JP2007138007A - Fluorescent substance and el element using the same and method for producing fluorescent substance - Google Patents

Fluorescent substance and el element using the same and method for producing fluorescent substance Download PDF

Info

Publication number
JP2007138007A
JP2007138007A JP2005333526A JP2005333526A JP2007138007A JP 2007138007 A JP2007138007 A JP 2007138007A JP 2005333526 A JP2005333526 A JP 2005333526A JP 2005333526 A JP2005333526 A JP 2005333526A JP 2007138007 A JP2007138007 A JP 2007138007A
Authority
JP
Japan
Prior art keywords
phosphor
zns
powder
emission
phosphor according
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005333526A
Other languages
Japanese (ja)
Inventor
Ryuichi Inoue
龍一 井上
Chihiro Kawai
千尋 河合
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP2005333526A priority Critical patent/JP2007138007A/en
Publication of JP2007138007A publication Critical patent/JP2007138007A/en
Pending legal-status Critical Current

Links

Landscapes

  • Electroluminescent Light Sources (AREA)
  • Luminescent Compositions (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a fluorescent substance which is a mixed crystal fluorescent substance of ZnS with a group IIA sulfide and can emit short wavelength EL in high brightness, when an AC electric field is applied, and to provide a method for producing the same. <P>SOLUTION: This mixed crystal fluorescent substance represented by the formula: Zn<SB>(1-x)</SB>M<SB>x</SB>S:Cu [M is at least one group IIA element selected from the group consisting of Be, Mg, Ca, Sr and Ba; the mixed crystal ratio of x satisfies 0.05≤x<] is characterized by having macle therein and having a light-emitting component in a UV ray region of ≤400 nm. The method for producing the fluorescent substance comprises a process for mixing group IIA sulfide powder with ZnS:Cu intermediate fluorescent substance powder having macle therein, and a process for firing the mixture. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明はエレクトロルミネッセンス(以下、「EL」と表記する。)発光蛍光体とその作製方法に関する。とりわけ、EL発光に必要な双晶を多く有する蛍光体とその作製方法に関する。   The present invention relates to an electroluminescence (hereinafter referred to as “EL”) light emitting phosphor and a method for manufacturing the same. In particular, the present invention relates to a phosphor having many twins necessary for EL emission and a method for manufacturing the same.

近年の環境問題から、有害物質や細菌・ウイルスなどを分離、分解、または殺菌する機能が強く要求されている。このような分解・殺菌を行う手段として光触媒材料が注目されている。代表的な光触媒はアナターゼ型TiOであり、これは一般には波長が400nm以下の紫外線により光触媒機能を発揮する。最近では、アナターゼ型TiO2よりは機能は低いものの、420nmくらいの波長まで機能するルチル型TiO2も開発されている。 Due to recent environmental problems, a function of separating, decomposing or sterilizing harmful substances, bacteria, viruses and the like is strongly demanded. Photocatalytic materials are attracting attention as a means for performing such decomposition and sterilization. A typical photocatalyst is anatase TiO 2 , which generally exhibits a photocatalytic function with ultraviolet rays having a wavelength of 400 nm or less. Recently, a rutile TiO 2 that has a lower function than anatase TiO 2 but functions up to a wavelength of about 420 nm has been developed.

このような波長の光を放射させるデバイスとしては、水銀ランプや発光ダイオードもあるが、点または線光源であるため、大面積の光触媒を均一に励起するには適さない。大面積を均一に発光させるデバイスとして無機ELデバイスがある。これは、光を放射する機能を持つ蛍光体粉末を誘電体樹脂に分散させて、主として交流電界を印加して発光させるものである。   Devices that emit light of such a wavelength include mercury lamps and light emitting diodes, but they are point or line light sources and are not suitable for uniformly exciting a large area photocatalyst. An inorganic EL device is a device that uniformly emits light over a large area. In this method, phosphor powder having a function of emitting light is dispersed in a dielectric resin, and light is emitted mainly by applying an alternating electric field.

高効率で発光する蛍光体としてはZnS蛍光体がある。この蛍光体は内部に多数の双晶(積層欠陥)が形成されており、双晶界面に沿って導電性の高いCu−S系化合物が針状に存在する。電界印加時に針状導電相の先端で電界集中が生じて蛍光体母体であるZnSが励起され、このエネルギーが蛍光体中の各種準位に移動してEL発光する。すなわち、電子は浅いトラップに、正孔はCu付活剤のアクセプター準位に捕らえられ、電界が反転した時に電子が飛び出し、正孔と再結合して発光を生じる(非特許文献1参照)。   As a phosphor that emits light with high efficiency, there is a ZnS phosphor. This phosphor has a large number of twins (stacking faults) formed therein, and a highly conductive Cu—S compound exists in a needle shape along the twin interface. When an electric field is applied, electric field concentration occurs at the tip of the acicular conductive phase, and the phosphor matrix, ZnS, is excited, and this energy moves to various levels in the phosphor to emit EL. That is, electrons are trapped in a shallow trap and holes are trapped in an acceptor level of a Cu activator. When an electric field is reversed, electrons are ejected and recombined with holes to emit light (see Non-Patent Document 1).

非特許文献1に記載されているZnS:Cu蛍光体は、交流電界を印加することでEL発光を生じる最も有名な蛍光体であり、Blue−Cu型やGreen−Cu型などといった複数のタイプの発光を生じる。しかし、その中で最も短波長な領域に発光成分を有するBlue−Cu型発光でさえ波長400nm以下の紫外線領域に発光成分は有していない。   The ZnS: Cu phosphor described in Non-Patent Document 1 is the most famous phosphor that generates EL light emission when an alternating electric field is applied, and includes a plurality of types such as a Blue-Cu type and a Green-Cu type. Luminescence occurs. However, even the Blue-Cu type light emission having the light emitting component in the shortest wavelength region does not have the light emitting component in the ultraviolet region having a wavelength of 400 nm or less.

一方、ZnS:Cu蛍光体の発光波長を短波長化させる手法としては、蛍光体母材であるZnSに、例えばIIA族硫化物等を添加して混晶化し、蛍光体母材のバンドギャップを増大させることが有効である。
ZnSにIIA族硫化物を添加して混晶化させた蛍光体は特許文献1に報告されているが、ここでは「主発光(D−Aペア型発光、つまりGreen−Cu型発光)以外の成分が殆ど無く」と記載されており、これでは波長400nm以下の紫外線領域にBlue−Cu型発光による高強度の成分を有する発光を生じさせることはできない。
On the other hand, as a method for shortening the emission wavelength of the ZnS: Cu phosphor, for example, a group IIA sulfide is added to ZnS which is a phosphor base material to form a mixed crystal, and the band gap of the phosphor base material is increased. It is effective to increase.
A phosphor obtained by adding a group IIA sulfide to ZnS to form a mixed crystal is reported in Patent Document 1, but here, "other than main emission (DA pair emission, that is, Green-Cu emission)" is reported. In this case, it is impossible to cause light emission having a high-intensity component due to Blue-Cu light emission in an ultraviolet region having a wavelength of 400 nm or less.

また、記載されている通りの手法でZn(1-x)xS:Cu蛍光体を作製してもxの混晶比率が0.05を超えると双晶が殆ど形成されず、そのEL発光強度は微弱なものであった。通常、双晶を高密度で形成するには閃亜鉛鉱型結晶が安定な温度条件で蛍光体を成長させることが有効であるが、Zn(1-x)xS:Cuはxの混晶比率が0.05を超えるといかなる温度においてもウルツ鉱型が安定となり、結晶型がウルツ鉱型で蛍光体を成長しても双晶は殆ど形成されない。 Further, even if a Zn (1-x) M x S: Cu phosphor is prepared by the method as described, twins are hardly formed when the mixed crystal ratio of x exceeds 0.05, and the EL The emission intensity was weak. In general, it is effective to grow a phosphor at a temperature condition in which zinc blende type crystals are stable in order to form twins with high density. However, Zn (1-x) M x S: Cu is a mixture of x. When the crystal ratio exceeds 0.05, the wurtzite type becomes stable at any temperature, and even if the crystal type is the wurtzite type and the phosphor is grown, twins are hardly formed.

特開2002−231151JP 2002-231151 A 特開昭61−296085JP 61-296085 『銅付活蛍光体』 セラミックス26(1991)No.7"Copper-activated phosphor" Ceramics 26 (1991) No. 7

本発明は、高輝度でEL発光を可能とする蛍光体及びその作製方法を提供することを目的とする。特に、ZnSとIIA族硫化物との混晶蛍光体であって、内部に多数の双晶を有することにより針状導電相が多数存在し、交流電界を印加した際に高輝度で短波長EL発光を可能とする蛍光体及びその作製方法を提供することを目的とする。また、これらの蛍光体を用いたEL素子を提供することを目的とする。   An object of this invention is to provide the fluorescent substance which enables EL light emission with high brightness | luminance, and its manufacturing method. In particular, it is a mixed crystal phosphor of ZnS and Group IIA sulfide, and has a large number of needle-like conductive phases due to the presence of a large number of twins therein, and has high brightness and short wavelength EL when an alternating electric field is applied. It is an object of the present invention to provide a phosphor capable of emitting light and a method for manufacturing the same. It is another object of the present invention to provide an EL element using these phosphors.

