of mud pumps having rotating blades arranged inside the mud pipe at predetermined intervals and carried out of the mine. A system for transporting solid recovery in a shield machine,
The drainage pump increases the number of blades of each drainage pump from the shield machine side to the rear side for each predetermined distance,
A first solid recovery measuring device for measuring the size of the solid recovered material is provided in the sludge pipe between the shield machine and the first waste mud pump, and the sludge pump is connected to the rear sludge pipe. A plurality of second solid recovery measuring devices for measuring the size of the solid recovery at the back are provided at predetermined intervals,
The number of revolutions of the cutter head is controlled based on the measurement results of the first solid recovery measurement device and the second solid recovery measurement device and the dissolution rate of the solid recovery product calculated from the measurement results. Control means for adjusting the cut-out dimension of the solid recovery product is provided.

また、本発明のシールド掘進機における固形回収物の搬送方法は、先行ビット及び後行ビットを備えたカッタヘッドの回転により掘進経路にある地山を固形状態で切り出し掘削し、前記切り出し掘削した固形回収物を、排泥管に所定間隔で配置した内部に回転する羽根体を有する複数台の排泥ポンプにより、チャンバ内の泥水と共に排泥管内を輸送して坑外に搬出するシールド掘進機における固形回収物の搬送方法であって、
シールド掘進機側から後方側にかけて前記各排泥ポンプの前記羽根体の枚数を所定距離ごとに増加させた排泥ポンプにより、揚程を上げて泥水と共に前記固形回収物を輸送する工程と、
前記シールド掘進機と最初の前記排泥ポンプとの間の排泥管に設けた第1の固形回収測定装置により固形回収物の切り出し大きさを測定する工程と、
当該排泥ポンプから後方の排泥管に所定間隔で設けた複数台の第2の固形回収測定装置により後方での固形回収物の大きさを測定する工程と、
前記第1の固形回収測定装置及び第2の固形回収測定装置の測定結果と、その測定結果より演算して得た前記固形回収物の溶解率とに基づき制御手段が前記カッタヘッドの回転数を制御して固形回収物の切り出し寸法を調整する工程と、
を含むことを特徴とする。
Further, the method of transporting the solid recovered material in the shield machine of the present invention is to cut and excavate the ground in the excavation path in a solid state by rotating the cutter head provided with the leading bit and the trailing bit, and the cut and excavated solid In a shield machine that transports the collected material in the sludge pipe together with the muddy water in the chamber by a plurality of sludge pumps having rotating blades arranged inside the sludge pipe at predetermined intervals. A method for transporting solid recovery,
A step of transporting the solid recovered material together with the muddy water by raising the lift by a mud pump that increases the number of blades of each mud pump from the shield machine side to the rear side by a predetermined distance;
A step of measuring the cutout size of the solid recovered material by a first solid recovery measuring device provided in a sludge pipe between the shield machine and the first sludge pump;
A step of measuring the size of the solid recovered material behind by a plurality of second solid recovery measuring devices provided at a predetermined interval from the sludge pump to the rear sludge tube;
Based on the measurement results of the first solid recovery measurement device and the second solid recovery measurement device, and the dissolution rate of the solid recovery product calculated from the measurement results, the control means determines the rotation speed of the cutter head. A step of controlling and adjusting the cut-out dimension of the solid recovered product;
It is characterized by including.

これらの発明によれば、シールド掘進機側から後方側にかけて各排泥ポンプの羽根体の枚数を所定距離ごとに増加させることにより、カッタヘッドによる固形回収物の切り出し寸法を大きくしても初期段階で閉塞することなく固形回収物を輸送することができ、後方にいくにしたがって溶解率が大きくなる段階で揚程を上げて確実な輸送を行うことができる。   According to these inventions, by increasing the number of blades of each sludge pump from the shield machine side to the rear side for each predetermined distance, even if the cutout size of the solid recovered material by the cutter head is increased, the initial stage Thus, the solid recovered product can be transported without clogging, and the lift can be raised at a stage where the dissolution rate increases as going backward, so that reliable transport can be performed.

また、第1の固形回収測定装置に加え、最初の排泥ポンプから後方の排泥管に複数台の第2の固形回収測定装置を所定間隔で設け、制御手段により、第1の固形回収測定装置及び第2の固形回収測定装置の測定結果と、その測定結果より演算して得た固形回収物の溶解率とに基づきカッタヘッドの回転数を制御して固形回収物の切り出し寸法を調整することで、閉塞等の不具合の防止と、固形回収率を低下を防止することができる。   Further, in addition to the first solid recovery measuring device, a plurality of second solid recovery measuring devices are provided at a predetermined interval in the rear sludge pipe from the first sludge pump, and the first solid recovery measurement is performed by the control means. The rotation speed of the cutter head is controlled based on the measurement result of the apparatus and the second solid recovery measurement device and the dissolution rate of the solid recovery product obtained by calculation from the measurement result to adjust the cutout size of the solid recovery product As a result, it is possible to prevent problems such as blockage and to prevent the solid recovery rate from being lowered.

