JP2007138157A - Polyester composition and method for producing polyester molded article and polyester blow-molded article made thereof - Google Patents

Polyester composition and method for producing polyester molded article and polyester blow-molded article made thereof Download PDF

Info

Publication number
JP2007138157A
JP2007138157A JP2006285041A JP2006285041A JP2007138157A JP 2007138157 A JP2007138157 A JP 2007138157A JP 2006285041 A JP2006285041 A JP 2006285041A JP 2006285041 A JP2006285041 A JP 2006285041A JP 2007138157 A JP2007138157 A JP 2007138157A
Authority
JP
Japan
Prior art keywords
polyester
acid
content
polyester composition
molding
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006285041A
Other languages
Japanese (ja)
Inventor
Keiichiro Togawa
惠一朗 戸川
Kosuke Uotani
耕輔 魚谷
Masahiko Azuma
雅彦 東
Yoshitaka Eto
嘉孝 衛藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyobo Co Ltd
Original Assignee
Toyobo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyobo Co Ltd filed Critical Toyobo Co Ltd
Priority to JP2006285041A priority Critical patent/JP2007138157A/en
Publication of JP2007138157A publication Critical patent/JP2007138157A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • B29C47/92

Landscapes

  • Compositions Of Macromolecular Compounds (AREA)
  • Extrusion Moulding Of Plastics Or The Like (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a polyester composition having suppressed formation of aldehydes such as acetaldehyde and cyclic ester oligomers in molding or extrusion coating process and giving a molded article and coated material having excellent transparency and little variation of the transparency. <P>SOLUTION: The polyester composition contains at least two kinds of crystalline polyesters as main components. Not less than 85 mol% of the acid component and not less than 85 mol% of the glycol component of each polyester constituting the polyester composition are same acid component and same glycol component, the intrinsic viscosity difference of the polyesters is 0.05-0.30 dL/g, the difference of the copolymer component contents of the polyesters is ≤10.0 mol%, and the haze of a plate of 5 mm thick produced by molding the polyester at 290°C is ≤25%. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、飲料用ボトルをはじめとする中空成形体、シート状物、フィルムなどの成形体や、紙、フィルムなどの基材の上にコートされた被覆物などの素材として好適に用いられるポリエステル組成物およびその用途に関するものである。特に、成形時のアセトアルデヒドなどのアルデヒド類や環状エステルオリゴマーの生成が抑制され、透明性に優れ且つ透明性の変動が少ない成形体や被覆物を与えるポリエステル組成物及びそれらから成る透明性および香味保持性に優れたポリエステル成形体などに関するものである。また、本発明は、前記の特性を持つポリエステル成形体の製造方法に関するものである。   The present invention is a polyester suitably used as a raw material for a hollow molded body such as a bottle for beverages, a molded body such as a sheet, a film, or a coating coated on a substrate such as paper or film. The present invention relates to a composition and its use. In particular, a polyester composition that provides a molded product or a coating having excellent transparency and little variation in transparency, and the transparency and flavor retention comprising these, are suppressed in the formation of aldehydes such as acetaldehyde and cyclic ester oligomers during molding. The present invention relates to a polyester molded article having excellent properties. Moreover, this invention relates to the manufacturing method of the polyester molded object which has the said characteristic.

ポリエチレンテレフタレ−ト(以下、PETと略称することがある)などのポリエステルは、機械的性質及び化学的性質が共に優れているため、工業的価値が高く、繊維、フィルム、シ−ト、ボトルなどとして広く使用されている。   Polyesters such as polyethylene terephthalate (hereinafter sometimes abbreviated as “PET”) are excellent in both mechanical properties and chemical properties, and thus have high industrial value, such as fibers, films, sheets, and bottles. Widely used as such.

調味料、油、飲料、化粧品、洗剤などの容器の素材としては、充填内容物の種類およびその使用目的に応じて種々の樹脂が採用されている。
これらのうちでポリエステルは機械的強度、耐熱性、透明性およびガスバリヤー性に優れているので、特にジュ−ス、清涼飲料、炭酸飲料などの飲料充填用容器等の成形体の素材として最適である。
As a material for containers such as seasonings, oils, beverages, cosmetics, and detergents, various resins are employed depending on the type of filling contents and the purpose of use.
Of these, polyester is excellent in mechanical strength, heat resistance, transparency and gas barrier properties, and is particularly suitable as a material for molded articles such as beverage filling containers such as juices, soft drinks and carbonated drinks. is there.

このようなポリエステルは、例えば、射出成形機械などの成形機に供給して中空成形体用プリフォ−ムを成形し、このプリフォ−ムを所定形状の金型に挿入し延伸ブロー成形して清涼飲料用中空成形容器としたり、またプリフォーム口栓部を熱処理(口栓部結晶化)後に延伸ブロー成形および胴部を熱処理(ヒ−トセット)して耐熱性または耐熱圧性中空成形容器に成形されるのが一般的である。   For example, such a polyester is supplied to a molding machine such as an injection molding machine to form a preform for a hollow molded body, and the preform is inserted into a mold having a predetermined shape and stretch blow molded to form a soft drink. It is made into a hollow molded container for heat treatment, or the preform plug portion is heat-treated (crystallization of the plug portion) and then stretch blow molded and the body portion is heat-treated (heat set) to be molded into a heat-resistant or pressure-resistant hollow molded container. It is common.

しかしながら、PETは、溶融重縮合時の副生物としてアセトアルデヒド(以下、AAと略称することがある)を含有する。また、PETは、中空成形体等の成形体を熱成形する際に熱分解によりアセトアルデヒドを生成し、得られた成形体の材質中のアセトアルデヒド含有量が多くなり、中空成形体等に充填された飲料等の風味や臭いに影響を及ぼす。   However, PET contains acetaldehyde (hereinafter sometimes abbreviated as AA) as a by-product during melt polycondensation. In addition, PET produced acetaldehyde by thermal decomposition when thermoforming a molded body such as a hollow molded body, and the acetaldehyde content in the material of the obtained molded body was increased, and the hollow molded body was filled. Affects the flavor and odor of beverages.

近年、ポリエチレンテレフタレ−トを中心とするポリエステル製容器は、ミネラルウオータやウーロン茶等の低フレーバー飲料用の容器として使用されるようになってきた。このような飲料の場合は、一般にこれらの飲料を熱充填したり、または充填後加熱して殺菌されるが、飲料容器のアセトアルデヒド含有量の低減がますます重要になって来ている。また、飲料用金属缶については、工程簡略化、衛生性、公害防止等の目的から、その内面にエチレンテレフタレ−トを主たる繰り返し単位とするポリエステルフィルムを被覆した金属板を利用して製缶する方法が採られるようになってきた。この場合にも、内容物を充填後高温で加熱殺菌されるが、この際、十分にアセトアルデヒド含有量の低いフィルムを使用することが内容物の風味や臭いの改善に必須要件であることが分かってきた。   In recent years, polyester containers such as polyethylene terephthalate have come to be used as containers for low flavor beverages such as mineral water and oolong tea. In the case of such beverages, these beverages are generally heat-filled or sterilized by heating after filling, but the reduction of the acetaldehyde content in the beverage container is becoming increasingly important. In addition, for beverage metal cans, for the purposes of process simplification, hygiene, pollution prevention, etc., cans are made using a metal plate whose inner surface is coated with a polyester film whose main repeating unit is ethylene terephthalate. The method to do has come to be adopted. In this case as well, it is sterilized by heating at a high temperature after filling the contents. At this time, it is found that the use of a film having a sufficiently low acetaldehyde content is an essential requirement for improving the flavor and odor of the contents. I came.

このような理由から、従来よりポリエステル中のアセトアルデヒド含有量を低減させるために種々の方策が採られてきた。これらの方策として、例えば、溶融重縮合したポリエステルを固相重合することによってAA含有量を低下させる方法(例えば、特許文献1参照)、融点がより低い共重合ポリエステルを使用して成形時のAA生成を低下させる方法(例えば、特許文献2参照)、溶融重合によって得られたポリエステルプレポリマーを減圧下または不活性気体の流通下で固相重合に付することにより、オリゴマーおよびアルデヒドを低下させる方法(例えば、特許文献3、4参照)、ポリエステルプレポリマーを水分率が2000ppm以上となるように調湿した後、結晶化および固相重合する方法(例えば、特許文献5参照)、ポリエステル粒子を50〜200℃の熱水で処理した後、減圧下または不活性気体流通下、加熱処理する方法(例えば、特許文献6参照)、固相重合の前後に水または有機溶媒で抽出、洗浄処理する方法(例えば、特許文献7参照)、熱成形時における成形温度を可及的に低くする方法および熱成形時におけるせん断応力を可及的に小さくする方法などが提案されている。しかしながら、これらの方法で得られるポリエステルを用いた成形体であっても、オリゴマーおよびアセトアルデヒドを問題ない水準に低減できているとは言えず問題は未解決である。   For these reasons, various measures have been taken to reduce the acetaldehyde content in the polyester. As these measures, for example, a method of reducing the AA content by solid-phase polymerization of melt-polycondensed polyester (see, for example, Patent Document 1), AA at the time of molding using a copolyester having a lower melting point Method for reducing production (for example, see Patent Document 2), Method for reducing oligomers and aldehydes by subjecting a polyester prepolymer obtained by melt polymerization to solid phase polymerization under reduced pressure or in the flow of an inert gas (For example, refer to Patent Documents 3 and 4), a method for crystallization and solid-phase polymerization after conditioning the polyester prepolymer so that the moisture content is 2000 ppm or more (for example, refer to Patent Document 5), A method of performing heat treatment under reduced pressure or inert gas flow after treatment with hot water at ˜200 ° C. (for example, patent document) 6), a method of extracting and washing with water or an organic solvent before and after solid-phase polymerization (see, for example, Patent Document 7), a method of reducing the molding temperature as much as possible during thermoforming, and shearing during thermoforming A method for reducing the stress as much as possible has been proposed. However, even in a molded body using polyester obtained by these methods, it cannot be said that oligomers and acetaldehyde can be reduced to a problem-free level, and the problem remains unsolved.

また、極限粘度が0.03以上異なる2種のPETの溶融混合組成物からの予備成形体を特定の温度条件の熱固定金型で処理する耐熱性ポリエステル容器の製造方法(例えば、特許文献8参照)および得られた耐熱性ポリエステル容器(例えば、特許文献9参照)、0.60〜0.70dl/gの極限粘度と特定の昇温時結晶化温度及び特定の降温時結晶化温度を持つポリエステルと0.77〜0.90dl/gの極限粘度と特定の昇温時結晶化温度及び特定の降温時結晶化温度を持つポリエステルの混合物からのプリフォームを延伸ブローする耐熱性ポリエステル容器の製造方法(例えば、特許文献10参照)が提案されているが、これらの方法によっても安定した透明性を持ち、かつアセトアルデヒド含有量が低減された成形体を得るには未だ問題点がある。   Also, a method for producing a heat-resistant polyester container in which a preform formed from two types of molten PET compositions having different intrinsic viscosities of 0.03 or more is treated with a heat-setting mold under specific temperature conditions (for example, Patent Document 8). And a heat-resistant polyester container obtained (see, for example, Patent Document 9), having an intrinsic viscosity of 0.60 to 0.70 dl / g, a specific temperature increase crystallization temperature, and a specific temperature decrease crystallization temperature Production of a heat resistant polyester container for stretching and blowing a preform from a mixture of polyester and a polyester having an intrinsic viscosity of 0.77 to 0.90 dl / g, a specific crystallization temperature at elevated temperature and a specified crystallization temperature at lowered temperature Although methods (for example, refer to Patent Document 10) have been proposed, a molded article having stable transparency and a reduced acetaldehyde content can be obtained by these methods. There is still a problem.

また、ポリエステル樹脂100重量部に対して、メタキシリレン基含有ポリアミド樹脂0.05重量部以上、1重量部未満を添加したポリエステル組成物を用いる方法(例えば、特許文献11参照)や、熱可塑性ポリエステルに、末端アミノ基濃度をある範囲に規制した特定のポリアミドを含有させたポリエステル組成物からなるポリエステル製容器(例えば、特許文献12参照)が提案されており、アセトアルデヒド含有量の低減度や結晶化速度変動の点などに未だ問題がある。   In addition, a method using a polyester composition in which 0.05 parts by weight or more and less than 1 part by weight of a metaxylylene group-containing polyamide resin is added to 100 parts by weight of a polyester resin (see, for example, Patent Document 11) or thermoplastic polyester A polyester container (for example, see Patent Document 12) made of a polyester composition containing a specific polyamide whose terminal amino group concentration is regulated within a certain range has been proposed. There are still problems in terms of fluctuations.

また、近年ボトルの薄肉化が図られ、それに伴いボトルの強度アップのために高分子量化が試されているが、高分子量化することで、成形時の溶融粘度が上昇してアセトアルデヒド発生量が増加する問題が発生していた。
特開昭53−73288号公報 特開昭57−16024号公報 特開昭55−89330号公報 特開昭55−89331号公報 特開平2−298512号公報 特開平8−120062号公報 特開昭55−13715号公報 特公昭62−43851号公報 特公昭62−58973号公報 特開平10−287799号公報 特公平6−6662号公報 特公平4−71425号公報
In recent years, thinning of bottles has been attempted, and as a result, attempts have been made to increase the molecular weight in order to increase the strength of the bottle, but by increasing the molecular weight, the melt viscosity during molding increases and the amount of acetaldehyde generated increases. There was an increasing problem.
JP-A-53-73288 Japanese Patent Laid-Open No. 57-16024 JP 55-89330 A JP 55-89331 A JP-A-2-298512 JP-A-8-120062 Japanese Patent Laid-Open No. 55-13715 Japanese Examined Patent Publication No. 62-43851 Japanese Examined Patent Publication No. 62-58973 Japanese Patent Laid-Open No. 10-287799 Japanese Examined Patent Publication No. 6-6661 Japanese Examined Patent Publication No. 4-71425

本発明は、上記従来の方法の有する問題点を解決し、成形時や押出しコート時におけるアセトアルデヒドなどのアルデヒド類や環状エステルオリゴマーの生成が抑制され、透明性に優れかつ透明性の変動が少ない成形体や被覆物を与えるポリエステル組成物、さらにまた、耐圧性や耐熱圧性に優れた中空成形体などを高速成形により効率よく生産することができるポリエステル組成物およびそれらからなるポリエステル成形体並びに前記の特性を持つポリエステル成形体の製造方法を提供することを目的とする。   The present invention solves the problems of the conventional methods described above, suppresses the formation of aldehydes such as acetaldehyde and cyclic ester oligomers during molding and extrusion coating, and has excellent transparency and little variation in transparency. Polyester composition that gives a body and a coating, and further, a polyester composition that can efficiently produce a hollow molded body having excellent pressure resistance and heat and pressure resistance by high-speed molding, a polyester molded body comprising them, and the above characteristics It aims at providing the manufacturing method of the polyester molded object which has NO.

本発明者らは、上記目的を達成するために鋭意検討した結果、本発明に到達した。すなわち、本発明のポリエステル組成物は、少なくとも2種の結晶性ポリエステルを主成分として含むポリエステル組成物であって、前記ポリエステル組成物を構成する各ポリエステルの酸成分の85モル%以上およびグリコール成分の85モル%以上が、それぞれ、同一の酸成分および同一のグリコール成分であり、前記ポリエステルの極限粘度の差が0.05〜0.30デシリットル/グラムの範囲、前記ポリエステルの共重合成分の含有量の差が10.0モル%以下で、かつ、前記ポリエステルを290℃で成形した5mm厚みの成形板のヘイズが25%以であることを特徴とするポリエステル組成物である。   The inventors of the present invention have arrived at the present invention as a result of intensive studies to achieve the above object. That is, the polyester composition of the present invention is a polyester composition containing at least two kinds of crystalline polyesters as main components, and 85 mol% or more of the acid component of each polyester constituting the polyester composition and the glycol component. 85 mol% or more are the same acid component and the same glycol component, respectively, the difference in intrinsic viscosity of the polyester is in the range of 0.05 to 0.30 deciliter / gram, the content of the copolymer component of the polyester The polyester composition is characterized in that the difference between the two is 10.0 mol% or less, and the haze of a 5 mm-thick molded plate obtained by molding the polyester at 290 ° C. is 25% or less.

本発明のポリエステル組成物は、押出機内での溶融時の流動性が改善されるためにより低温度での溶融成形や溶融押出が可能であり、アセトアルデヒドなどのアルデヒド類やその他熱分解副生物の含有量の低減と透明性の改良が可能となり、香味保持性に優れた成形体や被覆物を与えることができる。また、同時に加熱延伸時の配向性も改善されるために、弾性率や抗張力などの機械的特性に優れた延伸成形体を与えることができ、特に耐圧性あるいは耐熱圧性に優れた延伸中空容器として有益に用いられる。   The polyester composition of the present invention can be melt-molded and melt-extruded at a lower temperature because of improved flowability when melted in an extruder, and contains aldehydes such as acetaldehyde and other pyrolysis by-products. The amount can be reduced and the transparency can be improved, and a molded article and a coating excellent in flavor retention can be provided. At the same time, since the orientation during heating and stretching is also improved, it is possible to give a stretched molded product having excellent mechanical properties such as elastic modulus and tensile strength, and particularly as a stretched hollow container excellent in pressure resistance or heat and pressure resistance. Used beneficially.

また、同様の理由から成形温度を低く出来るので、溶融成形時の環状エステルオリゴマーの生成を低く抑えることが可能となり、特に射出成形金型のベント部の詰まりが抑制されるために中空成形体を高速成形により効率よく生産することができ、従って生産性が高く長時間連続成形性に優れたポリエステル組成物を与えることができる。   In addition, since the molding temperature can be lowered for the same reason, it is possible to suppress the formation of cyclic ester oligomers during melt molding, and in particular, since the clogging of the vent portion of the injection mold is suppressed, a hollow molded body can be formed. The polyester composition can be efficiently produced by high-speed molding, and therefore, a polyester composition having high productivity and excellent long-term continuous formability can be provided.

本発明のポリエステル組成物を構成するポリエステルの極限粘度の差は、好ましくは0.06〜0.27デシリットル/グラム、さらに好ましくは0.07〜0.23デシリットル/グラム、特に好ましくは0.10〜0.20デシリットル/グラムである。   The difference in intrinsic viscosity of the polyester constituting the polyester composition of the present invention is preferably 0.06 to 0.27 deciliter / gram, more preferably 0.07 to 0.23 deciliter / gram, and particularly preferably 0.10. ~ 0.20 deciliter / gram.

本発明に係るポリエステルの極限粘度差が0.05デシリットル/グラム未満の場合は、得られた成形体のアセトアルデヒドなどのアルデヒド含有量を低減できず香味保持性が改良できない。また前記の極限粘度差が0.30デシリットル/グラムを超える場合は、得られた成形体に厚み斑や白化した流れ模様等が生じて透明性が悪くなり問題となる。ここで、本発明のポリエステル組成物が2種類以上のポリエステルからなる場合は、前記極限粘度の差とは、極限粘度に関して最大のポリエステルと最小のポリエステルとの極限粘度の差のことである。なお、以下、極限粘度に関して最大のポリエステルをポリエステルB、最小のポリエステルをポリエステルAとする。   When the intrinsic viscosity difference of the polyester according to the present invention is less than 0.05 deciliter / gram, the content of aldehyde such as acetaldehyde in the obtained molded product cannot be reduced, and the flavor retention cannot be improved. When the above intrinsic viscosity difference exceeds 0.30 deciliter / gram, thickness irregularities, whitened flow patterns, and the like are generated in the obtained molded product, resulting in a problem of poor transparency. Here, when the polyester composition of the present invention comprises two or more kinds of polyesters, the difference in intrinsic viscosity is the difference in intrinsic viscosity between the maximum polyester and the minimum polyester with respect to the intrinsic viscosity. Hereinafter, the maximum polyester regarding the intrinsic viscosity is referred to as polyester B, and the minimum polyester is referred to as polyester A.

本発明で用いられる極限粘度の異なるポリエステルは、溶融重縮合反応工程、あるいは、これに続く固相重合反応工程で極限粘度の差が本発明の範囲内に入るように製造されたポリエステル、または、これらを極限粘度が低下しない条件下で水と接触処理させたポリエステルである。   Polyesters having different intrinsic viscosities used in the present invention are polyesters produced so that the difference in intrinsic viscosities falls within the scope of the present invention in the melt polycondensation reaction step or the subsequent solid phase polymerization reaction step, or These are polyesters obtained by contact treatment with water under the condition that the intrinsic viscosity does not decrease.

極限粘度の異なるポリエステルを得る他の製造方法としては、ポリエステルを水と高温度で加熱処理して加水分解する方法や押出機などで溶融処理する方法などがある。しかし、加水分解による方法は、固体状態で実施されるため、IV低下度の管理が非常に難しく、IV変動巾が狭いポリエステル粒子を得ることが困難であること、また、加水分解処理後の粒子は輸送時の衝撃などにより微細粉末を発生し易いことなどから、これらを用いた場合の成形体の透明性や結晶化速度の変動が非常に大きくなると言う問題が生じ、成形体の透明性やその変動が大となり問題である。また、溶融処理による方法は、処理時にアセトアルデヒドなどのアルデヒド類が増加するため、香味保持性に影響を与えたり、また着色するなどの問題がある。したがって、本発明に係るポリエステルとしては、水による加圧下熱処理等の方法によって加水分解させてIV低下させたポリエステルや溶融処理してIV低下させたポリエステルは含まない。   As other production methods for obtaining polyesters having different intrinsic viscosities, there are a method of hydrolyzing polyester by heat treatment with water at a high temperature, a method of melt treatment with an extruder, and the like. However, since the method by hydrolysis is carried out in a solid state, it is very difficult to control the degree of IV reduction, it is difficult to obtain polyester particles having a narrow IV fluctuation range, and particles after hydrolysis treatment Is likely to generate fine powder due to impact during transportation, etc., so that there is a problem that the fluctuation of the transparency and crystallization speed of the molded body when these are used becomes very large. The fluctuation is a big problem. In addition, the method using the melt treatment has problems such as an influence on flavor retention and coloring due to an increase in aldehydes such as acetaldehyde during the treatment. Therefore, the polyester according to the present invention does not include polyester hydrolyzed by a method such as heat treatment under pressure with water or the like, or polyester melt-treated to reduce IV.

また、本発明に係るポリエステルを290℃で成形した5mm厚みの成形板のヘイズが好ましくは20%以下、さらに好ましくは15%以下、もっとも好ましくは10%以下である。成形板のヘイズが25%を超える場合は、ポリエステル成形体の透明性が悪くなり問題である。   Further, the haze of a 5 mm-thick molded plate obtained by molding the polyester according to the present invention at 290 ° C. is preferably 20% or less, more preferably 15% or less, and most preferably 10% or less. When the haze of the molded plate exceeds 25%, the transparency of the polyester molded body is deteriorated, which is a problem.

また、本発明に係るポリエステルの共重合成分の含有量の差が、好ましくは5モル%以下、さらに好ましくは3.0モル%以下、最も好ましくは1.0モル%以下である。本発明に係るポリエステルの共重合成分の含有量の差が10.0モル%を超える場合は、溶融時の融解特性の差が大きくなりすぎ、特にアセトアルデヒドなどのアルデヒド含有量を出来るだけ低減させることを目的とする本発明では、低温成形するために構成ポリエステル間の混合が不十分となり未延伸成形体などの透明性が悪くなると言う問題、未延伸成形体を加熱して延伸成形する際に加熱により部分的に結晶化白化すると言う問題、あるいは、厚み斑が大きな被覆物しか得られないと言う問題が起こる。これを解決するには、溶融温度を上げざるを得ず、結果として成形体のアセトアルデヒドなどのアルデヒド含有量を低減できなくなる。ここで、本発明のポリエステル組成物が2種類以上のポリエステルからなる場合は、共重合成分の含有量の差とは、共重合成分の含有量に関して最大のポリエステルと最少のポリエステルとの共重合成分の含有量の差を表す。   Further, the difference in the content of the copolymer component of the polyester according to the present invention is preferably 5 mol% or less, more preferably 3.0 mol% or less, and most preferably 1.0 mol% or less. When the difference in content of the copolymerization component of the polyester according to the present invention exceeds 10.0 mol%, the difference in melting characteristics at the time of melting becomes too large, and in particular, the content of aldehydes such as acetaldehyde should be reduced as much as possible. In the present invention for the purpose of low temperature molding, there is a problem that mixing between the constituent polyesters becomes insufficient and transparency of the unstretched molded body is deteriorated, heating when the unstretched molded body is heated and stretch-molded This causes the problem of partial crystallization whitening, or the problem that only a coating having a large thickness spot can be obtained. In order to solve this, the melting temperature must be increased, and as a result, the content of aldehyde such as acetaldehyde in the molded product cannot be reduced. Here, when the polyester composition of the present invention comprises two or more kinds of polyesters, the difference in the content of the copolymerization component is the copolymerization component of the maximum polyester and the minimum polyester with respect to the content of the copolymerization component. Represents the difference in the content of.

この場合において、前記ポリエステルのアルデヒド含有量が10ppm以下であることが好ましい。   In this case, the aldehyde content of the polyester is preferably 10 ppm or less.

この場合において、環状エステルオリゴマー含有量が、溶融重縮合ポリエステルプレポリマーの環状エステルオリゴマー含有量の60%以下であることが好ましい。   In this case, the cyclic ester oligomer content is preferably 60% or less of the cyclic ester oligomer content of the melt polycondensed polyester prepolymer.

この場合において、290℃の温度で60分間溶融したときの環状エステルオリゴマー増加量が0.40重量%以下であることが好ましい。   In this case, it is preferable that the cyclic ester oligomer increase amount is 0.40% by weight or less when melted at a temperature of 290 ° C. for 60 minutes.

この場合において、前記酸成分が、テレフタル酸または2,6−ナフタレンジカルボン酸であることが好ましい。   In this case, the acid component is preferably terephthalic acid or 2,6-naphthalenedicarboxylic acid.

この場合において、共重合成分が、テレフタル酸、イソフタル酸、2,6−ナフタレンジカルボン酸、ジエチレングリコール、ネオペンチルグリコール、1,4−シクロヘキサンジメタノールから選ばれる少なくとも一種であることができる。   In this case, the copolymer component can be at least one selected from terephthalic acid, isophthalic acid, 2,6-naphthalenedicarboxylic acid, diethylene glycol, neopentyl glycol, and 1,4-cyclohexanedimethanol.

この場合において、前記のポリエステル組成物を溶融成形してなるポリエステル成形体であり、前記ポリエステル成形体が、中空成形体、シ−ト状物あるいはこのシート状物を少なくとも一方向に延伸してなる延伸フィルムのいずれかであることを特徴とするポリエステル成形体である。   In this case, it is a polyester molded body obtained by melt-molding the polyester composition, and the polyester molded body is formed by stretching a hollow molded body, a sheet-shaped material, or this sheet-shaped material in at least one direction. A polyester molded body characterized by being a stretched film.

