JP2006104338A - Phosphor and ultraviolet light-emitting fluorescent light lamp using the phosphor - Google Patents

Phosphor and ultraviolet light-emitting fluorescent light lamp using the phosphor Download PDF

Info

Publication number
JP2006104338A
JP2006104338A JP2004293300A JP2004293300A JP2006104338A JP 2006104338 A JP2006104338 A JP 2006104338A JP 2004293300 A JP2004293300 A JP 2004293300A JP 2004293300 A JP2004293300 A JP 2004293300A JP 2006104338 A JP2006104338 A JP 2006104338A
Authority
JP
Japan
Prior art keywords
phosphor
emission
wavelength
light
phosphor according
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004293300A
Other languages
Japanese (ja)
Inventor
Chihiro Kawai
千尋 河合
Ryuichi Inoue
龍一 井上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP2004293300A priority Critical patent/JP2006104338A/en
Publication of JP2006104338A publication Critical patent/JP2006104338A/en
Pending legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a phosphor capable of realizing fluorescent light lamps which utilize the principles of fluorescent light lamps or fluorescent light display tubes, have simple structures, and can be used as ultraviolet light sources wholly having high brightness and long lives. <P>SOLUTION: This phosphor is characterized by being represented by the formula: Ga<SB>1-x</SB>Al<SB>x</SB>N:M [(x) is 0≤(x)≤1; M is an element selected from Be, Mg, Ca, Sr, Ba, Zn, Cd, and Hg; X is an element selected from C, Si, Ge, Sn, and Pb], and having a function for emitting light having a luminous peak at wave length of ≤400 nm by the irradiation of ultraviolet light, the irradiation of electron beams or the application of an electric field. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、有害物質や細菌・ウイルス分解除去するための発光材料に関する。   The present invention relates to a luminescent material for decomposing and removing harmful substances and bacteria / viruses.

近年の環境問題から、有害物質や細菌・ウイルスなどを光触媒により分解、または殺菌するデバイスが使用されるようになってきている。代表的な光触媒は酸化チタン(TiO2)であるが、これは一般には波長が400nm以下の紫外線により光触媒機能を発揮する材料であるため、紫外線の含有量が少ない太陽光線ではほとんど触媒効果を発揮することができない。従って、別途水銀ランプなどの光源を使用する必要があり、反応容器のコンパクト化を阻害し、かつ有害物質である水銀を使う必要があった。最近では、水銀ランプの代わりに、紫外線を発光する発光ダイオード(LED)を光源にする場合も出てきているが、紫外発光LEDは青色LED等に比べて発光効率が低い。 Due to recent environmental problems, devices that decompose or sterilize harmful substances, bacteria, viruses, and the like with a photocatalyst have come to be used. A typical photocatalyst is titanium oxide (TiO 2 ), but since this is a material that generally exhibits a photocatalytic function with ultraviolet light having a wavelength of 400 nm or less, it exerts almost a catalytic effect on sunlight with a low ultraviolet content. Can not do it. Therefore, it is necessary to use a separate light source such as a mercury lamp, which obstructs the compactness of the reaction vessel and requires the use of mercury, which is a harmful substance. Recently, a light emitting diode (LED) that emits ultraviolet rays is used as a light source instead of a mercury lamp, but the ultraviolet light emitting LED has lower luminous efficiency than a blue LED or the like.

これに対して、水銀を使用しない環境に優しい発光デバイスとしては蛍光表示管なるものがある。これは、熱陰極または冷陰極カソードから発生させた電子線を蛍光体に照射することで可視光線を発生させるものであり、長寿命・高信頼性、低消費電力という特徴を持ち、車載用のディスプレイや屋外表示デバイスとして使用されている(例えば特許文献1参照)。   On the other hand, there is a fluorescent display tube as an environmentally friendly light emitting device that does not use mercury. It emits visible light by irradiating phosphors with an electron beam generated from a hot cathode or cold cathode cathode, and has features such as long life, high reliability, and low power consumption. It is used as a display or an outdoor display device (see, for example, Patent Document 1).

蛍光表示管は一般には可視光線を発生させるものであるが、電子線照射により可視光発光する蛍光体粉末の表面に、電子線照射により紫外光発光する蛍光体をコーティングするという方法が提案されている。これは、電子線を紫外発光蛍光体に照射して一旦紫外線を発生させ、これを可視光発光蛍光体に照射することにより望む波長の可視光を発生させるという原理のものである。紫外発光蛍光体としては、ZnO、ZnO・Ga23:Cd等が報告されている(特許文献2、3参照)。 Fluorescent display tubes generally generate visible light, but a method has been proposed in which a phosphor powder that emits visible light by electron beam irradiation is coated with a phosphor that emits ultraviolet light by electron beam irradiation. Yes. This is based on the principle that ultraviolet light is emitted once by irradiating an electron beam onto an ultraviolet light-emitting phosphor, and visible light having a desired wavelength is generated by irradiating the ultraviolet light with this electron beam. ZnO, ZnO.Ga 2 O 3 : Cd, etc. have been reported as ultraviolet light emitting phosphors (see Patent Documents 2 and 3).

しかし、こられの発明は、可視光発光する蛍光表示管を得るためのものであり、紫外線を放出するデバイスではない。この理由は以下の通りと推測される。すなわち、電子線を照射して効率よく紫外線を発生させ得る蛍光体がこれまで存在しなかったためである。前記発明の蛍光表示管では、可視発光蛍光体は、紫外発光蛍光体が放出した紫外線を吸収して可視光発光するのと同時に、それ自体が、ある程度電子線を吸収して可視光を発光するので、紫外線の強度はそれほど高くなくてもかまわない。
しかし、紫外発光蛍光体のみを使用した場合は、発光効率が低すぎて紫外発光蛍光ランプとして実用には至らないのである。
However, these inventions are for obtaining a fluorescent display tube that emits visible light, and are not devices that emit ultraviolet rays. The reason is estimated as follows. That is, there has never been a phosphor that can efficiently generate ultraviolet rays when irradiated with an electron beam. In the fluorescent display tube of the invention, the visible light emitting phosphor absorbs the ultraviolet light emitted by the ultraviolet light emitting phosphor and emits visible light, and at the same time, the visible light emitting phosphor absorbs an electron beam to some extent and emits visible light. Therefore, the intensity of ultraviolet rays does not have to be so high.
However, when only the ultraviolet light-emitting phosphor is used, the light emission efficiency is too low to be put into practical use as an ultraviolet light-emitting fluorescent lamp.