特に、掘削経路の土質の変化により、排泥ラインでの溶解率が変化した場合、カッタヘッドにより切り出し寸法を調整することで、土質の変化にかかわらず、閉塞等の不具合の防止と、固形回収率を低下を防止することができる。   In particular, when the dissolution rate in the sludge line changes due to changes in the soil quality of the excavation route, adjustment of the cutting dimensions with the cutter head prevents malfunctions such as clogging and solid recovery regardless of soil changes. The rate can be prevented from decreasing.

さらに、複数台の第2の固形回収測定装置により測定された固形回収物の寸法及び溶解率と、計画された固形回収物の寸法及び溶解率とを比較して複数の排泥ポンプにおける最適な羽根体の枚数を決定することができる。   Further, the optimum size of the plurality of sludge pumps is compared by comparing the size and dissolution rate of the solid recovery product measured by the plurality of second solid recovery measuring devices with the planned size and dissolution rate of the solid recovery product. The number of blades can be determined.

以下、本発明の実施の形態について図面を参照して説明する。   Hereinafter, embodiments of the present invention will be described with reference to the drawings.

図1〜図5は、本発明の一実施の形態にかかるシールド掘進機における固形回収物の搬送システムを示す図である。   FIGS. 1-5 is a figure which shows the conveyance system of the solid collection thing in the shield machine concerning one embodiment of this invention.

図1は、泥水式シールド工法におけるシールド掘進機の概略図で、このシールド掘進機2においては、泥水をシールド掘進機10内部のチャンバ12に供給して切羽14の安定を図りながら、シールド掘進機10のカッタヘッド16を回転させることにより、地山を掘削し、掘進に伴ってセグメント18を順次継ぎ足し、セグメント18にジャッキ20で反力を取りながら、カッタヘッド16を回転させて掘削を継続してトンネルを構築するようになっている。   FIG. 1 is a schematic view of a shield machine in the muddy water type shield construction method. In this shield machine 2, a shield machine is provided while supplying muddy water to the chamber 12 inside the shield machine 10 to stabilize the face 14. By rotating the 10 cutter heads 16, the ground is excavated, and the segments 18 are sequentially added along with the excavation, and while the reaction force is applied to the segments 18 with the jacks 20, the cutter head 16 is rotated and the excavation is continued. To build a tunnel.

チャンバ12に供給される泥水は、地上の作泥設備または泥水処理設備から送泥設備の一部である送泥管22を介して送られるものであり、トンネル内の性状調整設備等により必要な性状調整がされる。   The muddy water supplied to the chamber 12 is sent from a mud production facility or a muddy water treatment facility on the ground through a mud feeding pipe 22 which is a part of the mud feeding facility, and is required by a property adjusting facility in the tunnel. The properties are adjusted.

具体的には、トンネル内の性状調整設備は、調泥剤タンク24と、送泥管22に設けられ、調泥剤タンク24から供給された調泥剤と泥水とを混合撹拌するスタティックミキサー26と、この混合撹拌後の泥水性状を測定する粘性計28とを含んで構成されている。   Specifically, the property adjusting facility in the tunnel is provided in the mud preparation tank 24 and the mud feed pipe 22, and the static mixer 26 for mixing and stirring the mud preparation supplied from the mud preparation tank 24 and the mud water. And a viscometer 28 for measuring the mud aqueous state after mixing and stirring.

必要に応じて調泥剤タンク24から所定の調泥剤が添加され、スタティックミキサー26により撹拌混合された送泥水は、粘性計28により粘性が測定され、チャンバ12に供給される。   A predetermined mud preparation is added from the mud preparation tank 24 as needed, and the viscosity of the mud fed water stirred and mixed by the static mixer 26 is measured by the viscometer 28 and supplied to the chamber 12.

粘性計28による測定結果は、制御装置30に送られ、制御装置30は、この測定結果に基づき調泥剤の添加を調整する。   The measurement result by the viscometer 28 is sent to the control device 30, and the control device 30 adjusts the addition of the mud adjusting agent based on the measurement result.

カッタヘッド16は、図示せぬモータにより回転駆動されて掘進経路にある地山を固形状態で切り出し掘削して固形回収可能にするもので、このカッタヘッド16には、図2に示すように、地山をほぼ一定の間隔で先行掘削する先行ビット70〜80と、この先行掘削した間の部分の地山、すなわち、先行ビット70〜80により形成された先行掘削溝の間に掘り残された地山凸部を切り出し掘削する後行ビット90とが設けられている。   The cutter head 16 is rotationally driven by a motor (not shown) and cuts a ground mountain in the excavation path in a solid state so that the solid can be recovered. As shown in FIG. It was left behind between the preceding bits 70 to 80 for excavating the natural ground at almost constant intervals and the natural excavation formed by the preceding bits 70 to 80, that is, the natural ground of the portion between the previous excavations, that is, the preceding bits 70 to 80. A trailing bit 90 for cutting out and excavating the natural convexity is provided.

また、先行ビット70〜80のうち先行ビット70〜77は、2つを1組としてカッタヘッド16の回転に伴って異なる軌跡を描く4つの先行ビットユニット60を構成する。   Further, among the preceding bits 70 to 80, the preceding bits 70 to 77 constitute four preceding bit units 60 that draw different trajectories as the cutter head 16 rotates as a set.