本発明者らは上記課題を解決するために鋭意検討を重ねた結果、ZnS:Cu中間蛍光体を作製した後、IIA族硫化物粉末を混合して、好ましい熱処理条件で混晶化することにより内部に双晶が多く残存したZn(1-x)S:Cu蛍光体を作製できることを見出し、本発明に至った。 As a result of intensive studies to solve the above problems, the present inventors have prepared a ZnS: Cu intermediate phosphor, and then mixed a Group IIA sulfide powder to form a mixed crystal under preferable heat treatment conditions. The present inventors have found that a Zn (1-x) M x S: Cu phosphor having a large number of twins remaining therein can be produced.

本発明は以下の構成を採用する。
(1)一般式がZn(1-x)xS:Cuで表される混晶蛍光体であって、該一般式中のMは、Be、Mg、Ca、Sr及びBaの群から選ばれる少なくとも1種のIIA族元素を表し、xの混晶比率が0.05≦x<1を満たすと共に、内部に双晶を有し、かつ波長400nm以下の紫外線領域に発光成分を有することを特徴とする蛍光体である。
(2)前記xの混晶比率が、0.3≦x≦0.5であることを特徴とする前記(1)に記載の蛍光体である。
(3)前記蛍光体断面において、1μm2当りの双晶境界面の平均枚数が5枚以上であることを特徴とする前記(1)又は(2)に記載の蛍光体である。
(4)前記蛍光体断面において、1μm2当りの双晶境界面の平均枚数が10枚以上であることを特徴とする前記(3)に記載の蛍光体である。
The present invention employs the following configuration.
(1) A mixed crystal phosphor represented by a general formula Zn (1-x) M x S: Cu, wherein M is selected from the group of Be, Mg, Ca, Sr and Ba The mixed crystal ratio of x satisfies 0.05 ≦ x <1, and has a twin crystal inside, and a light emitting component in the ultraviolet region having a wavelength of 400 nm or less. It is a characteristic phosphor.
(2) The phosphor according to (1), wherein the mixed crystal ratio of x is 0.3 ≦ x ≦ 0.5.
(3) The phosphor according to (1) or (2), wherein the average number of twin boundaries per μm 2 is 5 or more in the phosphor cross section.
(4) The phosphor according to (3), wherein the average number of twin boundaries per μm 2 is 10 or more in the phosphor cross section.

蛍光体がEL発光するためには内部に双晶が形成され、その双晶境界面に導電相が存在することが必要である。更に、波長400nm以下の紫外線領域に発光成分を持たせるためには、Blue−Cu型発光をさせることが必須となる。ZnS:CuのBlue−Cu型発光を短波長化させて400nm以下の領域に発光成分を持たせるためには、IIA族元素との混晶、すなわちZn(1-x)xS:Cuにして蛍光体母材のバンドギャップを増大させることが必要である。しかし、xの混晶比率が0.05未満の場合には充分にバンドギャップが増大されず、波長400nm以下の紫外線領域に発光成分を有するEL発光が得られないため好ましくない。 In order for the phosphor to emit EL, it is necessary that twins are formed inside and a conductive phase is present at the twin boundary. Furthermore, in order to have a light emitting component in the ultraviolet region having a wavelength of 400 nm or less, it is essential to emit Blue-Cu light. In order to shorten the wavelength of Blue-Cu type light emission of ZnS: Cu and to have a light emitting component in the region of 400 nm or less, a mixed crystal with a group IIA element, that is, Zn (1-x) M x S: Cu is used. Therefore, it is necessary to increase the band gap of the phosphor base material. However, when the mixed crystal ratio of x is less than 0.05, the band gap is not sufficiently increased, and EL light emission having a light emitting component in the ultraviolet region having a wavelength of 400 nm or less cannot be obtained.

さらに、xの混晶比率が0.3≦x≦0.5の範囲のときには、波長400nm以下の発光成分の積分強度が全発光積分強度の5%以上となるため好ましい。また、蛍光体断面において双晶境界面の平均枚数が、1平方μm当り5枚以上の場合には0.1cd/m2以上の発光輝度のEL発光が可能となり好ましい。特に10枚以上の場合には、発光輝度が1cd/m2以上のEL発光が得られるためより好ましい。 Further, when the mixed crystal ratio of x is in the range of 0.3 ≦ x ≦ 0.5, the integrated intensity of the light emitting component having a wavelength of 400 nm or less is preferably 5% or more of the total integrated light intensity. In addition, when the average number of twin boundaries in the phosphor cross section is 5 or more per square μm, it is preferable that EL light emission with an emission luminance of 0.1 cd / m 2 or more is possible. In particular, the number of 10 or more is more preferable because EL light emission with a light emission luminance of 1 cd / m 2 or more can be obtained.

(5)少なくとも陽極、陰極及び発光層を有するEL素子であって、かかる発光層に前記(1)乃至(4)のいずれか一に記載の蛍光体を含むことを特徴とするEL素子である。
(6)前記発光層に交流電界を印加すると波長400nm以下の紫外線領域の発光積分強度が全発光積分強度に対し0.5%以上であることを特徴とするEL発光を生じる前記(5)に記載のEL素子である。
(7)交流電界を印加すると波長400nm以下の紫外線領域の発光積分強度が全発光積分強度に対し5%以上であることを特徴とするEL発光を生じる前記(6)に記載のEL素子である。
(5) An EL device having at least an anode, a cathode, and a light emitting layer, wherein the light emitting layer includes the phosphor according to any one of (1) to (4). .
(6) In the above (5), the EL emission is characterized in that when an AC electric field is applied to the light emitting layer, the integrated emission intensity in the ultraviolet region with a wavelength of 400 nm or less is 0.5% or more with respect to the total integrated emission intensity. The EL element described.
(7) The EL element according to (6), which emits EL light emission when an alternating electric field is applied, and an emission integrated intensity in an ultraviolet region having a wavelength of 400 nm or less is 5% or more with respect to a total emission integrated intensity. .

上記(1)乃至(4)のいずれかに記載の発明の蛍光体を使用することによって、波長400nm以下の紫外線領域に発光成分を有する発光を生じるEL素子を提供することが可能となる。更に、暗所でも視認可能な輝度のEL発光が得られる。   By using the phosphor of the invention according to any one of (1) to (4), it is possible to provide an EL element that emits light having a light emitting component in an ultraviolet region having a wavelength of 400 nm or less. Further, EL light emission having a luminance that can be visually recognized even in a dark place can be obtained.

(8)前記(1)乃至(4)のいずれかに記載の蛍光体の作製方法であって、内部に双晶を有するZnS:Cu中間蛍光体粉末とIIA族硫化物粉末を混合する工程、および該混合物を焼成する工程を含むことを特徴とする蛍光体の作製方法である。
このような蛍光体の作製方法により、内部に双晶を多く残存したZn(1-x)xS:Cu蛍光体を作製できるようになる。このため、双晶境界面に析出するCu2S導電相量を増やすことができ、EL発光強度を上げることが可能となる。
ここでZnS:Cu中間蛍光体とは、ZnS粉末、Cu2S等のCu塩粉末、及びKCl等の融剤粉末を混合した後、ZnSの結晶が閃亜鉛鉱型が安定な温度で焼成することで内部に双晶を有するZnS:Cu蛍光体のことをいう。
また本発明において利用されるZnS:Cu中間蛍光体の作製方法は、内部に双晶を多く有するように形成される方法であればよく、従来技術として公知の種々の方法により作製される。
双晶を多く含むZnS:Cu中間蛍光体を焼成するには、例えば、ZnS原料粉末、Cu2S粉末、および融剤であるKCl粉末からなる混合粉末をKClが溶融し、かつZnS結晶が閃亜鉛鉱型が安定となる温度領域、つまり750℃以上1020℃以下の温度領域で熱処理を行い、蛍光体結晶を液相成長させれば良い。またCu供給源はCu2SのみでなくCuを含有する塩、例えばCuSO4、CuCl2、CuBr2、Cu(CH3COO)2等を用いても良い。また融剤はKClのみでなくNaCl等の低融点のハロゲン化物を用いても良い。
(8) The method for producing a phosphor according to any one of (1) to (4), wherein a ZnS: Cu intermediate phosphor powder having twins inside and a group IIA sulfide powder are mixed. And a method for producing a phosphor, comprising a step of firing the mixture.
By such a method for producing a phosphor, it becomes possible to produce a Zn (1-x) M x S: Cu phosphor having many twins remaining therein. For this reason, it is possible to increase the amount of the Cu 2 S conductive phase precipitated on the twin boundary surface and increase the EL emission intensity.
Here, the ZnS: Cu intermediate phosphor is a mixture of ZnS powder, Cu salt powder such as Cu 2 S, and flux powder such as KCl, and then the ZnS crystals are fired at a temperature at which the zinc blende type is stable. This means a ZnS: Cu phosphor having twins inside.
In addition, the ZnS: Cu intermediate phosphor used in the present invention may be manufactured by various methods known in the prior art as long as it is formed so as to have many twins inside.
In order to fire a twin-rich ZnS: Cu intermediate phosphor, for example, a mixed powder composed of a ZnS raw material powder, a Cu 2 S powder, and a KCl powder as a flux is melted with KCl, and the ZnS crystal is flashed. What is necessary is just to heat-process in the temperature range where a zinc ore type becomes stable, ie, the temperature range of 750 degreeC or more and 1020 degrees C or less, and carry out liquid phase growth of the phosphor crystal. As the Cu supply source, not only Cu 2 S but also a salt containing Cu, for example, CuSO 4 , CuCl 2 , CuBr 2 , Cu (CH 3 COO) 2, or the like may be used. Further, not only KCl but also a low melting point halide such as NaCl may be used as the flux.