また、この場合において、前記のポリエステル組成物を基材上に溶融押出してなることを特徴とする被覆物であることができる。   Moreover, in this case, it can be a coating characterized by melting and extruding the polyester composition on a substrate.

さらにまた、前記の結晶性ポリエステルがエチレンテレフタレ−トを主たる繰返し単位とするポリエステルであって、該結晶性ポリエステルを主成分として含むポリエステル組成物を成形機内での溶融樹脂温度が255〜305℃、成形機内での溶融滞留時間が5〜500秒の条件で混練および成形することを特徴とするポリエステル成形体の製造方法を提供する。   Furthermore, the crystalline polyester is a polyester having ethylene terephthalate as a main repeating unit, and the polyester resin containing the crystalline polyester as a main component has a molten resin temperature of 255 to 305 ° C. in a molding machine. The present invention provides a method for producing a polyester molded body characterized by kneading and molding under conditions where the melt residence time in a molding machine is 5 to 500 seconds.

本発明は、流動特性が改良されるために低温度での成形が可能で、透明性に優れ、成形時のアルデヒド発生量が少ない成形体や被覆物、あるいは、耐圧性などの機械的特性にも優れた中空成形体などを与えるポリエステル組成物及びそれからなる成形体とその製造方法を提供する。   The present invention is capable of molding at a low temperature because of improved flow characteristics, has excellent transparency, and has a molded product or coating with little aldehyde generation during molding, or mechanical properties such as pressure resistance. The present invention also provides a polyester composition that gives an excellent hollow molded article, a molded article comprising the same, and a method for producing the same.

以下、本発明のポリエステル組成物およびその用途の実施の形態を具体的に説明する。
すなわち、本発明に係るポリエステルは結晶性ポリエステルであって、ポリエステルの酸成分の85モル%以上およびグリコール成分の85モル%以上、好ましくは、酸成分の90モル%以上およびグリコール成分の90モル%以上、さらに好ましくは、酸成分の93モル%以上およびグリコール成分の93モル%以上が、それぞれ、同一の酸成分および同一のグリコール成分である結晶性ポリエステルである。
Hereinafter, embodiments of the polyester composition of the present invention and its application will be described in detail.
That is, the polyester according to the present invention is a crystalline polyester, and is 85 mol% or more of the acid component of the polyester and 85 mol% or more of the glycol component, preferably 90 mol% or more of the acid component and 90 mol% of the glycol component. As described above, more preferably, the crystalline polyester is such that 93 mol% or more of the acid component and 93 mol% or more of the glycol component are the same acid component and the same glycol component, respectively.

本発明に係るポリエステルを構成する主なジカルボン酸成分としては、テレフタル酸、2、6−ナフタレンジカルボン酸、ジフェニール−4,4'−ジカルボン酸、ジフェノキシエタンジカルボン酸等の芳香族ジカルボン酸及びその機能的誘導体、p−オキシ安息香酸、オキシカプロン酸等のオキシ酸及びその機能的誘導体、アジピン酸、セバシン酸、コハク酸、乳酸、グリコール酸、グルタル酸等の脂肪族ジカルボン酸及びその機能的誘導体等が挙げられる。   The main dicarboxylic acid component constituting the polyester according to the present invention includes terephthalic acid, 2,6-naphthalenedicarboxylic acid, diphenyl-4,4′-dicarboxylic acid, diphenoxyethanedicarboxylic acid and other aromatic dicarboxylic acids and the like. Functional derivatives, oxyacids such as p-oxybenzoic acid and oxycaproic acid and functional derivatives thereof, aliphatic dicarboxylic acids such as adipic acid, sebacic acid, succinic acid, lactic acid, glycolic acid, glutaric acid and functional derivatives thereof Etc.

また本発明に係るポリエステルを構成する主なグリコール成分としては、エチレングリコール、1,3−トリメチレングリコール、1,4−テトラメチレングリコールなどの脂肪族グリコール、シクロヘキサンジメタノール等の脂環族グリコール等が挙げられる。   Moreover, as main glycol components constituting the polyester according to the present invention, aliphatic glycols such as ethylene glycol, 1,3-trimethylene glycol and 1,4-tetramethylene glycol, alicyclic glycols such as cyclohexanedimethanol, etc. Is mentioned.

前記ポリエステルが共重合体である場合に使用される共重合成分としてのジカルボン酸としては、テレフタル酸、イソフタル酸、ジフェニール−4,4’−ジカルボン酸、ジフェノキシエタンジカルボン酸、4,4’−ジフェニルエーテルジカルボン酸、4,4’−ジフェニルケトンジカルボン酸等の芳香族ジカルボン酸及びその機能的誘導体、p−オキシ安息香酸、オキシカプロン酸、3−ヒドロキシ酪酸等のオキシ酸及びその機能的誘導体、アジピン酸、セバシン酸、コハク酸、グルタル酸、ダイマー酸、グリコール酸、リンゴ酸等の脂肪族ジカルボン酸及びその機能的誘導体、ヘキサヒドロテレフタル酸、ヘキサヒドロイソフタル酸、シクロヘキサンジカルボン酸等の脂環族ジカルボン酸及びその機能的誘導体、カプロラクトン、バレロラクトン等のラクトン類などが挙げられる。   Examples of the dicarboxylic acid used as a copolymerization component when the polyester is a copolymer include terephthalic acid, isophthalic acid, diphenyl-4,4′-dicarboxylic acid, diphenoxyethanedicarboxylic acid, 4,4′- Aromatic dicarboxylic acids such as diphenyl ether dicarboxylic acid, 4,4′-diphenyl ketone dicarboxylic acid and functional derivatives thereof, oxyacids such as p-oxybenzoic acid, oxycaproic acid and 3-hydroxybutyric acid and functional derivatives thereof, adipine Aliphatic dicarboxylic acids such as acid, sebacic acid, succinic acid, glutaric acid, dimer acid, glycolic acid and malic acid and their functional derivatives, and alicyclic dicarboxylic acids such as hexahydroterephthalic acid, hexahydroisophthalic acid and cyclohexanedicarboxylic acid Acids and their functional derivatives, caprolactone, Such as the lactones of the lactone, and the like.

前記ポリエステルが共重合体である場合に使用される共重合成分としてのグリコールとしては、ジエチレングリコール、1,3−トリメチレングリコール、テトラメチレングリコール、ペンタメチレングリコール、ヘキサメチレングリコール、オクタメチレングリコール、デカメチレングリコール、2−エチル−2−ブチル−1,3−プロパンジオール、ネオペンチルグリコール、ダイマーグリコール等の脂肪族グリコール、1,2−シクロヘキサンジオール、1,4−シクロヘキサンジオール、1,1−シクロヘキサンジメチロール、1,4−シクロヘキサンジメチロール、2,5−ノルボルナンジメチロール等の脂環族グリコール、キシリレングリコール、4,4’−ジヒドロキシビフェニル、2,2−ビス(4’−β−ヒドロキシエトキシフェニル)プロパン、ビス(4−ヒドロキシフェニル)スルホン、ビス(4−β−ヒドロキシエトキシフェニル)スルホン酸、ビスフェノールAのアルキレンオキサイド付加物等の芳香族グリコール、ポリエチレングリコール、ポリブチレングリコール等のポリアルキレングリコールなどが挙げられる。   The glycol as a copolymerization component used when the polyester is a copolymer is diethylene glycol, 1,3-trimethylene glycol, tetramethylene glycol, pentamethylene glycol, hexamethylene glycol, octamethylene glycol, decamethylene. Glycols, 2-ethyl-2-butyl-1,3-propanediol, aliphatic glycols such as neopentyl glycol, dimer glycol, 1,2-cyclohexanediol, 1,4-cyclohexanediol, 1,1-cyclohexanedimethylol 1,4-cyclohexane dimethylol, 2,5-norbornane dimethylol and the like alicyclic glycols, xylylene glycol, 4,4′-dihydroxybiphenyl, 2,2-bis (4′-β-hydroxyeth Cyclophenyl) propane, bis (4-hydroxyphenyl) sulfone, bis (4-β-hydroxyethoxyphenyl) sulfonic acid, aromatic glycols such as alkylene oxide adducts of bisphenol A, polyalkylene glycols such as polyethylene glycol and polybutylene glycol Etc.

さらに、前記ポリエステルが共重合体である場合に使用される共重合成分としての多官能化合物としては、酸成分として、トリメリット酸、ピロメリット酸等を挙げることができ、グリコール成分としてグリセリン、ペンタエリスリトールを挙げることができる。以上の共重合成分の使用量は、ポリエステルが実質的に線状を維持する程度でなければならない。また、単官能化合物、例えば安息香酸、ナフトエ酸等を共重合させてもよい。   Furthermore, examples of the polyfunctional compound as a copolymer component used when the polyester is a copolymer include trimellitic acid, pyromellitic acid, and the like as an acid component, and glycerin and pentane as glycol components. Mention may be made of erythritol. The amount of copolymerization component used should be such that the polyester remains substantially linear. Monofunctional compounds such as benzoic acid and naphthoic acid may be copolymerized.

本発明に係るポリエステルの好ましい一例は、主たる構成単位がエチレンテレフタレートから構成されるポリエステルであり、さらに好ましくはエチレンテレフタレート単位を85モル%以上含み、共重合成分としてイソフタル酸、1,4―シクロヘキサンジメタノールなどを含む共重合ポリエステルであり、特に好ましいくはエチレンテレフタレート単位を95モル%以上含むポリエステルである。
これらポリエステルの例としては、ポリエチレンテレフタレート(以下、PETと略称)、ポリ(エチレンテレフタレート−エチレンイソフタレート)共重合体、ポリ(エチレンテレフタレート−1,4−シクロヘキサンジメチレンテレフタレート)共重合体、ポリ(エチレンテレフタレート−ジオキシエチレンテレフタレート)共重合体、ポリ(エチレンテレフタレート−1,3−プロピレンテレフタレート)共重合体、ポリ(エチレンテレフタレート−エチレンシクロヘキシレンジカルボキシレート)共重合体などが挙げられる。
A preferred example of the polyester according to the present invention is a polyester whose main structural unit is composed of ethylene terephthalate, more preferably 85 mol% or more of ethylene terephthalate units, and isophthalic acid, 1,4-cyclohexanedi, as a copolymerization component. A copolyester containing methanol or the like, particularly preferably a polyester containing 95 mol% or more of ethylene terephthalate units.
Examples of these polyesters include polyethylene terephthalate (hereinafter abbreviated as PET), poly (ethylene terephthalate-ethylene isophthalate) copolymer, poly (ethylene terephthalate-1,4-cyclohexanedimethylene terephthalate) copolymer, poly ( Examples thereof include an ethylene terephthalate-dioxyethylene terephthalate) copolymer, a poly (ethylene terephthalate-1,3-propylene terephthalate) copolymer, and a poly (ethylene terephthalate-ethylene cyclohexylene dicarboxylate) copolymer.

また本発明に係るポリエステルの好ましいその他の例としては、主たる構成単位が1,3−プロピレンテレフタレートから構成されるポリエステルであり、さらに好ましくは1,3−プロピレンテレフタレート単位を85モル%以上含むポリエステルであり、特に好ましいのは1,3−プロピレンテレフタレート単位を95モル%以上含むポリエステルである。
これらポリエステルの例としては、ポリプロピレンテレフタレート(PTT)、ポリ(1,3−プロピレンテレフタレート−1,3−プロピレンイソフタレート)共重合体、ポリ(1,3−プロピレンテレフタレート−1,4−シクロヘキサンジメチレンテレフタレート)共重合体などが挙げられる。
In addition, another preferable example of the polyester according to the present invention is a polyester in which a main structural unit is composed of 1,3-propylene terephthalate, and more preferably a polyester including 85 mol% or more of 1,3-propylene terephthalate units. Particularly preferred are polyesters containing 95 mol% or more of 1,3-propylene terephthalate units.
Examples of these polyesters include polypropylene terephthalate (PTT), poly (1,3-propylene terephthalate-1,3-propylene isophthalate) copolymer, poly (1,3-propylene terephthalate-1,4-cyclohexanedimethylene). Terephthalate) copolymer and the like.

さらにまた本発明に係るポリエステルの好ましいその他の例としては、主たる構成単位がブチレンテレフタレートから構成されるポリエステルであり、さらに好ましくはブチレンテレフタレート単位を85モル%以上含む共重合ポリエステルであり、特に好ましいくはブチレンテレフタレート単位を95モル%以上含むポリエステルである。
これらポリエステルの例としては、ポリブチレンテレフタレート(PBT)、ポリ(ブチレンテレフタレート−ブチレンイソフタレート)共重合体、ポリ(ブレンテレフタレート−1,4−シクロヘキサンジメチレンテレフタレート)共重合体、ポリ(ブチレンテレフタレート−1,3−プロピレンテレフタレート)共重合体、ポリ(ブチレンテレフタレート−ブチレンシクロヘキシレンジカルボキシレート)共重合体などが挙げられる。
Furthermore, other preferable examples of the polyester according to the present invention are polyesters in which the main structural unit is composed of butylene terephthalate, more preferably a copolyester containing 85 mol% or more of butylene terephthalate units, and particularly preferable. Is a polyester containing 95 mol% or more of butylene terephthalate units.
Examples of these polyesters include polybutylene terephthalate (PBT), poly (butylene terephthalate-butylene isophthalate) copolymer, poly (butylene terephthalate-1,4-cyclohexanedimethylene terephthalate) copolymer, poly (butylene terephthalate- 1,3-propylene terephthalate) copolymer, poly (butylene terephthalate-butylene cyclohexylene dicarboxylate) copolymer, and the like.

また本発明に係るポリエステルの好ましいその他の一例は、主たる構成単位がエチレン−2、6−ナフタレートから構成されるポリエステルであり、さらに好ましくはエチレン−2、6−ナフタレート単位を85モル%以上含むポリエステルであり、特に好ましいのは、エチレン−2、6−ナフタレート単位を90モル%以上含むポリエステルである。
これらポリエステルの例としては、ポリエチレン−2,6−ナフタレート(PEN)、ポリ(エチレン−2,6−ナフタレート−エチレンテレフタレート)共重合体、ポリ(エチレン−2,6−ナフタレート−エチレンイソフタレート)共重合体、ポリ(エチレン−2,6−ナフタレート−ジオキシエチレン−2,6−ナフタレート)共重合体などが挙げられる。
Another preferred example of the polyester according to the present invention is a polyester in which the main structural unit is composed of ethylene-2,6-naphthalate, and more preferably a polyester containing 85 mol% or more of ethylene-2,6-naphthalate units. Particularly preferred are polyesters containing 90 mol% or more of ethylene-2,6-naphthalate units.
Examples of these polyesters include polyethylene-2,6-naphthalate (PEN), poly (ethylene-2,6-naphthalate-ethylene terephthalate) copolymer, poly (ethylene-2,6-naphthalate-ethylene isophthalate) copolymer Examples thereof include a polymer and a poly (ethylene-2,6-naphthalate-dioxyethylene-2,6-naphthalate) copolymer.

また本発明に係るポリエステルの好ましいその他の一例は、主たる構成単位が1,4−シクロヘキサンジメチレンテレフタレートから構成されるポリエステルであり、さらに好ましくは1,4−シクロヘキサンジメチレンテレフタレート単位を85モル%以上含む共重合ポリエステルであり、特に好ましいくは1,4−シクロヘキサンジメチレンテレフタレート単位を90モル%以上含むポリエステルである。
これらポリエステルの例としては、ポリ−1,4−シクロヘキサンジメチレンテレフタレート(PCT)、ポリ(1,4−シクロヘキサンジメチレンテレフタレート−エチレンテレフタレート)共重合体などが挙げられる。
Another preferred example of the polyester according to the present invention is a polyester in which the main structural unit is composed of 1,4-cyclohexanedimethylene terephthalate, and more preferably 85 mol% or more of 1,4-cyclohexanedimethylene terephthalate units. And a polyester containing 90 mol% or more of 1,4-cyclohexanedimethylene terephthalate units.
Examples of these polyesters include poly-1,4-cyclohexanedimethylene terephthalate (PCT), poly (1,4-cyclohexanedimethylene terephthalate-ethylene terephthalate) copolymer, and the like.

また本発明に係るポリエステルの好ましいその他の一例は、主たる構成単位が乳酸単位から構成されるポリエステルであり、さらに好ましくは乳酸単位を85モル%以上、特に好ましくは乳酸単位を90モル%以上含むポリエステルである。   Another preferred example of the polyester according to the present invention is a polyester whose main structural unit is composed of lactic acid units, more preferably 85 mol% or more, particularly preferably 90 mol% or more of lactic acid units. It is.

また本発明に係るポリエステルの好ましいその他の一例は、主たる構成単位がグリコール酸単位から構成されるポリエステルであり、さらに好ましくはグリコール酸単位を85モル%以上、特に好ましくはグリコール酸単位を90モル%以上含むポリエステルである。   Another preferred example of the polyester according to the present invention is a polyester in which the main structural unit is composed of glycolic acid units, more preferably 85 mol% or more, particularly preferably 90 mol% of glycolic acid units. It is the polyester containing above.

また本発明に係るポリエステルの好ましいその他の一例は、主たる構成単位がコハク酸単位から構成されるポリエステルであり、さらに好ましくはコハク酸単位を85モル%以上、特に好ましくはコハク酸単位を90モル%以上含むポリエステルである。   Another preferred example of the polyester according to the present invention is a polyester in which the main structural unit is composed of succinic acid units, more preferably 85 mol% or more of succinic acid units, and particularly preferably 90 mol% of succinic acid units. It is the polyester containing above.

本発明に係るポリエステルは、基本的には従来公知の溶融重縮合法あるいは溶融重縮合法―固相重合法によって製造することが出来る。溶融重縮合反応は1段階で行っても良いし、また多段階に分けて行っても良い。これらは回分式反応装置から構成されていてもよいし、また連続式反応装置から構成されていてもよい。また溶融重縮合工程と固相重合工程は連続的に運転してもよいし、分割して運転してもよい。以下に、ポリエチレンテレフタレート(PET)を例にして、本発明のポリエステル組成物の好ましい連続式製造方法の一例について説明するが、これに限定されるものではない。即ち、テレフタル酸とエチレングリコール及び必要により他の共重合成分を直接反応させて水を留去しながらエステル化した後、重縮合触媒の存在下に減圧下に重縮合を行う直接エステル化法、または、テレフタル酸ジメチルとエチレングリコール及び必要により他の共重合成分を反応させてメチルアルコールを留去しながらエステル交換させた後、重縮合触媒の存在下に減圧下に重縮合を行うエステル交換法により製造される。次いで、極限粘度を増大させたり、また低フレーバー飲料用耐熱容器や飲料用金属缶の内面用フィルム等のように低アセトアルデヒド含有量や低環状3量体含有量とする場合には、このようにして得られた溶融重縮合されたポリエステルは、引き続き固相重合される。   The polyester according to the present invention can basically be produced by a conventionally known melt polycondensation method or melt polycondensation method-solid phase polymerization method. The melt polycondensation reaction may be performed in one stage or may be performed in multiple stages. These may be comprised from a batch-type reaction apparatus, and may be comprised from the continuous-type reaction apparatus. The melt polycondensation step and the solid phase polymerization step may be operated continuously or may be operated separately. Hereinafter, an example of a preferable continuous production method for the polyester composition of the present invention will be described using polyethylene terephthalate (PET) as an example, but the present invention is not limited thereto. That is, a direct esterification method in which terephthalic acid, ethylene glycol, and if necessary, other copolymerization components are directly reacted and esterified while distilling off water, followed by polycondensation under reduced pressure in the presence of a polycondensation catalyst, Or transesterification by reacting dimethyl terephthalate with ethylene glycol and other copolymerization components if necessary, and transesterifying while distilling off methyl alcohol, followed by polycondensation under reduced pressure in the presence of a polycondensation catalyst Manufactured by. Then, when the intrinsic viscosity is increased or the low acetaldehyde content or the low cyclic trimer content is used, such as a heat-resistant container for low flavor beverages or a film for inner surfaces of metal cans for beverages. The resulting melt polycondensed polyester is subsequently subjected to solid state polymerization.

まず、エステル化反応により低重合体を製造する場合には、テレフタル酸またはそのエステル誘導体1モルに対して1.02〜2.0モル、好ましくは1.03〜1.6モルのエチレングリコールが含まれたスラリーを調整し、これをエステル化反応工程に連続的に供給する。   First, when a low polymer is produced by an esterification reaction, 1.02 to 2.0 mol, preferably 1.03 to 1.6 mol of ethylene glycol is added to 1 mol of terephthalic acid or an ester derivative thereof. The contained slurry is prepared and continuously supplied to the esterification reaction step.

エステル化反応は、少なくとも2個のエステル化反応器を直列に連結した多段式装置を用いてエチレングリコールが還流する条件下で、反応によって生成した水またはアルコールを精留塔で系外に除去しながら実施する。第1段目のエステル化反応の温度は240〜270℃、好ましくは245〜265℃、圧力は0.2〜3kg/cm2G、好ましくは0.5〜2kg/cm2Gである。最終段目のエステル化反応の温度は通常250〜280℃好ましくは255〜275℃であり、圧力は通常0〜1.5kg/cm2G、好ましくは0〜1.3kg/cm2Gである。3段階以上で実施する場合には、中間段階のエステル化反応の反応条件は、上記第1段目の反応条件と最終段目の反応条件の間の条件である。これらのエステル化反応の反応率の上昇は、それぞれの段階で滑らかに分配されることが好ましい。最終的にはエステル化反応率は90%以上、好ましくは93%以上に達することが望ましい。これらのエステル化反応により分子量500〜5000程度の低次縮合物が得られる。 In the esterification reaction, water or alcohol produced by the reaction is removed out of the system by a rectification column under conditions where ethylene glycol is refluxed using a multistage apparatus in which at least two esterification reactors are connected in series. While implementing. The temperature of the first stage esterification reaction is 240 to 270 ° C., preferably 245 to 265 ° C., and the pressure is 0.2 to 3 kg / cm 2 G, preferably 0.5 to 2 kg / cm 2 G. The temperature of the esterification reaction in the final stage is usually 250 to 280 ° C, preferably 255 to 275 ° C, and the pressure is usually 0 to 1.5 kg / cm 2 G, preferably 0 to 1.3 kg / cm 2 G. . When carried out in three or more stages, the reaction conditions for the esterification reaction in the intermediate stage are conditions between the reaction conditions for the first stage and the reaction conditions for the final stage. The increase in the reaction rate of these esterification reactions is preferably distributed smoothly at each stage. Ultimately, it is desirable that the esterification reaction rate reaches 90% or more, preferably 93% or more. By these esterification reactions, low-order condensates having a molecular weight of about 500 to 5,000 are obtained.

上記エステル化反応は原料としてテレフタル酸を用いる場合は、テレフタル酸の酸としての触媒作用により無触媒でも反応させることができるが重縮合触媒の共存下に実施してもよい。
また、トリエチルアミン、トリ−n−ブチルアミン、ベンジルジメチルアミンなどの第3級アミン、水酸化テトラエチルアンモニウム、水酸化テトラ−n−ブチルアンモニウム、水酸化トリメチルベンジルアンモニウムなどの水酸化第4級アンモニウムおよび炭酸リチウム、炭酸ナトリウム、炭酸カリウム、酢酸ナトリウムなどの塩基性化合物を少量添加して実施すると、ポリエチレンテレフタレートの主鎖中のジオキシエチレンテレフタレート成分単位の割合を比較的低水準(全ジオール成分に対して5モル%以下)に保持できるので好ましい。
When terephthalic acid is used as a raw material, the esterification reaction can be carried out without a catalyst by the catalytic action of terephthalic acid as an acid, but may be carried out in the presence of a polycondensation catalyst.
Also, tertiary amines such as triethylamine, tri-n-butylamine, benzyldimethylamine, quaternary ammonium hydroxides such as tetraethylammonium hydroxide, tetra-n-butylammonium hydroxide, trimethylbenzylammonium hydroxide, and lithium carbonate When a small amount of a basic compound such as sodium carbonate, potassium carbonate or sodium acetate is added, the proportion of dioxyethylene terephthalate component units in the main chain of polyethylene terephthalate is relatively low (5% relative to all diol components). Mol% or less).

次に、エステル交換反応によって低重合体を製造する場合は、テレフタル酸ジメチル1モルに対して1.1〜2.0モル、好ましくは1.2〜1.5モルのエチレングリコールが含まれた溶液を調整し、これをエステル交換反応工程に連続的に供給する。   Next, in the case of producing a low polymer by transesterification, 1.1 to 2.0 mol, preferably 1.2 to 1.5 mol of ethylene glycol was contained with respect to 1 mol of dimethyl terephthalate. The solution is prepared and continuously fed to the transesterification step.

エステル交換反応は、1〜2個のエステル交換反応器を直列に連結した装置を用いてエチレングリコールが還留する条件下で、反応によって生成したメタノールを精留塔で系外に除去しながら実施する。第1段目のエステル交換反応の温度は180〜250℃、好ましくは200〜240℃である。最終段目のエステル交換反応の温度は通常230〜270℃、好ましくは240〜265℃であり、エステル交換触媒として、Zn,Cd,Mg,Mn,Ca,Baなどの脂肪酸塩、炭酸塩やPb,Zn,Sb,Ge酸化物等を用いる。これらのエステル交換反応により分子量約200〜500程度の低次縮合物が得られる。   The transesterification reaction is carried out while removing methanol generated by the reaction outside the system using a rectification column under the condition that ethylene glycol is distilled back using an apparatus in which 1 to 2 transesterification reactors are connected in series. To do. The temperature of the first stage transesterification is 180 to 250 ° C, preferably 200 to 240 ° C. The temperature of the transesterification reaction in the final stage is usually 230 to 270 ° C., preferably 240 to 265 ° C. As the transesterification catalyst, fatty acid salts such as Zn, Cd, Mg, Mn, Ca, Ba, carbonates and Pb , Zn, Sb, Ge oxide or the like is used. A low-order condensate having a molecular weight of about 200 to 500 is obtained by these transesterification reactions.

前記の出発原料であるジメチルテレフタレート、テレフタル酸またはエチレングリコールとしては、パラキシレンから誘導されるバージンのジメチルテレフタレート、テレフタル酸あるいはエチレンから誘導されるエチレングリコールは勿論のこと、使用済みPETボトルからメタノール分解やエチレングリコール分解などのケミカルリサイクル法により回収したジメチルテレフタレート、テレフタル酸、ビスヒドロキシエチルテレフタレートあるいはエチレングリコールなどの回収原料も、出発原料の少なくとも一部として利用することが出来る。前記回収原料の品質は、使用目的に応じた純度、品質に精製されていなければならないことは言うまでもない。   Dimethyl terephthalate, terephthalic acid or ethylene glycol, which is the starting material, includes virgin dimethyl terephthalate derived from para-xylene, ethylene glycol derived from terephthalic acid or ethylene, as well as methanol decomposition from used PET bottles. A recovered raw material such as dimethyl terephthalate, terephthalic acid, bishydroxyethyl terephthalate or ethylene glycol recovered by a chemical recycling method such as decomposition of ethylene glycol or ethylene glycol can also be used as at least part of the starting material. Needless to say, the quality of the recovered raw material must be refined to a purity and quality suitable for the intended use.