また、先行ビット70〜80が描く軌跡は、図2のカッタヘッド22上の1点鎖線で示される。   Further, the locus drawn by the preceding bits 70 to 80 is indicated by a one-dot chain line on the cutter head 22 in FIG.

先行ビット70〜80の軌跡、すなわち、先行掘削溝は、例えば、先行ビット70〜72の軌跡270〜273で示すようにほぼ一定の間隔であるため、後行ビット90で当該部分を掘削した場合、掘削後の土砂の大きさをほぼ一定の大きさ、すなわち、輸送設備を閉塞させない大きさに揃えることができる。   The trajectory of the preceding bits 70 to 80, that is, the preceding excavation groove is, for example, a substantially constant interval as shown by the trajectories 270 to 273 of the preceding bits 70 to 72. The size of the earth and sand after excavation can be set to a substantially constant size, that is, a size that does not block the transportation facility.

なお、シールド掘進機10には、ジャッキ20の速度を検出する検出装置37、カッタヘッド16の回転数を検出する検出装置38、カッタトルクを検出する検出装置39、制御装置30に指令を送るコンピュータ32、コンピュータ32への制御用の設定データの入力を行う入力装置31、制御用のデータが記憶された記憶装置34、制御用のプログラムが記憶された情報記憶媒体36が設けられ、制御装置30が入力装置31からの入力情報に基づきカッタヘッド16の回転数を制御し、検出装置37〜39からの検出情報に基づきカッタヘッド16の回転数をフィードバック制御するようになっている。   The shield machine 10 includes a detection device 37 that detects the speed of the jack 20, a detection device 38 that detects the rotational speed of the cutter head 16, a detection device 39 that detects the cutter torque, and a computer that sends commands to the control device 30. 32, an input device 31 that inputs setting data for control to the computer 32, a storage device 34 that stores control data, and an information storage medium 36 that stores a control program are provided. Controls the rotational speed of the cutter head 16 on the basis of input information from the input device 31, and feedback-controls the rotational speed of the cutter head 16 on the basis of detection information from the detection devices 37 to 39.

カッタヘッド16の回転によって切り出し掘削された固形回収物は、固形回収物の搬送システムによって、チャンバ12内の泥水と共に地上の泥水処理設備に送られる。   The solid recovered material cut out and excavated by the rotation of the cutter head 16 is sent to the muddy water treatment facility on the ground together with the muddy water in the chamber 12 by the solid recovered material transfer system.

泥水処理設備では、排泥水に含まれる掘削土砂等の固形分と液体分とが分離(固液分離)され、分離後の液体分は、調整槽で必要な成分調整が行われた後、再度シールド掘進機10へ向け送り出され、送泥水として再利用される。   In the muddy water treatment facility, the solid content such as excavated sediment contained in the discharged mud water and the liquid content are separated (solid-liquid separation), and the separated liquid content is adjusted again after the necessary components are adjusted in the adjustment tank. It is sent out to the shield machine 10 and reused as muddy water.

固形回収物の搬送システムは、図3に示すように、排泥管40と、この排泥管40に配置される複数台の排泥ポンプ42と、第1の固形回収測定装置44と、複数台の第2の固形回収測定装置46とを有している。   As shown in FIG. 3, the solid recovered material transport system includes a sludge pipe 40, a plurality of sludge pumps 42 disposed in the sludge pipe 40, a first solid recovery measuring device 44, and a plurality And a second solid recovery measuring device 46 serving as a base.

排泥管40は、排泥水を固形回収物と共に流動、通過させるもので、チャンバ12側から坑外へと一定の径で配設されるようになっている。   The sludge pipe 40 allows the sludge water to flow and pass along with the solid recovered material, and is arranged with a constant diameter from the chamber 12 side to the outside of the mine.

複数台の排泥ポンプ42は、排泥管40に所定間隔で配置され、所定の輸送力が得られるようになっている。   A plurality of mud pumps 42 are arranged in the mud pipe 40 at a predetermined interval so as to obtain a predetermined transport force.

この排泥ポンプ42の間隔は、例えば250m毎に1台配置するようになっている。   The interval between the mud pumps 42 is arranged, for example, every 250 m.

また、本実施の形態の場合、3000m以上の長距離掘進、例えば8000mの長距離掘進を想定しており、このような長距離掘進においては、長距離輸送に伴う管路の摩擦損失が大きく、そのため摩擦損失に応じた排泥ポンプ42の台数を設備する必要があり、これに伴って固形回収物の溶解率が大きくなって、固形回収率が低下することとなる。   In the case of the present embodiment, a long-distance excavation of 3000 m or more, for example, a long-distance excavation of 8000 m is assumed, and in such a long-distance excavation, the friction loss of the pipe line accompanying long-distance transportation is large, Therefore, it is necessary to equip the number of the mud pumps 42 according to the friction loss, and accordingly, the solid recovery rate increases, and the solid recovery rate decreases.

溶解率を下げるためには、カッタヘッド16での切り出し寸法を大きくする必要があるが、排泥ポンプ42の構成によっては閉塞が発生することが考えられる。   In order to reduce the dissolution rate, it is necessary to increase the cut-out dimension of the cutter head 16, but it is conceivable that the blockage occurs depending on the configuration of the mud pump 42.