(9)前記ZnS:Cu中間蛍光体粉末におけるCuの添加量がCu/ZnSモル比で0.002乃至0.1であることを特徴とする前記(8)に記載の蛍光体の作製方法である。
(10)前記ZnS:Cu中間蛍光体粉末におけるCuの添加量がCu/ZnSモル比で0.005乃至0.05であることを特徴とする前記(9)に記載の蛍光体の作製方法である。
(9) In the method for producing a phosphor according to (8), the addition amount of Cu in the ZnS: Cu intermediate phosphor powder is 0.002 to 0.1 in terms of a Cu / ZnS molar ratio. is there.
(10) In the method for producing a phosphor according to (9), an addition amount of Cu in the ZnS: Cu intermediate phosphor powder is 0.005 to 0.05 in terms of a Cu / ZnS molar ratio. is there.

従来、中間蛍光体を作製してから蛍光体を作製する方法が知られているが(例えば、特許文献2参照)、このような製造方法は長寿命の蛍光体を得るために粒径の大きい閃亜鉛鉱型(立方晶型)の蛍光体を作製することを目的としている。このため、硫化亜鉛、銅化合物、ハロゲン化合物を含む混合物を焼成して中間蛍光体を製造した後に所定の加熱加圧を加えることにより蛍光体を製造することを特徴としている。しかし従来の方法では、中間蛍光体はウルツ鉱型(六方晶型)として成長しこれを加熱加圧により閃亜鉛鉱型にするものであるため、成長双晶の形成を行うことができない。成長双晶は結晶が成長する過程で形成されるものであり、一旦結晶成長させた蛍光体を加熱加圧しても新たに成長双晶が形成されることはないからである。   Conventionally, a method for producing a phosphor after producing an intermediate phosphor is known (for example, see Patent Document 2). Such a production method has a large particle size in order to obtain a long-life phosphor. The purpose is to produce a zincblende (cubic) phosphor. For this reason, a phosphor is produced by firing a mixture containing zinc sulfide, a copper compound, and a halogen compound to produce an intermediate phosphor and then applying a predetermined heating and pressurization. However, in the conventional method, the intermediate phosphor grows as a wurtzite type (hexagonal type) and is converted into a zinc blende type by heating and pressurization, so that a growth twin cannot be formed. This is because the growth twins are formed in the process of crystal growth, and no new growth twins are formed even if the phosphor once crystal-grown is heated and pressurized.

これに対し本発明は、内部に双晶を多く含む閃亜鉛鉱型の中間蛍光体を作製した後にこの双晶を消滅させずにIIA族硫化物との混晶化を行うことを特徴としている。このため、従来の方法により製造された蛍光体よりも、低波長域の光を高輝度でEL発光することが可能な蛍光体を得ることができる。   On the other hand, the present invention is characterized in that after a zinc blende type intermediate phosphor containing a large amount of twins is produced, a mixed crystal with a group IIA sulfide is formed without annihilating the twins. . Therefore, it is possible to obtain a phosphor capable of EL emission of light in a low wavelength region with higher luminance than a phosphor manufactured by a conventional method.

内部に双晶を有するZnS:Cu蛍光体(以下、ZnS:Cu中間蛍光体と呼ぶ)のCuの添加量がCu/ZnSモル比で0.002乃至0.1である場合には波長400nm以下の紫外線領域の発光積分強度が全発光積分強度の0.5%以上であり、かつ輝度が0.1cd/m2以上のEL発光を生じる蛍光体が得られるため好ましい。Cuの添加量がCu/ZnSモル比で0.002未満であるとBlue−Cu型発光が生じず、またEL発光輝度が著しく低い蛍光体となる。また、0.1を超える場合にはEL発光輝度が0.1cd/m2を下回る蛍光体となるため、好ましくない。 When the addition amount of Cu in a ZnS: Cu phosphor having internal twins (hereinafter referred to as ZnS: Cu intermediate phosphor) is 0.002 to 0.1 in terms of a Cu / ZnS molar ratio, the wavelength is 400 nm or less. Is preferable since a phosphor that emits EL light with an integrated emission intensity in the ultraviolet region of 0.5% or more of the total integrated emission intensity and a luminance of 0.1 cd / m 2 or more can be obtained. When the added amount of Cu is less than 0.002 in terms of the Cu / ZnS molar ratio, Blue-Cu type light emission does not occur, and a phosphor with extremely low EL light emission luminance is obtained. On the other hand, if it exceeds 0.1, the phosphor having an EL emission luminance of less than 0.1 cd / m 2 is not preferable.

さらに、ZnS:Cu中間蛍光体のCuの添加量は、Cu/ZnSモル比で0.005乃至0.05である場合が特に好ましい。この場合には波長400nm以下の紫外線領域の発光積分強度が全発光積分強度の0.5%以上であり、かつ輝度が1cd/m2以上のEL発光が得られる蛍光体を作製することが可能となる。 Furthermore, it is particularly preferable that the addition amount of Cu in the ZnS: Cu intermediate phosphor is 0.005 to 0.05 in terms of a Cu / ZnS molar ratio. In this case, it is possible to produce a phosphor capable of obtaining EL light emission with an integrated emission intensity in the ultraviolet region having a wavelength of 400 nm or less of 0.5% or more of the total integrated emission intensity and a luminance of 1 cd / m 2 or more. It becomes.

(11)前記焼成する工程時の焼成温度が、500乃至1000℃であることを特徴とする前記(8)乃至(10)のいずれか一に記載の蛍光体の作製方法である。
(12)前記焼成する工程時の焼成温度において、500℃以上である時間が30乃至480分であることを特徴とする前記(8)乃至(11)のいずれか一に記載の蛍光体の作製方法である。
(13)前記焼成する工程時の焼成温度において、500℃以上である時間が45乃至90分であることを特徴とする前記(12)に記載の蛍光体の作製方法である。
(11) The method for producing a phosphor according to any one of (8) to (10), wherein a firing temperature in the firing step is 500 to 1000 ° C.
(12) The production of the phosphor according to any one of (8) to (11), wherein a time of 500 ° C. or more is 30 to 480 minutes at a firing temperature in the firing step. Is the method.
(13) The method for producing a phosphor as described in (12) above, wherein a time of 500 ° C. or more is 45 to 90 minutes at a firing temperature in the firing step.

本発明においては、焼成温度が低すぎるとZnS:Cu中間蛍光体とIIA族硫化物が混晶化せず、逆に焼成温度が高すぎると双晶及び針状CuS導電相が消失してしまう。このため、適当な焼成温度範囲により蛍光体を作製する必要がある。 In the present invention, if the firing temperature is too low, the ZnS: Cu intermediate phosphor and the group IIA sulfide will not be mixed, and conversely if the firing temperature is too high, the twin and acicular Cu 2 S conductive phases will disappear. End up. For this reason, it is necessary to produce a phosphor within an appropriate firing temperature range.

そこで、焼成温度を500℃乃至1000℃にすることにより、ZnS:Cu中間蛍光体とIIA族硫化物が混晶化し、かつ双晶が多く残存したZn(1-x)xS:Cu蛍光体を作製することが可能となる。焼成時の温度が500℃未満の場合にはZnS:Cu中間蛍光体とIIA族硫化物の固相反応が生じないため、400nm以下の紫外線領域に発光成分を有するEL発光を生じない。また、焼成時の温度が1000℃を超えると双晶が消滅しEL発光を生じなくなるため、好ましくない。 Therefore, by setting the firing temperature to 500 ° C. to 1000 ° C., ZnS: Cu intermediate phosphor and IIA sulfide are mixed and Zn (1-x) M x S: Cu fluorescence in which many twins remain. A body can be produced. When the firing temperature is less than 500 ° C., the solid phase reaction between the ZnS: Cu intermediate phosphor and the group IIA sulfide does not occur, and therefore EL emission having a light emitting component in the ultraviolet region of 400 nm or less does not occur. Further, if the temperature during firing exceeds 1000 ° C., twins disappear and EL light emission does not occur, which is not preferable.

また、焼成時の温度が500℃以上である時間は、30分乃至480分であることが好ましい。30分未満の場合はZnS:Cu中間蛍光体とIIA族硫化物の固相反応が充分でなく、400nm以下の紫外線領域に発光成分を有するEL発光が得られない。また、480分を超えると双晶が消滅し、EL発光を生じなくなるため好ましくない。   Further, the time during which the temperature during firing is 500 ° C. or higher is preferably 30 minutes to 480 minutes. When the time is less than 30 minutes, the solid phase reaction between the ZnS: Cu intermediate phosphor and the group IIA sulfide is not sufficient, and EL light emission having a light emitting component in the ultraviolet region of 400 nm or less cannot be obtained. On the other hand, if it exceeds 480 minutes, twins disappear and EL light emission does not occur.

さらに、焼成時の温度が500℃以上である時間は、45分乃至90分である場合が特に好ましい。この場合には、波長400nm以下の紫外線領域の発光積分強度が全発光積分強度の0.5%以上であり、かつ1cd/m2以上の輝度のEL発光を生じる蛍光体を得られるため好ましい。 Furthermore, the time when the temperature during firing is 500 ° C. or higher is particularly preferably 45 minutes to 90 minutes. In this case, it is preferable to obtain a phosphor that has EL emission integrated intensity in the ultraviolet region having a wavelength of 400 nm or less of 0.5% or more of the total emission integrated intensity and emits EL light having a luminance of 1 cd / m 2 or more.