一般に用いられている車載用の蛍光表示管は、熱陰極から放射された電子線を、加速電圧が30〜50V程度で加速して、陽極上に形成された蛍光体層に照射させて発光を得る。蛍光体に要求される特性は以下の通りである。すなわち、
(1)電子線照射で効率よく発光すること
(2)蛍光体が化学的に安定であること
低速電子線が蛍光体表面に照射され、表面部が分解、または揮発すると、管内を汚染し、真空度が低下して放電が起こりやすくなり、安定した発光が得られない。安定した発光を得るためには、ZnSなどの硫化物よりも酸化物または窒化物が好ましい。
(3)蛍光体が導電性を持つこと
低速電子線が蛍光体表面に照射された時、蛍光体の導電性が低いと、蛍光体がマイナスに帯電してしまい、発光しなくなる。
Generally used in-vehicle fluorescent display tubes emit light by accelerating an electron beam emitted from a hot cathode at an acceleration voltage of about 30 to 50 V and irradiating the phosphor layer formed on the anode. obtain. The characteristics required for the phosphor are as follows. That is,
(1) It emits light efficiently by electron beam irradiation (2) The phosphor is chemically stable When a low-speed electron beam is irradiated onto the phosphor surface and the surface part decomposes or volatilizes, the inside of the tube is contaminated, The degree of vacuum decreases and discharge easily occurs, and stable light emission cannot be obtained. In order to obtain stable light emission, an oxide or a nitride is preferable to a sulfide such as ZnS.
(3) The phosphor has conductivity When the low-speed electron beam is irradiated onto the phosphor surface, if the phosphor has low conductivity, the phosphor is negatively charged and does not emit light.

上記(1)〜(3)を満足する蛍光体として、GaN系蛍光体が提案されている(特許文献4参照)。
これは、Ga1-xInxN:M、X(但し0≦x<0.8、MはBe、Mg、Ca、Sr、Ba、Zn、Cd、Hgなる集合から選ばれた少なくとも1の元素、XはC、Si、Ge、Sn、Pbなる集合から選ばれた少なくとも1の元素)で表される蛍光体であり、電子線照射により青色〜緑色の可視光発光が得られるが、波長が400nm以下の紫外線を発生させることができない。
特開2001−176433号公報 特開平8−127769号公報 特開平8−45438号公報 特開平9−286982号公報
As a phosphor satisfying the above (1) to (3), a GaN-based phosphor has been proposed (see Patent Document 4).
This is Ga 1 -x In x N: M, X (where 0 ≦ x <0.8, M is at least one selected from the set consisting of Be, Mg, Ca, Sr, Ba, Zn, Cd, and Hg) Element, X is a phosphor represented by (at least one element selected from the group consisting of C, Si, Ge, Sn, and Pb), and blue to green visible light emission can be obtained by electron beam irradiation. Cannot generate ultraviolet rays of 400 nm or less.
JP 2001-176433 A JP-A-8-127769 JP-A-8-45438 JP-A-9-286982

本発明はこのような問題に対処するためになされたもので、蛍光ランプまたは蛍光表示管の原理を利用し、簡易な構造で高輝度、短波長で長寿命な紫外線光源として利用できる蛍光ランプを実現できる蛍光体を提供することを目的とする。   The present invention has been made to cope with such a problem. A fluorescent lamp that can be used as an ultraviolet light source having a simple structure, high brightness, short wavelength, and long life by utilizing the principle of a fluorescent lamp or a fluorescent display tube. An object is to provide a phosphor that can be realized.

本発明は下記の構成よりなる。
(1)Ga1-xAlxN:M、X(但し、0≦x≦1、MはBe、Mg、Ca、Sr、Ba、Zn、Cd、Hgから選択される少なくとも一種の元素、XはC、Si、Ge、Sn、Pbから選択される少なくとも一種の元素)で表され、紫外線照射、電子線照射、または電界印加により、波長400nm以下に発光ピークを有する光を放射する機能を持つことを特徴とする蛍光体。
(2)前記xが、0≦x≦0.2である前記(1)記載の蛍光体。
(3)前記MおよびXに関して、Ga1-xAlxNに対するMのモル濃度がGa1-xAlxNに対するXのモル濃度より大きいことを特徴とする前記(1)又は(2)に記載の蛍光体。
(4)前記Xのモル濃度が、Mのモル濃度の10〜60%である前記(3)記載の蛍光体。
The present invention has the following configuration.
(1) Ga 1-x Al x N: M, X (where 0 ≦ x ≦ 1, M is at least one element selected from Be, Mg, Ca, Sr, Ba, Zn, Cd, Hg, X Is represented by at least one element selected from C, Si, Ge, Sn, and Pb), and has a function of emitting light having an emission peak at a wavelength of 400 nm or less by ultraviolet irradiation, electron beam irradiation, or electric field application. A phosphor characterized by that.
(2) The phosphor according to (1), wherein x is 0 ≦ x ≦ 0.2.
(3) with respect to said M and X, the molar concentration of M with respect to Ga 1-x Al x N is equal to or greater than the molar concentration of X with respect to Ga 1-x Al x N ( 1) or (2) The phosphor described.
(4) The phosphor according to (3), wherein the molar concentration of X is 10 to 60% of the molar concentration of M.

(5)前記Mのモル濃度が、Ga1-xAlxNの0.005〜1モル%であることを特徴とする前記(1)〜(4)のいずれか1項に記載の蛍光体。
(6)フォトルミネッセンス測定で、波長の異なる2種類の発光ピークが存在する前記(1)〜(5)のいずれか1項に記載の蛍光体。
(7)フォトルミネッセンス測定で、2種類の発光ピークの短波長側の発光ピーク強度が長波長側の発光ピーク強度の20%以上である前記(6)に記載の蛍光体。
(8)2種類の発光ピークの少なくともどちらか一方のピーク波長が365nm以下である前記(6)又は(7)に記載の蛍光体。
(9)2種類の発光ピークの少なくともどちらか一方のピーク波長が250〜260nmである前記(8)記載の蛍光体。
(10)前記(1)〜(9)のいずれか1項に記載の蛍光体を用いた紫外発光蛍光ランプ。
(5) the molar concentration of the M is, phosphor according to any one of the which is a 0.005 mol% of Ga 1-x Al x N ( 1) ~ (4) .
(6) The phosphor according to any one of (1) to (5), wherein two types of emission peaks having different wavelengths are present in photoluminescence measurement.
(7) The phosphor according to (6), wherein the emission peak intensity on the short wavelength side of the two types of emission peaks is 20% or more of the emission peak intensity on the long wavelength side in the photoluminescence measurement.
(8) The phosphor according to (6) or (7), wherein the peak wavelength of at least one of the two types of emission peaks is 365 nm or less.
(9) The phosphor according to (8), wherein the peak wavelength of at least one of the two types of emission peaks is 250 to 260 nm.
(10) An ultraviolet light-emitting fluorescent lamp using the phosphor according to any one of (1) to (9).