そのため、本実施の形態では、シールド掘進機10側から後方側にかけて排泥ポンプ42の構成を所定距離ごとに変えるようにしている。   Therefore, in the present embodiment, the configuration of the mud pump 42 is changed for each predetermined distance from the shield machine 10 side to the rear side.

具体的には、図3に示すように、0m〜3000mの間と、3000m〜6000mの間と、6000m〜8000mmの間でそれぞれ排泥ポンプ42の構成を変えるようにしている。   Specifically, as shown in FIG. 3, the configuration of the sludge pump 42 is changed between 0 m and 3000 m, between 3000 m and 6000 m, and between 6000 m and 8000 mm.

排泥ポンプ42の構成は、図4(1)に示すような内部に回転する2枚の羽根体48を有する排泥ポンプ42aと、図4(2)に示すような内部に回転する3枚の羽根体48を有する排泥ポンプ42bと、図4(3)に示すような内部に回転する4枚の羽根体48を有する排泥ポンプ42cとの3種類を用いている。   The configuration of the mud pump 42 includes a mud pump 42a having two blade bodies 48 that rotate inside as shown in FIG. 4 (1), and three sheets that rotate inside as shown in FIG. 4 (2). Three types of a sludge pump 42b having a blade body 48 and a sludge pump 42c having four blade bodies 48 rotating inside as shown in FIG. 4 (3) are used.

排泥ポンプ42aの羽根体48相互の純間隔L1は70mm、排泥ポンプ42bの羽根体48相互の純間隔L2は60mm、排泥ポンプ42cの羽根体48相互の純間隔L3は50mmとなっている。   The net interval L1 between the blade bodies 48 of the mud pump 42a is 70 mm, the net interval L2 between the blade bodies 48 of the mud pump 42b is 60 mm, and the net interval L3 between the blade bodies 48 of the mud pump 42c is 50 mm. Yes.

そして、0m〜3000mの間には図4(1)に示すような内部に回転する2枚の羽根体48を有する排泥ポンプ42a、3000m〜6000mまでの間には図4(2)に示すような内部に回転する3枚の羽根体48を有する排泥ポンプ42b、6000m〜8000mの間には図4(3)に示すような内部に回転する4枚の羽根体48を有する排泥ポンプ42cを設けるようにしている。   And, between 0 m and 3000 m, as shown in FIG. 4 (2), the waste mud pump 42 a having two blade bodies 48 rotating inside as shown in FIG. 4 (1) is shown between 3000 m and 6000 m. Such a sludge pump 42b having three blade bodies 48 rotating inside, and between 6000m and 8000m, a sludge pump having four blade bodies 48 rotating inside as shown in FIG. 4 (3). 42c is provided.

このような排泥ポンプ42の配置とすることにより、カッタヘッド16によって地山を70mm程度に切り出し掘削し、羽根体48相互の純間隔L1が70mmの排泥ポンプ42aによって固形回収物を0m〜3000mの間で輸送することにより、破砕を最小限に抑えて、固形回収率を上げるようにしている。   By arranging the drainage pump 42 in this way, the ground is cut out to about 70 mm by the cutter head 16 and excavated, and the solid collection product is 0 m to the solid collection by the drainage pump 42a having a pure interval L1 between the blades 48 of 70 mm. By transporting between 3000m, the crushing is minimized and the solid recovery rate is increased.

この区間では、当初は70mm程度の固形回収物50aの直径で輸送を開始し、徐々に溶解して3000mm程度で直径60mm程度の固形回収物となる。   In this section, the transportation starts with the diameter of the solid recovered material 50a of about 70 mm at the beginning, and gradually dissolves to become a solid recovered material with a diameter of about 3000 mm and a diameter of about 60 mm.

そこからは、羽根体48相互の純間隔L2が60mmの排泥ポンプ42bによって固形回収物50bを6000mまで輸送する。   From there, the solid recovered material 50b is transported to 6000 m by the mud pump 42b having a pure interval L2 between the blades 48 of 60 mm.

この場合、5000m程度で固形回収物50cが直径52mm程度まで溶解し、6000mに達するときには直径50mm程度になる。   In this case, the solid recovered material 50c dissolves to about 52 mm in diameter at about 5000 m, and reaches about 50 mm in diameter when reaching 6000 m.

そして、6000m〜8000mまでは、羽根体48相互の純間隔L3が50mmの排泥ポンプ42cによって固形回収物を輸送する。   Then, from 6000 m to 8000 m, the solid collection product is transported by the mud pump 42c having a pure interval L3 between the blade bodies 48 of 50 mm.

この区間では、7000m程度で溶解により固形回収物50dの直径が40mm程度になり、およそ同程度の直径で固形回収されることとなる。   In this section, the diameter of the solid recovered material 50d becomes about 40 mm by dissolution at about 7000 m, and the solid is recovered with about the same diameter.