(14)前記焼成する工程の後に、アニール処理を行うことを特徴とする前記(8)乃至(13)のいずれか一に記載の蛍光体の作製方法である。
(15)前記アニール処理時の温度が、400℃乃至850℃であることを特徴とする前記(14)に記載の蛍光体の作製方法である。
(16)前記アニール処理時の温度において、400℃以上である時間が1時間乃至24時間であることを特徴とする前記(14)又は(15)に記載の蛍光体の作製方法である。
(14) The phosphor manufacturing method according to any one of (8) to (13), wherein annealing is performed after the firing step.
(15) The method for manufacturing a phosphor according to (14), wherein a temperature during the annealing treatment is 400 ° C. to 850 ° C.
(16) The method for producing a phosphor as described in (14) or (15) above, wherein at the temperature during the annealing treatment, a time of 400 ° C. or more is 1 hour to 24 hours.

焼成後の蛍光体をアニール処理することにより、双晶を消失させずに双晶境界面での針状CuS導電相の析出量を増大させることが可能となる。このため、EL発光強度が向上した蛍光体が得られるので好ましい。
また、アニール処理時の温度を400℃乃至850℃とすることにより、アニール処理前の蛍光体よりも高い輝度のEL発光をする蛍光体を得ることができるため好ましい。アニール処理時の温度が400℃未満の場合にはアニール処理前の蛍光体によるEL発光輝度と変化が生じない。また、850℃を超えた場合には双晶が減少しEL発光輝度がアニール処理前の蛍光体を下回るため好ましくない。
By annealing the phosphor after firing, it is possible to increase the amount of precipitation of the acicular Cu 2 S conductive phase at the twin interface without losing the twins. For this reason, since the fluorescent substance which improved EL emitted light intensity is obtained, it is preferable.
Further, it is preferable to set the temperature during the annealing process to 400 ° C. to 850 ° C. because a phosphor that emits EL light with higher luminance than the phosphor before the annealing process can be obtained. When the temperature during the annealing process is less than 400 ° C., there is no change in the EL emission luminance due to the phosphor before the annealing process. Further, when the temperature exceeds 850 ° C., twins are reduced and the EL emission luminance is lower than that of the phosphor before the annealing treatment, which is not preferable.

更に、アニール処理時の温度が400℃以上である時間が1時間乃至24時間とすることにより、アニール処理前の蛍光体よりも高い輝度のEL発光をする蛍光体を得ることができ好ましい。1時間未満の場合にはアニール処理前の蛍光体とEL発光輝度に変化が生じない。また、24時間を越えると双晶が減少しEL発光輝度がアニール処理前の蛍光体を下回るため好ましくない。   Furthermore, it is preferable to obtain a phosphor that emits EL light with higher luminance than that of the phosphor before the annealing treatment by setting the time at which the annealing temperature is 400 ° C. or more to 1 hour to 24 hours. In the case of less than 1 hour, there is no change in the phosphor before annealing and the EL emission luminance. Further, if it exceeds 24 hours, twins are reduced, and the EL emission luminance is lower than that of the phosphor before the annealing treatment, which is not preferable.

本発明により、高輝度でのEL発光を可能とする蛍光体を得ることが可能となる。特に、ZnSとIIA族硫化物との混晶蛍光体であって、内部に多数の双晶を有することにより針状導電相が多数存在し、交流電界を印加した際に高輝度で短波長EL発光を可能とする蛍光体が得られる。更にこれらの蛍光体を用いたEL素子により、紫外線領域の波長の光を面光源によりEL発光する発光デバイスを提供することが可能となる。   According to the present invention, it is possible to obtain a phosphor capable of emitting EL with high luminance. In particular, it is a mixed crystal phosphor of ZnS and Group IIA sulfide, and has a large number of needle-like conductive phases due to the presence of a large number of twins therein, and has high brightness and short wavelength EL when an alternating electric field is applied. A phosphor capable of emitting light is obtained. Furthermore, it is possible to provide a light-emitting device that emits light having a wavelength in the ultraviolet region by EL using a surface light source by using an EL element using these phosphors.

まずBlue−Cu型発光を得る手法について述べる。非特許文献1に記載の通り、付活剤であるCuの添加量をClやAl等の共付活剤よりも高いモル濃度で添加するとBlue−Cu型発光が得られるようになる。ただし、付活剤と共付活剤の濃度比率は蛍光体内部に含まれる濃度比率であって、原料粉末の混合比率ではない。つまり、Clの供給源であるKClやNaClは融剤としての効果も有し、蛍光体の結晶性を良好なものとするために多量に混合される。しかし、ZnSに対するClの固溶限は0.1mol%程度と低いため、Cu供給源であるCu塩を0.1mol%よりも高くすることで、融剤量に関係なく付活剤濃度を共付活剤濃度よりも高くすることができる。   First, a method for obtaining Blue-Cu light emission will be described. As described in Non-Patent Document 1, when an addition amount of Cu as an activator is added at a higher molar concentration than a coactivator such as Cl or Al, Blue-Cu type light emission can be obtained. However, the concentration ratio between the activator and the coactivator is the concentration ratio contained in the phosphor, not the mixing ratio of the raw material powder. That is, KCl or NaCl, which is a Cl supply source, also has an effect as a flux, and is mixed in a large amount in order to improve the crystallinity of the phosphor. However, since the solid solubility limit of Cl with respect to ZnS is as low as about 0.1 mol%, the concentration of the activator can be shared regardless of the amount of flux by increasing the Cu salt as the Cu supply source to be higher than 0.1 mol%. It can be higher than the activator concentration.

次に、内部に双晶を有するZn(1-x)xS:Cu蛍光体を得る手法について述べる。上記の通り、ZnS粉末、IIA族硫化物粉末、Cu塩等の原料粉末を一度に焼成すると上記の理由で双晶が殆ど形成されない。そこでまず、ZnS粉末、Cu2S等のCu塩粉末、およびKCl等の融剤粉末を混合した後、ZnSの結晶を閃亜鉛鉱型が安定な温度で焼成することで内部に双晶を有するZnS:Cu中間蛍光体を作製する。その後、ZnS:Cu中間蛍光体粉末とIIA族硫化物粉末を混合して好ましい熱処理条件で混晶化することで、内部に双晶が残存したZn(1-x)xS:Cu蛍光体を作製できる。 Next, a method for obtaining a Zn (1-x) M x S: Cu phosphor having twins inside is described. As described above, when raw material powders such as ZnS powder, group IIA sulfide powder, Cu salt and the like are fired at once, twins are hardly formed for the above reasons. Therefore, first, ZnS powder, Cu salt powder such as Cu 2 S, and flux powder such as KCl are mixed, and then the ZnS crystal is fired at a temperature at which the zinc blende type is stable to have twins inside. A ZnS: Cu intermediate phosphor is prepared. Thereafter, ZnS: Cu intermediate phosphor powder and Group IIA sulfide powder are mixed and crystallized under preferable heat treatment conditions, so that Zn (1-x) M x S: Cu phosphor in which twins remain inside is mixed. Can be produced.

ここで言う好ましい熱処理条件とは、双晶および針状Cu2S導電相が熱拡散により消失せず、かつZnS:Cu中間蛍光体とIIA族硫化物との混晶化が十分に生じる条件を指す。通常、双晶および針状Cu2S導電相との残存と、ZnS:Cu中間蛍光体とIIA族硫化物との混晶化は互いにトレードオフの関係にあるため、焼成時間および焼成温度の最適化が必要である。 The preferable heat treatment condition mentioned here is a condition in which the twin and acicular Cu 2 S conductive phases are not lost by thermal diffusion, and the mixed crystal formation of the ZnS: Cu intermediate phosphor and the group IIA sulfide is sufficiently caused. Point to. Usually, the remaining of twin and acicular Cu 2 S conductive phase and the mixed crystallization of ZnS: Cu intermediate phosphor and group IIA sulfide are in a trade-off relationship with each other. Is necessary.

発明者らは鋭意探索の結果、Cu添加量がCu/ZnSモル比で0.002乃至0.1のZnS:Cu中間蛍光体粉末とIIA族硫化物粉末を500℃乃至1000℃の不活性ガス中で30分乃至480分間焼成することにより、波長400nm以下の紫外線領域に全発光強度の0.5%以上の紫外線成分を有し、かつ暗室で肉眼で視認できる0.1cd/m2以上の輝度のEL発光を生じるxの混晶比率が0.05以上のZn(1-x)xS:Cu蛍光体を発明した。特に好ましい焼成条件では、波長400nm以下の紫外線領域に全発光積分強度の5%以上あるいは10%以上の紫外線成分を有し、かつ蛍光灯を照明に用いた明るい室内でも十分に肉眼で視認できる1cd/m2以上の輝度のEL発光を生じるxの混晶比率が0.05以上のZn(1-x)xS:Cu蛍光体を発明した。 As a result of diligent search, the inventors found that the ZnS: Cu intermediate phosphor powder and the group IIA sulfide powder having a Cu addition amount of 0.002 to 0.1 in terms of Cu / ZnS molar ratio were inert gases of 500 ° C to 1000 ° C. by baking 30 minutes to 480 minutes at medium has 0.5% more UV components of whole emission intensity below the ultraviolet region wavelength 400 nm, and visible to the naked eye in a dark room 0.1 cd / m 2 or more Invented a Zn (1-x) M x S: Cu phosphor having an x mixed crystal ratio of 0.05 or more, which produces luminance EL emission. Under particularly preferable firing conditions, 1 cd that has a UV component of 5% or more or 10% or more of the total emission integrated intensity in an ultraviolet region having a wavelength of 400 nm or less and can be sufficiently visually recognized even in a bright room using a fluorescent lamp for illumination. Invented a Zn (1-x) M x S: Cu phosphor having an x mixed crystal ratio of 0.05 or more, which generates EL emission with a luminance of / m 2 or more.