本発明を以下に詳細に説明する。
一般に、窒化ガリウムの発光は、ドナー(D)とアクセプター(A)のペア発光である。アクセプターとしてはZn、Mg等を用い、ドナーはSiやGe等が用いられる。これらの添加元素は、GaNの導電帯下にドナー準位とアクセプタ準位を形成する。蛍光体の媚態であるGaNに電子線や紫外線などのエネルギーが照射されると、荷電子帯の電子が導電帯に一旦励起された後、ドナー準位に捕捉される。一方、荷電子帯にあらたに生成した正孔はアクセプタ準位に捕捉される。発光は、ドナー準位にある電子がアクセプタ準位にある正孔と再結合することにより生じる。このようなドナー−アクセプタ(DA)ペア発光は極めて高い発光効率が得られる発光機構である。
The present invention is described in detail below.
In general, light emission of gallium nitride is a pair light emission of a donor (D) and an acceptor (A). Zn, Mg, or the like is used as the acceptor, and Si, Ge, or the like is used as the donor. These additive elements form a donor level and an acceptor level under the conduction band of GaN. When GaN, which is a phosphor state, is irradiated with energy such as an electron beam or ultraviolet light, electrons in the valence band are once excited to the conduction band and then trapped in the donor level. On the other hand, newly generated holes in the valence band are trapped in the acceptor level. Light emission occurs when electrons in the donor level recombine with holes in the acceptor level. Such donor-acceptor (DA) pair light emission is a light emission mechanism that can obtain extremely high light emission efficiency.

下記(1)式に示すように、発光波長は、基本的にドナー準位とアクセプタ準位のエネルギー差により決まり、これが大きいほど短波長の発光となる。すなわち、発光のエネルギーhνは、
hν=Eg−(ED+EA)+e2/(4πε0εrr) (1)
ここで、Egは母体半導体のバンドギャップエネルギー、EDはドナーの束縛エネルギー、EAはアクセプタの束縛エネルギー、eは素電荷量、ε0は真空の誘電率、εrは比静電誘電率、rはドナーとアクセプタの距離である。
(1)式から、発光波長は主として母体となる半導体材料のバンドギャップとドナー、及びアクセプタ準位で決まることが分かる。
As shown in the following formula (1), the emission wavelength is basically determined by the energy difference between the donor level and the acceptor level, and the larger this is, the shorter the wavelength is emitted. That is, the emission energy hν is
hν = E g - (E D + E A) + e 2 / (4πε 0 ε r r) (1)
Here, E g is the band gap energy of the base semiconductor, E D is the binding energy of the donor, E A is the binding energy of the acceptor, e is the elementary charge, ε 0 is the dielectric constant of vacuum, and ε r is the specific electrostatic dielectric. The rate, r is the distance between the donor and acceptor.
From equation (1), it can be seen that the emission wavelength is mainly determined by the band gap, donor, and acceptor level of the semiconductor material that is the host.

上記特許文献4(特開平9−286982号公報)は、まさにこのDAペア発光を利用したものであり、ワイドバンドギャップを持つGaNにバンドギャップの小さいInNを複合させることにより、母体半導体のバンドギャップを小さくして、発光波長を長波長側にシフトさせて青色や緑色発光を得ている。
逆に、発光波長を短波長にするためには、(1)Egを大きく、(2)EDを小さく、(3)EAを小さくすることが必要となるが、このうち、EDやEAは、ドーピングする元素により多少は変化するが、劇的に小さすることはできないため、発光波長を短波長化するためには、母体半導体のバンドギャップ自体を大きくすることが最も重要である。
The above-mentioned Patent Document 4 (Japanese Patent Laid-Open No. 9-286982) uses this DA pair emission, and by combining InN having a small band gap with GaN having a wide band gap, the band gap of the base semiconductor is obtained. The light emission wavelength is shifted to the longer wavelength side to reduce blue and green light emission.
Conversely, in order to make the emission wavelength to the short wavelength, (1) the large E g, (2) E small D, but it is necessary to reduce the (3) E A, these, E D and E a, since somewhat varies by elemental doping, can not be dramatically small, in order to shorten the wavelength of the emission wavelength, it is most important to increase the band gap itself matrix semiconductor is there.

本発明は、以下の技術を用いることで、発光波長を400nm以下の紫外線域に制御できることを見出した。
(1)母体半導体はGaNのままで、Blue−Cu型発光を生じさせる
(2)母体半導体としてGaN−AlN系混晶母体を用い、DAペア発光を生じさせる
(3)母体半導体としてGaN−AlN系混晶母体を用い、Blue−Cu型発光を生じさせる
これらの内、発光波長を短波長化させるの効果は、(3)、(2)、(1)の順で大きい。
The present invention has found that the emission wavelength can be controlled in the ultraviolet region of 400 nm or less by using the following technique.
(1) The base semiconductor remains GaN and causes Blue-Cu light emission. (2) A GaN-AlN mixed crystal base is used as the base semiconductor and DA pair light emission is generated. (3) GaN-AlN as the base semiconductor. Among these, the effect of shortening the emission wavelength is large in the order of (3), (2), and (1).