このように、排泥ポンプ42が閉塞しない最大限の大きさで地山を切り出し掘削し、排泥ポンプ42の羽根体48の枚数をシールド掘進機10側から後方側にかけて所定距離ごとに増加させることにより、固形回収物を極力破砕せずに搬送し、固形回収率を上げて、泥水処理設備における1次処理で分級される固形分の量を増加させて2次処理を効率化し、2次処理設備をコンパクトにすることで、必要な立坑用地を省面積化することができることとなる。   In this way, a natural ground is cut out and excavated with the maximum size that does not block the mud pump 42, and the number of blades 48 of the mud pump 42 is increased at every predetermined distance from the shield machine 10 side to the rear side. By transporting solid recovered material as much as possible without crushing it, increasing the solid recovery rate, increasing the amount of solid content classified in the primary treatment in the muddy water treatment facility, making the secondary treatment more efficient By making the processing equipment compact, it is possible to reduce the area of the required shaft site.

また、水分を含む軟弱土で、産業廃棄物(汚泥)として取り扱われる2次処理土を減少させて、その処分に関する多大な労力と費用を削減することが可能となる。   In addition, it is possible to reduce the amount of labor and cost related to the disposal by reducing the secondary treated soil treated as industrial waste (sludge) with soft soil containing moisture.

また、本実施の形態のように、羽根体48の枚数の異なった排泥ポンプ42を使用する場合、通過寸法が異なるため、溶解率の変化によっては、閉塞が発生することが考えられる。   Moreover, when using the mud pumps 42 with different numbers of blade bodies 48 as in the present embodiment, the passage dimensions are different, so that it is conceivable that clogging may occur depending on the change in dissolution rate.

そのため、本実施の形態では、シールド掘進機10と最初の排泥ポンプ42aとの間の排泥管40に固形回収物50の切り出し大きさを測定する第1の固形回収測定装置44を設けると共に、この最初の排泥ポンプ42aから後方の排泥管40に後方での固形回収物の大きさを測定する複数台の第2の固形回収測定装置46を所定間隔で設けるようにしている。   Therefore, in the present embodiment, the first solid recovery measuring device 44 for measuring the cutout size of the solid recovery product 50 is provided in the drainage pipe 40 between the shield machine 10 and the first drainage pump 42a. In addition, a plurality of second solid recovery measuring devices 46 for measuring the size of the solid recovered material at the rear are provided at a predetermined interval in the rear sludge pipe 40 from the first sludge pump 42a.

第1及び第2の固形回収測定装置44、46は、本願出願人が先に提案した特開平9−159623号公報に記載された測定装置を用いることが好ましい。   As the first and second solid recovery measuring devices 44 and 46, it is preferable to use a measuring device described in Japanese Patent Laid-Open No. 9-159623 previously proposed by the applicant of the present application.

この測定装置は、泥水に電波を放射し、泥水中を伝播する電波を受信し、この受信レベルにより個体の密度を演算し、この密度から固体の大きさを演算する装置であり、正確に測定することが出来るものである。   This measuring device is a device that radiates radio waves into muddy water, receives radio waves propagating through muddy water, calculates the density of individuals based on this reception level, and calculates the size of the solid from this density, and accurately measures It can be done.

また、第2の固形回収測定装置46は、具体的には、図3に示すように、略300mに1台、6000mに1台の2台設置するようにしている。   Specifically, as shown in FIG. 3, two second solid recovery measuring devices 46 are installed, one at approximately 300 m and one at 6000 m.

そして、第1の固形回収測定装置44及び第2の固形回収測定装置46の測定結果より制御装置30が固形回収物の溶解率を演算し、その測定結果と固形回収物の溶解率とに基づき制御装置30がカッタヘッド16の回転数を制御して固形回収物の切り出し寸法を調整するようにしている。   Then, the control device 30 calculates the dissolution rate of the solid recovery product from the measurement results of the first solid recovery measurement device 44 and the second solid recovery measurement device 46, and based on the measurement result and the dissolution rate of the solid recovery product. The control device 30 controls the rotational speed of the cutter head 16 to adjust the cutout size of the solid recovery product.

この場合、複数台設置された第2の固形回収測定装置46により測定された固形回収物の寸法及び溶解率と、計画された固形回収物の寸法及び溶解率とを比較し、最適な排泥ポンプ42の羽根体48の枚数を決定するようにするとよい。   In this case, the size and dissolution rate of the solid recovery product measured by the second solid recovery measuring device 46 installed in a plurality of units are compared with the planned size and dissolution rate of the solid recovery product, and the optimum waste mud is obtained. The number of blades 48 of the pump 42 may be determined.

また、土質の変化により排泥ラインでの溶解率が変化した場合、複数台設置された第2の固形回収測定装置46により固形回収物の寸法と溶解率を測定し、閉塞等の不具合防止と固形回収率を低下させないようにカッタヘッド16での切り出し寸法を調整するようにするとよい。   In addition, when the dissolution rate in the sludge line changes due to changes in soil quality, the size and dissolution rate of the solid recovered material are measured by the second solid recovery measuring device 46 installed in plural units to prevent problems such as clogging. It is preferable to adjust the cut-out dimension of the cutter head 16 so as not to reduce the solid recovery rate.

次に、このような固形回収物の搬送システムを用いた固形回収物の搬送方法について説明する。   Next, a method for transporting a solid recovery product using such a solid recovery product transport system will be described.