次いで得られた低次縮合物は多段階の液相縮重合工程に供給される。重縮合反応条件は、第1段階目の重縮合の反応温度は250〜290℃、好ましくは260〜280℃であり、圧力は500〜20Torr、好ましくは200〜30Torrで、最終段階の重縮合反応の温度は265〜300℃、好ましくは275〜295℃であり、圧力は10〜0.1Torr、好ましくは5〜0.5Torrである。3段階以上で実施する場合には、中間段階の重縮合反応の反応条件は、上記第1段目の反応条件と最終段目の反応条件の間の条件である。これらの重縮合反応工程の各々において到達される極限粘度の上昇の度合は滑らかに分配されることが好ましい。なお、重縮合反応には一段式重縮合装置を用いてもよい。   Subsequently, the obtained low-order condensate is supplied to a multistage liquid phase condensation polymerization process. The polycondensation reaction conditions are as follows: the first stage polycondensation reaction temperature is 250 to 290 ° C., preferably 260 to 280 ° C., and the pressure is 500 to 20 Torr, preferably 200 to 30 Torr. The temperature is 265 to 300 ° C., preferably 275 to 295 ° C., and the pressure is 10 to 0.1 Torr, preferably 5 to 0.5 Torr. When carried out in three or more stages, the reaction conditions for the intermediate stage polycondensation reaction are conditions between the reaction conditions for the first stage and the reaction conditions for the last stage. The degree of increase in intrinsic viscosity achieved in each of these polycondensation reaction steps is preferably distributed smoothly. A single-stage polycondensation apparatus may be used for the polycondensation reaction.

重縮合反応は、重縮合触媒を用いて行う。重縮合触媒としては、Ge、Sb、Ti、SnまたはAlの化合物から選ばれる少なくとも一種の化合物が用いられることが好ましい。これらの化合物は、粉体、水溶液、エチレングリコール溶液、エチレングリコールのスラリー等として反応系に添加される。   The polycondensation reaction is performed using a polycondensation catalyst. As the polycondensation catalyst, it is preferable to use at least one compound selected from compounds of Ge, Sb, Ti, Sn or Al. These compounds are added to the reaction system as powders, aqueous solutions, ethylene glycol solutions, ethylene glycol slurries and the like.

Ge化合物としては、無定形二酸化ゲルマニウム、結晶性二酸化ゲルマニウム粉末またはエチレングリコールのスラリー、結晶性二酸化ゲルマニウムを水に加熱溶解した溶液またはこれにエチレングリコールを添加加熱処理した溶液等が使用されるが、特に本発明で用いるポリエステルを得るには二酸化ゲルマニウムを水に加熱溶解した溶液、またはこれにエチレングリコールを添加加熱した溶液を使用するのが好ましい。また、四酸化ゲルマニウム、水酸化ゲルマニウム、蓚酸ゲルマニウム、塩化ゲルマニウム、ゲルマニウムテトラエトキシド、ゲルマニウムテトラ−n−ブトキシド、亜リン酸ゲルマニウム等の化合物も用いることが出来る。これらの重縮合触媒はエステル化工程中に添加することができる。Ge化合物の使用量は、ポリエステル中のGe残存量として10〜150ppm、好ましくは13〜100ppm、更に好ましくは15〜70ppmの範囲になるように添加する。   Examples of the Ge compound include amorphous germanium dioxide, crystalline germanium dioxide powder or ethylene glycol slurry, a solution obtained by heating and dissolving crystalline germanium dioxide in water, or a solution obtained by adding ethylene glycol to this and heat treatment. In particular, in order to obtain the polyester used in the present invention, it is preferable to use a solution in which germanium dioxide is dissolved by heating in water, or a solution in which ethylene glycol is added and heated. In addition, compounds such as germanium tetroxide, germanium hydroxide, germanium oxalate, germanium chloride, germanium tetraethoxide, germanium tetra-n-butoxide, and germanium phosphite can also be used. These polycondensation catalysts can be added during the esterification step. The amount of Ge compound used is 10 to 150 ppm, preferably 13 to 100 ppm, and more preferably 15 to 70 ppm as the residual amount of Ge in the polyester.

Sb化合物としては、三酸化アンチモン、酢酸アンチモン、酒石酸アンチモン、酒石酸アンチモンカリ、オキシ塩化アンチモン、アンチモングリコレ−ト、五酸化アンチモン、トリフェニルアンチモン等が挙げられる。
Sb化合物は、生成ポリマー中のSb残存量として、50〜300ppm、好ましくは70〜250ppm、更に好ましくは100〜230ppmの範囲になるように添加する。
Examples of the Sb compound include antimony trioxide, antimony acetate, antimony tartrate, antimony potassium tartrate, antimony oxychloride, antimony glycolate, antimony pentoxide, and triphenylantimony.
The Sb compound is added so that the residual amount of Sb in the produced polymer is in the range of 50 to 300 ppm, preferably 70 to 250 ppm, more preferably 100 to 230 ppm.

Ti化合物としては、テトラエチルチタネート、テトライソプロピルチタネート、テトラ−n−プロピルチタネート、テトラ−n−ブチルチタネート等のテトラアルキルチタネートおよびそれらの部分加水分解物、酢酸チタン、蓚酸チタニル、蓚酸チタニルアンモニウム、蓚酸チタニルナトリウム、蓚酸チタニルカリウム、蓚酸チタニルカルシウム、蓚酸チタニルストロンチウム等の蓚酸チタニル化合物、トリメリット酸チタン、硫酸チタン、塩化チタン、チタンハロゲン化物の加水分解物、シュウ化チタン、フッ化チタン、六フッ化チタン酸カリウム、六フッ化チタン酸アンモニウム、六フッ化チタン酸コバルト、六フッ化チタン酸マンガン、チタンアセチルアセトナート、ヒドロキシ多価カルボン酸または含窒素多価カルボン酸とのチタン錯体物、チタンおよびケイ素あるいはジルコニウムからなる複合酸化物、チタンアルコキサイドとリン化合物の反応物、チタンアルコキサイドと芳香族多価カルボン酸またはその無水物との反応物にリン化合物を反応させて得た反応生成物等が挙げられる。Ti化合物の使用量は、ポリエステル中のTi残存量として0.1〜50ppm、好ましくは0.5〜30ppm、更に好ましくは1〜20ppmの範囲になるように添加する。   Examples of Ti compounds include tetraethyl titanates, tetraisopropyl titanates, tetra-n-propyl titanates, tetraalkyl titanates such as tetra-n-butyl titanates and partial hydrolysates thereof, titanium acetate, titanyl oxalate, titanyl ammonium oxalate, titanyl oxalate Sodium, titanyl oxalate, titanyl calcium oxalate, titanyl succinate, titanyl succinate, titanium trimellitic acid, titanium sulfate, titanium chloride, titanium halide hydrolyzate, titanium oxalate, titanium fluoride, titanium hexafluoride Titanium with potassium acid, ammonium hexafluorotitanate, cobalt hexafluorotitanate, manganese hexafluorotitanate, titanium acetylacetonate, hydroxy polyvalent carboxylic acid or nitrogen-containing polyvalent carboxylic acid A phosphorus compound is reacted with a complex compound, a composite oxide composed of titanium and silicon or zirconium, a reaction product of titanium alkoxide and a phosphorus compound, or a reaction product of titanium alkoxide and an aromatic polycarboxylic acid or its anhydride. The reaction product obtained by the above. The amount of Ti compound used is 0.1 to 50 ppm, preferably 0.5 to 30 ppm, and more preferably 1 to 20 ppm as the amount of Ti remaining in the polyester.

Sn化合物としては、酸化スズ、塩化スズ、硫酸スズ、酢酸スズ、乳酸スズ、ジブチルスズオキサイドが挙げられる。Sn化合物の使用量は、ポリエステル中のSn残存量として10〜100ppm、好ましくは15〜70ppm、更に好ましくは20〜50ppmの範囲になるように添加する。   Examples of the Sn compound include tin oxide, tin chloride, tin sulfate, tin acetate, tin lactate, and dibutyltin oxide. The amount of Sn compound used is 10 to 100 ppm, preferably 15 to 70 ppm, more preferably 20 to 50 ppm in terms of Sn remaining in the polyester.

Al化合物としては、酢酸アルミニウム、塩基性酢酸アルミニウム、塩化アルミニウム、水酸化アルミニウム、水酸化塩化アルミニウム、炭酸アルミニウム、リン酸アルミニウム、ホスホン酸アルミニウムなどの無機酸塩、アルミニウムn-プロポキサイド、アルミニウムiso-プロポキサイド、アルミニウムn-ブトキサイド、アルミニウムt−ブトキサイドなどアルミニウムアルコキサイド、アルミニウムアセチルアセトネート、アルミニウムアセチルアセテート、アルミニウムエチルアセトアセテート、アルミニウムエチルアセトアセテートジiso-プロポキサイドなどのアルミニウムキレート化合物、トリメチルアルミニウム、トリエチルアルミニウムなどの有機アルミニウム化合物およびこれらの部分加水分解物、酸化アルミニウムなどが挙げられる。これらのうち酢酸アルミニウム、塩基性酢酸アルミニウム、塩化アルミニウム、水酸化アルミニウム、水酸化塩化アルミニウムおよびアルミニウムアセチルアセトネートがとくに好ましい。Al化合物は、生成ポリマー中のAl残存量として5〜200ppm、好ましくは10〜100ppm、更に好ましくは15〜50ppmの範囲になるように添加する。   Al compounds include aluminum acetate, basic aluminum acetate, aluminum chloride, aluminum hydroxide, aluminum hydroxide chloride, aluminum carbonate, aluminum phosphate, aluminum phosphonate and other inorganic acid salts, aluminum n-propoxide, aluminum iso-propoxide Aluminum alkoxides such as aluminum n-butoxide and aluminum t-butoxide, aluminum chelate compounds such as aluminum acetylacetonate, aluminum acetylacetate, aluminum ethylacetoacetate, aluminum ethylacetoacetate diiso-propoxide, trimethylaluminum, triethylaluminum, etc. Organic aluminum compounds and partial hydrolysates thereof, aluminum oxide, etc. It is. Of these, aluminum acetate, basic aluminum acetate, aluminum chloride, aluminum hydroxide, aluminum hydroxide chloride and aluminum acetylacetonate are particularly preferred. The Al compound is added so that the residual amount of Al in the produced polymer is in the range of 5 to 200 ppm, preferably 10 to 100 ppm, more preferably 15 to 50 ppm.

重縮合触媒としてAl化合物を用いる場合は、リン化合物と併用することが好ましく、アルミニウム化合物およびリン化合物が予め溶媒中で混合された溶液またはスラリーとして用いることが好ましい。Al化合物の場合、より好ましいリン化合物は、ホスホン酸系化合物、ホスフィン酸系化合物、ホスフィンオキサイド系化合物、亜ホスホン酸系化合物、亜ホスフィン酸系化合物、ホスフィン系化合物からなる群より選ばれる少なくとも一種のリン化合物である。これらのリン化合物を用いることで触媒活性の向上効果が見られるとともに、ポリエステルの熱安定性等の物性が改善する効果が見られる。これらの中でも、ホスホン酸系化合物を用いると物性改善効果や触媒活性の向上効果が大きく好ましい。上記したリン化合物の中でも、芳香環構造を有する化合物を用いると物性改善効果や触媒活性の向上効果が大きく好ましい。   When an Al compound is used as the polycondensation catalyst, it is preferably used in combination with a phosphorus compound, and is preferably used as a solution or slurry in which an aluminum compound and a phosphorus compound are previously mixed in a solvent. In the case of an Al compound, a more preferable phosphorus compound is at least one selected from the group consisting of phosphonic acid compounds, phosphinic acid compounds, phosphine oxide compounds, phosphonous acid compounds, phosphinic acid compounds, and phosphine compounds. It is a phosphorus compound. By using these phosphorus compounds, an effect of improving the catalytic activity is seen, and an effect of improving physical properties such as thermal stability of the polyester is seen. Among these, use of a phosphonic acid compound is preferable because of its great effect of improving physical properties and improving catalytic activity. Among the above-described phosphorus compounds, the use of a compound having an aromatic ring structure is preferable because the physical property improving effect and the catalytic activity improving effect are great.

また、本発明に係るポリエステルの製造においては、アルカリ金属化合物またはアルカリ土類金属化合物を必要に応じて併用してもよい。アルカリ金属、アルカリ土類金属としては、Li,Na,K,Rb,Cs,Be,Mg,Ca,Sr,Baから選択される少なくとも1種であることが好ましく、アルカリ金属ないしその化合物の使用がより好ましい。アルカリ金属ないしその化合物を使用する場合、特にLi,Na,Kの使用が好ましい。アルカリ金属やアルカリ土類金属の化合物としては、例えば、これら金属のギ酸、酢酸、プロピオン酸、酪酸、蓚酸などの飽和脂肪族カルボン酸塩、アクリル酸、メタクリル酸などの不飽和脂肪族カルボン酸塩、安息香酸などの芳香族カルボン酸塩、トリクロロ酢酸などのハロゲン含有カルボン酸塩、乳酸、クエン酸、サリチル酸などのヒドロキシカルボン酸塩、炭酸、硫酸、硝酸、リン酸、ホスホン酸、炭酸水素、リン酸水素、硫化水素、亜硫酸、チオ硫酸、塩酸、臭化水素酸、塩素酸、臭素酸などの無機酸塩、1−プロパンスルホン酸、1−ペンタンスルホン酸、ナフタレンスルホン酸などの有機スルホン酸塩、ラウリル硫酸などの有機硫酸塩、メトキシ、エトキシ、n−プロポキシ、iso−プロポキシ、n−ブトキシ、tert−ブトキシなどのアルコキサイド、アセチルアセトネートなどとのキレート化合物、水素化物、酸化物、水酸化物などが挙げられる。
前記のアルカリ金属化合物またはアルカリ土類金属化合物は、粉体、水溶液、エチレングリコ−ル溶液等として反応系に添加される。
In the production of the polyester according to the present invention, an alkali metal compound or an alkaline earth metal compound may be used in combination as necessary. The alkali metal or alkaline earth metal is preferably at least one selected from Li, Na, K, Rb, Cs, Be, Mg, Ca, Sr, and Ba, and the use of an alkali metal or a compound thereof is preferable. More preferred. When using an alkali metal or a compound thereof, use of Li, Na, K is particularly preferable. Examples of the alkali metal and alkaline earth metal compounds include saturated aliphatic carboxylates such as formic acid, acetic acid, propionic acid, butyric acid, and succinic acid, and unsaturated aliphatic carboxylates such as acrylic acid and methacrylic acid. , Aromatic carboxylates such as benzoic acid, halogen-containing carboxylates such as trichloroacetic acid, hydroxycarboxylates such as lactic acid, citric acid and salicylic acid, carbonic acid, sulfuric acid, nitric acid, phosphoric acid, phosphonic acid, hydrogen carbonate, phosphorus Inorganic acid salts such as acid hydrogen, hydrogen sulfide, sulfurous acid, thiosulfuric acid, hydrochloric acid, hydrobromic acid, chloric acid and bromic acid, and organic sulfonates such as 1-propanesulfonic acid, 1-pentanesulfonic acid and naphthalenesulfonic acid , Organic sulfates such as lauryl sulfate, methoxy, ethoxy, n-propoxy, iso-propoxy, n-butoxy, tert-butyl Alkoxides such as alkoxy, chelate compounds and the like acetylacetonate, hydrides, oxides, and hydroxides and the like.
The alkali metal compound or alkaline earth metal compound is added to the reaction system as a powder, an aqueous solution, an ethylene glycol solution, or the like.

さらにまた、本発明に係るポリエステルは、ケイ素、マンガン、鉄、コバルト、亜鉛、ガリウム、ストロンチウム、ジルコニウム、ニオブ、モリブデン、インジウム、錫、ハフニウム、タリウム、タングステンからなる群から選ばれた少なくとも1種の元素を含む金属化合物を含有してもよい。これらの金属化合物としては、これら元素の酢酸塩等の飽和脂肪族カルボン酸塩、アクリル酸塩などの不飽和脂肪族カルボン酸塩、安息香酸などの芳香族カルボン酸塩、トリクロロ酢酸などのハロゲン含有カルボン酸塩、乳酸塩などのヒドロキシカルボン酸塩、炭酸塩などの無機酸塩、1−プロパンスルホン酸塩などの有機スルホン酸塩、ラウリル硫酸などの有機硫酸塩、酸化物、水酸化物、塩化物、アルコキサイド、アセチルアセトナ−ト等とのキレ−ト化合物があげられ、粉体、水溶液、エチレングリコ−ル溶液、エチレングリコ−ルのスラリー等として反応系に添加される。これらの金属化合物は、前記のポリエステル生成反応工程の任意の段階で添加することができる。   Furthermore, the polyester according to the present invention is at least one selected from the group consisting of silicon, manganese, iron, cobalt, zinc, gallium, strontium, zirconium, niobium, molybdenum, indium, tin, hafnium, thallium, tungsten. You may contain the metal compound containing an element. These metal compounds include saturated aliphatic carboxylates such as acetates of these elements, unsaturated aliphatic carboxylates such as acrylates, aromatic carboxylates such as benzoic acid, and halogens such as trichloroacetic acid. Hydroxycarboxylates such as carboxylates and lactates, inorganic acid salts such as carbonates, organic sulfonates such as 1-propanesulfonate, organic sulfates such as lauryl sulfate, oxides, hydroxides, chlorides Products, alkoxides, acetylacetonates, and the like, and are added to the reaction system as powders, aqueous solutions, ethylene glycol solutions, ethylene glycol slurries, and the like. These metal compounds can be added at any stage of the polyester formation reaction step.

また、安定剤として、燐酸、ポリ燐酸やトリメチルフォスフェート等の燐酸エステル類、ホスホン酸系化合物、ホスフィン酸系化合物、ホスフィンオキサイド系化合物、亜ホスホン酸系化合物、亜ホスフィン酸系化合物、ホスフィン系化合物からなる群より選ばれる少なくとも一種のリン化合物を使用するのが好ましい。具体例としてはリン酸、リン酸トリメチルエステル、リン酸トリエチルエステル、リン酸トリブチルエステル、リン酸トリフェニルエステル、リン酸モノメチルエステル、リン酸ジメチルエステル、リン酸モノブチルエステル、リン酸ジブチルエステル、亜リン酸、亜リン酸トリメチルエステル、亜リン酸トリエチルエステル、亜リン酸トリブチルエステル、メチルホスホン酸、メチルホスホン酸ジメチルエステル、エチルホスホン酸ジメチルエステル、フェニールホスホン酸ジメチルエステル、フェニールホスホン酸ジエチルエステル、フェニールホスホン酸ジフェニールエステル、3,5−ジ−tert−ブチル−4−ヒドロキシベンジルホスホン酸エチル、3,5−ジ−tert−ブチル−4−ヒドロキシベンジルホスホン酸メチル、3,5−ジ−tert−ブチル−4−ヒドロキシベンジルホスホン酸イソプロピル、3,5−ジ−tert−ブチル−4−ヒドロキシベンジルホスホン酸フェニル、3,5−ジ−tert−ブチル−4−ヒドロキシベンジルホスホン酸オクタデシル、3,5−ジ−tert−ブチル−4−ヒドロキシベンジルホスホン酸等である。これらの安定剤はテレフタル酸とエチレングリコールのスラリー調合槽からエステル化反応工程中に添加することができる。P化合物は、生成ポリマー中のP残存量として好ましくは5〜100ppmの範囲になるように添加する。   Further, as stabilizers, phosphoric acid, phosphoric acid esters such as polyphosphoric acid and trimethyl phosphate, phosphonic acid compounds, phosphinic acid compounds, phosphine oxide compounds, phosphonous acid compounds, phosphinic acid compounds, phosphine compounds It is preferable to use at least one phosphorus compound selected from the group consisting of: Specific examples include phosphoric acid, phosphoric acid trimethyl ester, phosphoric acid triethyl ester, phosphoric acid tributyl ester, phosphoric acid triphenyl ester, phosphoric acid monomethyl ester, phosphoric acid dimethyl ester, phosphoric acid monobutyl ester, phosphoric acid dibutyl ester, Phosphoric acid, phosphorous acid trimethyl ester, phosphorous acid triethyl ester, phosphorous acid tributyl ester, methylphosphonic acid, methylphosphonic acid dimethyl ester, ethylphosphonic acid dimethyl ester, phenylphosphonic acid dimethylester, phenylphosphonic acid diethylester, phenylphosphonic acid Diphenyl ester, ethyl 3,5-di-tert-butyl-4-hydroxybenzylphosphonate, methyl 3,5-di-tert-butyl-4-hydroxybenzylphosphonate, 3,5-di isopropyl tert-butyl-4-hydroxybenzylphosphonate, phenyl 3,5-di-tert-butyl-4-hydroxybenzylphosphonate, octadecyl 3,5-di-tert-butyl-4-hydroxybenzylphosphonate, 3, 5-di-tert-butyl-4-hydroxybenzylphosphonic acid and the like. These stabilizers can be added during the esterification reaction step from a slurry preparation tank of terephthalic acid and ethylene glycol. The P compound is added so that the residual amount of P in the produced polymer is preferably in the range of 5 to 100 ppm.

前記のようにして得られた溶融重縮合ポリエステルは、溶融重縮合終了後に細孔から下記の(1)〜(4)の少なくとも一つを、さらに好ましくは全てを満足する冷却水中に押出して水中でカットする方式、あるいは大気中に押出した後、直ちに前記と同一の水質の冷却水で冷却しながらカットする方式によって柱状、球状、角状、や板状の形態にチップ化されるのが好ましい。
Na ≦ 1.0(ppm) (1)
Mg ≦ 1.0(ppm) (2)
Si ≦ 2.0(ppm) (3)
Ca ≦ 1.0(ppm) (4)
After the melt polycondensation polyester is obtained, the melt polycondensation polyester obtained as described above is extruded from the pores into at least one of the following (1) to (4), and more preferably into cooling water satisfying all. It is preferable that chips are formed into a columnar shape, a spherical shape, a square shape, or a plate shape by a method of cutting with a cooling method, or a method of cutting while cooling with cooling water having the same water quality as described above after being extruded in the atmosphere. .
Na ≦ 1.0 (ppm) (1)
Mg ≦ 1.0 (ppm) (2)
Si ≦ 2.0 (ppm) (3)
Ca ≦ 1.0 (ppm) (4)

冷却水中のナトリウム含有量(Na)は、好ましくはNa≦0.5ppmであり、さらに好ましくはNa≦0.1ppmである。冷却水中のマグネシウム含有量(Mg)は、好ましくはMg≦0.5ppmであり、さらに好ましくはMg≦0.1ppmである。また、冷却水中の珪素の含有量(Si)は、好ましくはSi≦0.5ppmであり、さらに好ましくはSi≦0.3ppmである。さらに、冷却水中のカルシウム含有量(Ca)は、好ましくはCa≦0.5ppmであり、さらに好ましくはCa≦0.1ppmである。   The sodium content (Na) in the cooling water is preferably Na ≦ 0.5 ppm, more preferably Na ≦ 0.1 ppm. The magnesium content (Mg) in the cooling water is preferably Mg ≦ 0.5 ppm, more preferably Mg ≦ 0.1 ppm. Further, the content (Si) of silicon in the cooling water is preferably Si ≦ 0.5 ppm, more preferably Si ≦ 0.3 ppm. Furthermore, the calcium content (Ca) in the cooling water is preferably Ca ≦ 0.5 ppm, and more preferably Ca ≦ 0.1 ppm.

前記冷却水のナトリウムやマグネシウム、カルシウム、珪素を低減させるために、チップ冷却工程に工業用水が送られるまでの工程で少なくとも1ヶ所以上にナトリウムやマグネシウム、カルシウム、珪素を除去する装置を設置する。また、粒子状になった二酸化珪素やアルミノ珪酸塩等の粘土鉱物を除去するためにはフィルターを設置する。ナトリウムやマグネシウム、カルシウム、珪素を除去する装置としては、イオン交換装置、限外濾過装置や逆浸透膜装置などが挙げられる。   In order to reduce sodium, magnesium, calcium, and silicon in the cooling water, an apparatus for removing sodium, magnesium, calcium, and silicon is installed in at least one place until the industrial water is sent to the chip cooling process. Also, a filter is installed to remove clay minerals such as silicon dioxide and aluminosilicate particles. Examples of the device for removing sodium, magnesium, calcium, and silicon include an ion exchange device, an ultrafiltration device, and a reverse osmosis membrane device.

前記の条件を外れる冷却水を用いて冷却しながらチップ化したポリエステルを固相重合すると、これらの冷却水中の不純物のために、このような条件下に得られたポリエステルの成形体中の異物が増加したり、またフレーバー性が悪くなって商品価値を低下さすという問題も発生する。   When solid-state polymerization is performed on the polyester that has been chipped while cooling with cooling water that does not satisfy the above-described conditions, foreign matters in the molded body of the polyester obtained under such conditions are caused by impurities in the cooling water. There is also a problem that the product value increases and the flavor value deteriorates and the commercial value is lowered.

次いで、前期の溶融重縮合ポリエスエルチップは、不活性気体雰囲気下において、2段階以上の連続式結晶化装置で予備結晶化されることが好ましい。例えばPETの場合は、1段目の予備結晶化では100〜180℃の温度で1分〜5時間で、次いで2段目の予備結晶化では160〜210℃の温度で1分〜3時間の条件で、さらに2段目以上の予備結晶化では180〜210℃の温度で1分〜3時間の条件で、順次、段階的に結晶化することが好ましい。結晶化後のチップの結晶化度は30〜65%、好ましくは35〜63%、さらに好ましくは40〜60%の範囲であることが好ましい。なお、結晶化度はチップの密度より求めることができる。   Next, the previous melt polycondensed polyester chip is preferably pre-crystallized in a continuous crystallization apparatus having two or more stages in an inert gas atmosphere. For example, in the case of PET, the temperature of 100 to 180 ° C. is 1 minute to 5 hours in the first stage precrystallization, and then the temperature of 160 to 210 ° C. is 1 minute to 3 hours in the second stage precrystallization. In the pre-crystallization of the second and higher stages, it is preferable to perform crystallization step by step at a temperature of 180 to 210 ° C. for 1 minute to 3 hours. The crystallinity of the chip after crystallization is preferably in the range of 30 to 65%, preferably 35 to 63%, and more preferably 40 to 60%. The crystallinity can be obtained from the density of the chip.

次いで、不活性ガス雰囲気下または減圧下に前記プレポリマーに最適な温度に於いて、固相重合による極限粘度の増加が0.10デシリットル/グラム以上になるようにして連続式固相重合装置で固相重合を行う。例えば、PETの場合には、固相重合の温度としては、上限は215℃以下が好ましく、さらには210℃以下、特には208℃以下が好ましく、下限は190℃以上、好ましくは195℃以上である。
固相重合終了後は約30分以内、好ましくは20分以内、さらに好ましくは10分以内にチップ温度を約70℃以下、好ましくは60℃以下、さらに好ましくは50℃以下にすることが好ましい。
Then, in an inert gas atmosphere or under reduced pressure, at a temperature optimum for the prepolymer, the increase in intrinsic viscosity due to solid phase polymerization is 0.10 deciliter / gram or more in a continuous solid phase polymerization apparatus. Solid phase polymerization is performed. For example, in the case of PET, the upper limit of the solid phase polymerization temperature is preferably 215 ° C. or lower, more preferably 210 ° C. or lower, particularly 208 ° C. or lower, and the lower limit is 190 ° C. or higher, preferably 195 ° C. or higher. is there.
It is preferable to set the chip temperature to about 70 ° C. or less, preferably 60 ° C. or less, more preferably 50 ° C. or less within about 30 minutes, preferably within 20 minutes, more preferably within 10 minutes after completion of the solid phase polymerization.

連続式固相重合装置としては、縦型のホッパータイプの固相重合反応器で、固相重合されたチップの排出口が設置される下部の逆円錐状部分の頂角の角度をチップの安息角より適宜求めた角度にし、チップ出口にチップの素抜けを防止するためのバッフルコーンなどの付属設備を設置したものなどの方式であることが好ましい。   The continuous solid-state polymerization equipment is a vertical hopper type solid-state polymerization reactor, and the apex angle of the lower inverted conical part where the outlet of the solid-phase polymerized chip is installed is set as the rest of the chip. It is preferable that the angle is appropriately determined from the corner, and a system such as a system in which an accessory facility such as a baffle cone is installed at the tip outlet to prevent the chip from coming off.

本発明に係るポリエステルのチップの形状は、シリンダー型、角型、球状または扁平な板状等の何れでもよい。その平均粒径は、通常1.0〜4mm、好ましくは1.0〜3.5mm、さらに好ましくは1.0〜3.0mmの範囲である。例えば、シリンダー型の場合は、長さは1.0〜4mm、径は1.0〜4mm程度であるのが実用的である。球状粒子の場合は、最大粒子径が平均粒子径の1.1〜2.0倍、最小粒子径が平均粒子径の0.7倍以上であるのが実用的である。また、チップの平均重量(W)は5〜40mg/個の範囲が実用的である。また、固相重合速度を向上させたり、アルデヒド類の含有量をより効果的に低減させたりすることが必要な場合は、チップの平均重量(W)は1〜5mg/個にすることも好ましい。   The shape of the polyester chip according to the present invention may be any of a cylinder shape, a square shape, a spherical shape, a flat plate shape, and the like. The average particle diameter is usually 1.0 to 4 mm, preferably 1.0 to 3.5 mm, and more preferably 1.0 to 3.0 mm. For example, in the case of a cylinder type, it is practical that the length is about 1.0 to 4 mm and the diameter is about 1.0 to 4 mm. In the case of spherical particles, it is practical that the maximum particle size is 1.1 to 2.0 times the average particle size and the minimum particle size is 0.7 times or more the average particle size. The average weight (W) of the chip is practically in the range of 5 to 40 mg / piece. In addition, when it is necessary to improve the solid-phase polymerization rate or to reduce the content of aldehydes more effectively, the average weight (W) of the chips is also preferably 1 to 5 mg / piece. .

本発明に係るポリエステル、特にヘイズ(該ポリエステルを290℃で成形した5mm厚みの成形板でのヘイズ)が25%以下であるポリエステルは、共重合成分の種類および共重合量、重縮合触媒の種類及び添加量、溶融重縮合、チップ化に使用する冷却水水質や固相重合条件、ファイン含有量およびその特性などを適宜制御することによって製造することができる。特に、固相重合装置としては前記の連続式固相重合装置を用いることが好ましい。   The polyester according to the present invention, particularly the polyester having a haze of 25% or less (the haze of a 5 mm-thick molded plate obtained by molding the polyester at 290 ° C.) is the type and amount of copolymerization component, the type of polycondensation catalyst. In addition, it can be produced by appropriately controlling the amount of addition, melt polycondensation, cooling water quality used for chip formation, solid phase polymerization conditions, fine content, and characteristics thereof. In particular, as the solid phase polymerization apparatus, it is preferable to use the continuous solid phase polymerization apparatus.

また、本発明のポリエステル組成物のアセトアルデヒドなどのアルデヒド類の含有量は、50ppm以下、好ましくは30ppm以下、より好ましくは10ppm以下であることが望ましい。アルデヒド類含有量が50ppmを超える場合は、このポリエステル組成物から成形された成形体等の内容物の香味保持性の効果が悪くなる。また、これらの下限は製造上の問題から、0.1ppbであることが好ましい。ここで、アルデヒド類とは、ポリエステルがエチレンテレフタレ−トを主たる構成単位とするポリエステルの場合はアセトアルデヒドであり、1,3−プロピレンテレフタレ−トを主たる構成単位とするポリエステルの場合はアリルアルデヒドである。特に、本発明のポリエステル組成物を構成するのがエチレンテレフタレ−トを主繰返し単位とするポリエステルであり、ミネラルウオータ等の低フレーバー飲料用の容器の材料として用いられる場合には、前記ポリエステル組成物のアセトアルデヒド含有量は10ppm以下、好ましくは6ppm以下、より好ましくは5ppm以下であることが望ましい。   In addition, the content of aldehydes such as acetaldehyde in the polyester composition of the present invention is 50 ppm or less, preferably 30 ppm or less, more preferably 10 ppm or less. When the aldehyde content exceeds 50 ppm, the effect of maintaining the flavor of contents such as a molded article molded from the polyester composition is deteriorated. Further, these lower limits are preferably 0.1 ppb from the viewpoint of production. Here, the aldehydes are acetaldehyde when the polyester is a polyester having ethylene terephthalate as a main constituent unit, and allylaldehyde in the case of a polyester having 1,3-propylene terephthalate as a main constituent unit. It is. In particular, the polyester composition of the present invention is a polyester having ethylene terephthalate as a main repeating unit, and when used as a material for containers for low flavor beverages such as mineral water, the polyester composition The acetaldehyde content of the product is desirably 10 ppm or less, preferably 6 ppm or less, more preferably 5 ppm or less.

また、本発明のポリエステル組成物には、アルデヒド低減剤としてポリアミド、ポリエステルアミド、低分子量のアミノ基含有化合物、水酸基含有化合物、ヒンダートフェニール系化合物、ヒンダートアミン系化合物、ベンゾトリアゾール系化合物、ベンゾフェノン系化合物、ポリフェノール系化合物、リン系安定剤、イオウ系安定剤、アルカリ金属塩を配合することができ、好ましくはポリアミド、ベンゾフェノン系化合物、ポリエステルアミド、リン系安定剤、低分子量のアミノ基含有化合物、水酸基含有化合物、ベンゾフェノン系化合物、ヒンダートフェニール系化合物、ヒンダートアミン系化合物を配合することができる。最も好ましくは、ポリアミド、ポリエステルアミド、低分子量のアミノ基含有化合物であって、得られたポリエステル成形体のヘイズが良好である。   Further, the polyester composition of the present invention includes polyamide, polyesteramide, low molecular weight amino group-containing compound, hydroxyl group-containing compound, hindered phenyl compound, hindered amine compound, benzotriazole compound, benzophenone as an aldehyde reducing agent. Compound, polyphenol compound, phosphorus stabilizer, sulfur stabilizer, alkali metal salt can be blended, preferably polyamide, benzophenone compound, polyesteramide, phosphorus stabilizer, low molecular weight amino group-containing compound , A hydroxyl group-containing compound, a benzophenone compound, a hindered phenyl compound, and a hindered amine compound can be blended. Most preferably, it is a polyamide, a polyesteramide, or a low molecular weight amino group-containing compound, and the haze of the obtained polyester molded article is good.

アルデヒド低減剤として配合するポリアミドとしては、脂肪族ポリアミド、部分芳香族ポリアミドから選ばれる少なくとも一種のポリアミドが挙げられる。
脂肪族ポリアミドとしては、具体的には、ナイロン6、ナイロン11、ナイロン12、ナイロン66、ナイロン69、ナイロン610、ナイロン6/66、ナイロン6/610等が例示される。
Examples of the polyamide blended as the aldehyde reducing agent include at least one polyamide selected from aliphatic polyamide and partially aromatic polyamide.
Specific examples of the aliphatic polyamide include nylon 6, nylon 11, nylon 12, nylon 66, nylon 69, nylon 610, nylon 6/66, nylon 6/610, and the like.

部分芳香族ポリアミドの好ましい例としては、メタキシリレンジアミン、もしくはメタキシリレンジアミンと全量の30%以下のパラキシリレンジアミンを含む混合キシリレンジアミンと脂肪族ジカルボン酸とから誘導される構成単位を分子鎖中に少なくとも20モル%以上、さらに好ましくは30モル%以上、特に好ましくは40モル%以上含有するメタキシリレン基含有ポリアミドである。
また、部分芳香族ポリアミドは、トリメリット酸、ピロメリット酸などの3塩基以上の多価カルボン酸から誘導される構成単位を実質的に線状である範囲内で含有していてもよい。
As a preferable example of the partially aromatic polyamide, a structural unit derived from metaxylylenediamine or a mixed xylylenediamine containing metaxylylenediamine and 30% or less of the total amount of paraxylylenediamine and an aliphatic dicarboxylic acid is used. A metaxylylene group-containing polyamide containing at least 20 mol% or more, more preferably 30 mol% or more, particularly preferably 40 mol% or more in the molecular chain.
Further, the partially aromatic polyamide may contain a structural unit derived from a polybasic carboxylic acid having 3 or more bases such as trimellitic acid and pyromellitic acid within a substantially linear range.

これらポリアミドの例としては、ポリメタキシリレンアジパミド、ポリメタキシリレンセバカミド、ポリメタキシリレンスペラミド等のような単独重合体、及びメタキシリレンジアミン/アジピン酸/イソフタル酸共重合体、メタキシリレン/パラキシリレンアジパミド共重合体、メタキシリレン/パラキシリレンピペラミド共重合体、メタキシリレン/パラキシリレンアゼラミド共重合体、メタキシリレンジアミン/アジピン酸/イソフタル酸/ε−カプロラクタム共重合体、メタキシリレンジアミン/アジピン酸/イソフタル酸/ω―アミノカプロン酸共重合体等が挙げられる。   Examples of these polyamides include homopolymers such as polymetaxylylene adipamide, polymetaxylylene sebacamide, polymetaxylylene speramide, and metaxylylenediamine / adipic acid / isophthalic acid copolymers, metaxylylene. / Paraxylylene adipamide copolymer, metaxylylene / paraxylylene piperamide copolymer, metaxylylene / paraxylylene azelamide copolymer, metaxylylenediamine / adipic acid / isophthalic acid / ε-caprolactam copolymer And metaxylylenediamine / adipic acid / isophthalic acid / ω-aminocaproic acid copolymer.

また、部分芳香族ポリアミドの好ましいその他の例としては、脂肪族ジアミンとテレフタル酸またはイソフタル酸から選ばれた少なくとも一種の酸とから誘導される構成単位を分子鎖中に少なくとも20モル%以上、さらに好ましくは30モル%以上、特に好ましくは40モル%以上含有するポリアミドである。   In addition, other preferable examples of the partially aromatic polyamide include at least 20 mol% or more of a structural unit derived from an aliphatic diamine and at least one acid selected from terephthalic acid or isophthalic acid, A polyamide containing 30 mol% or more, particularly preferably 40 mol% or more is preferred.

これらポリアミドの例としては、ポリヘキサメチレンテレフタルアミド、ポリヘキサメチレンイソフタルアミド、ヘキサメチレンジアミン/テレフタル酸/イソフタル酸共重合体、ポリノナメチレンテレフタルアミド、ポリノナメチレンイソフタルアミド、ノナメチレンジアミン/テレフタル酸/イソフタル酸共重合体、ノナメチレンジアミン/テレフタル酸/アジピン酸共重合体等が挙げられる。   Examples of these polyamides include polyhexamethylene terephthalamide, polyhexamethylene isophthalamide, hexamethylene diamine / terephthalic acid / isophthalic acid copolymer, polynonamethylene terephthalamide, polynonamethylene isophthalamide, nonamethylene diamine / terephthalic acid. / Isophthalic acid copolymer, nonamethylenediamine / terephthalic acid / adipic acid copolymer, and the like.

また、部分芳香族ポリアミドの好ましいその他の例としては、脂肪族ジアミンとテレフタル酸またはイソフタル酸から選ばれた少なくとも一種の酸以外に、ε−カプロラクタムやラウロラクタム等のラクタム類、アミノカプロン酸等のアミノカルボン酸類、パラ−アミノメチル安息香酸のような芳香族アミノカルボン酸等を共重合成分として使用して得た、脂肪族ジアミンとテレフタル酸またはイソフタル酸から選ばれた少なくとも一種の酸とから誘導される構成単位を分子鎖中に少なくとも20モル%以上、さらに好ましくは30モル%以上、特に好ましくは40モル%以上含有するポリアミドである。   Other preferable examples of the partially aromatic polyamide include, in addition to at least one acid selected from aliphatic diamine and terephthalic acid or isophthalic acid, lactams such as ε-caprolactam and laurolactam, and amino such as aminocaproic acid. Derived from an aliphatic diamine and at least one acid selected from terephthalic acid or isophthalic acid obtained by using carboxylic acids, aromatic aminocarboxylic acids such as para-aminomethylbenzoic acid, etc. as copolymerization components The polyamide contains at least 20 mol% or more, more preferably 30 mol% or more, particularly preferably 40 mol% or more in the molecular chain.

これらポリアミドの例としては、ヘキサメチレンジアミン/テレフタル酸/ε−カプロラクタム共重合体、ヘキサメチレンジアミン/イソフタル酸/ε−カプロラクタム共重合体、ヘキサメチレンジアミン/テレフタル酸/アジピン酸/ε−カプロラクタム共重合体等が挙げられる。   Examples of these polyamides include hexamethylenediamine / terephthalic acid / ε-caprolactam copolymer, hexamethylenediamine / isophthalic acid / ε-caprolactam copolymer, hexamethylenediamine / terephthalic acid / adipic acid / ε-caprolactam copolymer Examples include coalescence.

また、ポリエステルアミドとしては、テレフタル酸、1,4−シクロヘキサンジメタノールおよびポリエチレンイミンから製造されたポリエステルアミド、イソフタル酸、1,4−シクロヘキサンジメタノールおよびヘキサメチレンジアミンから製造されたポリエステルアミド、テレフタル酸、アジピン酸、1,4−シクロヘキサンジメタノールおよびヘキサメチレンジアミンから製造されたポリエステルアミド、テレフタル酸、1,4−シクロヘキサンジメタノールおよびビス(p−アミノシクロヘキシル)メタンから製造されたポリエステルアミドおよびこれらの混合物などが挙げられる。共重合成分として使用できる酸成分としては、セバシン酸、マロン酸、コハク酸、グルタル酸、ピメリン酸、スベリン酸、アゼライン酸、ウンデカン酸、ウンデカジオン酸、ドデカンジオン酸、ダイマー酸等の脂肪族ジカルボン酸、1,4−シクロヘキサンジカルボン酸、1,3−シクロヘキサンジカルボン酸等の脂環式ジカルボン酸、1,2−シクロヘキサンジカルボン酸等の脂環式ジカルボン酸、オルソフタル酸、キシリレンジカルボン酸、ナフタレンジカルボン酸等の芳香族ジカルボン酸類が挙げられる。   Polyester amides include terephthalic acid, polyester amide produced from 1,4-cyclohexanedimethanol and polyethyleneimine, polyester amide produced from isophthalic acid, 1,4-cyclohexanedimethanol and hexamethylenediamine, and terephthalic acid. Polyesteramides made from adipic acid, 1,4-cyclohexanedimethanol and hexamethylenediamine, polyesteramides made from terephthalic acid, 1,4-cyclohexanedimethanol and bis (p-aminocyclohexyl) methane and their A mixture etc. are mentioned. Examples of the acid component that can be used as a copolymerization component include aliphatic dicarboxylic acids such as sebacic acid, malonic acid, succinic acid, glutaric acid, pimelic acid, suberic acid, azelaic acid, undecanoic acid, undecanoic acid, dodecanedioic acid, and dimer acid. 1,4-cyclohexanedicarboxylic acid, alicyclic dicarboxylic acid such as 1,3-cyclohexanedicarboxylic acid, alicyclic dicarboxylic acid such as 1,2-cyclohexanedicarboxylic acid, orthophthalic acid, xylylene dicarboxylic acid, naphthalenedicarboxylic acid Aromatic dicarboxylic acids such as

用いられるポリアミドやポリエステルアミドは、DSC(示差走査熱量計)で測定した二次転移点が、50〜120℃であることが好ましい。二次転移点が50℃未満の場合は、乾燥工程やポリエステル組成物との押出し時に融着したり、また定量的に押出せなかったりするので好ましくない。また120℃を超える場合には、ポリエステル未延伸成形体を延伸する際に均一に延伸されないで厚み斑などが生じて好ましくない。   The polyamide or polyester amide used preferably has a secondary transition point measured by DSC (differential scanning calorimeter) of 50 to 120 ° C. When the secondary transition point is less than 50 ° C., it is not preferable because it is fused during the drying step or extrusion with the polyester composition, or cannot be quantitatively extruded. Moreover, when exceeding 120 degreeC, when extending | stretching a polyester unstretched molded object, it will not be stretched | uniformly uniformly but a thickness spot etc. will arise and it is unpreferable.

本発明のポリエステル組成物に配合されるポリアミドやポリエステルアミドのチップの形状は、シリンダー型、角型、球状または扁平な板状等の何れでもよい。その平均粒径は通常1.0〜5mm、好ましくは1.2〜4.5mm、さらに好ましくは1.5〜4.0mmの範囲である。例えば、シリンダー型の場合は、長さは1.0〜4mm、径は1.0〜4mm程度であるのが実用的である。球状粒子の場合は、最大粒子径が平均粒子径の1.1〜2.0倍、最小粒子径が平均粒子径の0.7倍以上であるのが実用的である。また、チップの平均重量は1〜50mg/個の範囲が実用的である。   The shape of the polyamide or polyesteramide chip blended in the polyester composition of the present invention may be any of a cylinder shape, a square shape, a spherical shape, a flat plate shape, and the like. The average particle size is usually in the range of 1.0 to 5 mm, preferably 1.2 to 4.5 mm, more preferably 1.5 to 4.0 mm. For example, in the case of a cylinder type, it is practical that the length is about 1.0 to 4 mm and the diameter is about 1.0 to 4 mm. In the case of spherical particles, it is practical that the maximum particle size is 1.1 to 2.0 times the average particle size and the minimum particle size is 0.7 times or more the average particle size. The average weight of the chip is practically in the range of 1 to 50 mg / piece.

また、低分子量アミノ基含有化合物としては、ステアリルアミンなどの脂肪族アミン化合物、1,8−ジアミノナフタレート、3,4−ジアミノ安息香酸、2−アミノベンズアミド、N,N’−1,6−ヘキサンジルビス(2−アミノベンズアミド)、4,4´−ジアミノジフェニールメタンなどの芳香族アミン化合物、メラミン、ベンゾグアナミンなどのトリアジン化合物、アミノ酸等が挙げられる。
また、水酸基含有化合物としては、ポリビニールアルコール、エチレンビニールアルコールポリマー、糖アルコール、トリメチロールプロパンなどが挙げられる。
Examples of the low molecular weight amino group-containing compound include aliphatic amine compounds such as stearylamine, 1,8-diaminonaphthalate, 3,4-diaminobenzoic acid, 2-aminobenzamide, N, N′-1,6- Examples thereof include aromatic amine compounds such as hexanedibis (2-aminobenzamide) and 4,4′-diaminodiphenylmethane, triazine compounds such as melamine and benzoguanamine, and amino acids.
Examples of the hydroxyl group-containing compound include polyvinyl alcohol, ethylene vinyl alcohol polymer, sugar alcohol, and trimethylolpropane.

これらのポリアミド化合物、低分子量アミノ基含有化合物、あるいは水酸基含有化合物などのアルデヒド低減剤は、単独で用いても良いし、適当な割合で混合して用いても良い。
前記アルデヒド低減剤は、例えば、本発明のポリエステル組成物100重量部に対して0.001〜5重量部、好ましくは0.01〜3重量部、さらに好ましくは0.1〜2重量部用いることができる。
These polyamide compounds, low molecular weight amino group-containing compounds, hydroxyl group-containing compounds and other aldehyde reducing agents may be used alone or in admixture at an appropriate ratio.
The aldehyde reducing agent is, for example, used in an amount of 0.001 to 5 parts by weight, preferably 0.01 to 3 parts by weight, more preferably 0.1 to 2 parts by weight, based on 100 parts by weight of the polyester composition of the present invention. Can do.

前記アルデヒド低減剤は、ポリエステルの低重合度オリゴマーの製造からポリエステルポリマーの製造の任意の反応段階に於いて所定量のアルデヒド低減剤を添加することによって配合することができる。例えば、前記のアルデヒド低減剤を細粒、粉状、溶融体など適当な形としてエステル化反応器や重縮合反応器などの反応器に添加したり、前記の反応器から次工程の反応器への前記ポリエステルの反応物の輸送配管中に前記アルデヒド低減剤またはこれと前記ポリエステルとの混合物を溶融状態で導入したりして配合できる。さらには必要に応じて得られたチップを高真空下または不活性ガス雰囲気下で固相重合することも可能である。   The aldehyde reducing agent can be blended by adding a predetermined amount of aldehyde reducing agent at any reaction stage from the production of a low-polymerization degree oligomer of polyester to the production of polyester polymer. For example, the aldehyde reducing agent may be added to a reactor such as an esterification reactor or a polycondensation reactor in an appropriate form such as a fine granule, powder, or melt, or from the reactor to a reactor in the next step. The aldehyde reducing agent or a mixture of the polyester and the polyester may be introduced in a molten state into a transport pipe for the polyester reactant. Furthermore, if necessary, the obtained chip can be subjected to solid phase polymerization in a high vacuum or in an inert gas atmosphere.

また、従来公知の方法によりポリエステル組成物とアルデヒド低減剤を混合する方法、あるいは2種以上のポリエステルの混合物にアルデヒド低減剤を混合する方法などによって得ることもできる。例えば、ポリアミドチップとIVの異なる2種のポリエステルチップとをタンブラー、V型ブレンダー、ヘンシェルミキサー等でドライブレンドしたもの、さらにドライブレンドした混合物を一軸押出機、二軸押出機、ニーダー等で1回以上溶融混合したもの、さらには必要に応じて溶融混合物からのチップを高真空下または不活性ガス雰囲気下で固相重合したものなどが挙げられる。   It can also be obtained by a method of mixing a polyester composition and an aldehyde reducing agent by a conventionally known method or a method of mixing an aldehyde reducing agent with a mixture of two or more kinds of polyesters. For example, polyamide chips and two types of polyester chips with different IVs are dry blended with a tumbler, V-type blender, Henschel mixer, etc., and the dry blended mixture once with a single screw extruder, twin screw extruder, kneader, etc. Examples include those obtained by melting and mixing as described above, and those obtained by subjecting chips from the molten mixture to solid phase polymerization in a high vacuum or inert gas atmosphere as necessary.

さらに、前記ポリアミドなどをヘキサフロロイソプロパノールなどの溶剤に溶解させた溶液をポリエステルのチップの表面に付着させる方法、前記ポリアミド製の部材が存在する空間内で、前記ポリエステルを前記部材に衝突接触させて前記ポリエステルチップ表面に前記ポリアミドを付着させる方法などが挙げられる。   Further, a method in which a solution in which the polyamide or the like is dissolved in a solvent such as hexafluoroisopropanol is adhered to the surface of the polyester chip, and the polyester is collided with the member in a space where the polyamide member is present. Examples include a method of attaching the polyamide to the surface of the polyester chip.

また、本発明のポリエステル組成物の環状エステルオリゴマーの含有量は、前記ポリエステルの溶融重縮合ポリエステルプレポリマーが含有する環状エステルオリゴマーの含有量の60%以下、好ましくは50%以下、さらに好ましくは40%以下、特に好ましくは35%以下であることが好ましい。ここで、ポリエステルは、一般に種々の重合度の環状エステルオリゴマーを含有しているが、本発明でいう環状エステルオリゴマーとは、ポリエステルが含有している環状エステルオリゴマーのうちで最も含有量が高い環状エステルオリゴマーを意味し、例えば、エチレンテレフタレートを主繰返し単位とするポリエステルの場合には環状3量体のことである。   The content of the cyclic ester oligomer in the polyester composition of the present invention is 60% or less, preferably 50% or less, more preferably 40% of the content of the cyclic ester oligomer contained in the melt polycondensation polyester prepolymer of the polyester. % Or less, particularly preferably 35% or less. Here, the polyester generally contains cyclic ester oligomers having various degrees of polymerization, but the cyclic ester oligomer referred to in the present invention is the cyclic ester oligomer having the highest content among the cyclic ester oligomers contained in the polyester. An ester oligomer means, for example, a cyclic trimer in the case of a polyester having ethylene terephthalate as a main repeating unit.

前記ポリエステルがエチレンテレフタレートを主たる構成単位とするポリエステルの代表であるPETの場合は、溶融重縮合ポリエステルプレポリマーの環状3量体の含有量は約1.0重量%であるから、本発明のポリエステル組成物の環状3量体の含有量は、0.60重量%以下、好ましくは0.50重量%以下、さらに好ましくは0.40重量%以下、特に好ましくは0.35重量%以下であることが好ましい。環状3量体含有量の下限値は、経済的な生産の面から0.20重量%以上、好ましくは0.22重量%以上、さらに好ましくは0.25重量%以上である。本発明のポリエステル組成物から耐熱性の中空成形体等を成形する場合は、加熱金型内で熱処理を行うが、環状3量体の含有量が0.60重量%を超えて含有する場合には、溶融成形時の押出機や成形機の口金や脱気口などへの、あるいは成形体の加熱金型表面への、オリゴマ−付着が急激に増加し、これらの除去にかかる費用増加や生産性の低下の原因となり、また、得られた成形体の透明性が非常に悪化する。   In the case of PET, in which the polyester is a typical polyester having ethylene terephthalate as the main structural unit, the content of the cyclic trimer of the melt polycondensed polyester prepolymer is about 1.0% by weight. The content of the cyclic trimer in the composition is 0.60% by weight or less, preferably 0.50% by weight or less, more preferably 0.40% by weight or less, and particularly preferably 0.35% by weight or less. Is preferred. The lower limit of the cyclic trimer content is 0.20% by weight or more, preferably 0.22% by weight or more, and more preferably 0.25% by weight or more from the viewpoint of economical production. When a heat-resistant hollow molded article or the like is molded from the polyester composition of the present invention, heat treatment is performed in a heating mold, but the cyclic trimer content exceeds 0.60% by weight. In the melt molding, the oligomer adhesion to the extruder and degassing mouth of the extruder and molding machine, or to the heated mold surface of the molded body increases rapidly, and the cost for removing these increases and production. The transparency of the obtained molded product is extremely deteriorated.

また、本発明のポリエステル組成物は、290℃の温度で60分間溶融した時の環状エステルオリゴマーの増加量は、0.40重量%以下、好ましくは0.30重量%以下、さらに好ましくは0.10重量%以下であることが望ましい。290℃の温度で60分間溶融した時の環状エステルオリゴマーの増加量が0.40重量%を超えると、成形の樹脂溶融時に環状エステルオリゴマーが増加し、押出機や成形機の口金や脱気口などへのオリゴマー付着及び詰り、あるいは加熱金型表面へのオリゴマー付着、が急激に増加して得られた中空成形体等の透明性が非常に悪化する。   In addition, when the polyester composition of the present invention is melted at a temperature of 290 ° C. for 60 minutes, the increase amount of the cyclic ester oligomer is 0.40% by weight or less, preferably 0.30% by weight or less, more preferably 0.8%. It is desirable that it is 10% by weight or less. When the increase amount of the cyclic ester oligomer when melted at a temperature of 290 ° C. for 60 minutes exceeds 0.40% by weight, the cyclic ester oligomer increases at the time of molding resin melting, and the die or degassing port of the extruder or molding machine The transparency of a hollow molded article or the like obtained by abrupt increase in oligomer adhesion and clogging to the surface or the like, or oligomer adhesion to the heated mold surface is extremely deteriorated.

290℃の温度で60分間溶融した時の環状エステルオリゴマーの増加量が0.40重量%以下であるポリエステルは、構成する少なくとも一種のポリエステル中に残存する重縮合触媒を失活処理することにより製造することができる。もちろん、全てのポリエステルの重縮合触媒が失活処理されていることが最も望ましいことは言うまでもない。ここで、290℃の温度で60分間溶融した時の環状エステルオリゴマー増加量は、下記の「測定法」の項で説明する成形方法によってポリエステル組成物から得られた段付成形板の3mm厚みのプレートからの試料について求めた値である。   A polyester in which the amount of increase in cyclic ester oligomer when melted at a temperature of 290 ° C. for 60 minutes is 0.40% by weight or less is produced by deactivation treatment of the polycondensation catalyst remaining in at least one of the constituent polyesters. can do. Of course, it is needless to say that it is most desirable that the polycondensation catalyst of all the polyesters is deactivated. Here, the increase amount of the cyclic ester oligomer when melted at a temperature of 290 ° C. for 60 minutes is the 3 mm thickness of the stepped molded plate obtained from the polyester composition by the molding method described in the “Measurement method” section below. This is the value obtained for the sample from the plate.

前記ポリエステルの重縮合触媒を失活処理する方法としては、前記ポリエステルチップを水や水蒸気または水蒸気含有気体と接触処理する方法が挙げられる。
熱水処理方法としては、ポリエステルを水中に浸ける方法やシャワーでこれらのチップ上に水をかける方法等が挙げられる。処理時間としては5分〜2日間、好ましくは10分〜1日間、さらに好ましくは30分〜10時間で、水の温度としては20〜180℃、好ましくは40〜150℃、さらに好ましくは50〜120℃である。
使用する水は、前記の(1)〜(4)の少なくとも一つを満足する水が好ましく、さらには(1)〜(4)のすべてを満足する水であることが最も好ましい。
Examples of the method of deactivating the polyester polycondensation catalyst include a method of contacting the polyester chip with water, water vapor or water vapor-containing gas.
Examples of the hot water treatment method include a method of immersing polyester in water and a method of applying water on these chips with a shower. The treatment time is 5 minutes to 2 days, preferably 10 minutes to 1 day, more preferably 30 minutes to 10 hours, and the water temperature is 20 to 180 ° C., preferably 40 to 150 ° C., more preferably 50 to 120 ° C.
The water to be used is preferably water that satisfies at least one of the above (1) to (4), and more preferably water that satisfies all of (1) to (4).

またポリエステルのチップと水蒸気または水蒸気含有ガスとを接触させて処理する場合は、50〜150℃、好ましくは50〜110℃の温度の水蒸気または水蒸気含有ガスあるいは水蒸気含有空気を好ましくは粒状ポリエステル1kg当り、水蒸気として0.5g以上の量で供給させるか、または存在させて粒状ポリエステルと水蒸気とを接触させる。ポリエステルのチップと水蒸気との接触は、通常10分間〜2日間、好ましくは20分間〜10時間行われる。また処理方法は連続方式、バッチ方式のいずれであっても差し支えない。   When the polyester chip is contacted with water vapor or water vapor containing gas, the water vapor or water vapor containing gas or water containing air at a temperature of 50 to 150 ° C., preferably 50 to 110 ° C., is preferably used per 1 kg of the granular polyester. The water vapor is supplied as water vapor in an amount of 0.5 g or more, or is present to bring the granular polyester into contact with water vapor. The contact between the polyester chip and water vapor is usually performed for 10 minutes to 2 days, preferably 20 minutes to 10 hours. The processing method may be either a continuous method or a batch method.

また、重縮合触媒を失活させる別の手段として、リン化合物を前記ポリエステルに配合し、成形時などの溶融状態において混合、反応させて重縮合触媒を不活性化する方法が挙げられる。
使用されるリン化合物としては、リン酸、亜リン酸、ホスホン酸およびそれらの誘導体等が挙げられる。具体例としては前記の化合物であり、これらは単独で使用してもよく、また2種以上を併用してもよい。
Further, as another means for deactivating the polycondensation catalyst, there is a method in which a phosphorus compound is blended with the polyester and mixed and reacted in a molten state such as during molding to deactivate the polycondensation catalyst.
Examples of the phosphorus compound used include phosphoric acid, phosphorous acid, phosphonic acid, and derivatives thereof. Specific examples thereof are the compounds described above, and these may be used alone or in combination of two or more.

ポリエステルにリン化合物を配合する方法としては、前記ポリエステルにリン化合物をドライブレンドする方法やリン化合物を溶融混練して配合したポリエステルマスターバッチチップとポリエステルチップを混合する方法によって所定量のリン化合物をポリエステルに配合後、押出機や成形機中で溶融し、重縮合触媒を不活性化する方法、チップをリン化合物溶液、特にリン酸水溶液に浸漬する方法、マスターバッチとして添加する方法などが挙げられる。また、これらリン化合物はポリエステルに共重合された状態であっても良い。この際、リン化合物で触媒活性が大きく低下しない触媒(例えば、Ge、Sb)のポリエステルにリン化合物を添加し、リン化合物で触媒活性が低下する触媒(例えばTi、Al)のポリエステルとブレンドすることも好ましい。これにより、リン化合物を含有していながら所望の分子量まで分子量を高めたポリエステルを容易に得ることができる。   As a method of blending a phosphorous compound with polyester, a predetermined amount of phosphorous compound is polyester by a method of dry blending the phosphorous compound with the polyester or a method of mixing a polyester masterbatch chip in which a phosphorous compound is melt-kneaded and blended with a polyester chip. And a method of inactivating the polycondensation catalyst by melting in an extruder or a molding machine, a method of immersing chips in a phosphorus compound solution, particularly a phosphoric acid aqueous solution, and a method of adding as a master batch. These phosphorus compounds may be copolymerized with polyester. At this time, a phosphorus compound is added to a polyester of a catalyst (for example, Ge, Sb) whose catalytic activity is not greatly decreased by a phosphorus compound, and blended with a polyester of a catalyst (for example, Ti, Al) whose catalytic activity is decreased by a phosphorus compound. Is also preferable. Thereby, it is possible to easily obtain a polyester having a molecular weight increased to a desired molecular weight while containing a phosphorus compound.

また、成形時にポリエステル間のエステル交換反応が起こるが、重縮合触媒を失活させることにより、このエステル交換反応を抑えることができるため、成形時の条件をより広くとることができる。   In addition, a transesterification reaction between the polyesters occurs at the time of molding, but by deactivating the polycondensation catalyst, this transesterification reaction can be suppressed, so that the conditions during molding can be made wider.

また、本発明のポリエステル組成物の分子量分布の分散比Mz/Mnは3.90以上、さらに好ましくは3.92以上、最も好ましくは3.95以上であることが好ましい。分子量分布の分散比Mz/Mnが3.90未満では、成形体の透明性を保持するには成形時の溶融温度をより高くすることが必要となるので、成形体のアセトアルデヒドなどのアルデヒド類を低減できなくなる。
ここで、分子量分布の分散比Mz/Mnは、GPC法により求めた数平均分子量(Mn)及びZ平均分子量(Mz)から、Mz/Mnで算出した値である。
The dispersion ratio Mz / Mn of the molecular weight distribution of the polyester composition of the present invention is preferably 3.90 or more, more preferably 3.92 or more, and most preferably 3.95 or more. When the dispersion ratio Mz / Mn of the molecular weight distribution is less than 3.90, it is necessary to increase the melting temperature at the time of molding in order to maintain the transparency of the molded body. It cannot be reduced.
Here, the dispersion ratio Mz / Mn of the molecular weight distribution is a value calculated by Mz / Mn from the number average molecular weight (Mn) and the Z average molecular weight (Mz) obtained by the GPC method.

ポリエステル組成物の分子量分布の分散比Mz/Mnを3.90以上にする方法としては、Z平均分子量の違う実質上同一組成のポリマーを2種類以上ブレンドする方法、多官能化合物の適当な量を共重合する方法、重合時の条件(例えば、連続重合装置の場合では滞留時間を長くしたり、重合槽の数等の調整)などの方法が上げられ、異なる分子量分布を持つポリマーを2種類以上ブレンドする方法が好ましい。ブレンドとしては、溶融混合物であってもドライブレンドであっても良い。   As a method of setting the dispersion ratio Mz / Mn of the molecular weight distribution of the polyester composition to 3.90 or more, a method of blending two or more polymers having substantially the same composition with different Z average molecular weights, an appropriate amount of the polyfunctional compound is set. Methods such as copolymerization and polymerization conditions (for example, in the case of a continuous polymerization apparatus, increase the residence time or adjust the number of polymerization tanks, etc.) can be raised, and two or more types of polymers having different molecular weight distributions can be obtained. A blending method is preferred. The blend may be a molten mixture or a dry blend.

本発明のポリエステル組成物は、ポリエステルAとポリエステルBとが、好ましくは7/93〜93/7重量部、さらに好ましくは10/90〜90/10重量部の構成比で配合されたポリエステル組成物であることが好ましい。   The polyester composition of the present invention is a polyester composition in which polyester A and polyester B are blended in a composition ratio of preferably 7/93 to 93/7 parts by weight, more preferably 10/90 to 90/10 parts by weight. It is preferable that

本発明のポリエステル組成物は、従来公知の方法により、例えば、用いられる少なくとも2種以上のポリエステルを混合して得ることができる。例えば、前記のポリエステルをタンブラー、V型ブレンダー、ヘンシェルミキサー等でドライブレンドする方法、さらにドライブレンドした混合物を一軸押出機、二軸押出機、ニーダー等で1回以上溶融混合する方法などが挙げられる。   The polyester composition of the present invention can be obtained by, for example, mixing at least two kinds of polyesters to be used by a conventionally known method. For example, a method of dry blending the above polyester with a tumbler, V-type blender, Henschel mixer or the like, and a method of melt-mixing the dry blended mixture one or more times with a single screw extruder, twin screw extruder, kneader, etc. .

本発明のポリエステル組成物を前記したような方法によってドライブレンドして得ようとする場合、これらポリエステルの混合比率の変動が大きいと、ポリエステル組成物からなる成形体の極限粘度の変動や結晶化特性などの変動が起こり、このため得られた成形体のアセトアルデヒドなどのアルデヒド類の含有量、透明性、厚みなどの特性が変動し大きな問題となる。また、ドライブレンド後のポリエステル組成物を乾燥機や成形機に供給したり、あるいはこれらの機器から排出したりする際、または移送配管中をポリエステル組成物を気体などで移送する際などポリエステル組成物を移動させる場合に構成ポリエステルの配合割合が変動することがある。この変動要因としては、両者のチップ形状、チップ重量や真密度(結晶化度)の差などが挙げられる。   When the polyester composition of the present invention is to be obtained by dry blending by the method as described above, if the variation of the mixing ratio of these polyesters is large, the variation of the intrinsic viscosity and the crystallization characteristics of the molded body made of the polyester composition. As a result, the content of aldehydes such as acetaldehyde, transparency, thickness and other characteristics of the obtained molded product fluctuate, which is a big problem. In addition, when the polyester composition after dry blending is supplied to a dryer or a molding machine, or discharged from these devices, or when the polyester composition is transferred in a transfer pipe with a gas, etc. In the case of moving the composition, the blending ratio of the constituent polyester may vary. As the variation factors, there are a difference in the chip shape, chip weight and true density (crystallinity).

本発明のポリエステル組成物を構成するポリエステルの平均重量(W)の比は、1.00〜1.30、好ましくは1.00〜1.28、さらに好ましくは1.00〜1.25、最も好ましくは1.00〜1.20である。平均重量の比が1.30を超えると、成形時のアルデヒド類の生成が多くなり、チップを製造するためには特殊なノズルを用いるなど設備費が高くなり好ましくなく、また、成形時に溶融しにくくなり低温成形が難しくなり問題となる。特に耐熱用中空延伸成形体用に用いる場合には、前記の比が1.00〜1.15の範囲を外れると、アセトアルデヒドなどのアルデヒド類の低減及び透明性の改良効果が悪くなり、さらにまた、前記のポリエステルの配合量斑が起こり易くなり、ポリエステル延伸中空成形体の透明性や厚み斑の原因となるので好ましくない。   The ratio of the average weight (W) of the polyester constituting the polyester composition of the present invention is 1.00 to 1.30, preferably 1.00 to 1.28, more preferably 1.00 to 1.25, most Preferably it is 1.00-1.20. If the ratio of the average weight exceeds 1.30, aldehydes are generated at the time of molding, which is not preferable because a special nozzle is used to manufacture chips, and it is not preferable. It becomes difficult and low-temperature molding becomes difficult and becomes a problem. In particular, when used for a heat-resistant hollow stretch molded article, if the ratio is out of the range of 1.00 to 1.15, the effect of reducing aldehydes such as acetaldehyde and improving the transparency deteriorates. The blending amount of the polyester is likely to occur, which is not preferable because it causes transparency and thickness unevenness of the stretched hollow molded article of polyester.

また、本発明のポリエステル組成物を構成する各ポリエステルチップの平均重量(W)の変動(例、最大重量と最小重量の差(R)や偏差値(σ)など)が少ないことが好ましく、例えば前記の各ポリエステルについて、そのチップの最大重量(W1)と最少重量(W2)の差(R)と平均重量(W)の比(R/W)は、0.5以内、好ましくは0.3以内、さらに好ましくは0.2以内、最も好ましくは0.1以内である。前記の比(R/W)が0.5を超える場合は、ポリエステル組成物から成形体を製造する際、時系列方向での配合比率の変動が大きくなるために成形体の極限粘度や結晶化特性の変動が生じ、厚み斑、延伸斑や透明性斑、機械的特性などの変動が大きい成形体が生じて問題となる。また、比(R/W)の下限値は0.01であり、これ未満に低減しても改良効果は変わらない。   Further, it is preferable that the variation of the average weight (W) of each polyester chip constituting the polyester composition of the present invention (eg, difference between maximum weight and minimum weight (R), deviation value (σ), etc.) is small. The ratio (R / W) of the difference (R) between the maximum weight (W1) and the minimum weight (W2) and the average weight (W) (R / W) of each of the polyesters is within 0.5, preferably 0.3. Is more preferably within 0.2, and most preferably within 0.1. When the ratio (R / W) exceeds 0.5, when manufacturing a molded product from the polyester composition, the variation of the blending ratio in the time series direction becomes large, so that the intrinsic viscosity and crystallization of the molded product are increased. Variations in properties occur, resulting in a molded product having large variations in thickness spots, stretch spots, transparency spots, mechanical characteristics, and the like. Further, the lower limit of the ratio (R / W) is 0.01, and even if the ratio (R / W) is reduced below this, the improvement effect does not change.

また、本発明のポリエステル組成物を構成するポリエステルのチップの結晶化度の差は15%以下、好ましくは10%以下、さらに好ましくは8%以下である。結晶化度の差が15%を超える場合は、ポリエステル間の溶融性の差が大きく流動性向上の効果が悪くなり、その結果、ポリエステル未延伸成形体や延伸中空成形体の透明性の改善やアセトアルデヒド含有量の低減の効果がなくなり、また、前記のポリエステルの配合量斑が起こり易くなり、ポリエステル未延伸成形体や延伸中空成形体の透明性やアセトアルデヒド含有量の変動の原因となるので好ましくない。ここで、本発明のポリエステル組成物が2種類以上のポリエステルからなる場合は、前記結晶化度の差とは、結晶化度に関して最大のポリエステルと最少のポリエステルとの結晶化度の差のことである。ここで、チップの結晶化度は、下記の方法により求めたチップの密度より計算により算出する。   Further, the difference in crystallinity of the polyester chips constituting the polyester composition of the present invention is 15% or less, preferably 10% or less, more preferably 8% or less. When the difference in crystallinity exceeds 15%, the difference in meltability between the polyesters is large and the effect of improving the fluidity is deteriorated. As a result, the transparency of the polyester unstretched molded body and stretched hollow molded body can be improved. The effect of reducing the acetaldehyde content is lost, and the blended amount of the polyester tends to occur, which is not preferable because it causes the transparency of the polyester unstretched molded body and the stretched hollow molded body and fluctuations in the acetaldehyde content. . Here, when the polyester composition of the present invention comprises two or more kinds of polyesters, the difference in crystallinity is the difference in crystallinity between the largest polyester and the smallest polyester with respect to the degree of crystallinity. is there. Here, the crystallinity of the chip is calculated from the density of the chip obtained by the following method.

また、通常、大多数のファインはチップよりも高結晶化していることが多いので、高密度ポリエステルチップに含まれるファインは成形時に未溶融体や不完全な溶融体として残り、これらが延伸成形体、特に肉厚の延伸成形体において白化物や霞状物になる可能性がある。そして、前記のチップの密度差が0.025グラム/立方センチメートルを超える場合は、これらの白化物などの発生が顕著となり商品価値が無くなるなどして問題である。   In addition, since the majority of fines are usually more highly crystallized than the chip, the fines contained in the high-density polyester chip remain as an unmelted or incomplete melt at the time of molding, and these are stretch molded articles. In particular, there is a possibility that a whitened product or a wrinkled product is formed in a thick stretched molded product. When the density difference between the chips exceeds 0.025 grams / cubic centimeter, the occurrence of these whitened matters becomes remarkable and the commercial value is lost.

本発明のポリエステル組成物を構成する各ポリエステルのファイン含有量は、0.1〜5000ppmであることが好ましい。ファインの含有量は、好ましくは0.1〜3000ppm、より好ましくは0.1〜1000ppm、さらに好ましくは0.1〜500ppm、最も好ましくは0.1〜100ppmである。   The fine content of each polyester constituting the polyester composition of the present invention is preferably 0.1 to 5000 ppm. The fine content is preferably 0.1 to 3000 ppm, more preferably 0.1 to 1000 ppm, further preferably 0.1 to 500 ppm, and most preferably 0.1 to 100 ppm.

また、本発明のポリエステル組成物を構成するファインの融点とチップの融点の差が15℃以下、好ましくは10℃以下、さらに好ましくは5℃以下であることが好ましい。前記の差が15℃を超えるファインを含む場合には、通常用いられる溶融成形条件のもとでは結晶が完全に溶融せず、結晶核として残る。このため、中空成形体の場合には、中空成形体口栓部の加熱時、結晶化速度が早くなるので口栓部の結晶化が過大となる。その結果、口栓部の収縮量が規定値範囲内におさまらないため口栓部のキャッピング不良となり内容物の漏れが生じたりする。また中空成形用予備成形体が白化し、このため正常な延伸が不可能となり、厚み斑が生じ、また結晶化速度が速いため得られた中空成形体の透明性が悪くなり、また透明性の変動も大となる。また、シート状物の場合は、得られたシート状物は透明性が悪く、結晶化速度が早いので、正常な延伸が不可能で、厚み斑の大きな、透明性の悪い延伸フィルムしか得られない。   Further, the difference between the melting point of the fine constituting the polyester composition of the present invention and the melting point of the chip is 15 ° C. or less, preferably 10 ° C. or less, more preferably 5 ° C. or less. In the case where the difference includes fines exceeding 15 ° C., the crystals are not completely melted under the normally used melt molding conditions and remain as crystal nuclei. For this reason, in the case of a hollow molded body, when the hollow molded body plug portion is heated, the crystallization speed becomes faster, so that the crystallization of the plug portion becomes excessive. As a result, since the amount of shrinkage of the plug portion does not fall within the specified value range, the capping portion of the plug portion becomes defective and the contents may leak. In addition, the preform for hollow molding is whitened, so that normal stretching is impossible, thickness unevenness occurs, the crystallization speed is high, and the transparency of the obtained hollow molded body is deteriorated. Fluctuations also become large. In the case of a sheet-like material, the obtained sheet-like material is poor in transparency and has a high crystallization speed, so that normal stretching is impossible, and only a stretched film having large thickness spots and poor transparency can be obtained. Absent.

しかし、ファインの融点とチップの融点の差が15℃を超えるファインを含むポリエステル組成物から透明性や延伸性の良好な中空成形用予備成形体やシート状物を得ようとする場合には、ポリエステルチップの融点より約25〜50℃以上高い温度において溶融成形しなければならない。ところが、このような高温度では、ポリエステルの熱分解が激しくなり、アセトアルデヒドやホルムアルデヒド等の副生物が大量に発生し、その結果得られた成形体等の内容物の風味などに大きな影響を及ぼすことになるのである。また、本発明のポリエステル組成物が、下記のようなポリオレフィン樹脂、ポリアミド樹脂、ポリアセタール樹脂からなる群から選ばれた少なくとも一種の樹脂を含む場合は、一般にこれらの樹脂は、本発明に係るポリエステルより熱安定性に劣る場合が多いので、上記のごとき高温度の成形においては熱分解を起して多量の副生物を発生させるため、得られた成形体等の内容物の風味などにより一層大きな影響を及ぼすことになる。   However, when trying to obtain a hollow molding preform or sheet-like material with good transparency and stretchability from a polyester composition containing a fine whose melting point of the fine and the melting point of the chip exceeds 15 ° C., It must be melt molded at a temperature about 25-50 ° C. or higher above the melting point of the polyester chip. However, at such a high temperature, the thermal decomposition of the polyester becomes intense, and a large amount of by-products such as acetaldehyde and formaldehyde are generated, which greatly affects the flavor of the contents of the resulting molded body. It becomes. Further, when the polyester composition of the present invention contains at least one resin selected from the group consisting of the following polyolefin resins, polyamide resins, and polyacetal resins, generally these resins are more suitable than the polyester according to the present invention. Since the thermal stability is often inferior, in high temperature molding as described above, it causes thermal decomposition and generates a large amount of by-products. Will be affected.

本発明のポリエステル組成物がPETの場合には、265℃を超える融点を持つファインやフィルム状物が問題となる。   When the polyester composition of the present invention is PET, a fine or film-like material having a melting point exceeding 265 ° C. becomes a problem.

また本発明に係るポリエステル中に共重合されたジアルキレングリコール含有量は、前記ポリエステルを構成するグリコ−ル成分の好ましくは0.5〜7.0モル%、より好ましくは1.0〜5.0モル%、さらに好ましくは1.0〜3.0モル%である。ジアルキレングリコ−ル量が7.0モル%を超える場合は、熱安定性が悪くなり、成型時に分子量低下が大きくなったり、またアルデヒド類の含有量の増加量が大となり好ましくない。またジアルキレングリコ−ル含有量が0.5モル%未満のポリエステルを製造するには、エステル交換条件、エステル化条件あるいは重合条件として非経済的な製造条件を選択することが必要となり、コストが合わない。ここで、ポリエステル中に共重合されたジアルキレングリコールとは、例えば、主たる構成単位がエチレンテレフタレ−トであるポリエステルの場合には、グリコールであるエチレングリコールから製造時に副生したジエチレングリコ−ルのうちで、前記ポリエステルに共重合したジエチレングリコ−ル(以下、DEGと略称する)のことであり、1,3−プロピレンテレフタレ−トを主たる構成単位とするポリエステルの場合には、グリコールである1,3−プロピレングリコールから製造時に副生したジ(1,3−プロピレングリコ−ル)(またはビス(3−ヒドロキシプロピル)エーテル)のうちで、前記ポリエステルに共重合したジ(1,3−プロピレングリコ−ル(以下、DPGと称する))のことである。   The content of dialkylene glycol copolymerized in the polyester according to the present invention is preferably 0.5 to 7.0 mol%, more preferably 1.0 to 5. mol% of the glycol component constituting the polyester. It is 0 mol%, More preferably, it is 1.0-3.0 mol%. When the amount of dialkylene glycol exceeds 7.0 mol%, the thermal stability is deteriorated, and the decrease in molecular weight becomes large at the time of molding, and the increase in the content of aldehydes is unfavorable. Further, in order to produce a polyester having a dialkylene glycol content of less than 0.5 mol%, it is necessary to select uneconomical production conditions as transesterification conditions, esterification conditions or polymerization conditions. Do not fit. Here, the dialkylene glycol copolymerized in the polyester, for example, in the case of a polyester whose main structural unit is ethylene terephthalate, is a diethylene glycol by-produced during production from ethylene glycol, which is a glycol. Among them, diethylene glycol (hereinafter abbreviated as DEG) copolymerized with the polyester, and in the case of a polyester having 1,3-propylene terephthalate as a main constituent unit, is glycol 1 Of di (1,3-propylene glycol) (or bis (3-hydroxypropyl) ether) by-produced from 1,3-propylene glycol during production, di (1,3-propylene) copolymerized with the polyester Glycol (hereinafter referred to as DPG).

そして本発明に係るポリエステル、特に、主たる繰り返し単位がエチレンテレフタレ−トから構成されるポリエステルに共重合されたジエチレングリコール量は前記のポリエステルを構成するグリコール成分の1.0〜5.0モル%、好ましくは1.3〜4.5モル%、更に好ましくは1.5〜4.0モル%である。ジエチレングリコール量が5.0モル%を超える場合は、熱安定性が悪くなり、成形時に分子量低下が大きくなったり、またアセトアルデヒド含有量やホルムアルデヒド含有量の増加量が大となり好ましくない。またジエチレングリコ−ル含有量が1.0モル%未満の場合は、得られた成形体の透明性が悪くなる。   And the amount of diethylene glycol copolymerized in the polyester according to the present invention, particularly the polyester in which the main repeating unit is composed of ethylene terephthalate is 1.0 to 5.0 mol% of the glycol component constituting the polyester, Preferably it is 1.3-4.5 mol%, More preferably, it is 1.5-4.0 mol%. When the amount of diethylene glycol exceeds 5.0 mol%, the thermal stability is deteriorated, the decrease in molecular weight becomes large at the time of molding, and the increase in acetaldehyde content and formaldehyde content becomes large, which is not preferable. On the other hand, when the diethylene glycol content is less than 1.0 mol%, the transparency of the obtained molded article is deteriorated.

本発明のポリエステル組成物は、一般的に用いられる溶融成形法を用いて、フィルム、シート状物、容器、その他の成形体などを成形したり、また溶融押出法によって別の基材上にコートした被覆物を形成することができる。   The polyester composition of the present invention can be formed into a film, a sheet, a container, or other molded body by using a commonly used melt molding method, or coated on another substrate by a melt extrusion method. A coated coating can be formed.

また本発明のポリエステル組成物は、前記のように溶融重縮合ポリマーの製造工程の任意の反応器や輸送配管に所定量のアルデヒド低減剤を添加し、目的とする特性を持つように溶融重縮合したあと、直接成形工程に導入して成形体とすることもできる。   In addition, as described above, the polyester composition of the present invention can be prepared by adding a predetermined amount of an aldehyde reducing agent to an arbitrary reactor or transport pipe in the production process of a melt polycondensation polymer so as to have the desired characteristics. After that, it can be directly introduced into the molding process to form a molded body.

本発明のポリエステル組成物からなるシート状物は、それ自体公知の手段にて製造することができる。例えば、押出機とダイを備えた一般的なシート成形機を用いて製造することができる。
またこのシート状物は、圧空成形、真空成形によりリカップ状やトレイ状に成形することもできる。また、本発明のポリエステル組成物からのポリエステル成形体は、電子レンジおよび/またはオ−ブンレンジ等で食品を調理したり、あるいは冷凍食品を加熱するためのトレイ状容器の用途にも用いることができる。この場合は、シ−ト状物をトレイ形状に成形後、熱結晶化させて耐熱性を向上させる。
The sheet-like material comprising the polyester composition of the present invention can be produced by a means known per se. For example, it can be manufactured using a general sheet forming machine equipped with an extruder and a die.
The sheet-like material can be formed into a recup shape or a tray shape by pressure forming or vacuum forming. Moreover, the polyester molding from the polyester composition of this invention can be used also for the use of the tray-shaped container for cooking food with a microwave oven and / or an oven range, or heating frozen food. . In this case, after the sheet-like material is formed into a tray shape, it is thermally crystallized to improve heat resistance.

また、本発明のポリエステル組成物は、積層成形体や積層フィルム等の複合成形体においてフィルム状や塗膜状の形態をした一構成層としても用いることが出来る。特に、PETとの積層体の形で容器等の製造に使用される。積層成形体の例としては、本発明のポリエステル組成物からなる外層とPET内層との二層から構成される二層構造あるいは本発明のポリエステル組成物からなる内層とPET外層との二層から構成される二層構造の成形体、本発明のポリエステル組成物を含む中間層とPETの外層および最内層から構成される三層構造あるいは本発明のポリエステル組成物を含む外層および最内層とPETの中間層から構成される三層構造の成形体、本発明のポリエステル組成物を含む中間層とPETの最内層、中心層および最内層から構成される五層構造の成形体等が挙げられる。PET層には、他のガスバリヤー性樹脂、紫外線遮断性樹脂、耐熱性樹脂、使用済みポリエチレンテレフタレ−トボトルからの回収品等を適当な割合で混合使用することができる。   Moreover, the polyester composition of this invention can be used also as one component layer which took the form of the film form or the coating-film form in composite molded objects, such as a laminated molded object and a laminated film. In particular, it is used for manufacturing containers and the like in the form of a laminate with PET. Examples of laminated molded products include a two-layer structure composed of two layers of an outer layer made of the polyester composition of the present invention and an inner layer of PET, or composed of two layers of an inner layer made of the polyester composition of the present invention and an outer layer of PET. A molded article having a two-layer structure, a three-layer structure composed of an intermediate layer containing the polyester composition of the present invention and an outer layer and an innermost layer of PET, or an intermediate layer between the outer layer and innermost layer containing the polyester composition of the present invention and PET Examples include a three-layered molded body composed of layers, a five-layered molded body composed of an intermediate layer containing the polyester composition of the present invention, an innermost layer of PET, a central layer, and an innermost layer. In the PET layer, other gas barrier resins, ultraviolet blocking resins, heat resistant resins, recovered products from used polyethylene terephthalate bottles, and the like can be mixed and used at an appropriate ratio.

また、その他の積層成形体の例としては、ポリオレフィン等のポリエステル以外の樹脂との積層成形体、紙や金属板等の異種の基材との積層成形体が挙げられる。
前記の積層成形体の厚み及び各層の厚みには特に制限は無い。また前記の積層成形体は、シ−ト状物、フィルム状物、板状物、中空体、容器等、種々の形状で使用可能である。
前記の積層体の製造は、樹脂層の種類に対応した数の押出機と多層多種ダイスを使用して共押出しにより行うこともできるし、また樹脂層の種類に対応した数の射出機と共射出ランナ−および射出型を使用して共射出により行うこともできる。
Other examples of the laminated molded body include a laminated molded body with a resin other than polyester such as polyolefin, and a laminated molded body with a different type of substrate such as paper or a metal plate.
There is no restriction | limiting in particular in the thickness of the said laminated molded object, and the thickness of each layer. The laminated molded body can be used in various shapes such as a sheet-like material, a film-like material, a plate-like material, a hollow body, and a container.
The laminate can be produced by co-extrusion using a number of extruders corresponding to the type of the resin layer and a multi-layered multi-die, or with a number of injection machines corresponding to the type of the resin layer. It can also be done by co-injection using an injection runner and injection mold.

また本発明のポリエステル組成物の別の用途は、ラミネート金属板の片面あるいは両面にラミネートするフィルムである。用いられる金属板としては、ブリキ、ティンフリースチール、アルミニウム等が挙げられる。
ラミネート法としては、従来公知の方法が適用でき、特に限定されないが、有機溶剤フリーが達成でき、残留溶剤による食料品の味や臭いに対する悪影響が回避できるサーマルラミネート法で行うことが好ましい。なかでも、金属板の通電加工によるサーマルラミネート法が特に推奨される。また、両面ラミネートの場合は、同時にラミネートしてもよいし、逐次でラミネートしてもよい。
なお、接着剤を用いてフィルムを金属板にラミネートできることはいうまでもない。
Another application of the polyester composition of the present invention is a film laminated on one or both sides of a laminated metal plate. Examples of the metal plate used include tinplate, tin-free steel, and aluminum.
As a laminating method, a conventionally known method can be applied, and it is not particularly limited, but it is preferable to carry out by a thermal laminating method that can achieve organic solvent-free and can avoid adverse effects on the taste and odor of food products due to the residual solvent. In particular, the thermal laminating method by energization processing of a metal plate is particularly recommended. In the case of double-sided lamination, lamination may be performed simultaneously or sequentially.
Needless to say, a film can be laminated to a metal plate using an adhesive.

また、金属容器は、前記ラミネート金属板を用いて成形することによって得られる。前記金属容器の成形方法は特に限定されるものではない。また、金属容器の形状も特に限定されるものではないが、絞り成型、絞りしごき成型、ストレッチドロー成型等の成型加工により製缶されるいわゆる2ピース缶への適用が好ましいが、例えばレトルト食品やコーヒー飲料等の食料品を充填するのに好適な天地蓋を巻締めて内容物を充填する、いわゆる3ピース缶へも適用可能である。   Moreover, a metal container is obtained by shape | molding using the said laminated metal plate. The method for forming the metal container is not particularly limited. Further, the shape of the metal container is not particularly limited, but is preferably applied to a so-called two-piece can produced by a molding process such as drawing, drawing and ironing, and stretch draw molding. The present invention can also be applied to a so-called three-piece can in which a top cover suitable for filling a food product such as a coffee drink is wrapped to fill the contents.

本発明のポリエステル組成物からポリエステル成形体を製造する方法について、以下に簡単に説明するが、これに限定されるものではない。本発明のポリエステル組成物は、減圧下の加熱乾燥または不活性気体下での加熱乾燥により水分率を約100ppm以下、好ましくは50ppm以下に低減後、一般的に用いられる溶融成形法を用いて成形体や被覆物を成形することができる。   The method for producing a polyester molded body from the polyester composition of the present invention will be briefly described below, but is not limited thereto. The polyester composition of the present invention is molded using a generally used melt molding method after the moisture content is reduced to about 100 ppm or less, preferably 50 ppm or less by heat drying under reduced pressure or heat drying under an inert gas. The body and the covering can be molded.

成形条件としては、一般的には溶融樹脂温度を240〜305℃、好ましくは245〜300℃、さらに好ましくは250〜290℃の範囲になるように設定することが重要である。中空成形体用ポリエステル組成物の予備成形体製造に関する条件としては、射出成形機等のバレルやホットランナーを加熱させることなどによって溶融樹脂温度が255〜305℃、好ましくは258〜300℃、さらに好ましくは260〜290℃の範囲になるように設定することが重要である。ここで溶融樹脂温度とは射出成形機等のノズル先端から射出された樹脂を例えば熱電対温度計等で直ちに測定した温度を指す。   As molding conditions, it is generally important to set the molten resin temperature in the range of 240 to 305 ° C, preferably 245 to 300 ° C, more preferably 250 to 290 ° C. As conditions for producing a preform of the polyester composition for a hollow molded body, the molten resin temperature is 255 to 305 ° C, preferably 258 to 300 ° C, more preferably by heating a barrel or a hot runner of an injection molding machine or the like. It is important to set the value in the range of 260 to 290 ° C. Here, the molten resin temperature refers to a temperature at which the resin injected from the tip of a nozzle of an injection molding machine or the like is immediately measured with, for example, a thermocouple thermometer.

また、成形機内での溶融滞留時間は、押出成形の場合は押出機スクリュウーの形状やL/D等の選定および押出量などを任意に設定することによって、また、射出成形の場合は射出成形機のサイクル時間、計量ストローク(スクリューバック量)などを任意に設定することによって5〜500秒、好ましくは10〜300秒、さらに好ましくは30〜100秒の範囲に設定する。ここで、溶融滞留時間とは、成形機内で樹脂が溶融した状態での滞留時間であり、具体的には、成形機内のシリンダー内及びホットランナーやダイス内などで樹脂が溶融保持される時間のことである。   In addition, the melt residence time in the molding machine can be set by arbitrarily selecting the shape of the extruder screw, L / D, etc. and the amount of extrusion in the case of extrusion molding, and in the case of injection molding, the injection molding machine The cycle time, the metering stroke (screw back amount) and the like are arbitrarily set, and the time is set in the range of 5 to 500 seconds, preferably 10 to 300 seconds, and more preferably 30 to 100 seconds. Here, the melt residence time is a residence time in a state where the resin is melted in the molding machine. Specifically, the melt residence time is a time during which the resin is melted and held in a cylinder in the molding machine and in a hot runner or a die. That is.

射出成形の場合には、溶融滞留時間をtとすれば、tは下記式(5)で与えられる。
t=W×S/P (5)
ここで、W:射出成形機等のシリンダー及びホットランナー内における溶融樹脂の重量(g)
S:成形1サイクルの時間(秒)
P:成形1ショットの成形品重量(g)
In the case of injection molding, if the melt residence time is t, t is given by the following formula (5).
t = W × S / P (5)
Here, W: Weight of molten resin (g) in a cylinder and hot runner of an injection molding machine, etc.
S: Molding cycle time (seconds)
P: Molded product weight (g)

本発明に於いては、溶融樹脂温度を255〜305℃の範囲に制御し、溶融滞留時間を5〜500秒の範囲に設定することにより、少なくとも2種の、主としてエチレンテレフタレートを主繰返し単位とするポリエステルを主成分として含むポリエステル組成物から、アセトアルデヒドなどのアルデヒド含有量が低く、香味保持性に優れ、また透明性に優れ、かつ透明性の斑(例えば、成形体に生じた白化した流れ模様や部分的な白化物ないし霞状物を言う)の発生がない、さらに結晶化後の口栓部形状に問題がない中空成形体用予備成形体などの成形体を得ることが出来る。特にボトルなどの肉厚延伸成形体の場合に、これらの効果が顕著となる。   In the present invention, by controlling the molten resin temperature in the range of 255 to 305 ° C. and setting the melt residence time in the range of 5 to 500 seconds, at least two types of ethylene terephthalate are mainly used as the main repeating unit. From a polyester composition containing as a main component a polyester having a low aldehyde content such as acetaldehyde, excellent flavor retention, transparency, and transparent spots (for example, a whitened flow pattern formed on a molded product) And a molded body such as a preform for a hollow molded body having no problem in the shape of the plug portion after crystallization. In particular, in the case of a wall-thickened molded article such as a bottle, these effects become significant.

溶融樹脂温度が255℃未満の温度では、射出成形機等のトルク負荷が大きく、成形は困難となり、得られた予備成形体は透明性が極端に悪くなる。また、305℃を超える温度では、熱分解が激しくなりアセトアルデヒドなどのアルデヒド含有量が高くなり問題である。溶融滞留時間が5秒未満の場合は、溶融不足のために予備成形体の透明性は悪くなり、また500秒を超えると、予備成形体の透明性は非常に良くなるがアセトアルデヒドなどのアルデヒド類の含有量が高くなり、成形サイクルが長時間となり、予備成形体の生産性が低下する。   When the temperature of the molten resin is less than 255 ° C., the torque load of an injection molding machine or the like is large and molding becomes difficult, and the obtained preform becomes extremely poor in transparency. Moreover, when the temperature exceeds 305 ° C., the thermal decomposition becomes intense and the content of aldehyde such as acetaldehyde becomes high, which is a problem. When the melt residence time is less than 5 seconds, the transparency of the preform is deteriorated due to insufficient melting, and when it exceeds 500 seconds, the transparency of the preform is very good, but aldehydes such as acetaldehyde. As a result, the molding cycle becomes longer and the productivity of the preform is lowered.

ここで、ポリエステル成形体とは、そのままの形態で使用されるシート状物やカップ状物などのポリエステル成形体および下記のポリエステル予備成形体のことである。また、ポリエステル予備成形体とは、ポリエステルを溶融押出成形して得た溶融塊を圧縮成形して得たプリフォーム、あるいは射出成形により得られるプリフォームなどのことである。また、溶融押出してパイプ状に押し出された成形体(所謂、ダイレクトブロー成形体)であって、その後さらに容器に成形される筒状成形体、射出成形により得られるカップ状成形体であって、紙や不織布を張り合わせて容器として商品化される成形体なども含まれる。   Here, the polyester molded body refers to a polyester molded body such as a sheet-like material or a cup-like material used as it is and the following polyester preform. The polyester preform is a preform obtained by compression molding a molten mass obtained by melt extrusion molding of polyester, a preform obtained by injection molding, or the like. Further, it is a molded body that is melt-extruded and extruded into a pipe shape (so-called direct blow molded body), and then a cylindrical molded body that is further molded into a container, a cup-shaped molded body that is obtained by injection molding, Also included are molded products that are commercialized as containers by laminating paper and non-woven fabrics.

また、本発明のポリエステル組成物からなるシート状物を少なくとも一軸方向に延伸することにより機械的強度を改善することが可能である。本発明のポリエステル組成物からなる延伸フィルムは射出成形もしくは押出成形して得られたシート状物を、通常PETの延伸に用いられる一軸延伸、逐次二軸延伸、同時二軸延伸のうちの任意の延伸方法を用いて成形される。また圧空成形、真空成形によりカップ状やトレイ状に成形することもできる。   Moreover, it is possible to improve mechanical strength by extending | stretching the sheet-like material which consists of a polyester composition of this invention at least to a uniaxial direction. The stretched film composed of the polyester composition of the present invention is a sheet-like material obtained by injection molding or extrusion molding, and can be any one of uniaxial stretching, sequential biaxial stretching, and simultaneous biaxial stretching that are usually used for PET stretching. It is molded using a stretching method. Further, it can be formed into a cup shape or a tray shape by pressure forming or vacuum forming.

以下には、PETの場合の延伸成形体についての具体的な製法を簡単に説明する。
延伸中空成形体を製造するにあたっては、本発明のポリエステル組成物から成形したブリフォームを延伸ブロー成形してなるもので、従来PETのブロー成形で用いられている装置を用いることができる。具体的には例えば、射出成形または押出成形で一旦プリフォームを成形し、そのままあるいは口栓部、底部を加工後、それを再加熱し、ホットパリソン法あるいはコールドパリソン法などの二軸延伸ブロー成形法が適用される。この場合の成形温度、具体的には成形機のシリンダー各部およびノズルの温度は通常260〜305℃の範囲である。延伸温度は通常70〜120℃、好ましくは90〜110℃で、延伸倍率は通常縦方向に1.5〜3.5倍、円周方向に2〜5倍の範囲で行えばよい。得られた中空成形体は、そのまま使用できるが、特に果汁飲料、ウーロン茶などのように熱充填を必要とする飲料の場合には一般的に、さらにブロー金型内で熱固定処理を行い、耐熱性を付与して使用される。熱固定は通常、圧空などによる緊張下、100〜200℃、好ましくは120〜180℃で、数秒〜数時間、好ましくは数秒〜数分間行われる。
Below, the specific manufacturing method about the extending | stretching molded object in the case of PET is demonstrated easily.
In producing a stretched hollow molded body, a foam molded from the polyester composition of the present invention is stretch blow molded, and an apparatus conventionally used in blow molding of PET can be used. Specifically, for example, once a preform is formed by injection molding or extrusion molding, the plug part and the bottom part are processed as it is, and then reheated, and then biaxial stretch blow molding such as hot parison method or cold parison method The law applies. The molding temperature in this case, specifically, the temperature of each part of the cylinder of the molding machine and the nozzle is usually in the range of 260 to 305 ° C. The stretching temperature is usually 70 to 120 ° C., preferably 90 to 110 ° C., and the stretching ratio is usually 1.5 to 3.5 times in the longitudinal direction and 2 to 5 times in the circumferential direction. The obtained hollow molded body can be used as it is, but in particular in the case of beverages that require hot filling, such as fruit juice beverages and oolong teas, it is generally heat-set in a blow mold and heat resistant. Used to impart sex. The heat setting is usually performed at 100 to 200 ° C., preferably 120 to 180 ° C. for several seconds to several hours, preferably several seconds to several minutes, under tension by compressed air or the like.

また、口栓部に耐熱性を付与するために、射出成形または押出成形により得られたプリフォームの口栓部を遠赤外線や近赤外線ヒーター設置オーブン内で結晶化させたり、あるいはボトル成形後に口栓部を前記のヒーターで結晶化させる。   In addition, in order to impart heat resistance to the plug part, the plug part of the preform obtained by injection molding or extrusion molding is crystallized in a far-infrared or near-infrared heater installation oven, or after the bottle is formed, The stopper is crystallized with the heater.

また、本発明のポリエステル組成物は、これを溶融押出し後に切断した溶融塊を圧縮成形して得たプリフォームを延伸ブロー成形する、所謂、圧縮成形法による延伸中空成形体の製造にも用いることができる。   The polyester composition of the present invention can also be used for the production of a stretched hollow molded body by a so-called compression molding method in which a preform obtained by compression molding a melt mass cut after melt extrusion is stretch blow molded. Can do.

延伸フィルムを製造するに当たっては、延伸温度は通常は80〜130℃である。延伸は一軸でも二軸でもよいが、好ましくはフィルム実用物性の点から二軸延伸である。延伸倍率は一軸の場合であれば通常1.1〜10倍、好ましくは1.5〜8倍の範囲で行い、二軸延伸であれば縦方向および横方向ともそれぞれ通常1.1〜8倍、好ましくは1.5〜5倍の範囲で行えばよい。また、縦方向倍率/横方向倍率は通常0.5〜2、好ましくは0.7〜1.3である。得られた延伸フィルムは、さらに熱固定して、耐熱性、機械的強度を改善することもできる。熱固定は通常緊張下、120℃〜240、好ましくは150〜230℃で、通常数秒〜数時間、好ましくは数十秒〜数分間行われる。   In producing a stretched film, the stretching temperature is usually 80 to 130 ° C. Stretching may be uniaxial or biaxial, but biaxial stretching is preferred from the viewpoint of film physical properties. In the case of uniaxial stretching, the stretching ratio is usually 1.1 to 10 times, preferably 1.5 to 8 times. Preferably, it may be performed in a range of 1.5 to 5 times. The vertical / horizontal magnification is usually 0.5 to 2, preferably 0.7 to 1.3. The obtained stretched film can be further heat-set to improve heat resistance and mechanical strength. The heat setting is usually performed under tension at 120 to 240 ° C., preferably 150 to 230 ° C., usually for several seconds to several hours, preferably several tens of seconds to several minutes.

本発明のポリエステル組成物には、必要に応じて公知の紫外線吸収剤、酸化防止剤、酸素捕獲剤、外部より添加する滑剤や反応中に内部析出させた滑剤、離型剤、核剤、安定剤、帯電防止剤、青み付け剤、染料、顔料などの各種の添加剤、酸素透過性を改良するためにメタキシリレンジアミンとアジピン酸からのポリアミド樹脂などを配合してもよい。   In the polyester composition of the present invention, known ultraviolet absorbers, antioxidants, oxygen scavengers, lubricants added from the outside, lubricants precipitated internally during the reaction, mold release agents, nucleating agents, stability Various additives such as an agent, an antistatic agent, a bluing agent, a dye, and a pigment, and a polyamide resin from metaxylylenediamine and adipic acid may be added to improve oxygen permeability.

また、本発明のポリエステル組成物をフィルム用途に使用する場合には、滑り性、巻き性、耐ブロッキング性などのハンドリング性を改善するために、ポリエステル組成物中に炭酸カルシウム、炭酸マグネシウム、炭酸バリウム、硫酸カルシウム、硫酸バリウム、リン酸リチウム、リン酸カルシウム、リン酸マグネシウム等の無機粒子、蓚酸カルシウムやカルシウム、バリウム、亜鉛、マンガン、マグネシウム等のテレフタル酸塩等の有機塩粒子やジビニルベンゼン、スチレン、アクリル酸、メタクリル酸、アクリル酸またはメタクリル酸のビニル系モノマーの単独または共重合体等の架橋高分子粒子などの不活性粒子を含有させることが出来る。   In addition, when the polyester composition of the present invention is used for a film, the polyester composition contains calcium carbonate, magnesium carbonate, barium carbonate in order to improve handling properties such as slipping property, winding property, and blocking resistance. , Inorganic particles such as calcium sulfate, barium sulfate, lithium phosphate, calcium phosphate, magnesium phosphate, organic salt particles such as terephthalate such as calcium oxalate, calcium, barium, zinc, manganese, magnesium, divinylbenzene, styrene, acrylic Inactive particles such as crosslinked polymer particles such as acid, methacrylic acid, acrylic acid or a vinyl monomer of methacrylic acid, or a copolymer thereof can be contained.

以下本発明を実施例により具体的に説明するが本発明はこの実施例に限定されるものではない。
なお、主な特性値の測定法を以下に説明する。
EXAMPLES Hereinafter, the present invention will be specifically described with reference to examples, but the present invention is not limited to these examples.
The main characteristic value measurement methods will be described below.

(1)ポリエステルの極限粘度(IV)
1,1,2,2−テトラクロルエタン/フェノ−ル(2:3重量比)混合溶媒中30℃での溶液粘度から求めた。ポリエステル組成物のIVは構成するポリエステルのIVから計算した加重平均値とした。
(1) Intrinsic viscosity of polyester (IV)
It calculated | required from the solution viscosity at 30 degreeC in a 1,1,2,2-tetrachloroethane / phenol (2: 3 weight ratio) mixed solvent. The IV of the polyester composition was a weighted average value calculated from the IV of the constituent polyester.

(2)ポリエステルのイソフタル酸含有量(以下「IPA含有量」という)およびジエチレングリコ−ル含有量(以下「DEG含有量」という)
ポリエステルを重水素化トリフルオロ酢酸/重水素下クロロフォルム(容量比1/9)に溶解し、ブルカ・バイオスピン社製AVANCE−500型NMR装置でH−NMRを測定し、得られたチャートの各共重合成分のプロトンのピークの積分強度から求めた。
また、共重合成分の含有量の差は、DEG含有量とIPA含有量の合計量の差を計算して求める。
(2) Isophthalic acid content (hereinafter referred to as “IPA content”) and diethylene glycol content (hereinafter referred to as “DEG content”) of polyester
Polyester was dissolved in deuterated trifluoroacetic acid / chloroform under deuterium (volume ratio 1/9), and 1 H-NMR was measured with an AVANCE-500 type NMR apparatus manufactured by Bruca Biospin. It calculated | required from the integral intensity | strength of the peak of the proton of each copolymerization component.
Further, the difference in the content of the copolymer component is obtained by calculating the difference in the total amount of the DEG content and the IPA content.

(3)イソフタル酸中の3−カルボキシベンズアルデヒド含有量(以下「3−CBA含有量」という)
エタノールに試料を溶解し、高速液体クロマトグラフ法により定量した。
(3) 3-Carboxybenzaldehyde content in isophthalic acid (hereinafter referred to as “3-CBA content”)
Samples were dissolved in ethanol and quantified by high performance liquid chromatography.

(4)ポリエステルの環状3量体の含有量(以下「CT含有量」という)
冷凍粉砕した試料300mgをヘキサフルオロイソプロパノ−ル/クロロフォルム混合液(容量比=2/3)3mlに溶解し、さらにクロロフォルム30mlを加えて希釈する。これにメタノ−ル15mlを加えてポリマーを沈殿させた後、濾過する。濾液を蒸発乾固し、ジメチルフォルムアミド10mlで定容とし、高速液体クロマトグラフ法により環状3量体を定量した。
(4) Polyester cyclic trimer content (hereinafter referred to as “CT content”)
300 mg of the frozen and ground sample is dissolved in 3 ml of a hexafluoroisopropanol / chloroform mixed solution (volume ratio = 2/3), and further diluted with 30 ml of chloroform. To this is added 15 ml of methanol to precipitate the polymer, followed by filtration. The filtrate was evaporated to dryness, adjusted to a constant volume with 10 ml of dimethylformamide, and the cyclic trimer was quantified by high performance liquid chromatography.

(5)ポリエステルの溶融時の環状3量体増加量(△CT量)
後記(15)において280℃設定で成形された3mm厚みのプレートから試料を採取し、140℃、0.1mmHg以下で16時間程度減圧乾燥後、そのポリエステル試料3gをガラス製試験管に入れ、窒素雰囲気下で290℃のオイルバスに60分浸漬させ溶融させる。溶融時の環状3量体増加量は、次式により求める。
なお、溶融前の環状3量体含有量は、ポリエステル組成物を構成するポリエステルの環状3量体含有量の加重平均値とした。
溶融時の環状3量体増加量(重量%)=
溶融後の環状3量体含有量(重量%)−溶融前の環状3量体含有量(重量%)
(5) Increasing amount of cyclic trimer at the time of melting polyester (△ CT amount)
A sample was taken from a 3 mm-thick plate molded at 280 ° C. in the following (15), dried under reduced pressure at 140 ° C. and 0.1 mmHg or less for about 16 hours, and then 3 g of the polyester sample was placed in a glass test tube. It is immersed in an oil bath at 290 ° C. for 60 minutes under an atmosphere and melted. The increase amount of the cyclic trimer at the time of melting is obtained by the following equation.
In addition, the cyclic trimer content before melting was a weighted average value of the cyclic trimer content of the polyester constituting the polyester composition.
Increase amount of cyclic trimer at the time of melting (wt%) =
Cyclic trimer content after melting (wt%)-cyclic trimer content before melting (wt%)

(6)ポリエステルのアセトアルデヒド含有量(以下「AA含有量」という)
試料/蒸留水=1グラム/2ccを窒素置換したガラスアンプルに入れた上部を溶封し、160℃で2時間抽出処理を行い、冷却後抽出液中のアセトアルデヒドを高感度ガスクロマトグラフィ−で測定し、濃度をppmで表示した。中空成形体の場合は口元からサンプルを採取した。なお、ドライブレンド組成物の成形の場合は、個々のポリエステルのAA含有量の平均値を成形前のポリエステル組成物のAA含有量とした。
(6) Acetaldehyde content of polyester (hereinafter referred to as “AA content”)
Sample / distilled water = 1 g / 2 cc of glass ampoule substituted with nitrogen was sealed and subjected to extraction treatment at 160 ° C for 2 hours. After cooling, acetaldehyde in the extract was measured by high-sensitivity gas chromatography. The concentration was expressed in ppm. In the case of a hollow molded body, a sample was taken from the mouth. In the case of molding the dry blend composition, the average value of the AA contents of the individual polyesters was used as the AA content of the polyester composition before molding.

(7)ポリエステルチップの密度(ρ)および結晶化度(CR)
硝酸カルシュウム/水溶液の密度勾配管で30℃におけるチップの密度(ρ)を測定した。
下記の式より結晶化度を算出した。
CR = 100ρ(ρ―ρ)/ρ(ρ−ρ
ここで、ρ : チップの密度
ρa : 非晶密度(1.335g/cm
ρ: 結晶密度(1.455g/cm
(7) Density (ρ) and crystallinity (CR) of polyester chip
The density (ρ) of the chip at 30 ° C. was measured with a density gradient tube of calcium nitrate / water solution.
The crystallinity was calculated from the following formula.
CR = 100ρ c (ρ−ρ a ) / ρ (ρ c −ρ a )
Where ρ is the density of the chip
ρ a : amorphous density (1.335 g / cm 3 )
ρ c : crystal density (1.455 g / cm 3 )

(8)ポリエステルチップの平均重量(W)と平均重量の比(W/W
イオン交換水でファインを除去後、乾燥したポリエステルチップ100個の重量を測定し、平均値を平均重量(W)とした。ポリエステル組成物が2種のポリエステルの混合物である場合は、2種間のポリエステルチップの平均重量の比(W/W)は、2種のうち、平均重量の大きいポリエステルチップの平均重量をWとし、平均重量の小さいポリエステルチップの平均重量をWとして、W/Wを計算した。2種のポリエステルチップが同平均重量の場合は、W/Wは1.00となる。また、2種以上のポリエステルからなる場合は、混合比率の多い2種のポリエステルを対象として前記のように計算をする。
この場合、チップ100個の選定は、異常な大きさのチップを除外することにより行った。具体的なチップの除外方法は、以下のとおりである。
チップの平均重量(W)を求めるに当たっては、ランダムに100個のチップを選び、平均重量(W)を算出した後、重量が0.5Wを下回るチップ及び2Wを超えるチップを除外し、除外した数のチップを再度ランダムに選び、補充して、100個の平均値を再計算した。これを100個すべてのチップが0.5W〜2W内になるまで行った。
(8) Ratio of average weight (W) and average weight of polyester chip (W A / W B )
After removing fines with ion-exchanged water, the weight of 100 dried polyester chips was measured, and the average value was defined as the average weight (W). When the polyester composition is a mixture of two kinds of polyesters, the ratio of the average weight of the polyester chips between the two kinds (W A / W B ) is the average weight of the polyester chips having a larger average weight among the two kinds. and W a, the average weight of the average weight of small polyester chips as W B, was calculated W a / W B. When the two types of polyester chips have the same average weight, W A / W B is 1.00. Moreover, when it consists of 2 or more types of polyester, it calculates as mentioned above for 2 types of polyester with many mixing ratios.
In this case, the selection of 100 chips was performed by excluding abnormally sized chips. The specific chip exclusion method is as follows.
In calculating the average weight (W) of the chips, 100 chips were randomly selected, and after calculating the average weight (W), the chips having a weight of less than 0.5 W and the chips having a weight of more than 2 W were excluded and excluded. A number of chips were picked again at random, replenished and 100 averages recalculated. This was done until all 100 chips were within 0.5W-2W.

(9)ポリエステルのナトリウム含有量、カルシウム含有量
試料約5〜10gを白金坩堝に入れて約550℃で灰化し、次いで6N塩酸に溶解後蒸発乾固し、残差を1N塩酸に溶解する。この溶液を原子吸光分析法により測定した。
(9) Sodium content and calcium content of polyester About 5 to 10 g of a sample is put in a platinum crucible and incinerated at about 550 ° C., then dissolved in 6N hydrochloric acid and evaporated to dryness, and the residue is dissolved in 1N hydrochloric acid. This solution was measured by atomic absorption spectrometry.

(10)ポリエステルの珪素含有量
試料約5〜10gを白金坩堝に入れて約550℃で灰化し、次いで炭酸ナトリウムを加えて加熱溶解し、1N塩酸に溶解する。この溶液を島津製作所製誘導結合プラズマ発光分析装置で測定した。
(10) Silicon content of polyester About 5 to 10 g of a sample is put in a platinum crucible and incinerated at about 550 ° C., then sodium carbonate is added and dissolved by heating, and dissolved in 1N hydrochloric acid. This solution was measured with an inductively coupled plasma optical emission spectrometer manufactured by Shimadzu Corporation.

(11)ファインの含有量の測定
樹脂約0.5kgを、JIS−Z8801による呼び寸法5.6mmの金網をはった篩(A)と呼び寸法1.7mmの金網をはった篩(直径20cm)(B)を2段に組合せた篩の上に乗せ、テラオカ社製揺動型篩い振トウ機SNF−7で1800rpmで1分間篩った。この操作を繰り返し、樹脂を合計20kg篩った。ただし、ファイン含有量が少ない場合には、試料の量を適宜変更する。
前記の篩(B)の下にふるい落とされたファインは、0.1%のカチオン系界面活性剤水溶液で洗浄し、次いでイオン交換水で洗浄し岩城硝子社製G1ガラスフィルターで濾過して集めた。これらをガラスフィルターごと乾燥器内で100℃で2時間乾燥後、冷却して秤量した。再度、イオン交換水で洗浄、乾燥の同一操作を繰り返し、恒量になったことを確認し、この重量からガラスフィルターの重量を引き、ファイン重量を求めた。ファイン含有量は、ファイン重量/篩いにかけた全樹脂重量、である。
(11) Measurement of Fine Content About 0.5 kg of resin is sieved with a screen (A) having a mesh size of 5.6 mm according to JIS-Z8801 and a screen having a mesh size of 1.7 mm (diameter) 20 cm) (B) was placed on a sieve combined in two stages, and sieved at 1800 rpm for 1 minute with a swing type sieve shaker SNF-7 manufactured by Terraoka. This operation was repeated and a total of 20 kg of resin was sieved. However, when the fine content is small, the amount of the sample is appropriately changed.
The fine sieved under the sieve (B) is washed with a 0.1% aqueous cationic surfactant solution, then washed with ion-exchanged water, and filtered through a G1 glass filter manufactured by Iwaki Glass Co., Ltd. It was. These were dried together with a glass filter in a dryer at 100 ° C. for 2 hours, then cooled and weighed. Again, the same operations of washing and drying with ion-exchanged water were repeated to confirm that the weight became constant, and the weight of the glass filter was subtracted from this weight to obtain the fine weight. The fine content is the fine weight / the total resin weight that has been sieved.

(12)ファインの融解ピーク温度(以下「ファインの融点」という)の測定
セイコー電子工業(株)製の示差走査熱量計(DSC)、RDC−220を用いて測定。(11)において、ポリエステルから集めたファインを冷凍粉砕して混合後、25℃で3日間減圧下に乾燥し、これから一回の測定に試料4mgを使用して昇温速度20℃/分でDSC測定を行い、融解ピーク温度の最も高温側の融解ピーク温度を求める。測定は最大10ケの試料について実施し、最も高温側の融解ピーク温度の平均値を求める。融解ピ−クが1つの場合にはその温度を求める。
(12) Measurement of fine melting peak temperature (hereinafter referred to as “fine melting point”) Measured using a differential scanning calorimeter (DSC) manufactured by Seiko Denshi Kogyo Co., Ltd., RDC-220. In (11), the finely collected fine polyester was frozen and pulverized and mixed, and then dried under reduced pressure at 25 ° C. for 3 days. From now on, 4 mg of sample was used for one measurement, and the DSC was performed at a heating rate of 20 ° C./min. Measure and obtain the melting peak temperature on the highest temperature side of the melting peak temperature. The measurement is performed on a maximum of 10 samples, and the average value of the melting peak temperatures on the highest temperature side is obtained. If there is a single melting peak, the temperature is determined.

(13)ヘイズ(霞度%)およびヘイズ斑
下記(14)の成形体(肉厚5mm)より試料を切り取り、日本電色(株)製ヘイズメーター、modelNDH2000で測定。また、50回連続して成形した成形板(肉厚5mm)のヘイズを測定し、ヘイズ斑は下記により求めた。
ヘイズ斑=ヘイズの最大値/ヘイズの最小値
また、延伸中空成形体のヘイズは、下記(15)のボトル胴部より試料を切り取り、日本電色社製ヘイズメーター、modelNDH2000で測定した。
(13) Haze (degree of haze) and haze spots A sample was cut from the molded product (thickness 5 mm) of the following (14) and measured with a Nippon Denshoku Co., Ltd. haze meter, model NDH2000. Moreover, the haze of the molded board (thickness 5 mm) shape | molded continuously 50 times was measured, and the haze spot was calculated | required by the following.
Haze spots = maximum value of haze / minimum value of haze Further, the haze of the stretched hollow molded body was measured with a haze meter, model NDH2000, manufactured by Nippon Denshoku Co., Ltd., by cutting a sample from the bottle body of (15) below.

(14)段付成形板の成形
減圧乾燥機を用いて140℃で16時間程度減圧乾燥したポリエステルを名機製作所製射出成形機M−150C−DM型射出成形機により図1、図2に示すようにゲート部(G)を有する、2mm〜11mm(A部の厚み=2mm、B部の厚み=3mm、C部の厚み=4mm、D部の厚み=5mm、E部の厚み=10mm、F部の厚み=11mm)の厚さの段付成形板を射出成形した。
予め乾燥したポリエステルを用い、成形中に吸湿を防止するために、成形材料ホッパー内は乾燥不活性ガス(窒素ガス)パージを行った。M−150C−DM射出成形機による可塑化条件としては、フィードスクリュウ回転数=70%、スクリュウ回転数=120rpm、背圧0.5MPa、シリンダー温度はホッパー直下から順に45℃、250℃、以降ノズルを含め280℃あるいは290℃に設定した。射出条件は射出速度及び保圧速度は20%、また成形品重量が146±0.2gになるように射出圧力及び保圧を調整し、その際保圧は射出圧力に対して0.5MPa低く調整した。
射出時間、保圧時間はそれぞれ上限を10秒、7秒,冷却時間は50秒に設定し、成形品取出時間も含めた全体のサイクルタイムは概ね75秒程度である。
金型には常時、水温10℃の冷却水を導入し温調するが、成形安定時の金型表面温度は22℃前後である。
なお、成形温度とは、前記のノズルを含めバレルの設定温度を言う。
(14) Molding of stepped molded plate
The polyester dried under reduced pressure at 140 ° C. for about 16 hours using a vacuum dryer has a gate part (G) as shown in FIGS. 1 and 2 by an injection molding machine M-150C-DM type injection molding machine manufactured by Meiki Seisakusho. 2 mm to 11 mm (A part thickness = 2 mm, B part thickness = 3 mm, C part thickness = 4 mm, D part thickness = 5 mm, E part thickness = 10 mm, F part thickness = 11 mm) The stepped molding plate was injection molded.
In order to prevent moisture absorption during molding, a dry inert gas (nitrogen gas) purge was performed in the molding material hopper. The plasticizing conditions of the M-150C-DM injection molding machine are as follows: feed screw rotation speed = 70%, screw rotation speed = 120 rpm, back pressure 0.5 MPa, cylinder temperature 45 ° C., 250 ° C. from the bottom of the hopper in order, nozzle Including 280 ° C. or 290 ° C. The injection conditions are 20% for injection speed and holding pressure, and the injection pressure and holding pressure are adjusted so that the weight of the molded product is 146 ± 0.2g. In this case, the holding pressure is 0.5MPa lower than the injection pressure. It was adjusted.
The upper limit of the injection time and pressure holding time is set to 10 seconds and 7 seconds, respectively, and the cooling time is set to 50 seconds. The total cycle time including the time for taking out the molded product is about 75 seconds.
Although the temperature of the mold is always controlled by introducing cooling water having a water temperature of 10 ° C., the mold surface temperature at the time of stable molding is around 22 ° C.
The molding temperature refers to the set temperature of the barrel including the nozzle.

実施例や比較例で用いる種々のポリエステルの成形板のヘイズの測定に用いる段付成形板は290℃成形温度で成形した成形板である。
また、実施例および比較例におけるポリエステル組成物の成形板ヘイズ(%)および成形板ヘイズ斑(%)の測定には、280℃成形温度の成形板を用いた。
成形品特性評価用のテストプレートは、成形材料を導入し樹脂置換を行った後、成形開始から11〜18ショット目の安定した成形品の中から任意に選ぶものとした。
3mm厚みのプレート(図1のB部)は溶融時の環状3量体増加量(△CT量)測定、5mm厚みのプレート(図1のD部)はヘイズ(霞度%)測定、に使用する。
The stepped molded plate used for measuring the haze of various polyester molded plates used in Examples and Comparative Examples is a molded plate molded at a 290 ° C. molding temperature.
Moreover, the molded board of 280 degreeC shaping | molding temperature was used for the measurement of the molded board haze (%) and molded board haze spot (%) of the polyester composition in an Example and a comparative example.
The test plate for evaluating the characteristics of the molded product was arbitrarily selected from the 11th to 18th shots of the stable molded product after the molding material was introduced and the resin was replaced.
A plate with a thickness of 3 mm (part B in FIG. 1) is used for measurement of an increase in cyclic trimer (ΔCT amount) at the time of melting, and a plate with a thickness of 5 mm (part D in FIG. 1) is used for a haze measurement (degree%). To do.

(15)中空成形体の成形
1)プリフォームの成形
減圧乾燥機を用いて140℃で16時間程度乾燥したポリエステルチップを用い、成形中にチップの吸湿を防止するために、成形材料ホッパー内は乾燥不活性ガス(窒素ガス)パージを行った。
名機製作所社製M−150C―DM射出成形機による可塑化条件としては、フィードスクリュウ回転数=70%、スクリュウ回転数=120rpm、背圧0.5MPa、計量位置50mm、シリンダー温度はホッパー直下から順に45℃、250℃、以降ノズルを含め溶融樹脂温度が280℃になるように設定した。射出条件は射出速度及び保圧速度は10%、また成形品重量が58.6±0.2gになるように射出圧力及び保圧を調整し、その際保圧は射出圧力に対して0.5MPa低く調整した。冷却時間は20秒に設定し、成形品取出時間も含めた全体のサイクルタイムは概ね42秒程度である。プリフォームのサイズは、外径29.4mm、長さ145.5mm、肉厚約3.7mmである。
金型には常時、水温18℃の冷却水を導入し温調するが、成形安定時の金型表面温度は29℃前後である。特性評価用のプリフォームは、成形材料を導入し樹脂置換を行った後、成形開始から20〜50ショット目の安定した成形品の中から任意に選ぶものとした。
(15) Molding of hollow molded body 1) Molding of preform In order to prevent moisture absorption of the chip during molding using a polyester chip dried at 140 ° C. for about 16 hours using a vacuum dryer, A dry inert gas (nitrogen gas) purge was performed.
The plasticizing conditions of the M-150C-DM injection molding machine manufactured by Meiki Seisakusho Co., Ltd. are as follows: feed screw rotation speed = 70%, screw rotation speed = 120 rpm, back pressure 0.5 MPa, weighing position 50 mm, cylinder temperature from directly below the hopper In order, the temperature was set to 45 ° C., 250 ° C., and thereafter the molten resin temperature including the nozzle was 280 ° C. The injection conditions were such that the injection speed and holding pressure were 10%, and the injection pressure and holding pressure were adjusted so that the weight of the molded product was 58.6 ± 0.2 g. Adjusted to 5 MPa lower. The cooling time is set to 20 seconds, and the total cycle time including the molded product take-out time is approximately 42 seconds. The preform has an outer diameter of 29.4 mm, a length of 145.5 mm, and a wall thickness of about 3.7 mm.
The mold is always controlled by introducing cooling water having a water temperature of 18 ° C., but the mold surface temperature at the time of molding stability is around 29 ° C. The preform for property evaluation was arbitrarily selected from stable molded products 20 to 50 shots after the start of molding after introducing the molding material and replacing the resin.

2)延伸中空成形体(ボトル)の成形
前記プリフォームをCORPOPLAST社製のLB−01E成形機で二軸延伸ブローして容量が1500ccの容器(胴部肉厚0.45mm)を成形した。延伸温度は100℃にコントロールし、成形開始から10〜30ショット目の安定した成形品の中から任意に選ぶものとした。ボトルの口元からサンプルを取り、アセトアルデヒド含有量(AA含有量)の測定、環状3量体含有量(CT含有量)の測定に使用した。
2) Molding of stretched hollow molded body (bottle) The preform was biaxially stretched and blown by a LB-01E molding machine manufactured by CORPOPLAST to mold a container (body thickness 0.45 mm) having a capacity of 1500 cc. The stretching temperature was controlled at 100 ° C. and arbitrarily selected from the stable molded products on the 10th to 30th shots from the start of molding. A sample was taken from the mouth of the bottle and used for measurement of acetaldehyde content (AA content) and cyclic trimer content (CT content).

(16)ボトル胴部の強度測定
上記方法で成形したボトルの胴部をカッターで大きめに切断しスーパーダンベルカッター型式SDMK-1000D ダンベル社(株)製(JISK-7162-5Aに準じる)で打ち抜き、引っ張り試験器 SS−207D−U(東洋ボールドウィン(株)製)を用いて強度を測定した。
(16) Strength measurement of bottle body part The body part of the bottle formed by the above method is cut into large pieces with a cutter and punched with a super dumbbell cutter model SDMK-1000D manufactured by Dumbbell Co., Ltd. (according to JISK-7162-5A). The strength was measured using a tensile tester SS-207D-U (manufactured by Toyo Baldwin Co., Ltd.).

(17)中空成形体の外観
前記(15)の成形開始10本目から20本の中空成形体を目視で観察し、下記のように評価した。
◎ : 透明で外観問題なし
△ : 中空成形体に白化した流れ模様や白化物が少し有り
× : 中空成形体に白化した流れ模様や白化物あり
(17) Appearance of Hollow Molded Body Twenty hollow molded bodies from the tenth molding start of (15) were visually observed and evaluated as follows.
◎: Transparent and no appearance problem △: There is a little whitened flow pattern or whitened product in the hollow molded body ×: White flowed pattern or whitened product in the hollow molded body

(18)チップ冷却水中あるいは水処理水のナトリウム含有量、マグネシウム含有量、カルシウム含有量および珪素含有量
チップ冷却水などを採取し、岩城硝子社製1G1ガラスフィルターで濾過後、濾液を島津製作所製誘導結合プラズマ発光分析装置で測定した。
(18) Sodium content, Magnesium content, Calcium content and Silicon content of chip cooling water or treated water Chip cooling water is collected and filtered through a 1G1 glass filter manufactured by Iwaki Glass Co., Ltd., and the filtrate is manufactured by Shimadzu Corporation. Measurements were made with an inductively coupled plasma emission spectrometer.

(ポリエステル1)
予め反応物を含有している第1エステル化反応器に、高純度テレフタル酸(全酸成分の98.0モル%相当分)、イソフタル酸(全酸成分の2.0モル%)とエチルグリコールを連続的に供給し、撹拌下、約250℃、0.5kg/cmGで平均滞留時間3時間反応を行った。また、結晶性二酸化ゲルマニウムを水に加熱溶解し、これにエチレングリコールを添加加熱処理した触媒溶液及び燐酸のエチレングリコール溶液を別々に、この第1エステル化反応器に連続的に供給した。この反応物を第2エステル化反応器に送付し、撹拌下、約260℃、0.05kg/cmGで所定の反応度まで反応を行った。このエステル化反応生成物を連続的に第1重合反応器に送り、撹拌下、約265℃、25torrで1時間、次いで第2重合反応器で撹拌下、約265℃、3torrで1時間、さらに第3重合反応器で撹拌下、約275℃、0.5〜1torrで1時間重合させた。得られたPETの極限粘度(IV)は0.53、DEG含有量は2.7モル%であった。なお、チップ化時の冷却水としては、ナトリウム含有量が0.1ppm、カルシウム含有量が約0.05ppm、マグネシウム含有量が約0.07ppm、珪素含有量が約0.6ppmのイオン交換水を用いた。
(Polyester 1)
In the first esterification reactor containing the reactants in advance, high-purity terephthalic acid (corresponding to 98.0 mol% of the total acid component), isophthalic acid (2.0 mol% of the total acid component) and ethyl glycol Was continuously fed, and the reaction was carried out with stirring at about 250 ° C. and 0.5 kg / cm 2 G for an average residence time of 3 hours. Further, crystalline germanium dioxide was dissolved in water by heating, and a catalyst solution in which ethylene glycol was added and heat-treated thereto and an ethylene glycol solution of phosphoric acid were separately supplied continuously to the first esterification reactor. This reaction product was sent to the second esterification reactor, and the reaction was carried out with stirring at about 260 ° C. and 0.05 kg / cm 2 G to a predetermined reactivity. The esterification reaction product is continuously sent to the first polymerization reactor under stirring at about 265 ° C. and 25 torr for 1 hour, then in the second polymerization reactor under stirring at about 265 ° C. and 3 torr for 1 hour, and further Polymerization was conducted for 1 hour at about 275 ° C. and 0.5 to 1 torr with stirring in the third polymerization reactor. The obtained PET had an intrinsic viscosity (IV) of 0.53 and a DEG content of 2.7 mol%. The cooling water at the time of chip formation is ion-exchanged water having a sodium content of 0.1 ppm, a calcium content of about 0.05 ppm, a magnesium content of about 0.07 ppm, and a silicon content of about 0.6 ppm. Using.

この樹脂を引き続き窒素雰囲気下、約155℃で結晶化し、さらに窒素雰囲気下で約200℃に予熱後、連続固相重合反応器に送り窒素雰囲気下約205℃で固相重合した。固相重合後篩分工程およりファイン除去工程で連続的に処理しファインを除去した。
得られたPETの極限粘度は0.70デシリットル/グラム、アセトアルデヒド(AA)含有量は3.8ppm、環状3量体の含量は0.37重量%、チップ結晶化度は52.2%、チップ平均重量(W)は24.5mg、ナトリウム含有量は0.01ppm、カルシウム含有量は0.03ppm、珪素含有量は0.06ppm、ファイン含有量は約50ppm、ファイン融点は251℃であった。得られたPETの特性を表−1に示す。なお、用いたイソフタル酸の3−カルボキシベンズアルデヒド含有量は3ppmであった。
The resin was subsequently crystallized at about 155 ° C. under a nitrogen atmosphere, further preheated to about 200 ° C. under a nitrogen atmosphere, and then sent to a continuous solid-phase polymerization reactor for solid phase polymerization at about 205 ° C. under a nitrogen atmosphere. After the solid-phase polymerization, fines were removed by continuous treatment in a sieving step and a fine removal step.
The obtained PET had an intrinsic viscosity of 0.70 deciliter / gram, an acetaldehyde (AA) content of 3.8 ppm, a cyclic trimer content of 0.37% by weight, a chip crystallinity of 52.2%, and a chip. The average weight (W) was 24.5 mg, the sodium content was 0.01 ppm, the calcium content was 0.03 ppm, the silicon content was 0.06 ppm, the fine content was about 50 ppm, and the fine melting point was 251 ° C. The properties of the obtained PET are shown in Table-1. The isophthalic acid used had a 3-carboxybenzaldehyde content of 3 ppm.

(ポリエステル2、5)
重縮合触媒添加量、固相重合時間を変更する以外はポリエステル1と同様にして反応させてポリエステル2およびポリエステル5を得た。得られたPETの特性を表−1に示す。ナトリウム含有量、カルシウム含有量、珪素含有量はポリエステル1と同程度であった。
(Polyester 2, 5)
Polyester 2 and polyester 5 were obtained by reacting in the same manner as polyester 1 except that the polycondensation catalyst addition amount and the solid phase polymerization time were changed. The properties of the obtained PET are shown in Table-1. Sodium content, calcium content, and silicon content were similar to those of polyester 1.

(ポリエステル3)
イソフタル酸を用いず、重縮合触媒添加量を変更し、チップ化時の冷却水としてナトリウム含有量が約9.3ppm、カルシウム含有量が約10.3ppm、マグネシウム含有量が約5.4ppm、珪素含有量が11.3ppmの水を用いる以外はポリエステル1と同様にして溶融重縮合させてプレポリマーを得た。得られたプレポリマーを回転式減圧固相重合装置に投入し、回転しながら減圧下において70〜160℃で結晶化後、210℃で固相重合し、ポリエステル3を得た。固相重合後、篩分工程でファイン等の除去処理を実施しなかった。得られたPETの特性を表1に示す。それぞれのナトリウム含有量は約4.2ppm、カルシウム含有量は約5.3ppm、珪素含有量は約6.1ppmであった。
(Polyester 3)
Without using isophthalic acid, the amount of polycondensation catalyst added was changed, and as the cooling water for chip formation, the sodium content was about 9.3 ppm, the calcium content was about 10.3 ppm, the magnesium content was about 5.4 ppm, silicon A prepolymer was obtained by melt polycondensation in the same manner as polyester 1 except that water having a content of 11.3 ppm was used. The obtained prepolymer was put into a rotary reduced pressure solid phase polymerization apparatus, crystallized at 70 to 160 ° C. under reduced pressure while rotating, and then solid phase polymerized at 210 ° C. to obtain polyester 3. After the solid-phase polymerization, fines were not removed in the sieving step. The properties of the obtained PET are shown in Table 1. Each sodium content was about 4.2 ppm, calcium content was about 5.3 ppm, and silicon content was about 6.1 ppm.

(ポリエステル4)
イソフタル酸の共重合量および重縮合触媒添加量を変更する以外はポリエステル1と同様にして溶融重縮合させてプレポリマーを得た。得られたプレポリマーをファイン除去後、回転式減圧固相重合装置に投入し、回転しながら減圧下において70〜160℃で結晶化後、210℃で固相重合し、ポリエステル4を得た。固相重合後、篩分工程でファイン等の除去処理を実施した。得られたPETの特性を表1に示す。ナトリウム含有量、カルシウム含有量、珪素含有量はポリエステル1と同程度であった。
(Polyester 4)
A prepolymer was obtained by melt polycondensation in the same manner as for polyester 1 except that the copolymerization amount of isophthalic acid and the addition amount of the polycondensation catalyst were changed. The obtained prepolymer was finely removed and then charged into a rotary vacuum solid phase polymerization apparatus. While rotating, the polymer was crystallized at 70 to 160 ° C. under reduced pressure and then solid-phase polymerized at 210 ° C. to obtain polyester 4. After solid-phase polymerization, fines were removed in the sieving step. The properties of the obtained PET are shown in Table 1. Sodium content, calcium content, and silicon content were similar to those of polyester 1.

Figure 2007138157
Figure 2007138157

(ポリエステル6、7)
重縮合触媒として、塩基性酢酸アルミニウムのエチレングリコール溶液、P化合物としてIrganox1222(チバ・スペシャルティーケミカルズ社製)のエチレングリコール溶液を用いる以外はポリエステル1あるいはポリエステル2と同様にして反応させてポリエステル6、7を得た。燐酸エチレングリコ−ル溶液は添加しなかった。得られたPETの特性を表2に示す。ナトリウム含有量、カルシウム含有量、珪素含有量はポリエステル1と同程度であった。
(Polyester 6, 7)
Polyester 6, by reacting in the same manner as Polyester 1 or Polyester 2, except that an ethylene glycol solution of basic aluminum acetate is used as the polycondensation catalyst and an ethylene glycol solution of Irganox 1222 (manufactured by Ciba Specialty Chemicals) is used as the P compound. 7 was obtained. No ethylene glycol phosphate solution was added. The properties of the obtained PET are shown in Table 2. Sodium content, calcium content, and silicon content were similar to those of polyester 1.

(ポリエステル8、9)
重縮合触媒として、チタニウムテトラブトキシドのエチレングリコール溶液、酢酸マグニシウム4水和物のエチレングリコール溶液を用いる以外はポリエステル1あるいはポリエステル2と同様にして反応させてポリエステル8、9得た。燐酸エチレングリコ−ル溶液は添加しなかった。得られたPETの特性を表2に示す。ナトリウム含有量、カルシウム含有量、珪素含有量はポリエステル1と同程度であった。
(Polyester 8, 9)
Polyesters 8 and 9 were obtained by reacting in the same manner as Polyester 1 or Polyester 2 except that an ethylene glycol solution of titanium tetrabutoxide and an ethylene glycol solution of magnesium acetate tetrahydrate were used as the polycondensation catalyst. No ethylene glycol phosphate solution was added. The properties of the obtained PET are shown in Table 2. Sodium content, calcium content, and silicon content were similar to those of polyester 1.

(ポリエステル10、11)
重縮合触媒として三酸化アンチモンのエチレングリコール溶液を用い、チップ化時の冷却水としてナトリウム含有量が約9.3ppm、カルシウム含有量が約10.3ppm、マグネシウム含有量が約5.4ppm、珪素含有量が11.3ppmの水を用いる以外はポリエステル1と同様にして反応させて溶融重縮合させてプレポリマーを得た。得られたプレポリマーを回転式減圧固相重合装置に投入し、回転しながら減圧下において70〜160℃で結晶化後、210℃で固相重合時間を変えて固相重合し、ポリエステル10、11を得た。固相重合後、篩分工程でファイン等の除去処理を実施しなかった。得られたPETの特性を表2に示す。それぞれのナトリウム含有量、カルシウム含有量、珪素含有量はポリエステル3と同程度であった。
(Polyester 10, 11)
Using ethylene glycol solution of antimony trioxide as the polycondensation catalyst, sodium content is about 9.3ppm, calcium content is about 10.3ppm, magnesium content is about 5.4ppm, silicon content as cooling water when chipping A prepolymer was obtained by reacting in the same manner as polyester 1 except that water having an amount of 11.3 ppm was used, followed by melt polycondensation. The obtained prepolymer was put into a rotary reduced pressure solid phase polymerization apparatus, crystallized at 70 to 160 ° C. under reduced pressure while rotating, then subjected to solid phase polymerization at 210 ° C. while changing the solid phase polymerization time, polyester 10, 11 was obtained. After the solid-phase polymerization, fines were not removed in the sieving step. The properties of the obtained PET are shown in Table 2. Each of the sodium content, calcium content, and silicon content was about the same as polyester 3.

Figure 2007138157
Figure 2007138157

(ポリアミド1)
東洋紡績社製の東洋紡ナイロンMXD6樹脂(T600)を用いた。
(Polyamide 1)
Toyobo nylon MXD6 resin (T600) manufactured by Toyobo Co., Ltd. was used.

(実施例1)
上記のポリエステル1とポリエステル2のペレットを7:3の割合でブレンドして得たポリエステル組成物を(14)の方法により280℃で成形した成形板および(15)の方法により溶融樹脂温度が280℃で溶融滞留時間が110秒の条件下に射出成形して得た予備成形体および中空成形容器による評価を実施した。結果を表3に示す。成形板のヘイズ及びヘイズ斑は、各々8.6%および0.3%と問題ない値であり、延伸中空成形体のAA含有量は5.7ppmと低く、また中空成形容器の外観、ヘイズも問題なかった。
Example 1
Polyester composition obtained by blending the above polyester 1 and polyester 2 pellets in a ratio of 7: 3 was molded at 280 ° C. by the method (14), and the molten resin temperature was 280 by the method (15). Evaluation was performed using a preform and a hollow molded container obtained by injection molding at a temperature of 110 ° C. under a condition of a melt residence time of 110 seconds. The results are shown in Table 3. The haze and haze spots of the molded plate are 8.6% and 0.3%, respectively, which are no problem, the stretched hollow molded article has a low AA content of 5.7 ppm, and the appearance and haze of the hollow molded container are also low. There was no problem.

(実施例2)
上記のポリエステル1、70重量部、ポリエステル2、30重量部及びポリアミド1、1重量部をブレンドした実施例5のポリエステル組成物について実施例1と同様にして評価を実施した。結果を表3に示す。成形板の特性は良好であり、また、延伸中空成形体のAA含有量は4.9ppmと低く、ヘイズ1.1%と良好であり、その他の特性も問題なかった。
(Example 2)
Evaluation was carried out in the same manner as in Example 1 for the polyester composition of Example 5 in which the above polyester 1,70 parts by weight, polyester 2,30 parts by weight and polyamide 1, 1 part by weight were blended. The results are shown in Table 3. The characteristics of the molded plate were good, and the stretched hollow molded article had a low AA content of 4.9 ppm, a good haze of 1.1%, and other characteristics were satisfactory.

(実施例3)
ポリエステル1および2のチップの水処理には、図3に示す装置を用い、処理槽上部の原料チップ供給口(1)、処理槽の処理水上限レベルに位置するオーバーフロー排出口(2)、処理槽下部のポリエステルチップと処理水の混合物の排出口(3)、このオーバーフロー排出口から排出された処理水と、処理槽から排出された処理水と、処理槽下部の排出口から排出された水切り装置(4)を経由した処理水が、濾材が紙製の連続式フィルタ−である微粉除去装置(5)を経由して再び水処理槽へ送られる配管(6)、これらの微粉除去済み処理水の導入口(7)、微粉除去済み処理水中のアセトアルデヒドを吸着処理させる吸着塔(8)、及び新しいイオン交換水の導入口(9)を備えた内容量約50mの塔型の処理槽を使用した。
(Example 3)
For the water treatment of the chips of polyester 1 and 2, using the apparatus shown in FIG. 3, the raw material chip supply port (1) at the top of the treatment tank, the overflow discharge port (2) located at the upper limit level of the treatment water in the treatment tank, the treatment Discharge port (3) for the mixture of polyester chip and treated water at the bottom of the tank, treated water discharged from this overflow outlet, treated water discharged from the treated tank, and draining drained from the discharged outlet at the bottom of the treated tank Pipe (6) in which the treated water passing through the device (4) is sent again to the water treatment tank via the fine powder removing device (5) whose filter medium is a paper-made continuous filter, these fine powder removed treatments A tower-type treatment tank having an internal capacity of about 50 m 3 and comprising an inlet (7) for water, an adsorption tower (8) for adsorbing acetaldehyde in treated water after fine powder removal, and a new ion-exchange water inlet (9) It was used.

前記のポリエステル1あるいはポリエステル2のチップを気流分級工程および振動式篩分工程によりファインおよびフィルム状物を除去処理後、処理水温度95℃にコントロールされた水処理槽へ50kg/時間の速度で処理槽上部の供給口(1)から連続投入して水処理し、処理槽下部の排出口(3)からPETチップとして50kg/時間の速度で処理水と共に連続的に抜き出した。上記処理装置のイオン交換水導入口(9)の手前で採取した導入水中の粒径1〜25μmの粒子含有量は約1000個/10ml、ナトリウム含有量が0.05ppm、マグネシウム含有量が0.10ppm、カルシウム含有量が0.08ppm、珪素含有量が0.18ppmであり、また濾過装置(5)および吸着塔(8)で処理後のリサイクル水の粒径1〜40μmの粒子数は約10000個/10mlであった。   Fine and film-like substances are removed from the polyester 1 or polyester 2 chips by the airflow classification process and the vibration sieving process, and then processed at a rate of 50 kg / hour into a water treatment tank controlled at a treatment water temperature of 95 ° C. Water was treated by continuously supplying from the supply port (1) at the upper part of the tank, and continuously with the treated water at a rate of 50 kg / hour as PET chips from the outlet (3) at the lower part of the processing tank. In the introduced water collected before the ion exchange water inlet (9) of the treatment apparatus, the particle content of 1 to 25 μm in particle diameter is about 1000 particles / 10 ml, the sodium content is 0.05 ppm, and the magnesium content is 0.1. 10 ppm, calcium content is 0.08 ppm, silicon content is 0.18 ppm, and the number of particles having a particle size of 1 to 40 μm of recycled water after treatment in the filtration device (5) and the adsorption tower (8) is about 10,000. Pieces / 10 ml.

水処理後、振動式篩工程および気流分級工程でファイン等の除去処理を行った。
得られたポリエステルの特性は処理前とほぼ同じであった。
表3に示す組成により、実施例3のポリエステル組成物について実施例1と同様にして評価を実施した。結果を表3に示す。溶融時の環状3量体の増加量(△CT)は0.13重量%と低く、成形板のヘイズは8.7%、成形板のヘイズ斑は0.5%と良好であり、延伸中空成形体のAA含有量は5.3ppm、ヘイズは0.9%と良好であり、また、外観および口栓部の形状も問題なく、内容物の漏れもなかった。また、(15)1)の方法で5000本以上のプリフォームの連続射出成形を実施したが、金型の排気孔の詰りは問題なく、またボトルの透明性も良好であった。
After the water treatment, fines and the like were removed in the vibration sieve process and the airflow classification process.
The properties of the obtained polyester were almost the same as before the treatment.
According to the composition shown in Table 3, the polyester composition of Example 3 was evaluated in the same manner as in Example 1. The results are shown in Table 3. The increase amount (ΔCT) of the cyclic trimer at the time of melting is as low as 0.13% by weight, the haze of the molded plate is 8.7%, the haze spot of the molded plate is as good as 0.5%, and the stretched hollow The AA content of the molded product was as good as 5.3 ppm and haze was 0.9%, and the appearance and the shape of the plug were satisfactory, and the contents were not leaked. Further, continuous injection molding of 5000 or more preforms was carried out by the method of (15) 1), but there was no problem with clogging of the exhaust holes of the mold and the transparency of the bottle was good.

(比較例1)
表3に示すように比較例1のポリエステル組成物について実施例1と同様にして評価を実施した。
実施例と比較すると明らかに、成形板のヘイズ値およびヘイズ斑は大きく、また、延伸成形体のAA含有量および外観、ヘイズもよくなかった。結果を表3に示す。
(Comparative Example 1)
As shown in Table 3, the polyester composition of Comparative Example 1 was evaluated in the same manner as in Example 1.
Obviously, the haze value and haze spots of the molded plate were large as compared with the examples, and the AA content, appearance and haze of the stretched molded product were not good. The results are shown in Table 3.

(比較例2)
表3に示すように比較例2のポリエステル5について同様にして評価を実施した。
実施例と比較すると明らかに、成形板のヘイズ値およびヘイズ斑は大きく、また、延伸成形体のAA含有量、外観、ヘイズはよくなかった。結果を表3に示す。
(Comparative Example 2)
As shown in Table 3, the polyester 5 of Comparative Example 2 was evaluated in the same manner.
Obviously, the haze value and haze spots of the molded plate were large compared to the examples, and the AA content, appearance, and haze of the stretched molded product were not good. The results are shown in Table 3.

(実施例4)
表3に示す組成により、実施例4のポリエステル組成物について実施例1と同様にして評価を実施した。結果を表4に示す。成形板のヘイズは9.0%、成形板のヘイズ斑は0.6%と良好であり、延伸中空成形体のAA含有量は6.0ppm、ヘイズは1.1%と良好であり、問題なかった。
Example 4
According to the composition shown in Table 3, the polyester composition of Example 4 was evaluated in the same manner as in Example 1. The results are shown in Table 4. The haze of the molded plate is 9.0%, the haze spots of the molded plate are as good as 0.6%, the AA content of the stretched hollow molded body is 6.0 ppm, and the haze is as good as 1.1%. There wasn't.

(実施例5)
表3に示す組成により、実施例5のポリエステル組成物について実施例1と同様にして評価を実施した。結果を表3に示す。実施例1と同様に良好であった。
(Example 5)
According to the composition shown in Table 3, the polyester composition of Example 5 was evaluated in the same manner as in Example 1. The results are shown in Table 3. It was as good as Example 1.

(比較例3)
表3に示すように比較例3のポリエステル組成物について同様にして評価を実施した。結果を表3に示す。
実施例と比較すると明らかに、成形板のヘイズ値およびヘイズ斑は大きく、また、延伸成形体のAA含有量、外観、ヘイズもよくなかった。
(Comparative Example 3)
As shown in Table 3, the polyester composition of Comparative Example 3 was evaluated in the same manner. The results are shown in Table 3.
Obviously, the haze value and haze spots of the molded plate were large as compared with the examples, and the AA content, appearance, and haze of the stretched molded product were not good.

Figure 2007138157
Figure 2007138157

(実施例6)
ポリエステル6とポリエステル7の7:3の混合物のチップ表面に、燐酸水溶液として燐酸をP残存含有量とAl残存含有量のモル比(P/Al)が約1.7になるように均一に付着させたポリエステル組成物について同様にして評価を実施した。
結果を表4に示す。評価した全ての特性は実施例3と同様に良好であった。
(Example 6)
As a phosphoric acid aqueous solution, phosphoric acid is uniformly attached to the chip surface of a 7: 3 mixture of polyester 6 and polyester 7 so that the molar ratio of P residual content to Al residual content (P / Al) is about 1.7. Evaluation was similarly performed about the made polyester composition.
The results are shown in Table 4. All the evaluated characteristics were as good as in Example 3.

(実施例7)
ポリエステル8とポリエステル9の7:3の混合物のチップ表面に、燐酸水溶液として燐酸をP残存含有量とTi残存含有量のモル比(P/Ti)が約1.9になるように均一に付着させたポリエステル組成物について同様にして評価を実施した。
結果を表4に示す。評価した全ての特性は実施例3と同様に良好であった。
(Example 7)
As a phosphoric acid aqueous solution, phosphoric acid is uniformly attached to the chip surface of a 7: 3 mixture of polyester 8 and polyester 9 so that the molar ratio (P / Ti) of P residual content to Ti residual content is about 1.9. Evaluation was similarly performed about the made polyester composition.
The results are shown in Table 4. All the evaluated characteristics were as good as in Example 3.

Figure 2007138157
Figure 2007138157

本発明は、流動特性が改良されるために低温度での成形が可能で、透明性に優れ、成形時のアルデヒド発生量が少ない成形体被覆物、あるいは、成形体とした際には耐圧性などの機械的特性にも優れた中空成形体などを与えるポリエステル組成物及びそれからなる成形体とその製造方法を提供することができる。 Since the present invention has improved flow characteristics, it can be molded at a low temperature, has excellent transparency, and has a pressure resistance when formed into a molded product covering or a molded product with little aldehyde generation during molding. The polyester composition which gives the hollow molded object etc. which were excellent also in mechanical characteristics etc., the molded object consisting thereof, and its manufacturing method can be provided.

段付き成形板の平面図Plan view of stepped plate 段付き成形板の側面図Side view of stepped plate 水処理装置の概略図Schematic diagram of water treatment equipment

符号の説明Explanation of symbols

1 原料チップ供給口
2 オーバーフロー排出口
3 ポリエステルチップと処理水との排出口
4 水切り装置
5 ファイン除去装置
6 配管
7 リサイクル水または/およびイオン交換水の導入口
8 吸着塔
9 イオン交換水導入口
DESCRIPTION OF SYMBOLS 1 Raw material chip supply port 2 Overflow discharge port 3 Drain port of polyester chip and treated water 4 Drainage device 5 Fine removal device 6 Pipe 7 Recycled water and / or ion exchange water introduction port 8 Adsorption tower 9 Ion exchange water introduction port

Claims (11)

少なくとも2種の、結晶性ポリエステルを主成分として含むポリエステル組成物であって、前記ポリエステル組成物を構成する各ポリエステルの酸成分の85モル%以上およびグリコール成分の85モル%以上が、それぞれ、同一の酸成分および同一のグリコール成分であり、前記ポリエステルの極限粘度の差が0.05〜0.30デシリットル/グラムの範囲、前記ポリエステルの共重合成分の含有量の差が10.0モル%以下で、かつ、前記ポリエステルを290℃で成形した5mm厚みの成形板のヘイズが25%以下であることを特徴とするポリエステル組成物。 A polyester composition containing at least two kinds of crystalline polyester as a main component, wherein 85 mol% or more of the acid component and 85 mol% or more of the glycol component of each polyester constituting the polyester composition are the same. The difference in intrinsic viscosity of the polyester is in the range of 0.05 to 0.30 deciliter / gram, and the difference in content of the copolymerization component of the polyester is 10.0 mol% or less. And the haze of the molding plate of 5 mm thickness which shape | molded the said polyester at 290 degreeC is 25% or less, The polyester composition characterized by the above-mentioned. 前記ポリエステルのアルデヒド含有量が10ppm以下であることを特徴とする請求項1に記載のポリエステル組成物。 The polyester composition according to claim 1, wherein the polyester has an aldehyde content of 10 ppm or less. 環状エステルオリゴマー含有量が、溶融重縮合ポリエステルプレポリマーの環状エステルオリゴマー含有量の60%以下であることを特徴とする請求項1または2のいずれかに記載のポリエステル組成物。 The polyester composition according to claim 1, wherein the cyclic ester oligomer content is 60% or less of the cyclic ester oligomer content of the melt polycondensation polyester prepolymer. 290℃の温度で60分間溶融したときの環状エステルオリゴマー増加量が0.40重量%以下であることを特徴とする請求項1〜3のいずれかに記載のポリエステル組成物。 The polyester composition according to any one of claims 1 to 3, wherein an increase amount of the cyclic ester oligomer when melted at a temperature of 290 ° C for 60 minutes is 0.40% by weight or less. 前記酸成分が、テレフタル酸または2,6−ナフタレンジカルボン酸であることを特徴とする請求項1〜4のいずれかに記載のポリエステル組成物。 The polyester composition according to claim 1, wherein the acid component is terephthalic acid or 2,6-naphthalenedicarboxylic acid. 共重合成分が、テレフタル酸、イソフタル酸、2,6−ナフタレンジカルボン酸、ジエチレングリコール、ネオペンチルグリコール、1,4−シクロヘキサンジメタノールから選ばれる少なくとも一種であることを特徴とする請求項1〜5のいずれかに記載のポリエステル組成物。 The copolymerization component is at least one selected from terephthalic acid, isophthalic acid, 2,6-naphthalenedicarboxylic acid, diethylene glycol, neopentyl glycol, and 1,4-cyclohexanedimethanol. The polyester composition in any one. 少なくとも1種のアルデヒド低減剤を含むことを特徴とする請求項1〜6のいずれかに記載のポリエステル組成物。 The polyester composition according to claim 1, comprising at least one aldehyde reducing agent. 請求項1〜7のいずれかに記載のポリエステル組成物を溶融成形してなることを特徴とするポリエステル成形体。 A polyester molded article obtained by melt-molding the polyester composition according to claim 1. 請求項8に記載のポリエステル成形体が、シート状物、フィルム、中空成形体のいずれかであることを特徴とするポリエステル成形体。 The polyester molded body according to claim 8, wherein the polyester molded body is any one of a sheet-like material, a film, and a hollow molded body. ポリエステル成形体が、前記ポリエステル組成物を基材上に溶融押出した被覆物であることを特徴とする請求項8に記載のポリエステル成形体。 The polyester molded article according to claim 8, wherein the polyester molded article is a coating obtained by melt-extruding the polyester composition on a substrate. 請求項1〜4のいずれかに記載の結晶性ポリエステルがエチレンテレフタレ−トを主たる繰返し単位とするポリエステルであって、該結晶性ポリエステルを主成分として含むポリエステル組成物を成形機内での溶融樹脂温度が255〜305℃、成形機内での溶融滞留時間が5〜500秒の条件で混練および成形することを特徴とするポリエステル中空成形体の製造方法。
The crystalline polyester according to any one of claims 1 to 4 is a polyester having ethylene terephthalate as a main repeating unit, and a polyester composition containing the crystalline polyester as a main component is a molten resin in a molding machine. A method for producing a polyester hollow molded body, characterized by kneading and molding under conditions of a temperature of 255 to 305 ° C. and a melt residence time in a molding machine of 5 to 500 seconds.
JP2006285041A 2005-10-19 2006-10-19 Polyester composition and method for producing polyester molded article and polyester blow-molded article made thereof Pending JP2007138157A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006285041A JP2007138157A (en) 2005-10-19 2006-10-19 Polyester composition and method for producing polyester molded article and polyester blow-molded article made thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005304518 2005-10-19
JP2006285041A JP2007138157A (en) 2005-10-19 2006-10-19 Polyester composition and method for producing polyester molded article and polyester blow-molded article made thereof

Publications (1)

Publication Number Publication Date
JP2007138157A true JP2007138157A (en) 2007-06-07

Family

ID=38201419

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006285041A Pending JP2007138157A (en) 2005-10-19 2006-10-19 Polyester composition and method for producing polyester molded article and polyester blow-molded article made thereof

Country Status (1)

Country Link
JP (1) JP2007138157A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011001510A (en) * 2009-06-22 2011-01-06 Teijin Dupont Films Japan Ltd Polyester composition
JP2015074169A (en) * 2013-10-09 2015-04-20 帝人デュポンフィルム株式会社 Method for producing polyester resin molded product

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011001510A (en) * 2009-06-22 2011-01-06 Teijin Dupont Films Japan Ltd Polyester composition
JP2015074169A (en) * 2013-10-09 2015-04-20 帝人デュポンフィルム株式会社 Method for producing polyester resin molded product

Similar Documents

Publication Publication Date Title
JP5119464B2 (en) Method for producing polyester unstretched molded body
JP2010235941A (en) Aromatic polyester, and polyester molded article comprising the same
JP2009052041A (en) Method for producing polyester
JP2009052044A (en) Polyester composition and polyester molded body comprising the same
JP2009052039A (en) Polyester and polyester molded product formed thereof
JP2007138156A (en) Polyester composition and method for producing polyester molded article and polyester blow-molded article made thereof
JP2007182477A (en) Polyester resin, polyester resin composition comprising the same and its application
JP2006111872A (en) Polyester composition, polyester molded product formed out of the same, and method for producing the same
JP2007138157A (en) Polyester composition and method for producing polyester molded article and polyester blow-molded article made thereof
JP2006111873A (en) Polyester composition and polyester molded product formed out of the same
JP2007138160A (en) Method for manufacturing polyester composition
JP2007002240A (en) Stretch blow molded polyester article and method for producing the same
JP2010235939A (en) Aromatic polyester composition, and aromatic polyester molded article comprising the same
JP2006097013A (en) Polyester composition and polyester molded product comprising the same
JP4929615B2 (en) Polyester composition and polyester molded body comprising the same
JP2010235938A (en) Aromatic polyester and polyester molded article comprising the same
JP2007138155A (en) Polyester composition, polyester molded product made of the same and method for manufacturing polyester blow molded product
JP2007138158A (en) Polyester composition, polyester molded article made thereof and method for producing the same
JP2007002239A (en) Polyester composition and molded polyester article made thereof
JP2007138159A (en) Polyester molded article and polyester stretch blow molded article
JP2006188676A (en) Polyester composition and polyester molded product composed of the same
JP4929616B2 (en) Polyester composition and polyester molded body comprising the same
JP4752361B2 (en) Polyester, polyester composition and polyester molded body comprising them
JP2006096040A (en) Manufacturing method of polyester preform, and manufacturing method of polyester stretched molded body
JP2006045555A (en) Polyester and polyester molded product comprising the same