GaN蛍光体において、アクセプタとなるZn、Mg等がGa原子を置換し、ドナーとなるSiやGe等がN原子を置換した時にDAペア型発光が生じる。
一方、Zn、Mg等がGa原子の位置を置換するのと同時に、これらの元素がGaN結晶格子の隙間にドーピングされるとBlue−Cu型発光と呼ばれる高エネルギーの発光が生じる。本発明では、Ga1-xAlxN:M、X(但し、0≦x≦1、MはBe、Mg、Ca、Sr、Ba、Zn、Cd、Hgから選択される少なくとも一種の元素、XはC、Si、Ge、Sn、Pbから選択される少なくとも一種の元素)蛍光体において、ドーピング量をGa1-xAlxNに対するMのモル濃度がGa1-xAlxNに対するXのモル濃度より大きくなるように制御することでBlue−Cu型の発光が生じることを見出したのである。イオン半径を比較すると、Zn2+、Mg2+、Ga3+はそれぞれ、0.74、0.66、0.62と近いので、格子間へのドーピングは容易に生じさせることができる。アクセプタとなる元素の格子間へのドーピングが起こる時には、同時にGa原子の置換も起こるため、Blue−Cu型発光が起こる時には必ずDAペア型発光も生じる。但し、電子線で励起した場合は、紫外線で励起した場合よりもBlue−Cu型発光の強度が大きくなる。
In a GaN phosphor, DA pair type light emission occurs when Zn, Mg, or the like serving as an acceptor substitutes Ga atoms, and Si or Ge serving as a donor substitutes N atoms.
On the other hand, when Zn, Mg, or the like substitutes the position of Ga atoms, and when these elements are doped in the gaps of the GaN crystal lattice, high-energy light emission called Blue-Cu type light emission occurs. In the present invention, Ga 1-x Al x N: M, X (where 0 ≦ x ≦ 1, M is at least one element selected from Be, Mg, Ca, Sr, Ba, Zn, Cd, Hg, X is C, Si, Ge, Sn, at least one element) fluorescent material is selected from Pb, the molar concentration of M doping amount for Ga 1-x Al x N is X for Ga 1-x Al x N It has been found that Blue-Cu light emission occurs by controlling the molar concentration to be greater than the molar concentration. Comparing ionic radii, Zn 2+ , Mg 2+ , and Ga 3+ are close to 0.74, 0.66, and 0.62, respectively, so that doping between the lattices can be easily generated. When doping of the acceptor element between the lattices occurs, substitution of Ga atoms also occurs at the same time. Therefore, whenever Blue-Cu type light emission occurs, DA pair type light emission also occurs. However, when excited with an electron beam, the intensity of Blue-Cu light emission is greater than when excited with ultraviolet light.

また、Blue−Cu型の発光もまた母体のバンドギャップに依存し、バンドギャップが大きくなるほど発光波長が短波長化するので、バンドギャップが大きくなるような母体を選択すると好ましい。温度が300Kでのバンドギャップは、GaNが3.39に対して、AlNは5.9と大きいので、AlNとの混晶化により母体半導体のバンドギャップを大きくすることができるので、この場合はDAペア型でもBlue−Cu型発光であっても、発光波長は短波長にシフトする。
GaNとAlNは、結晶構造が同じ六方晶で、これらの格子定数は3.2Åとほとんど同じであるので、GaN−AlN系は全率固溶体を形成できるので、全ての組成で六方晶の混晶となる。そのために、GaN−AlN混晶、AlN結晶の格子間へのドーピングは、GaNの場合と同じように生じさせることができる。
In addition, Blue-Cu light emission also depends on the band gap of the matrix, and the emission wavelength is shortened as the band gap increases. Therefore, it is preferable to select a matrix with a large band gap. The band gap at a temperature of 300 K is as large as 5.9 for GaN and 5.9 for GaN. Therefore, the band gap of the base semiconductor can be increased by mixed crystallization with AlN. In both DA pair type and Blue-Cu type emission, the emission wavelength is shifted to a short wavelength.
Since GaN and AlN are hexagonal crystals with the same crystal structure, and their lattice constants are almost the same as 3.2 GaN, the GaN-AlN system can form a solid solution with a total ratio, so that a hexagonal mixed crystal with all compositions. It becomes. Therefore, doping between the lattices of GaN-AlN mixed crystal and AlN crystal can be generated in the same manner as in the case of GaN.

このような格子間へのドーピングは、蛍光体の焼成温度からの冷却過程で急冷する手段を用いると促進できる。GaN系蛍光体は、不活性ガス中、温度が1100℃程度で焼成して作製するが、元々、格子間に導入された原子またはイオンは不安定であり、大部分は高温からの冷却時に格子間からはき出され易いが、冷却速度を高くすることにより、格子間原子を安定させる。好ましくは室温まで一気に急冷することが好ましい。少なくとも掃き出しが生じやすい温度域を急冷することにより、格子間に導入される量が増大する。急冷した場合は、GaN結晶自体に歪みが導入されており発光を阻害するので、再度、300〜400℃で長時間熱処理すると歪みが取れて、発光が効率よく生じるようにもなる。上記した処理を行うことにより、格子間原子を安定化してBlue−Cu型発光の強度を最大限に高くすることができる。   Such interstitial doping can be promoted by using a means for quenching in the course of cooling from the firing temperature of the phosphor. A GaN-based phosphor is produced by firing at a temperature of about 1100 ° C. in an inert gas. Originally, atoms or ions introduced between lattices are unstable, and most of them are lattices when cooled from a high temperature. Although it is easily expelled from the space, the interstitial atoms are stabilized by increasing the cooling rate. Preferably, it is preferably rapidly cooled to room temperature. The amount introduced between the lattices is increased by quenching at least the temperature range in which sweeping is likely to occur. In the case of rapid cooling, strain is introduced into the GaN crystal itself and light emission is hindered. Therefore, when the heat treatment is again performed at 300 to 400 ° C. for a long time, the strain is removed and light emission is efficiently generated. By performing the above-described treatment, it is possible to stabilize interstitial atoms and maximize the intensity of Blue-Cu light emission.

蛍光体の組成、Ga1-xAlxN:M、X(但し、0≦x≦1、MはBe、Mg、Ca、Sr、Ba、Zn、Cd、Hgから選択される少なくとも一種の元素、XはC、Si、Ge、Sn、Pbから選択される少なくとも一種の元素)において、0≦x≦0.2であることが好ましい。これを超えてAlN量が増加すると、母体半導体中のキャリアの移動度が低下し、発光効率が低下する傾向がある。 Composition of phosphor, Ga 1-x Al x N: M, X (where 0 ≦ x ≦ 1, M is at least one element selected from Be, Mg, Ca, Sr, Ba, Zn, Cd, Hg) , X is at least one element selected from C, Si, Ge, Sn, Pb), and preferably 0 ≦ x ≦ 0.2. If the amount of AlN increases beyond this, the mobility of carriers in the base semiconductor decreases, and the light emission efficiency tends to decrease.