まず、シールド掘進機10側から後方側にかけて各排泥ポンプ42の羽根体48の枚数を所定距離ごとに増加させた排泥ポンプ42a、42b、42cにより、揚程を上げて泥水と共に固形回収物50を輸送する。   First, by using the mud pumps 42a, 42b, 42c in which the number of blades 48 of each mud pump 42 is increased by a predetermined distance from the shield machine 10 side to the rear side, the lift is raised and the solid recovered product 50 together with the mud water. To transport.

この場合、シールド掘進機10側から後方側にかけて各排泥ポンプ42の羽根体48の枚数を所定距離ごとに増加させることにより、カッタヘッド16による固形回収物50の切り出し寸法を大きくしても初期段階で閉塞することなく固形回収物50を輸送することができ、後方にいくにしたがって溶解率が大きくなる段階で揚程を上げて確実な輸送を行うことができる。   In this case, by increasing the number of blades 48 of each mud pump 42 from the shield machine 10 side to the rear side by a predetermined distance, even if the cutout size of the solid recovered material 50 by the cutter head 16 is increased, the initial size is increased. The solid recovered product 50 can be transported without clogging at the stage, and the lift can be raised at a stage where the dissolution rate increases toward the rear, and reliable transportation can be performed.

次に、シールド掘進機10と最初の排泥ポンプ42aとの間の排泥管40に設けた第1の固形回収測定装置44により固形回収物50の切り出し大きさを測定する。   Next, the cut-out size of the solid recovered product 50 is measured by the first solid recovery measuring device 44 provided in the sludge pipe 40 between the shield machine 10 and the first sludge pump 42a.

この場合、第1の固形回収測定装置44により確実に固形回収物50の切り出し大きさを監視することができる。   In this case, the cutout size of the solid recovered product 50 can be reliably monitored by the first solid recovery measuring device 44.

次いで、最初の排泥ポンプ42aから後方の排泥管40に所定間隔で設けた複数台の第2の固形回収測定装置46により後方での固形回収物50の大きさを測定する。   Next, the size of the rear solid collected material 50 is measured by a plurality of second solid recovery measuring devices 46 provided at predetermined intervals from the first sludge pump 42 a to the rear sludge pipe 40.

この場合、複数台の第2の固形回収測定装置46により溶解していく後方での固形回収物50の大きさを確実に監視することができる。   In this case, it is possible to reliably monitor the size of the solid recovered material 50 in the rear that is dissolved by the plurality of second solid recovery measuring devices 46.

そして、第1の固形回収測定装置44及び第2の固形回収測定装置46の測定結果と、その測定結果より演算して得た固形回収物50の溶解率とに基づき制御装置30がカッタヘッド16の回転数を制御して固形回収物50の切り出し寸法を調整する。   Based on the measurement results of the first solid recovery measurement device 44 and the second solid recovery measurement device 46 and the dissolution rate of the solid recovery product 50 calculated from the measurement results, the control device 30 causes the cutter head 16 to operate. Is adjusted to adjust the cut-out dimension of the solid recovered material 50.

このように、第1の固形回収測定装置44に加え、最初の排泥ポンプ42aから後方の排泥管40に複数台の第2の固形回収測定装置46を所定間隔で設け、制御装置30により、第1の固形回収測定装置44及び第2の固形回収測定装置46の測定結果と、その測定結果より演算して得た固形回収物50の溶解率とに基づきカッタヘッド16の回転数を制御して固形回収物50の切り出し寸法を調整することで、閉塞等の不具合の防止と、固形回収率を低下を防止することができる。   In this way, in addition to the first solid recovery measuring device 44, a plurality of second solid recovery measuring devices 46 are provided at a predetermined interval in the rear sludge pipe 40 from the first sludge pump 42a. The number of revolutions of the cutter head 16 is controlled based on the measurement results of the first solid recovery measurement device 44 and the second solid recovery measurement device 46 and the dissolution rate of the solid recovery product 50 calculated from the measurement results. Then, by adjusting the cut-out dimension of the solid recovered product 50, it is possible to prevent problems such as blockage and to prevent the solid recovery rate from being lowered.

特に、掘削経路の土質の変化により、排泥ラインでの溶解率が変化した場合、カッタヘッドにより切り出し寸法を調整することで、土質の変化にかかわらず、閉塞等の不具合の防止と、固形回収率の低下を防止することができる。   In particular, when the dissolution rate in the sludge line changes due to changes in the soil quality of the excavation route, adjustment of the cutting dimensions with the cutter head prevents malfunctions such as clogging and solid recovery regardless of soil changes. A decrease in rate can be prevented.

さらに、複数台の第2の固形回収測定装置46により測定された固形回収物50の寸法及び溶解率と、計画された固形回収物の寸法及び溶解率とを比較して複数の排泥ポンプ42における最適な羽根体48の枚数を決定することができる。   Furthermore, the size and the dissolution rate of the solid recovered product 50 measured by the plurality of second solid recovery measuring devices 46 are compared with the planned size and the dissolution rate of the solid recovered product, and the plurality of sludge pumps 42 are compared. The optimum number of blades 48 can be determined.

本発明は、前記実施の形態に限定されるものではなく、本発明の要旨の範囲内において種々の形態に変更することができる。   The present invention is not limited to the above-described embodiment, and various modifications can be made within the scope of the gist of the present invention.