また、昇温速度が低い場合、昇温過程の間に双晶が消滅する可能性が高くなるため、昇温速度は速ければ速い方が好ましい。そのためにはランプ加熱装置、レーザーアニール装置、及びプラズマ過熱装置等、急速過熱が可能な設備を使用して焼成を行うことが好ましい。   Further, when the temperature rising rate is low, there is a high possibility that twins disappear during the temperature raising process. Therefore, it is preferable that the temperature rising rate is fast. For this purpose, it is preferable to perform firing using equipment capable of rapid superheating, such as a lamp heating device, a laser annealing device, and a plasma superheating device.

この手法では、ある程度大きく(20μm程度)成長したZnS:Cu中間蛍光体の表面からIIA族硫化物を拡散させることになるために、蛍光体表面と内部でIIA族元素固溶量に若干の差が生じることが特徴である。IIA族元素の固溶量の分布はX線光電子分光分析(XPS)、二次イオン質量分析(SIMS)、透過電子顕微鏡によるX線分析(TEM−EDX)等の元素分析や、加速電圧を変化させたCL発光特性分析等によって測定することもできる。   In this method, since the group IIA sulfide is diffused from the surface of the ZnS: Cu intermediate phosphor grown to a certain extent (about 20 μm), there is a slight difference in the amount of IIA element solid solution between the phosphor surface and the inside. It is a feature that occurs. Distribution of solid solution of group IIA elements varies with elemental analysis such as X-ray photoelectron spectroscopy (XPS), secondary ion mass spectrometry (SIMS), X-ray analysis with transmission electron microscope (TEM-EDX), and acceleration voltage It can also be measured by CL emission characteristic analysis.

さらに、上記のプロセスで作製したZn(1-x)xS:Cu蛍光体を400℃乃至850℃の温度でアニール処理を行うことにより双晶を消滅させずに、蛍光体母材から双晶境界面へCu成分を拡散させることにより、針状のCu2S導電相の析出量を増大させ、その結果、さらにEL強度が増大させることができる。ここでアニール処理は、400℃以上である時間を1時間乃至24時間で行うのがより好ましい。
また、双晶を増大させてEL強度を増大させるために、アニール処理の前にボールミルや一軸プレス等で蛍光体粉末に機械的応力を印加してすべり双晶を形成することも有効である。
Further, the Zn (1-x) M x S: Cu phosphor produced by the above process is annealed at a temperature of 400 ° C. to 850 ° C. to eliminate twins and eliminate the twin from the phosphor base material. By diffusing the Cu component to the crystal interface, the amount of acicular Cu 2 S conductive phase deposited can be increased, and as a result, the EL intensity can be further increased. Here, the annealing treatment is preferably performed at a temperature of 400 ° C. or higher for 1 hour to 24 hours.
In order to increase the EL intensity by increasing twins, it is also effective to form slip twins by applying mechanical stress to the phosphor powder with a ball mill or uniaxial press before annealing.

以下実施例に基づき本発明を詳細に説明する。
[ZnS:Cu中間蛍光体の作製]
ZnS粉末(純度99.999%)、Cu/ZnSモル比で0.001乃至0.2となる量のCu2S粉末(純度99.9%)、およびCl/ZnSモル比で0.025となる量のKCl粉末(純度99.9%)を全体で10gとなるようにそれぞれを秤量し、それらを100mlのエタノールに投入し、超音波混合機で超音波振動を印加して分散、混合を行った後、原料混合粉末を自然乾燥させた。乾燥させた原料混合粉末を蓋付の石英るつぼに充填し、950℃のアルゴンガス中で120分間加熱し焼成した後、水洗、乾燥してZnS:Cu中間蛍光体粉末を作製した。
Hereinafter, the present invention will be described in detail based on examples.
[Preparation of ZnS: Cu intermediate phosphor]
ZnS powder (purity 99.999%), Cu 2 S powder (purity 99.9%) in an amount of 0.001 to 0.2 in terms of Cu / ZnS molar ratio, and 0.025 in terms of Cl / ZnS molar ratio. Weigh each KCl powder (purity 99.9%) to a total of 10 g, put them in 100 ml of ethanol, apply ultrasonic vibration with an ultrasonic mixer to disperse and mix. After performing, the raw material mixed powder was naturally dried. The dried raw material mixed powder was filled in a quartz crucible with a lid, heated and fired in argon gas at 950 ° C. for 120 minutes, washed with water and dried to prepare a ZnS: Cu intermediate phosphor powder.

[Zn(1-x)xS:Cu蛍光体の作製]
作製したZnS:Cu中間蛍光体粉末、およびxの混晶比率が0.01乃至0.6となる量のIIA族硫化物粉末を全体で10gとなるように秤量し、それらを100mlのエタノールに投入し、超音波混合機で超音波振動を印加して分散、混合を行った後、IIA族硫化物の酸化を防止するためNガスを流入させたエバポレータを用いて混合粉末の乾燥を行った。乾燥させた混合粉末を蓋付の石英るつぼに充填し、ランプ加熱装置を使用して、アルゴンガス中で所定の条件(ロットNo.1〜48、表1参照)で焼成を行った。また、ロットNo.30〜44については焼成後に、アニール処理を行った。得られた粉末に250ccのアンモニア水と75ccの過酸化水素水を加えて粉末表面に析出した過剰のCu2S成分を除去し、更に水洗、乾燥を行ってZn(1-x)xS:Cu蛍光体を作製した。作製したZn(1-x)xS:Cu蛍光体の双晶の数はTEMにより30000倍の倍率で蛍光体の断面観察を行い、任意の10個の蛍光体粉末の中央付近の1平方μm当りの双晶境界面の数をカウントし、その平均値で求めた。
図1は、上記した製造方法により得られたロットNo.6における蛍光体の一例を示すTEM像である。図1より明らかなように当該蛍光体の内部には多数の双晶が形成されており、双晶境界面に針状導電相が存在している。このような蛍光体を発光層に含むEL素子に交流電界を印加すれば、高輝度で短波長のEL発光が可能である。
[Preparation of Zn (1-x) M x S: Cu phosphor]
The prepared ZnS: Cu intermediate phosphor powder and the group IIA sulfide powder with an x mixed crystal ratio of 0.01 to 0.6 were weighed to a total of 10 g, and these were added to 100 ml of ethanol. After mixing and dispersing and mixing by applying ultrasonic vibration with an ultrasonic mixer, the mixed powder is dried using an evaporator into which N 2 gas is introduced to prevent oxidation of the group IIA sulfide. It was. The dried mixed powder was filled in a quartz crucible with a lid, and baked under a predetermined condition (lot Nos. 1-48, see Table 1) in an argon gas using a lamp heating device. In addition, lots No. 30 to 44 were annealed after firing. To the obtained powder, 250 cc of ammonia water and 75 cc of hydrogen peroxide water are added to remove excess Cu 2 S component deposited on the surface of the powder, followed by washing with water and drying to obtain Zn (1-x) M x S. : Cu phosphor was produced. The number of twins of the prepared Zn (1-x) M x S: Cu phosphor was observed by cross-section of the phosphor at a magnification of 30000 times by TEM, and 1 square near the center of any 10 phosphor powders. The number of twin boundaries per μm was counted, and the average value was obtained.
FIG. 1 is a TEM image showing an example of a phosphor in lot No. 6 obtained by the above-described manufacturing method. As is clear from FIG. 1, a large number of twins are formed inside the phosphor, and a needle-like conductive phase exists on the twin boundary surface. When an alternating electric field is applied to an EL element including such a phosphor in a light emitting layer, EL light emission with high brightness and short wavelength is possible.

作製したZn(1-x)xS:Cu蛍光体を30μmメッシュに通した後、蛍光体1gを2mlのひまし油に分散させて蛍光体スラリーを作製した。作製した蛍光体スラリーをガラス板スペーサを用いて間隔を調整したITO透明導電ガラスと鋼板の間隙に注入してEL素子を作製した。 The prepared Zn (1-x) M x S: Cu phosphor was passed through a 30 μm mesh, and 1 g of the phosphor was dispersed in 2 ml of castor oil to prepare a phosphor slurry. The produced phosphor slurry was injected into the gap between the ITO transparent conductive glass and the steel plate, the interval of which was adjusted using a glass plate spacer, to produce an EL device.

作製したEL素子のITO付透明導電ガラスと鋼板に電極を設置し、1000Hz、200Vの三角波交流電界を印加して蛍光体をEL発光させた。輝度計と分光計を使用して輝度と発光スペクトルの測定を行った。
実験結果を表1に示す。
An electrode was placed on the transparent conductive glass with ITO and the steel plate of the produced EL element, and a triangular wave AC electric field of 1000 Hz and 200 V was applied to cause the phosphor to emit EL. Luminance and emission spectra were measured using a luminance meter and a spectrometer.
The experimental results are shown in Table 1.

ロットNo.1〜9は、請求項1乃至請求項5の発明に対応する実施例及び比較例である。
Zn(1-x)xS:Cuのxの混晶比率が0.05未満では波長400nm以下の紫外線領域に発光成分を有するEL発光は得られなかった(No.1)。xの混晶比率が0.05乃至0.5の範囲において、波長400nm以下の紫外線領域に全発光強度の0.5%以上の発光成分を有するEL発光が得られた(No.2〜No.8)。特にxの混晶比率が0.3≦x≦0.5の範囲において、波長400nm以下の紫外線領域に全発光強度の5%以上の発光成分を有するEL発光が得られるため好ましい(No.5〜No.8)。xの混晶比率が0.5を超えると過剰なIIA族硫化物が単独で析出し、結果的にxの混晶比率が0.5のものと同等のものとなった(No.9)。
Lots No. 1 to 9 are examples and comparative examples corresponding to the inventions of claims 1 to 5.
When the mixed crystal ratio of x of Zn (1-x) M x S: Cu was less than 0.05, EL light emission having a light emitting component in the ultraviolet region having a wavelength of 400 nm or less was not obtained (No. 1). When the mixed crystal ratio of x is in the range of 0.05 to 0.5, EL light emission having a light emission component of 0.5% or more of the total light emission intensity in the ultraviolet region having a wavelength of 400 nm or less was obtained (No. 2 to No). .8). In particular, when the mixed crystal ratio of x is in the range of 0.3 ≦ x ≦ 0.5, EL light emission having a light emission component of 5% or more of the total light emission intensity in the ultraviolet region having a wavelength of 400 nm or less can be obtained (No. 5). ~ No. 8). When the mixed crystal ratio of x exceeds 0.5, an excessive group IIA sulfide is precipitated alone, and as a result, the mixed crystal ratio of x is equivalent to that of 0.5 (No. 9). .

ロットNo.10〜16は、請求項9及び10に記載の発明に対応する実施例及び比較例である。
Cu添加量がCu/ZnSモル比で0.002未満のZnS:Cu中間蛍光体を用いた場合、Blue−Cu型発光は生じず、またEL発光輝度は0.1cd/m2未満と微弱であった(No.10)。Cu添加量がCu/ZnSモル比で0.002乃至0.1においてBlue−Cu型発光に伴う波長400nm以下の紫外線領域に発光成分を有する0.1cd/m2以上の輝度のEL発光が得られた(No.6、No.11〜No.15)。特にCu添加量がCu/ZnSモル比で0.005乃至0.05において1cd/m2以上の輝度のEL発光が得られるため好ましい(No.6、No.12〜No.14)。Cu添加量がCu/ZnSモル比で0.1を超えるとEL発光強度が低下し、輝度が0.1cd/m2を下回るため好ましくない(No.16)。
Lots Nos. 10 to 16 are examples and comparative examples corresponding to the inventions according to claims 9 and 10.
When a ZnS: Cu intermediate phosphor having a Cu addition amount of less than 0.002 in terms of Cu / ZnS molar ratio is used, Blue-Cu type light emission does not occur, and EL light emission luminance is as weak as less than 0.1 cd / m 2. (No. 10). When the added amount of Cu is 0.002 to 0.1 in terms of Cu / ZnS molar ratio, EL light emission having a luminance of 0.1 cd / m 2 or more having a light emitting component in the ultraviolet region having a wavelength of 400 nm or less associated with Blue-Cu type light emission is obtained. (No. 6, No. 11 to No. 15). In particular, it is preferable because the EL emission with a luminance of 1 cd / m 2 or more can be obtained when the Cu addition amount is 0.005 to 0.05 in terms of Cu / ZnS molar ratio (No. 6, No. 12 to No. 14). If the Cu addition amount exceeds 0.1 in terms of the Cu / ZnS molar ratio, the EL emission intensity decreases and the luminance is less than 0.1 cd / m 2, which is not preferable (No. 16).

ロットNo.17〜21は、請求項11に記載の発明に対応する実施例及び比較例である。
焼成温度が500℃未満ではZnS:Cu中間蛍光体とIIA族硫化物の反応が生じないため、波長400nm以下の紫外線領域に発光成分を有するEL発光は得られなかった(No.17)。焼成温度が500℃乃至1000℃において波長400nm以下の紫外線領域に全発光強度の0.5%以上の発光成分を有するEL発光が得られた(No.18〜No.20)。焼成温度が1000℃を超えると双晶が消滅し、EL発光が得られなかった(No.21)。
Lots No. 17 to 21 are examples and comparative examples corresponding to the invention described in claim 11.
When the firing temperature is less than 500 ° C., the reaction between the ZnS: Cu intermediate phosphor and the group IIA sulfide does not occur, and thus EL light emission having a light emitting component in the ultraviolet region having a wavelength of 400 nm or less was not obtained (No. 17). EL light emission having a light emission component of 0.5% or more of the total light emission intensity in an ultraviolet region having a wavelength of 400 nm or less at a baking temperature of 500 ° C. to 1000 ° C. was obtained (No. 18 to No. 20). When the firing temperature exceeded 1000 ° C., twins disappeared and EL emission was not obtained (No. 21).

ロットNo.22〜29は、請求項12及び13に記載の発明に対応する実施例及び比較例である。
焼成温度が500℃以上となる時間が30分未満ではZnS:Cu中間蛍光体とIIA族硫化物の反応が十分でなく、波長400nm以下の紫外線領域の発光成分を有する発光は得られない(No.22)。焼成温度が500℃以上となる時間が30分乃至480分の場合おいて波長400nm以下の紫外線領域に全発光強度の0.5%以上の発光成分を有する輝度0.1cd/m2以上のEL発光が得られた(No.6、No.23〜No.28)。特に焼成温度キープ時間が45分乃至90分において波長400nm以下の紫外線領域に全発光強度の8.4%以上の発光成分を有する輝度1cd/m2以上のEL発光が得られるため好ましい(No.6、No.24、No.25)。焼成温度キープ時間が480分を超えると双晶が消滅し、EL発光が得られなかった(No.29)。
Lots No. 22 to 29 are examples and comparative examples corresponding to the inventions of claims 12 and 13.
When the firing temperature is 500 ° C. or more for less than 30 minutes, the reaction between the ZnS: Cu intermediate phosphor and the group IIA sulfide is not sufficient, and light emission having a light-emitting component in the ultraviolet region with a wavelength of 400 nm or less cannot be obtained (No). .22). When the firing temperature is 500 ° C. or higher for 30 minutes to 480 minutes, an EL having a luminance of 0.1 cd / m 2 or more having a light emitting component of 0.5% or more of the total light emission intensity in an ultraviolet region having a wavelength of 400 nm or less. Luminescence was obtained (No. 6, No. 23 to No. 28). In particular, it is preferable since the EL emission with a luminance of 1 cd / m 2 or more having a light emission component of 8.4% or more of the total emission intensity in the ultraviolet region having a wavelength of 400 nm or less can be obtained at a baking temperature keeping time of 45 minutes to 90 minutes (No. 6, No. 24, No. 25). When the firing temperature keep time exceeded 480 minutes, twins disappeared and no EL emission was obtained (No. 29).

ロットNo.30〜35は、請求項14及び15に記載の発明に対応する実施例及び比較例である。
焼成後のアニール温度が400℃未満の場合はアニール前とEL発光輝度に変化は生じなかった(No.30)。アニール温度が400℃乃至850℃においてアニール前よりも高い輝度のEL発光が得られた(No.31〜No.34)。アニール温度が850℃を超えると双晶が消滅するため好ましくない(No.35)。
Lots No. 30 to 35 are examples and comparative examples corresponding to the inventions of claims 14 and 15.
When the annealing temperature after firing was less than 400 ° C., there was no change in the luminance of EL emission before annealing (No. 30). When the annealing temperature was 400 ° C. to 850 ° C., EL light emission with higher luminance than before annealing was obtained (No. 31 to No. 34). If the annealing temperature exceeds 850 ° C., twins disappear, which is not preferable (No. 35).

ロットNo.36〜44は、請求項16に記載の発明に対応する実施例及び比較例である。
アニール温度が400℃以上となる時間が1時間未満ではアニール前とEL発光輝度に変化は生じなかった(No.36)。アニール温度が400℃以上となる時間が1時間乃至24時間の場合アニール前の輝度よりも高い輝度のEL発光が得られた(No.37〜No.42)。アニール温度が400℃以上となる時間が24時間を越えると、アニール前よりもEL発光輝度が低下するため好ましくない(No.43、No.44)。
Lots No. 36 to 44 are examples and comparative examples corresponding to the invention described in claim 16.
When the annealing temperature was 400 ° C. or higher for less than 1 hour, there was no change in the EL emission luminance before annealing (No. 36). When the annealing temperature was 400 ° C. or higher for 1 to 24 hours, EL light emission having a luminance higher than that before annealing was obtained (No. 37 to No. 42). If the annealing temperature exceeds 400 ° C. for more than 24 hours, the EL emission luminance is lower than before annealing (No. 43, No. 44).

ロットNo.45〜48は、請求項1に記載の発明に対応する実施例である。
MがBe、Mg、Ca、Sr、BaのIIA族元素において、波長400nm以下の紫外線領域に全発光強度の0.5%以上の発光成分を有し、かつ1cd/m2以上の輝度のEL発光が得られた(No.6、No.45〜No.48)。
Lots No. 45 to 48 are examples corresponding to the invention described in claim 1.
In the group IIA elements where M is Be, Mg, Ca, Sr, or Ba, an EL component having a light emitting component of 0.5% or more of the total light emission intensity in an ultraviolet region having a wavelength of 400 nm or less and a luminance of 1 cd / m 2 or more Luminescence was obtained (No. 6, No. 45 to No. 48).

(比較例)
[従来の作製法によるZn(1-x)xS:Cu蛍光体 その1]
ZnS粉末(純度99.999%)、Cu/ZnSモル比で0.01となる量のCu2S粉末(純度99.9%)、Cl/ZnSモル比で0.025となる量のKCl粉末(純度99.9%)、およびxの混晶比率が0.01≦x≦0.5となる量のMgS粉末(純度99.9%)を全体で10gとなるようにそれぞれを秤量し、それらを100mlのエタノールに投入し、超音波混合機で超音波振動を印加して分散、混合を行った後、MgSの酸化を防止するためNガスを流入させたエバポレータを用いて原料混合粉末の乾燥を行った。乾燥させた原料混合粉末を蓋付の石英るつぼに充填し950℃のアルゴンガス中で120分間加熱し焼成を行った。その後、焼成粉末を蒸留水で水洗し、更に250ccのアンモニア水と75ccの過酸化水素水を加えて粉末表面に析出した過剰のCu2S成分を除去し、更に水洗、乾燥を行ってZn(1-x)MgxS:Cu蛍光体を作製した。
(Comparative example)
[Zn (1-x) M x S: Cu phosphor by conventional fabrication method 1]
ZnS powder (purity 99.999%), Cu 2 S powder (purity 99.9%) in an amount of 0.01 in terms of Cu / ZnS molar ratio, KCl powder in an amount of 0.025 in terms of Cl / ZnS molar ratio (Purity 99.9%), and MgS powder (purity 99.9%) in an amount such that the mixed crystal ratio of x is 0.01 ≦ x ≦ 0.5, each of which is weighed to 10 g, After putting them into 100 ml of ethanol, applying ultrasonic vibration with an ultrasonic mixer to disperse and mix, raw material mixed powder using an evaporator into which N 2 gas was introduced to prevent oxidation of MgS Was dried. The dried raw material mixed powder was filled in a quartz crucible with a lid and baked by heating in argon gas at 950 ° C. for 120 minutes. Thereafter, the fired powder is washed with distilled water, 250 cc of ammonia water and 75 cc of hydrogen peroxide water are added to remove excess Cu 2 S component deposited on the powder surface, and further, washed with water and dried to obtain Zn ( 1-x) A Mg x S: Cu phosphor was prepared.

作製したZn(1-x)MgxS:Cu蛍光体を30μmメッシュに通した後、蛍光体1gを2mlのひまし油に分散させて蛍光体スラリーを作製した。作製した蛍光体スラリーをガラス板スペーサを用いて間隔を調整したITO透明導電ガラスと鋼板の間隙に注入してEL素子を作製した。 The prepared Zn (1-x) Mg x S: Cu phosphor was passed through a 30 μm mesh, and then 1 g of the phosphor was dispersed in 2 ml of castor oil to prepare a phosphor slurry. The produced phosphor slurry was injected into the gap between the ITO transparent conductive glass and the steel plate, the interval of which was adjusted using a glass plate spacer, to produce an EL device.

作製したEL素子のITO付透明導電ガラスと鋼板間に1000Hz、200Vの三角波交流電界を印加して蛍光体スラリー層中の蛍光体をEL発光させた。EL発光特性については、輝度計とスペクトルアナライザを使用して輝度と発光スペクトルの評価を行った。   A 1000 Hz, 200 V triangular wave AC electric field was applied between the transparent conductive glass with ITO of the produced EL element and the steel sheet to cause the phosphor in the phosphor slurry layer to emit EL. Regarding the EL emission characteristics, the luminance and emission spectrum were evaluated using a luminance meter and a spectrum analyzer.

また、蛍光体粉末の結晶相の同定はXRDにより行った。また、双晶の数はTEMにより30000倍の倍率で蛍光体の断面観察を行い、任意の10個の蛍光体粉末の中央付近の1平方μm当りの双晶境界面の数をカウントし、その平均値で求めた。
実験結果を表2に示す。
The crystal phase of the phosphor powder was identified by XRD. In addition, the number of twins was observed by a TEM at a magnification of 30000 times, and the number of twin boundaries per square μm near the center of any 10 phosphor powders was counted. The average value was obtained.
The experimental results are shown in Table 2.

xの混晶比率が0.05未満ではEL発光は生じるが発光波長はほとんど短波長化せず波長400nm以下の紫外線領域に成分を有する発光は得られなかった(ロット番号0−1、0−2)。xの混晶比率が0.05以上(ロット番号0−2〜0−7)では結晶相が全てウルツ鉱型となり、双晶が殆ど形成されず、殆どEL発光を生じないことを確認した。 When the mixed crystal ratio of x is less than 0.05, EL light emission occurs, but the light emission wavelength is hardly shortened, and light emission having a component in the ultraviolet region having a wavelength of 400 nm or less was not obtained (lot numbers 0-1, 0- 2). It was confirmed that when the mixed crystal ratio of x was 0.05 or more (lot numbers 0-2 to 0-7), the crystal phases were all wurtzite, almost no twins were formed, and almost no EL emission was generated.

上記したように、特許文献1に記載の通りZn(1-x)xS:Cu蛍光体の原料を全て混合し一度の焼成で作製した場合、xの混晶比率が0.05以上ではEL発光は殆ど得られない。
[従来の作製法によるZn(1-x)xS:Cu蛍光体 その2]
9.074gのZnS粉末(純度99.999%)、Cu/ZnSモル比で0.01となる量のCu(CH3COO)2粉末(純度99.9%)、Br/ZnSモル比で0.01となる量のNH4Br粉末(純度99.9%)を200mlの蒸留水中で攪拌しながら混合した後、120℃の大気中で乾燥を行った。得られた乾燥粉に0.926gのMgS粉末(純度99.9%)と1gのS粉末(純度99.9%)を加え、乳鉢で混合を行った。得られた混合粉を800℃の硫化水素中で1時間、その後800℃の窒素中で2時間焼成を行った。その後、焼成粉末を蒸留水で水洗し、更に250ccのアンモニア水と75ccの過酸化水素水を加えて粉末表面に析出した過剰のCu2S成分を除去し、更に水洗、乾燥を行ってZn0.85Mg0.15S:Cu蛍光体を作製した。
As described above, when all the raw materials of Zn (1-x) M x S: Cu phosphor are mixed and fabricated by one firing as described in Patent Document 1, if the mixed crystal ratio of x is 0.05 or more, Almost no EL emission is obtained.
[Zn (1-x) M x S: Cu phosphor by conventional fabrication method 2]
9.074 g of ZnS powder (purity 99.999%), Cu (CH 3 COO) 2 powder (purity 99.9%) in an amount of 0.01 in terms of Cu / ZnS molar ratio, 0 in terms of Br / ZnS molar ratio An NH 4 Br powder (purity: 99.9%) in an amount of 0.01 was mixed with stirring in 200 ml of distilled water, and then dried in the atmosphere at 120 ° C. To the obtained dry powder, 0.926 g of MgS powder (purity 99.9%) and 1 g of S powder (purity 99.9%) were added and mixed in a mortar. The obtained mixed powder was calcined in hydrogen sulfide at 800 ° C. for 1 hour and then in nitrogen at 800 ° C. for 2 hours. Thereafter, the calcined powder is washed with distilled water, 250 cc of ammonia water and 75 cc of hydrogen peroxide water are added to remove excess Cu 2 S component deposited on the powder surface, and further washed with water and dried to obtain Zn 0.85. A Mg 0.15 S: Cu phosphor was prepared.

作製したZn0.85Mg0.15S:Cu蛍光体を30μmメッシュに通した後、蛍光体1gを2mlのひまし油に分散させて蛍光体スラリーを作製した。作製した蛍光体スラリーをガラス板スペーサを用いて間隔を調整したITO透明導電ガラスと鋼板の間隙に注入してEL素子を作製した。
作製したEL素子のITO付透明導電ガラスと鋼板間に1000Hz、200Vの三角波交流電界を印加して蛍光体スラリー層中の蛍光体をEL発光させた。EL発光特性については、輝度計とスペクトルアナライザを使用して輝度と発光スペクトルの評価を行った。
また、蛍光体粉末の結晶相の同定はXRDにより行った。また、双晶の数はTEMにより30000倍の倍率で蛍光体の断面観察を行い、任意の10個の蛍光体粉末の中央付近の1平方μm当りの双晶境界面の数をカウントし、その平均値で求めた。
実験結果を表3に示す。
The prepared Zn 0.85 Mg 0.15 S: Cu phosphor was passed through a 30 μm mesh, and then 1 g of the phosphor was dispersed in 2 ml of castor oil to prepare a phosphor slurry. The produced phosphor slurry was injected into the gap between the ITO transparent conductive glass and the steel plate, the interval of which was adjusted using a glass plate spacer, to produce an EL device.
A 1000 Hz, 200 V triangular wave AC electric field was applied between the transparent conductive glass with ITO of the produced EL element and the steel sheet to cause the phosphor in the phosphor slurry layer to emit EL. Regarding the EL emission characteristics, the luminance and emission spectrum were evaluated using a luminance meter and a spectrum analyzer.
The crystal phase of the phosphor powder was identified by XRD. In addition, the number of twins was observed by a TEM at a magnification of 30000 times, and the number of twin boundaries per square μm near the center of any 10 phosphor powders was counted. The average value was obtained.
The experimental results are shown in Table 3.

本手法で作製したZn0.85Mg0.15S:Cu蛍光体は結晶相がウルツ鉱型となり、双晶が殆ど形成されず、殆どEL発光を生じないことを確認した。 It was confirmed that the Zn 0.85 Mg 0.15 S: Cu phosphor produced by this method has a wurtzite crystal phase, almost no twins are formed, and hardly emits EL.

双晶境界面が形成された蛍光体のTEM像である。It is a TEM image of the fluorescent substance in which the twin boundary surface was formed.

Claims (16)

一般式がZn(1-x)xS:Cuで表される混晶蛍光体であって、該一般式中のMは、Be、Mg、Ca、Sr及びBaの群から選ばれる少なくとも1種のIIA族元素を表し、xの混晶比率が0.05≦x<1を満たすと共に、内部に双晶を有し、かつ波長400nm以下の紫外線領域に発光成分を有することを特徴とする蛍光体。 A mixed crystal phosphor represented by a general formula Zn (1-x) M x S: Cu, wherein M is at least one selected from the group consisting of Be, Mg, Ca, Sr and Ba. It represents a type IIA element, and the mixed crystal ratio of x satisfies 0.05 ≦ x <1, has twins inside, and has a light emitting component in an ultraviolet region having a wavelength of 400 nm or less. Phosphor. 前記xの混晶比率が、0.3≦x≦0.5であることを特徴とする請求項1に記載の蛍光体。   2. The phosphor according to claim 1, wherein a mixed crystal ratio of x is 0.3 ≦ x ≦ 0.5. 前記蛍光体断面において、1μm2当りの双晶境界面の平均枚数が5枚以上であることを特徴とする請求項1又は2に記載の蛍光体。 3. The phosphor according to claim 1, wherein an average number of twin boundaries per 1 μm 2 in the phosphor cross section is 5 or more. 前記蛍光体断面において、1μm2当りの双晶境界面の平均枚数が10枚以上であることを特徴とする請求項3に記載の蛍光体。 4. The phosphor according to claim 3, wherein an average number of twin boundaries per μm 2 in the phosphor cross section is 10 or more. 5. 少なくとも陽極、陰極及び発光層を有するEL素子であって、該発光層に請求項1乃至請求項4のいずれか一に記載の蛍光体を含むことを特徴とするEL素子。   An EL element having at least an anode, a cathode, and a light emitting layer, wherein the light emitting layer includes the phosphor according to any one of claims 1 to 4. 前記発光層に交流電界を印加すると波長400nm以下の紫外線領域の発光積分強度が全発光積分強度に対し0.5%以上であるEL発光を生じることを特徴とする請求項5に記載のEL素子。   6. The EL element according to claim 5, wherein when an alternating electric field is applied to the light emitting layer, EL light emission having an emission integrated intensity in an ultraviolet region having a wavelength of 400 nm or less of 0.5% or more with respect to a total emission integrated intensity is generated. . 前記発光層に交流電界を印加すると波長400nm以下の紫外線領域の発光積分強度が全発光積分強度に対し5%以上であるEL発光を生じることを特徴とする請求項6に記載のEL素子。   The EL element according to claim 6, wherein when an alternating electric field is applied to the light emitting layer, EL light emission having an emission integrated intensity in an ultraviolet region having a wavelength of 400 nm or less of 5% or more with respect to a total emission integrated intensity is generated. 請求項1乃至請求項4のいずれか一に記載の蛍光体の作製方法であって、内部に双晶を有するZnS:Cu中間蛍光体粉末とIIA族硫化物粉末を混合する工程、および該混合物を焼成する工程を含むことを特徴とする蛍光体の作製方法。   A method for producing a phosphor according to any one of claims 1 to 4, wherein a step of mixing a ZnS: Cu intermediate phosphor powder having twins therein and a group IIA sulfide powder, and the mixture A method for producing a phosphor, comprising a step of firing the material. 前記ZnS:Cu中間蛍光体粉末におけるCuの添加量がCu/ZnSモル比で0.002乃至0.1であることを特徴とする請求項8に記載の蛍光体の作製方法。   9. The method for producing a phosphor according to claim 8, wherein an addition amount of Cu in the ZnS: Cu intermediate phosphor powder is 0.002 to 0.1 in terms of a Cu / ZnS molar ratio. 前記ZnS:Cu中間蛍光体粉末におけるCuの添加量がCu/ZnSモル比で0.005乃至0.05であることを特徴とする請求項9に記載の蛍光体の作製方法。   The method for producing a phosphor according to claim 9, wherein the addition amount of Cu in the ZnS: Cu intermediate phosphor powder is 0.005 to 0.05 in terms of a Cu / ZnS molar ratio. 前記焼成する工程時の焼成温度が、500℃乃至1000℃であることを特徴とする請求項8乃至請求項10のいずれか一に記載の蛍光体の作製方法。   The method for producing a phosphor according to any one of claims 8 to 10, wherein a firing temperature in the firing step is 500 ° C to 1000 ° C. 前記焼成する工程時の焼成温度において、500℃以上である時間が30分乃至480分であることを特徴とする請求項8乃至請求項11のいずれか一に記載の蛍光体の作製方法。   12. The method for manufacturing a phosphor according to claim 8, wherein a time of 500 ° C. or more is 30 minutes to 480 minutes at a firing temperature in the firing step. 前記焼成する工程時の焼成温度において、500℃以上である時間が45分乃至90分であることを特徴とする請求項12に記載の蛍光体の作製方法。   13. The method for manufacturing a phosphor according to claim 12, wherein a time of 500 ° C. or more is 45 minutes to 90 minutes at a firing temperature in the firing step. 前記焼成する工程の後に、アニール処理を行うことを特徴とする請求項8乃至請求項13のいずれか一に記載の蛍光体の作製方法。   The method for manufacturing a phosphor according to any one of claims 8 to 13, wherein an annealing treatment is performed after the firing step. 前記アニール処理時の温度が、400℃乃至850℃であることを特徴とする請求項14に記載の蛍光体の作製方法。   The method for manufacturing a phosphor according to claim 14, wherein a temperature during the annealing treatment is 400 ° C to 850 ° C. 前記アニール処理時の温度において、400℃以上である時間が1時間乃至24時間であることを特徴とする請求項14又は請求項15に記載の蛍光体の作製方法。   The method for manufacturing a phosphor according to claim 14 or 15, wherein a time of 400 ° C or higher is 1 hour to 24 hours at the annealing temperature.
JP2005333526A 2005-11-18 2005-11-18 Fluorescent substance and el element using the same and method for producing fluorescent substance Pending JP2007138007A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005333526A JP2007138007A (en) 2005-11-18 2005-11-18 Fluorescent substance and el element using the same and method for producing fluorescent substance

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005333526A JP2007138007A (en) 2005-11-18 2005-11-18 Fluorescent substance and el element using the same and method for producing fluorescent substance

Publications (1)

Publication Number Publication Date
JP2007138007A true JP2007138007A (en) 2007-06-07

Family

ID=38201284

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005333526A Pending JP2007138007A (en) 2005-11-18 2005-11-18 Fluorescent substance and el element using the same and method for producing fluorescent substance

Country Status (1)

Country Link
JP (1) JP2007138007A (en)

Similar Documents

Publication Publication Date Title
JPWO2006025259A1 (en) Phosphor, method for producing the same, and light emitting device using the same
WO2005033247A1 (en) Oxynitride phosphor and light-emitting device
WO2005087896A1 (en) Phosphor, process for producing the same, lighting fixture and image display unit
JPWO2016186057A1 (en) Phosphor, method for manufacturing the same, lighting apparatus, and image display device
KR20170035807A (en) Metal fluoride-based red phosphors and light emitting device containing the same
JP2016216711A (en) Phosphor, production method of the same, lighting apparatus and image display device
JPWO2016186058A1 (en) Luminescent fixture and image display device
US20080057343A1 (en) Phosphor, Method for Manufacturing Same, and Particle Dispersed El Device Using Same
Duan et al. Synthesis process dependent white LPL in Zn2GeO4 ceramic and the long afterglow mechanism
JP2003301174A (en) Gallium nitride phosphor, production process therefor, and display device made by using the phosphor
JP2007063301A (en) Phosphor for el
JP2007138007A (en) Fluorescent substance and el element using the same and method for producing fluorescent substance
JP2005524756A (en) Manufacturing method of luminescent material
JP2007045926A (en) Fluorescent material
JP2011032416A (en) Phosphor, and method for producing the same
JP4343267B1 (en) Green phosphor
JP2007131655A (en) Fluorescent material, fluorescent lamp, fluorescent material for el and method for producing fluorescent material
JP2014009253A (en) Method for producing sulfide phosphor, and the sulfide phosphor
JP2019099617A (en) Green phosphor, light emitting element and light emitting device
JP5303134B2 (en) Manufacturing method of luminescent material
JP5420015B2 (en) Sulfide phosphor and method for producing the same
JP5066104B2 (en) Blue phosphor
JP2007131751A (en) Phosphor and method for producing el device and phosphor using the same
JP2006045319A (en) Method for producing phosphor particle, phosphor particle and dispersion type electroluminescence element
JP2006104338A (en) Phosphor and ultraviolet light-emitting fluorescent light lamp using the phosphor