アクセプタであるMのモル濃度は、Ga1-xAlxNの0.005〜1モル%であることが好ましい。これより小さいとBlue−Cu型発光は起こらず、1モル%を超えると輝度が低下する。
ドナーとなるXのGa1-xAlxNに対するモル濃度はMのGa1-xAlxNに対するモル濃度の10〜60%にすることが好ましい。これ未満の場合も、GaNにはドナーとなる窒素欠陥が自然に形成されるのでBlue−Cu型発光は起こるが強度は弱い。60%を超えるとBlue−Cu型発光の強度が低下する。前記したように、アクセプタとなる元素の格子間へのドーピングが起こる時には、同時にGa原子の置換も起こるため、Blue−Cu型発光が起こる時には必ずDAペア型発光も生じ、フォトルミネッセンス(PL)測定をした場合は2つのピークを持つスペクトルが得られ、短波長側のピーク(λ2)がBlue−Cu型発光によるものである。このとき、Xのモル濃度をMのモル濃度の10〜60%にすると2種類の発光ピークの短波長側の発光ピーク強度が長波長側の発光ピーク強度(λ1)の20%以上となる。
一方、電子線を照射して発光を測定するカソードルミネッセンス(CL)測定においては、PL測定よりも励起強度が高くなるので、PL測定とは異なり、短波長側の発光ピーク強度のほうが高くなるか、あるいは、長波長側に裾を引いた形の一つのピークのみが見られる場合もある。従って、PL測定は、Blue−Cu型発光が起こっているか否かを確認するのに便利な手法であり、CL測定は、蛍光ランプとしての性能を確認するための手段に相当する。
The molar concentration of M as an acceptor is preferably 0.005 to 1 mol% of Ga 1-x Al x N. If it is smaller than this, Blue-Cu type light emission does not occur, and if it exceeds 1 mol%, the luminance decreases.
Molar concentration for Ga 1-x Al x N of X which serves as a donor is preferably 10 to 60% of the molar concentration on Ga 1-x Al x N of M. Even below this, nitrogen defects serving as donors are naturally formed in GaN, so that Blue-Cu type light emission occurs but the intensity is weak. If it exceeds 60%, the intensity of Blue-Cu light emission will decrease. As described above, when doping of the acceptor element into the lattice occurs, substitution of Ga atoms also occurs at the same time. Therefore, whenever Blue-Cu type light emission occurs, DA pair type light emission also occurs, and photoluminescence (PL) measurement is performed. In this case, a spectrum having two peaks is obtained, and the peak (λ 2 ) on the short wavelength side is due to Blue-Cu light emission. At this time, when the molar concentration of X is 10 to 60% of the molar concentration of M, the emission peak intensity on the short wavelength side of the two types of emission peaks is 20% or more of the emission peak intensity (λ 1 ) on the long wavelength side. .
On the other hand, in the cathodoluminescence (CL) measurement in which light emission is measured by irradiating an electron beam, the excitation intensity is higher than in the PL measurement, and therefore, is the emission peak intensity on the short wavelength side higher than in the PL measurement? Or, there may be a case where only one peak with a tail on the long wavelength side is seen. Therefore, the PL measurement is a convenient method for confirming whether or not Blue-Cu type light emission is occurring, and the CL measurement corresponds to a means for confirming the performance as a fluorescent lamp.

2種類の発光ピークの少なくともどちらか一方のピーク波長が365nm以下であると、アナターゼ型酸化チタン光触媒を効率よく励起できる。また、2種類の発光ピークの少なくともどちらか一方のピーク波長が250〜260nmの場合、この波長の紫外線自体が殺菌作用を持つため好ましい。この超短波長紫外線は、AlNの比を増大し、かつBlue−Cu型発光により実現できる。
尚、本発明の蛍光体は含有酸素が存在すると発光強度が低下するので、酸素フリーの原料を用い、不活性ガス中で作製することが好ましい。特に、アンモニアを含む水素中で焼成すると、アクセプタとして添加した元素が活性化して正孔の移動度が大きくなるために、蛍光体の抵抗が低下すると共に発光効率が向上する。但し、酸素を含む原料を用いると、蛍光体の導電性が向上する効果があるので、逆に好ましい場合もある。また、蛍光体の母体であるGaN−AlNにInNを複合させてもかまわない。InNの複合により発光強度が高くできる場合がある。
When the peak wavelength of at least one of the two types of emission peaks is 365 nm or less, the anatase-type titanium oxide photocatalyst can be excited efficiently. In addition, when the peak wavelength of at least one of the two types of emission peaks is 250 to 260 nm, the ultraviolet light having this wavelength is preferable because it has a bactericidal action. This ultra short wavelength ultraviolet ray can be realized by increasing the ratio of AlN and by blue-Cu light emission.
The phosphor of the present invention is preferably produced in an inert gas using an oxygen-free raw material because the emission intensity decreases when oxygen is present. In particular, when firing in hydrogen containing ammonia, the element added as an acceptor is activated and the hole mobility is increased, so that the resistance of the phosphor is lowered and the luminous efficiency is improved. However, the use of a raw material containing oxygen has an effect of improving the conductivity of the phosphor, and may be preferable. InN may be combined with GaN-AlN which is a base material of the phosphor. In some cases, the emission intensity can be increased by the composite of InN.

本発明のGaN−AlN系蛍光体は窒化物であるため化学的に安定であり、導電性が高く、かつ電子線照射により種々の波長の紫外線を発生できるので、電子線照射型蛍光ランプとして用いると耐久性に優れた紫外発光蛍光ランプとなる。
本発明品は、水銀を使わないで波長が400nm以下の紫外線を発光させることができる蛍光ランプであり、細菌、ウイルス等を効率よく殺菌することができる光源となる。光触媒と組み合わせることにより、有機物や細菌・ウイルス、大気中の汚染物質となるNOx、SOx、COガス、ディーゼルパティキュレート、花粉、埃、ダニ等の分解除去、下水中に含まれる有機化合物の分解除去、一般の細菌、ウイルス等の殺菌光源、化学プラントで発生する有害ガスの分解、臭い成分の分解ができる。特に発光のピーク波長が360〜375nmの範囲にある紫外線は、紫外線樹脂硬化システムに有効な波長であり、また、昆虫が好む波長であるため、集虫ランプとしても有効である。発光のピーク波長が250〜260nmの範囲にある紫外線は、殺菌効果を持つため、殺菌ランプとしても有効である。
Since the GaN-AlN phosphor of the present invention is a nitride, it is chemically stable, has high conductivity, and can generate ultraviolet rays of various wavelengths by electron beam irradiation, so it is used as an electron beam irradiation type fluorescent lamp. And it becomes an ultraviolet light emitting fluorescent lamp excellent in durability.
The product of the present invention is a fluorescent lamp capable of emitting ultraviolet rays having a wavelength of 400 nm or less without using mercury, and serves as a light source capable of efficiently sterilizing bacteria, viruses and the like. Combined with a photocatalyst, it decomposes and removes organic matter, bacteria and viruses, NOx, SOx, CO gas, diesel particulates, pollen, dust, mites, etc., which are pollutants in the atmosphere, and decomposes and removes organic compounds contained in sewage It can be used to sterilize light sources such as general bacteria and viruses, decompose harmful gases generated in chemical plants, and decompose odorous components. In particular, ultraviolet light having a peak emission wavelength in the range of 360 to 375 nm is an effective wavelength for an ultraviolet resin curing system, and is also an effective insect collecting lamp because it is a wavelength preferred by insects. Ultraviolet rays having a peak emission wavelength in the range of 250 to 260 nm have a bactericidal effect and are also effective as a bactericidal lamp.

以下実施例により本発明を具体的に説明する。
実施例1
<蛍光体の作製>
(1)試薬A(ドナー源となる原料):ポリシラザン25%溶液(Si源)、GeS2、SnCl2
(2)試薬B(アクセプタ源となる原料):MgCl、ZnS、BaS
(3)試薬C(GaN−AlNとなる原料):Ga23、Al23
所定量の試薬A、B、Cを窒素ガス中で乳鉢で混合した後、石英ボードに載せ、これを石英管の中に置き、石英管内に15ml/minで10%アンモニア−90%水素を流しながら、1080℃で12hr保持して蛍光体を得た。
The present invention will be specifically described below with reference to examples.
Example 1
<Fabrication of phosphor>
(1) Reagent A (raw material to be a donor source): 25% polysilazane solution (Si source), GeS 2 , SnCl 2
(2) Reagent B (raw material to be an acceptor source): MgCl 2 , ZnS, BaS
(3) Reagent C (raw material to be GaN-AlN): Ga 2 S 3 , Al 2 S 3
A predetermined amount of reagents A, B, and C are mixed in a mortar in nitrogen gas, then placed on a quartz board, placed in a quartz tube, and 10% ammonia-90% hydrogen is allowed to flow through the quartz tube at 15 ml / min. However, the phosphor was obtained by holding at 1080 ° C. for 12 hours.

<蛍光体の発光特性の基礎評価>
PL測定は、Xeランプを励起源とする日立F4500蛍光分光光度計を用いて行った。発光強度の分離は次のようにして行った。まず、マルチフォトニックアナライザ(浜松フォトニクス製)で測定した発光スペクトルの内、発光強度の大きい発光スペクトルをガウス関数で近似する。次に全スペクトルから発光強度の大きい発光スペクトルを近似したガウス関数を差し引くことにより、ショルダとして存在していた発光強度の小さい発光スペクトルが一つのピークとして得られ、そのピークの最大値を示す波長を発光強度の小さいピークの発光波長とした。発光強度は、分離した発光スペクトルの面積から算出した。長波長側のピークをλ1、短波長側のピークをλ2とした。
<Basic evaluation of phosphor emission characteristics>
The PL measurement was performed using a Hitachi F4500 fluorescence spectrophotometer using an Xe lamp as an excitation source. The emission intensity was separated as follows. First, an emission spectrum having a large emission intensity is approximated by a Gaussian function among emission spectra measured by a multiphotonic analyzer (manufactured by Hamamatsu Photonics). Next, by subtracting a Gaussian function approximating the emission spectrum with high emission intensity from the whole spectrum, an emission spectrum with low emission intensity that existed as a shoulder is obtained as one peak, and the wavelength indicating the maximum value of the peak is obtained. The emission wavelength of the peak having a small emission intensity was used. The emission intensity was calculated from the area of the separated emission spectrum. The peak on the long wavelength side was λ 1 , and the peak on the short wavelength side was λ 2 .

<蛍光ランプの作製>
作製した蛍光体の内、15μm以上を篩いで除去し、エチルセルロースと有機バインダーと混合してスラリーを得た。スラリーをスクリーン印刷機を用いて、10×40×1mm(厚さ)サイズのソーダライムガラス基板上に形成した膜厚が0.1μmのITO膜からなる陽極導体上に塗布し、大気中420℃で3hr焼成してバインダーを除去し、厚さ15μmの蛍光体層が形成された陽極基板を作製した。これとは別に、8×38×1mm(厚さ)サイズのソーダライムガラス基板上に形成されたアルミ電極(厚さ0.1μm)上にカーボンナノチューブと有機バインダーからなるスラリーをスクリーン印刷機により塗布し、アルゴンガス中、400℃で1hr焼成して冷陰極を作製した。
冷陰極と陽極を10mmの距離で平行に設置し、さらに冷陰極と陽極の間に、冷陰極上200μmの距離で、冷陰極と同じ面積のメッシュ状のグリッド電極、および、予めゲッターとしての酸化バリウムを0.1μm蒸着しておいた各種の制御電極を設置して、配線した。これらを直径30mm×長さ200mm、厚みが1mmのソーダライムガラス製容器に挿入した後、内部を高真空(10-7Pa)に排気したまま380℃で4hr脱気処理した。その後、フリットガラスで封止して蛍光ランプを得た。
グリッド電圧を0.65kV、陽極導体に約4kVの電圧を印加し、陽極電流値を100μAに制御しながら、蛍光体を発光させ、陽極側から発光波長をマルチフォトニックアナライザ(浜松フォトニクス製)で、紫外線強度を紫外線照度計(測定範囲は310〜400nm:ミノルタ製)で測定した。
<Production of fluorescent lamp>
15 μm or more of the produced phosphor was removed by sieving, and mixed with ethyl cellulose and an organic binder to obtain a slurry. The slurry was applied on an anode conductor made of an ITO film having a film thickness of 0.1 μm formed on a 10 × 40 × 1 mm (thickness) size soda lime glass substrate using a screen printing machine, and 420 ° C. in the atmosphere. And the binder was removed by baking for 3 hours to prepare an anode substrate on which a phosphor layer having a thickness of 15 μm was formed. Separately, a slurry made of carbon nanotubes and an organic binder was applied to an aluminum electrode (thickness 0.1 μm) formed on a 8 × 38 × 1 mm (thickness) size soda lime glass substrate with a screen printer. Then, it was baked for 1 hour at 400 ° C. in an argon gas to produce a cold cathode.
A cold cathode and an anode are installed in parallel at a distance of 10 mm, and further, a mesh-like grid electrode having the same area as the cold cathode is provided between the cold cathode and the anode at a distance of 200 μm and an oxidation as a getter in advance. Various control electrodes in which barium was vapor-deposited by 0.1 μm were installed and wired. These were inserted into a soda lime glass container having a diameter of 30 mm, a length of 200 mm, and a thickness of 1 mm, and then deaerated at 380 ° C. for 4 hours while the inside was evacuated to high vacuum (10 −7 Pa). Thereafter, it was sealed with frit glass to obtain a fluorescent lamp.
While applying a grid voltage of 0.65 kV and a voltage of about 4 kV to the anode conductor and controlling the anode current value to 100 μA, the phosphor emits light, and the emission wavelength is measured from the anode side with a multiphotonic analyzer (manufactured by Hamamatsu Photonics). The ultraviolet intensity was measured with an ultraviolet illuminance meter (measurement range: 310 to 400 nm: manufactured by Minolta).

蛍光体の構成、発光特性および作製した蛍光体を用いて作製した蛍光ランプの紫外線強度を表1に示す。

Figure 2006104338
Table 1 shows the structure of the phosphor, the light emission characteristics, and the ultraviolet intensity of the fluorescent lamp produced using the produced phosphor.
Figure 2006104338

Ga1-xAlxN:M、X(但し、0≦x≦1、MはBe、Mg、Ca、Sr、Ba、Zn、Cd、Hgから選択される少なくとも一種の元素、XはC、Si、Ge、Sn、Pbから選択される少なくとも一種の元素)蛍光体はDAペア型発光とBlue−Cu型発光を示した。0≦x≦0.2の範囲がBlue−Cu型発光の強度が高かった。(Ga1-xAlxNに対するMのモル濃度)>(Ga1-xAlxNに対するXのモル濃度)にすることにより、Blue−Cu型発光強度を向上させることができた。
Mのモル濃度をGa1-xAlxNに対して0.005〜1モル%にすることによりBlue−Cu型発光強度を向上させることができた。Xのモル濃度をMの10〜60%にすることにより、Blue−Cu型発光強度を向上させることができた。混晶母体のAlN含有量を大きくすることにより、発光波長は短波長側にシフトし、母体がAlN単体の場合には波長250〜260nmの発光が得られた。
Ga 1-x Al x N: M, X (where 0 ≦ x ≦ 1, M is at least one element selected from Be, Mg, Ca, Sr, Ba, Zn, Cd, Hg, X is C, The phosphor (at least one element selected from Si, Ge, Sn, and Pb) exhibited DA pair type light emission and Blue-Cu type light emission. The intensity of Blue-Cu light emission was high in the range of 0 ≦ x ≦ 0.2. By setting (Molar concentration of M with respect to Ga 1-x Al x N)> (Molar concentration of X with respect to Ga 1-x Al x N), the Blue-Cu type emission intensity could be improved.
The Blue-Cu type light emission intensity could be improved by setting the molar concentration of M to 0.005 to 1 mol% with respect to Ga 1-x Al x N. By setting the molar concentration of X to 10 to 60% of M, it was possible to improve the Blue-Cu type emission intensity. By increasing the AlN content of the mixed crystal matrix, the emission wavelength was shifted to the short wavelength side, and when the matrix was AlN alone, emission with a wavelength of 250 to 260 nm was obtained.

Claims (10)

Ga1-xAlxN:M、X(但し、0≦x≦1、MはBe、Mg、Ca、Sr、Ba、Zn、Cd、Hgから選択される少なくとも一種の元素、XはC、Si、Ge、Sn、Pbから選択される少なくとも一種の元素)で表され、紫外線照射、電子線照射、または電界印加により、波長400nm以下に発光ピークを有する光を放射する機能を持つことを特徴とする蛍光体。 Ga 1-x Al x N: M, X (where 0 ≦ x ≦ 1, M is at least one element selected from Be, Mg, Ca, Sr, Ba, Zn, Cd, Hg, X is C, At least one element selected from Si, Ge, Sn, and Pb), and has a function of emitting light having an emission peak at a wavelength of 400 nm or less by ultraviolet irradiation, electron beam irradiation, or electric field application. A phosphor. 前記xが、0≦x≦0.2であることを特徴とする請求項1記載の蛍光体。   2. The phosphor according to claim 1, wherein x is 0 ≦ x ≦ 0.2. 前記MおよびXに関して、Ga1-xAlxNに対するMのモル濃度がGa1-xAlxNに対するXのモル濃度より大きいことを特徴とする請求項1又は2に記載の蛍光体。 3. The phosphor according to claim 1, wherein a molar concentration of M with respect to Ga 1-x Al x N is larger than a molar concentration of X with respect to Ga 1-x Al x N with respect to M and X. 4. 前記Xのモル濃度が、Mのモル濃度の10〜60%であることを特徴とする請求項3記載の蛍光体。   4. The phosphor according to claim 3, wherein the molar concentration of X is 10 to 60% of the molar concentration of M. 前記Mのモル濃度が、Ga1-xAlxNの0.005〜1モル%であることを特徴とする請求項1〜4のいずれか1項に記載の蛍光体。 The molar concentration of M is, Ga 1-x Al x phosphor according to any one of claims 1 to 4, characterized in that 0.005 mol% of N. フォトルミネッセンス測定で、波長の異なる2種類の発光ピークが存在することを特徴とする請求項1〜5のいずれか1項に記載の蛍光体。   The phosphor according to any one of claims 1 to 5, wherein two kinds of emission peaks having different wavelengths are present in photoluminescence measurement. 前記2種類の発光ピークの短波長側の発光ピーク強度が長波長側の発光ピーク強度の20%以上であることを特徴とする請求項6に記載の蛍光体。   The phosphor according to claim 6, wherein the emission peak intensity on the short wavelength side of the two types of emission peaks is 20% or more of the emission peak intensity on the long wavelength side. 前記2種類の発光ピークの少なくともどちらか一方のピーク波長が365nm以下であることを特徴とする請求項6又は7に記載の蛍光体。   The phosphor according to claim 6 or 7, wherein a peak wavelength of at least one of the two kinds of emission peaks is 365 nm or less. 前記2種類の発光ピークの少なくともどちらか一方のピーク波長が250〜260nmであることを特徴とする請求項8記載の蛍光体。   9. The phosphor according to claim 8, wherein the peak wavelength of at least one of the two types of emission peaks is 250 to 260 nm. 請求項1〜9のいずれか1項に記載の蛍光体を用いた紫外発光蛍光ランプ。
An ultraviolet light emitting fluorescent lamp using the phosphor according to any one of claims 1 to 9.
JP2004293300A 2004-10-06 2004-10-06 Phosphor and ultraviolet light-emitting fluorescent light lamp using the phosphor Pending JP2006104338A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004293300A JP2006104338A (en) 2004-10-06 2004-10-06 Phosphor and ultraviolet light-emitting fluorescent light lamp using the phosphor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004293300A JP2006104338A (en) 2004-10-06 2004-10-06 Phosphor and ultraviolet light-emitting fluorescent light lamp using the phosphor

Publications (1)

Publication Number Publication Date
JP2006104338A true JP2006104338A (en) 2006-04-20

Family

ID=36374441

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004293300A Pending JP2006104338A (en) 2004-10-06 2004-10-06 Phosphor and ultraviolet light-emitting fluorescent light lamp using the phosphor

Country Status (1)

Country Link
JP (1) JP2006104338A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2149457A2 (en) 2008-07-30 2010-02-03 Fujifilm Corporation Inkjet recording method, inkjet recording system, and printed material
JP2011178928A (en) * 2010-03-02 2011-09-15 Mie Univ Target for use in ultraviolet generation, and electron beam excitation ultraviolet light source

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09153645A (en) * 1995-11-30 1997-06-10 Toyoda Gosei Co Ltd Group-iii nitride semiconductor light-emitting device
JPH09286982A (en) * 1996-04-22 1997-11-04 Futaba Corp Luminescent substance
JP2000248275A (en) * 1999-03-03 2000-09-12 Futaba Corp PRODUCTION OF GaN FLUORESCENT SUBSTANCE AND GaN FLUORESCENT SUBSTANCE
JP2003301174A (en) * 2002-04-09 2003-10-21 Nichia Chem Ind Ltd Gallium nitride phosphor, production process therefor, and display device made by using the phosphor
WO2005104767A2 (en) * 2004-04-27 2005-11-10 Arizona Board Of Regents, A Body Corporate Acting On Behalf Of Arizona State University Method to synthesize highly luminescent doped metal nitride powders

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09153645A (en) * 1995-11-30 1997-06-10 Toyoda Gosei Co Ltd Group-iii nitride semiconductor light-emitting device
JPH09286982A (en) * 1996-04-22 1997-11-04 Futaba Corp Luminescent substance
JP2000248275A (en) * 1999-03-03 2000-09-12 Futaba Corp PRODUCTION OF GaN FLUORESCENT SUBSTANCE AND GaN FLUORESCENT SUBSTANCE
JP2003301174A (en) * 2002-04-09 2003-10-21 Nichia Chem Ind Ltd Gallium nitride phosphor, production process therefor, and display device made by using the phosphor
WO2005104767A2 (en) * 2004-04-27 2005-11-10 Arizona Board Of Regents, A Body Corporate Acting On Behalf Of Arizona State University Method to synthesize highly luminescent doped metal nitride powders

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2149457A2 (en) 2008-07-30 2010-02-03 Fujifilm Corporation Inkjet recording method, inkjet recording system, and printed material
JP2011178928A (en) * 2010-03-02 2011-09-15 Mie Univ Target for use in ultraviolet generation, and electron beam excitation ultraviolet light source

Similar Documents

Publication Publication Date Title
JP4836229B2 (en) Phosphor and light emitting device
JPWO2006025259A1 (en) Phosphor, method for producing the same, and light emitting device using the same
KR100787769B1 (en) Electron beam excited fluorescence emitting device
US7416685B2 (en) Fluorescent material and fluorescent display apparatus
US8901808B2 (en) Ultraviolet light-emitting material and ultraviolet light source
JP2007294698A (en) Ultraviolet lamp, and exposure device using this
JP4350674B2 (en) Fluorescent substance and fluorescent display device
US20080057343A1 (en) Phosphor, Method for Manufacturing Same, and Particle Dispersed El Device Using Same
JP6181454B2 (en) Phosphor
JP4173057B2 (en) Fluorescent substance and fluorescent display device
JP2007063301A (en) Phosphor for el
KR20060049518A (en) Multi color luminous fluorescent display device
JP2006104338A (en) Phosphor and ultraviolet light-emitting fluorescent light lamp using the phosphor
JP2005120117A (en) Phosphor, and porous body and filter obtained using the same
JP2006335898A (en) Phosphor for low energy electron beam, phosphor paste and fluorescent display device
JP2008239699A (en) Phosphor and light-emitting apparatus using the same
JP4883998B2 (en) Phosphor and production method thereof
JP2001303042A (en) Fluorescent substance for rapid starting type fluorescent lamp and rapid starting type fluorescent lamp using the same
JP2007045926A (en) Fluorescent material
JP2006335915A (en) Powdery phosphor, method for producing the same and luminescent device using the same
JP5775740B2 (en) Ultraviolet light emitting phosphor
JP4249571B2 (en) Fluorescent light emitting device and manufacturing method thereof
JP4249572B2 (en) Fluorescent light emitting device and manufacturing method thereof
JP2007131655A (en) Fluorescent material, fluorescent lamp, fluorescent material for el and method for producing fluorescent material
JP2007109489A (en) Positive electrode, manufacturing method thereof, and fluorescent lamp

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070420

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091117

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091124

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100407