例えば、排泥ポンプとして2枚、3枚、4枚の羽根体を有するものについて説明したが、羽根体の枚数は前記実施の形態に限定されるものではない。   For example, although a description has been given of a mud pump having two, three, and four blades, the number of blades is not limited to the above embodiment.

また、第2の固形回収測定装置の台数は、前記実施の形態の場合に限らず任意の台数とすることができる。   Further, the number of second solid recovery measuring devices is not limited to the above-described embodiment, and may be an arbitrary number.

本実施の形態における固形回収物の搬送システムに用いられる泥水式シールド工法におけるシールド掘進機の概略図である。It is the schematic of the shield machine in the muddy water type shield method used for the conveyance system of the solid recovery thing in this Embodiment. 図1のカッタヘッドの正面図である。It is a front view of the cutter head of FIG. 本実施の形態における固形回収物の搬送システムの概略図である。It is the schematic of the conveyance system of the solid collection thing in this Embodiment. (1)は2枚の羽根体を有する排泥ポンプの断面図、(2)は3枚の羽根体を有する排泥ポンプの断面図、(3)は4枚の羽根体を有する排泥ポンプの断面図である。(1) is a sectional view of a mud pump having two blades, (2) is a sectional view of a mud pump having three blades, (3) is a mud pump having four blades FIG.

符号の説明Explanation of symbols

10 シールド掘進機
12 チャンバ
14 切羽
16 カッタヘッド
30 制御装置
40 排泥管
42、42a、42b、42c 排泥ポンプ
44 第1の固形回収測定装置
46 第2の固形回収測定装置
48 羽根体
50、50s、50b、50c、50d 固形回収物
70、71、72、73、74、75、76、77、80 先行ビット
90 後行ビット
DESCRIPTION OF SYMBOLS 10 Shield machine 12 Chamber 14 Face 16 Cutter head 30 Control apparatus 40 Mud pipes 42, 42a, 42b, 42c Mud pump 44 First solid recovery measuring device 46 Second solid recovery measuring device 48 Blade bodies 50, 50s , 50b, 50c, 50d Solid recovered material 70, 71, 72, 73, 74, 75, 76, 77, 80 Leading bit 90 Trailing bit

Claims (2)

先行ビット及び後行ビットを備えたカッタヘッドの回転により掘進経路にある地山を固形状態で切り出し掘削し、前記切り出し掘削した固形回収物を、排泥管に所定間隔で配置した内部に回転する羽根体を有する複数台の排泥ポンプにより、チャンバ内の泥水と共に排泥管内を輸送して坑外に搬出するシールド掘進機における固形回収物の搬送システムであって、
前記排泥ポンプは、シールド掘進機側から後方側にかけて前記各排泥ポンプの前記羽根体の枚数を所定距離ごとに増加させ、
前記シールド掘進機と最初の前記排泥ポンプとの間の排泥管に固形回収物の大きさを測定する第1の固形回収測定装置を設けると共に、当該排泥ポンプから後方の排泥管に後方での固形回収物の大きさを測定する複数台の第2の固形回収測定装置を所定間隔で設け、
前記第1の固形回収測定装置及び第2の固形回収測定装置の測定結果と、その測定結果より演算して得た前記固形回収物の溶解率とに基づき前記カッタヘッドの回転数を制御して固形回収物の切り出し寸法を調整する制御手段を設けたことを特徴とするシールド掘進機における固形回収物の搬送システム。
A ground head in the excavation path is cut and excavated in a solid state by rotation of a cutter head provided with a leading bit and a trailing bit, and the cut and excavated solid recovered material is rotated inside a mud pipe arranged at a predetermined interval. A solid recovery material transport system in a shield machine that transports the mud pipe in the chamber together with the mud water in the chamber and carries it out of the mine by a plurality of mud pumps having blades,
The drainage pump increases the number of blades of each drainage pump from the shield machine side to the rear side for each predetermined distance,
A first solid recovery measuring device for measuring the size of the solid recovered material is provided in the sludge pipe between the shield machine and the first waste mud pump, and the sludge pump is connected to the rear sludge pipe. A plurality of second solid recovery measuring devices for measuring the size of the solid recovery at the back are provided at predetermined intervals,
The number of revolutions of the cutter head is controlled based on the measurement results of the first solid recovery measurement device and the second solid recovery measurement device and the dissolution rate of the solid recovery product calculated from the measurement results. A system for transporting solid recovered material in a shield machine, comprising a control means for adjusting a cutout size of the solid recovered material.
先行ビット及び後行ビットを備えたカッタヘッドの回転により掘進経路にある地山を固形状態で切り出し掘削し、前記切り出し掘削した固形回収物を、排泥管に所定間隔で配置した内部に回転する羽根体を有する複数台の排泥ポンプにより、チャンバ内の泥水と共に排泥管内を輸送して坑外に搬出するシールド掘進機における固形回収物の搬送方法であって、
シールド掘進機側から後方側にかけて前記各排泥ポンプの前記羽根体の枚数を所定距離ごとに増加させた排泥ポンプにより、揚程を上げて泥水と共に前記固形回収物を輸送する工程と、
前記シールド掘進機と最初の前記排泥ポンプとの間の排泥管に設けた第1の固形回収測定装置により固形回収物の切り出し大きさを測定する工程と、
当該排泥ポンプから後方の排泥管に所定間隔で設けた複数台の第2の固形回収測定装置により後方での固形回収物の大きさを測定する工程と、
前記第1の固形回収測定装置及び第2の固形回収測定装置の測定結果と、その測定結果より演算して得た前記固形回収物の溶解率とに基づき制御手段が前記カッタヘッドの回転数を制御して固形回収物の切り出し寸法を調整する工程と、
を含むことを特徴とするシールド掘進機における固形回収物の搬送方法。
A ground head in the excavation path is cut and excavated in a solid state by rotation of a cutter head provided with a leading bit and a trailing bit, and the cut and excavated solid recovered material is rotated inside a mud pipe arranged at a predetermined interval. A method for transporting solid recovery in a shield machine that transports the mud pipe in the chamber together with the mud water in the chamber and carries it out of the mine by a plurality of mud pumps having blades,
A step of transporting the solid recovered material together with the muddy water by raising the lift by a mud pump that increases the number of blades of each mud pump from the shield machine side to the rear side by a predetermined distance;
A step of measuring the cutout size of the solid recovery by a first solid recovery measuring device provided in a sludge pipe between the shield machine and the first sludge pump;
A step of measuring the size of the solid recovered material behind by a plurality of second solid recovery measuring devices provided at a predetermined interval from the sludge pump to the rear sludge tube;
Based on the measurement results of the first solid recovery measurement device and the second solid recovery measurement device, and the dissolution rate of the solid recovery product calculated from the measurement results, the control means determines the rotation speed of the cutter head. A step of controlling and adjusting the cut-out dimension of the solid recovered product;
A method for transporting solid recovery in a shield machine, comprising:
JP2005331818A 2005-11-16 2005-11-16 System and method for transporting solid recovery in shield machine Expired - Fee Related JP4741348B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005331818A JP4741348B2 (en) 2005-11-16 2005-11-16 System and method for transporting solid recovery in shield machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005331818A JP4741348B2 (en) 2005-11-16 2005-11-16 System and method for transporting solid recovery in shield machine

Publications (2)

Publication Number Publication Date
JP2007138475A true JP2007138475A (en) 2007-06-07
JP4741348B2 JP4741348B2 (en) 2011-08-03

Family

ID=38201682

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005331818A Expired - Fee Related JP4741348B2 (en) 2005-11-16 2005-11-16 System and method for transporting solid recovery in shield machine

Country Status (1)

Country Link
JP (1) JP4741348B2 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09159623A (en) * 1995-12-11 1997-06-20 Toda Constr Co Ltd Method and apparatus for measuring size of solid in mixture fluid of solid and liquid
JPH10252381A (en) * 1997-03-14 1998-09-22 Gesuido Shin Gijutsu Suishin Kiko Slurry shield machine
JP2000282784A (en) * 1999-03-29 2000-10-10 Gesuido Shingijutsu Suishin Kiko Shield machine and excavation control system
JP2002004775A (en) * 2000-06-27 2002-01-09 Toda Constr Co Ltd Shield machine

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09159623A (en) * 1995-12-11 1997-06-20 Toda Constr Co Ltd Method and apparatus for measuring size of solid in mixture fluid of solid and liquid
JPH10252381A (en) * 1997-03-14 1998-09-22 Gesuido Shin Gijutsu Suishin Kiko Slurry shield machine
JP2000282784A (en) * 1999-03-29 2000-10-10 Gesuido Shingijutsu Suishin Kiko Shield machine and excavation control system
JP2002004775A (en) * 2000-06-27 2002-01-09 Toda Constr Co Ltd Shield machine

Also Published As

Publication number Publication date
JP4741348B2 (en) 2011-08-03

Similar Documents

Publication Publication Date Title
KR20090030088A (en) Shield tunneling apparatus and constructing method thereof
JP4741348B2 (en) System and method for transporting solid recovery in shield machine
EP1147286B1 (en) Slurry treatment
JP5600290B2 (en) Mud pressure shield machine
JP2000274184A (en) Laying method for inground buried pipeline
JP2000282784A (en) Shield machine and excavation control system
TWI597417B (en) Propulsion device
JPH1122387A (en) Tunnel excavator and muddy water shield excavator
CA2993084C (en) A ground processing tool and a method for creating a borehole in the ground
JP2010013905A (en) Excavated soil treating system in shield method
JP2011117185A (en) Boring machine
JP4394271B2 (en) Shield machine and excavation method
JP2003239686A5 (en)
JP6131410B2 (en) Propulsion construction machine
JP2000282782A (en) Shield machine and excavation method
JP4275295B2 (en) Shield drilling system and shield drilling method
JP2860451B2 (en) Shield machine
JP2003138883A (en) Tunnel boring machine
JP2002004774A (en) Shield machine
JP4982646B2 (en) Solid recovery system for shield machine
JP2000282783A (en) Shield machine and excavation method
JP2000282786A (en) Shield machine and excavation method
JP2002004770A (en) Shield machine and excavating method
JP3245572B2 (en) Shield machine and excavation method
JP2002004775A (en) Shield machine

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20081003

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100729

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110420

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110506

R150 Certificate of patent or registration of utility model

Ref document number: 4741348

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140513

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees