JP2007137700A - Method for manufacturing fluorescent silicon particle, fluorescent silicon particle and method for observing biological substance by using the particle - Google Patents

Method for manufacturing fluorescent silicon particle, fluorescent silicon particle and method for observing biological substance by using the particle Download PDF

Info

Publication number
JP2007137700A
JP2007137700A JP2005331172A JP2005331172A JP2007137700A JP 2007137700 A JP2007137700 A JP 2007137700A JP 2005331172 A JP2005331172 A JP 2005331172A JP 2005331172 A JP2005331172 A JP 2005331172A JP 2007137700 A JP2007137700 A JP 2007137700A
Authority
JP
Japan
Prior art keywords
silicon
fluorescent
mixed solution
hno
silicon particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005331172A
Other languages
Japanese (ja)
Other versions
JP4721340B2 (en
Inventor
Akihiro Kusumi
明弘 楠見
Kenneth Ritchie
ケネス リッチー
Miki Goto
美樹 後藤
Hirohito Nishimura
博仁 西村
Yoshitaro Nakano
義太郎 中野
Ichiro Sase
一郎 佐瀬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nagoya University NUC
Nikon Corp
Original Assignee
Nagoya University NUC
Nikon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nagoya University NUC, Nikon Corp filed Critical Nagoya University NUC
Priority to JP2005331172A priority Critical patent/JP4721340B2/en
Publication of JP2007137700A publication Critical patent/JP2007137700A/en
Application granted granted Critical
Publication of JP4721340B2 publication Critical patent/JP4721340B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
  • Silicon Compounds (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for observing a very small amount of a biological substance in a biological specimen by using fluorescent silicon particles manufactured by an easier method. <P>SOLUTION: A mixed solution of concentrated HF and concentrated HNO<SB>3</SB>is reacted with a cut silicon wafer and a mixed solution of HF, HNO<SB>3</SB>and H<SB>2</SB>O is reacted with the resulting silicon wafer to obtain porous silicon. The surface of the obtained porous silicon is silanized by using a silane coupling agent and the silanated porous silicon is separated from the cut silicon wafer to obtain silicon particles. The obtained silicon particles are purified by liquid chromatography to obtain the fluorescent silicon particles. The motion of the biological cell is observed by using the obtained fluorescent silicon particles. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、蛍光性シリコン粒子の製造方法、蛍光性シリコン粒子およびそれを用いて生体物質を観察する方法に関する。   The present invention relates to a method for producing fluorescent silicon particles, a fluorescent silicon particle, and a method for observing a biological material using the same.

ナノメートルの径をもつシリコン粒子は、蛍光性/発光性をもつことが知られており、蛍光体として使用する場合、従来の有機蛍光色素と比較して、著しく強固で光分解する確率が低くブリーチングを生じないという特性を持っている。このような蛍光性シリコン粒子は、電気化学的手法により製造できることが知られている(特許文献1)。   Silicon particles with a nanometer diameter are known to have fluorescence / luminescence properties, and when used as phosphors, they are significantly stronger and less prone to photolysis than conventional organic fluorescent dyes. It has the characteristic of not causing bleaching. It is known that such fluorescent silicon particles can be produced by an electrochemical method (Patent Document 1).

米国特許第6585947号明細書US Pat. No. 6,585,947

しかしながら、特許文献1の方法は操作が複雑であり一般的ではない。そこで、本発明の目的は、より簡便な方法で蛍光性シリコン粒子を製造することにある。また、製造された蛍光性シリコン粒子を用いて、生物標本中の微量な生体物質を観察する方法を提供することにある。   However, the method of Patent Document 1 is not common because the operation is complicated. Accordingly, an object of the present invention is to produce fluorescent silicon particles by a simpler method. Another object of the present invention is to provide a method for observing a trace amount of biological material in a biological specimen using the produced fluorescent silicon particles.

上記課題を解決すべく請求項1に記載の発明によれば、シリコン基体にHFとHNO3の混合溶液を作用させる工程と、前記シリコン基体にHFとHNO3とH2Oとの混合溶液を作用させる工程とを含むことを特徴とする蛍光性シリコン粒子の製造方法が提供される。 In order to solve the above problems, according to the first aspect of the present invention, there is provided a step of allowing a mixed solution of HF and HNO 3 to act on a silicon substrate, and a mixed solution of HF, HNO 3 and H 2 O on the silicon substrate. And a step of allowing the fluorescent silicon particles to be produced.

また、請求項2に記載の発明によれば、シリコン基体をHFとHNO3の混合溶液の蒸気にさらす工程と、前記シリコン基体をHFとHNO3とH2Oとの混合溶液に浸す工程とを含むことを特徴とする蛍光性シリコン粒子の製造方法が提供される。 Further, according to the invention described in claim 2, comprising the steps of immersing the silicon substrate and exposing the vapor of the mixed solution of HF and HNO 3, the silicon substrate in a mixed solution of HF and HNO 3 and H 2 O The manufacturing method of the fluorescent silicon particle characterized by including is provided.

また、請求項3に記載の発明によれば、請求項1または2において、前記シリコン基体にシランカップリング剤を作用させる工程を含むことを特徴とする蛍光性シリコン粒子の製造方法が提供される。   According to a third aspect of the present invention, there is provided a method for producing fluorescent silicon particles according to the first or second aspect, further comprising a step of causing a silane coupling agent to act on the silicon substrate. .

また、請求項4に記載の発明によれば、請求項1〜3のいずれか一項において、
前記シリコン基体からポーラスシリコンを分離する工程を含むことを特徴とする蛍光性シリコン粒子の製造方法が提供される。
Moreover, according to the invention of Claim 4, in any one of Claims 1-3,
There is provided a method for producing fluorescent silicon particles, comprising a step of separating porous silicon from the silicon substrate.

また、請求項5に記載の発明によれば、請求項4において、前記シリコン基体から分離された蛍光性シリコン粒子を液体クロマトグラフィーにより精製する工程を含むことを特徴とする蛍光性シリコン粒子の製造方法が提供される。   According to the invention described in claim 5, the manufacturing of the fluorescent silicon particles according to claim 4, further comprising a step of purifying the fluorescent silicon particles separated from the silicon substrate by liquid chromatography. A method is provided.

また、請求項6に記載の発明によれば、請求項4または5に記載の蛍光性シリコン粒子の製造方法で製造された蛍光性シリコン粒子が提供される。   According to the invention described in claim 6, the fluorescent silicon particles manufactured by the method for manufacturing fluorescent silicon particles according to claim 4 or 5 are provided.

また、請求項7に記載の発明によれば、請求項6の蛍光性シリコン粒子を用いて生体細胞内もしくは細胞膜上の分子の運動を観察する方法が提供される。   According to the seventh aspect of the present invention, there is provided a method for observing the movement of molecules in a living cell or on a cell membrane using the fluorescent silicon particles of the sixth aspect.

1.ポーラスシリコンの製造
<ステップ1> まず、シリコンウエハ等のシリコン基体を用意し、適度な大きさ(例えば、約5cm×5cm)にカットする。次に、図1に示すように、容器20中で、カットしたシリコン基体10の端15を2〜3mm程、濃フッ酸(HF)と濃硝酸(HNO3)の混合溶液30に浸ける。
1. Production of porous silicon <Step 1> First, a silicon substrate such as a silicon wafer is prepared and cut into an appropriate size (for example, about 5 cm × 5 cm). Next, as shown in FIG. 1, the end 15 of the cut silicon substrate 10 is immersed in a mixed solution 30 of concentrated hydrofluoric acid (HF) and concentrated nitric acid (HNO 3 ) about 2 to 3 mm in a container 20.

ここで用いる混合溶液中のHFとHNO3の混合比は、体積比において、2:1〜1:2の範囲である。混合溶液中のHNO3の割合が少なすぎると、十分にエッチングができず、多すぎると反応速度が速すぎて均一なエッチングができない。 The mixing ratio of HF and HNO 3 in the mixed solution used here is in the range of 2: 1 to 1: 2 in volume ratio. If the proportion of HNO 3 in the mixed solution is too small, the etching cannot be performed sufficiently, and if it is too large, the reaction rate is too high to perform uniform etching.

また、この段階で、シリコン基体を完全に混合溶液に浸すと、均一にポーラスシリコンが形成されないので、上記の如く、シリコン基体の一部を浸すのが好ましい。   Further, at this stage, if the silicon substrate is completely immersed in the mixed solution, porous silicon is not formed uniformly. Therefore, it is preferable to immerse a part of the silicon substrate as described above.

シリコン基体の端を混合溶液に浸す時間は、0.5〜5秒の範囲である。浸す時間が短いと十分なポーラスシリコンが得られない。一方、浸す時間が長すぎると一旦形成されたポーラスシリコンが溶出してしまう。この処理は、室温で行うことができる。   The time for immersing the edge of the silicon substrate in the mixed solution is in the range of 0.5 to 5 seconds. If the immersion time is short, sufficient porous silicon cannot be obtained. On the other hand, if the immersion time is too long, the porous silicon once formed is eluted. This treatment can be performed at room temperature.

また、HFとHNO3の混合溶液は、蒸気を発生するので、シリコン基体の端を混合溶液に浸すことなく、シリコン基体全体(ポーラスシリコンを形成しようとする面の全体)に蒸気を作用させるようにしてもよい。例えば、図2に示すように、混合溶液30を入れたシャーレ25の直ぐ上に、シリコン基体10を配置させて、0.5〜5秒保持するようにしてもよい。 Moreover, since the mixed solution of HF and HNO 3 generates vapor, the vapor is allowed to act on the entire silicon substrate (the entire surface on which porous silicon is formed) without immersing the edge of the silicon substrate in the mixed solution. It may be. For example, as shown in FIG. 2, the silicon substrate 10 may be disposed immediately above the petri dish 25 containing the mixed solution 30 and held for 0.5 to 5 seconds.

<ステップ2> 次に、上記ステップ1で処理したシリコン基体を、HFとHNOと水の混合溶液に浸す。ここで用いる混合溶液中のHFとHNOとの混合比は、体積比において、HF:HNO=1:1〜1:5である。またHFと水との混合比は、体積比において、1:3〜1:5である。後述の実施例で説明するように、混合溶液中の組成比を調整することにより、様々な蛍光波長を示すポーラスシリコンを製造することができる。 <Step 2> Next, the silicon substrate treated in Step 1 is immersed in a mixed solution of HF, HNO 3 and water. The mixing ratio of HF and HNO 3 in the mixed solution used here is HF: HNO 3 = 1: 1 to 1: 5 in the volume ratio. The mixing ratio of HF and water is 1: 3 to 1: 5 in the volume ratio. As will be described in Examples described later, porous silicon having various fluorescence wavelengths can be produced by adjusting the composition ratio in the mixed solution.

混合溶液に浸す時間は、目的とするポーラスシリコンや、用いる混合溶液の組成により適宜選択できるが、通常2〜10分の範囲である。また、この処理は、室温で行うことができる。   The time for dipping in the mixed solution can be appropriately selected depending on the intended porous silicon and the composition of the mixed solution to be used, but is usually in the range of 2 to 10 minutes. This treatment can be performed at room temperature.

なお、組成比を変えた複数の混合溶液を用いて、シリコン基体を混合溶液に浸す処理を、複数段階で行ってもよい。   In addition, you may perform the process which immerses a silicon base | substrate in a mixed solution using the several mixed solution which changed composition ratio in a several step.

<ステップ3> その後、シリコン基体をエタノール等の洗浄液で洗い、乾燥させる。本方法によって作成したポーラスシリコンの蛍光スペクトルは、蛍光分光光度計によって測定することができる。   <Step 3> Thereafter, the silicon substrate is washed with a cleaning solution such as ethanol and dried. The fluorescence spectrum of porous silicon prepared by this method can be measured with a fluorescence spectrophotometer.

2.ポーラスシリコンのシラン化
上記で得られたポーラスシリコンの表面のシラン化は、シランカップリング剤を作用させることにより行うことができる。シラン化によって、ポーラスシリコンの表面にシランカップリング剤の有する官能基を導入することができる。シランカップリング剤の有する官能基としては、アミノ基、メルカプト基、ハロゲン基、ビニル基、グリシジル基、メタクリロキシ基、カルボキシル基、カルボニル基、などがあり、中でもアミノ基、メルカプト基が好ましい。例えば、シリコン基体をメタノール等で洗浄し、3−アミノプロピルジメチルエトキシシラン(3-aminopropyldimethylethoxysilane)、3−メルカプトプロピルトリメトキシシラン(3-mercaptopropyltrimethoxysilane)等のシランカップラング剤の酸性メタノール溶液に浸す。
2. Silanization of porous silicon Silanization of the surface of the porous silicon obtained above can be performed by acting a silane coupling agent. By silanization, the functional group of the silane coupling agent can be introduced on the surface of the porous silicon. Examples of the functional group possessed by the silane coupling agent include an amino group, a mercapto group, a halogen group, a vinyl group, a glycidyl group, a methacryloxy group, a carboxyl group, and a carbonyl group. Of these, an amino group and a mercapto group are preferable. For example, the silicon substrate is washed with methanol or the like and immersed in an acidic methanol solution of a silane coupling agent such as 3-aminopropyldimethylethoxysilane or 3-mercaptopropyltrimethoxysilane.

3.シリコン粒子の分離、精製
シラン化したシリコン基体の表面からシリコン粒子を分離する方法としては、カッターナイフのような鋭敏なエッジを持つ装置で、シリコン基体を擦り、ポーラスシリコンをそぎ落とす方法や、超音波洗浄装置によって、シリコン基体からシリコン粒子を分離する方法等を用いることができる。
3. Separation and purification of silicon particles Silicon particles can be separated from the surface of a silanized silicon substrate by using a device with a sharp edge such as a cutter knife to scrape the silicon substrate and scrape the porous silicon. A method of separating silicon particles from a silicon substrate using a sonic cleaning device can be used.

シリコン粒子の精製は、例えば、緩衝液(pH6.0)に混入させた後、遠心分離機で分離し、上澄みを分取し、分取した上澄みをHPLC(高速液体クロマトグラフィー)で分離することにより行うことができる。   For purification of silicon particles, for example, after mixing in a buffer solution (pH 6.0), separating with a centrifuge, separating the supernatant, and separating the separated supernatant by HPLC (High Performance Liquid Chromatography). Can be performed.

4.シリコン粒子への生体材料の結合
シラン化されたシリコン粒子への生体分子の結合は、公知の方法により実現することができる。例えば、シラン化されたシリコン粒子の有する官能基と生体分子の官能基とを、必要に応じて他の化合物の存在下または他の化合物を介して結合させる。より具体的には、アミノ基を持つシリコン粒子をカルボキシル基を持つ蛋白質を結合剤 1−エチル−3−(3−ジメチルアミノプロピル)カルボジイミドHCl(1-ethyl-3-(3-dimethylaminopropyl)-carbodiimide, hydrochloride)を用いて結合させる。
4). Bonding of biomaterials to silicon particles The binding of biomolecules to silanized silicon particles can be achieved by known methods. For example, the functional group of the silanized silicon particle and the functional group of the biomolecule are bonded in the presence of another compound or via another compound as necessary. More specifically, a silicon particle having an amino group is bound to a protein having a carboxyl group as a binder 1-ethyl-3- (3-dimethylaminopropyl) carbodiimide HCl (1-ethyl-3- (3-dimethylaminopropyl) -carbodiimide , hydrochloride).

以下に本発明を実施例により詳細に説明する。ただし、本発明はこれらの実施例に限定されるものではない。   Hereinafter, the present invention will be described in detail with reference to examples. However, the present invention is not limited to these examples.

<実施例1−1> 605nmの蛍光波長をもつポーラスシリコンの製造
シリコンウエハ(面方位(100)、p-type、ホウ素ドープ、比抵抗1〜10Ω・cm)を、約5cm×5cmの大きさにカットした。図1に示したように、カットしたシリコンウエハの端を2〜3mm程HFとHNO3の混合溶液(体積比1:1)に2秒間浸けた。次に、シリコンウエハの全体を、HFとHNO3とH2Oの混合溶液(体積比2:7:8)に3分間浸けた。その後エタノールで洗い、乾燥させた。図3に、本方法によって作成したポーラスシリコンを蛍光分光光度計によって275nm励起で取得した蛍光スペクトルを示す。
<Example 1-1> Production of porous silicon having a fluorescence wavelength of 605 nm A silicon wafer (plane orientation (100), p-type, boron-doped, specific resistance 1 to 10 Ω · cm) is about 5 cm × 5 cm in size. Cut into. As shown in FIG. 1, the edge of the cut silicon wafer was immersed in a mixed solution of HF and HNO 3 (volume ratio 1: 1) for about 2 to 2 mm. Next, the entire silicon wafer was immersed in a mixed solution of HF, HNO 3 and H 2 O (volume ratio 2: 7: 8) for 3 minutes. Thereafter, it was washed with ethanol and dried. FIG. 3 shows a fluorescence spectrum obtained by exciting porous silicon prepared by the present method with a fluorescence spectrophotometer at 275 nm excitation.

<実施例1−2> 650nmの蛍光波長をもつポーラスシリコンの製造
シリコンウエハ(面方位(100)、p-type、ホウ素ドープ、比抵抗1〜10Ω・cm)を、約5cm×5cmの大きさにカットした。図1に示したように、カットしたシリコンウエハの端を2〜3mm程度HFとHNO3の混合溶液(体積比1:1)に2秒間浸けた。次に、シリコンウエハの全体を、HFとHNO3とH2O溶液(体積比2:7:8)に3分間浸けた。さらに、シリコンウエハの全体を、HFとHNO3とH2Oの混合溶液(体積比2:5:8)に3分間浸けた。その後エタノールで洗い、乾燥させた。図4に、本方法によって作成したポーラスシリコンを蛍光分光光度計によって275nm励起で取得した蛍光スペクトルを示す。
<Example 1-2> Production of porous silicon having a fluorescence wavelength of 650 nm A silicon wafer (plane orientation (100), p-type, boron doped, specific resistance 1 to 10 Ω · cm) is about 5 cm × 5 cm in size Cut into. As shown in FIG. 1, the edge of the cut silicon wafer was immersed in a mixed solution of HF and HNO 3 (volume ratio 1: 1) for about 2 to 3 mm for 2 seconds. Next, the entire silicon wafer was immersed in a HF, HNO 3, and H 2 O solution (volume ratio 2: 7: 8) for 3 minutes. Further, the entire silicon wafer was immersed in a mixed solution of HF, HNO 3 and H 2 O (volume ratio 2: 5: 8) for 3 minutes. Thereafter, it was washed with ethanol and dried. FIG. 4 shows a fluorescence spectrum obtained by exciting porous silicon prepared by the present method with a fluorescence spectrophotometer at 275 nm excitation.

<実施例1−3> 425nmの蛍光波長をもつポーラスシリコンの製造
シリコンウエハ(面方位(100)、p-type、ホウ素ドープ、比抵抗1〜10Ω・cm)を、約5cm×5cmの大きさにカットした。カットしたシリコンウエハの端を2〜3mm程度HFとHNO3の混合溶液(体積比1:1)に2秒間浸けた。次に、シリコンウエハの全体を、HFとHNO3とH2Oの混合溶液(体積比2:5:8)に7分間浸けた。その後エタノールで洗い、乾燥させた。図5に、本方法によって作成したポーラスシリコンを蛍光分光光度計によって275nm励起で取得した蛍光スペクトルを示す。
<Example 1-3> Production of porous silicon having a fluorescence wavelength of 425 nm A silicon wafer (plane orientation (100), p-type, boron-doped, specific resistance 1 to 10 Ω · cm) is about 5 cm × 5 cm in size. Cut into. The edge of the cut silicon wafer was immersed in a mixed solution of HF and HNO 3 (volume ratio 1: 1) for about 2 to 3 mm for 2 seconds. Next, the entire silicon wafer was immersed in a mixed solution of HF, HNO 3 and H 2 O (volume ratio 2: 5: 8) for 7 minutes. Thereafter, it was washed with ethanol and dried. FIG. 5 shows a fluorescence spectrum obtained by exciting porous silicon prepared by the present method with a fluorescence spectrophotometer at 275 nm excitation.

<実施例2−1> 3-aminopropyldimethylethoxysilaneを用いたシラン化
実施例1−1で得られたシリコンウエハをメタノールで洗浄した。そして、体積比0.8%の3-aminopropyldimethylethoxysilane酸性メタノール液(500m1のメタノールに4mlの氷酢酸を混入したもの)10mlに1時間浸けた。さらに12.5mlの純水(18Ωcm以上)を加え、さらに1時間浸けた。シリコンウエハを取り出して十分にメタノールで洗った後、真空中で24時間乾燥させた。
<Example 2-1> Silanization using 3-aminopropyldimethylethoxysilane The silicon wafer obtained in Example 1-1 was washed with methanol. Then, it was immersed for 1 hour in 10 ml of 3-aminopropyldimethylethoxysilane acidic methanol solution (500 ml of methanol mixed with 4 ml of glacial acetic acid) with a volume ratio of 0.8%. Further, 12.5 ml of pure water (18 Ωcm or more) was added, and it was further immersed for 1 hour. The silicon wafer was taken out and thoroughly washed with methanol, and then dried in a vacuum for 24 hours.

<実施例2−2> 3-mercaptopropyltrimethoxysilaneを用いたシラン化
実施例1−1で得られたシリコンウエハをメタノールで洗浄した。そして、体積比1.2%の3-mercaptopropyltrimethoxysilane酸性メタノール液(500mlのメタノールに4mlの氷酢酸を混入したもの)10mlに1時間浸けた。さらに12.5mlの純水(18Ωcm以上)を加え、さらに1時間浸けた。シリコンウエハを取り出して十分にメタノールで洗った後、真空中で24時間乾燥させた。
<Example 2-2> Silanation using 3-mercaptopropyltrimethoxysilane The silicon wafer obtained in Example 1-1 was washed with methanol. Then, it was immersed for 1 hour in 10 ml of a 3-mercaptopropyltrimethoxysilane acidic methanol solution having a volume ratio of 1.2% (500 ml of methanol mixed with 4 ml of glacial acetic acid). Further, 12.5 ml of pure water (18 Ωcm or more) was added, and the mixture was further immersed for 1 hour. The silicon wafer was taken out and thoroughly washed with methanol, and then dried in a vacuum for 24 hours.

<実施例3> 分離と精製
実施例2−1でシラン化したシリコンウエハを、カッターナイフのような鋭敏なエッジを持つ装置で擦り、ポーラスシリコンをそぎ落とした。
<Example 3> Separation and purification The silicon wafer silanized in Example 2-1 was rubbed with a device having a sharp edge such as a cutter knife to scrape porous silicon.

得られたシリコンナノ粒子を0.025M 2-morpholinoethanesulfonic acid緩衝液(pH6.0)に混入し、遠心分離機(遠心加速度7000×g)で10分間遠心し、シリコン粒子が含まれている上澄みを分取した。   The obtained silicon nanoparticles are mixed in 0.025M 2-morpholinoethanesulfonic acid buffer (pH 6.0) and centrifuged with a centrifuge (centrifugal acceleration 7000 × g) for 10 minutes to separate the supernatant containing silicon particles. I took it.

分取した上澄みに含まれているシリコン粒子を、HPLC(高速液体クロマトグラフィー)により精製した。使用したカラムはSuperdex75ge1で緩衝液は0.05Mリン酸pH7 0.15M NaCl 流速は0.4ml/minである。図6、7に、溶出したシリコン粒子を示す。図6は、シラン化したあとのシリコン粒子である。図7は、参照用のシラン化する前のシリコン粒子である。各々、右側のピークは約直径3nmの粒子のピークである。左側のピークは対照用の分子であるRNase直径4nmである。   Silicon particles contained in the collected supernatant were purified by HPLC (high performance liquid chromatography). The column used was Superdex75ge1, the buffer was 0.05M phosphate pH7 0.15M NaCl, and the flow rate was 0.4 ml / min. 6 and 7 show the eluted silicon particles. FIG. 6 shows silicon particles after silanization. FIG. 7 shows silicon particles before silanization for reference. In each case, the peak on the right is the peak of a particle having a diameter of about 3 nm. The peak on the left is RNase 4 nm in diameter as a control molecule.

<実施例4> 生体細胞の観察
実施例3で得られたシリコン粒子を、0.6mM 1-ethyl-3-(3-dimethylaminopropy1)-carbodiimide, hydrochlorideに混入させ、15分後に、ターゲットとなる分子を混入させた。この操作によって、シリコン粒子上のアミノ基とタンパク質中のカルボキシル基が縮合し、シリコン粒子とタンパク質の複合体が形成された。
<Example 4> Observation of living cells The silicon particles obtained in Example 3 were mixed in 0.6 mM 1-ethyl-3- (3-dimethylaminopropy1) -carbodiimide, hydrochloride, and after 15 minutes, the target molecule was It was mixed. By this operation, the amino group on the silicon particle and the carboxyl group in the protein were condensed to form a complex of the silicon particle and the protein.

生細胞の表面で、単一シリコン粒子が結合したものを観察する方法は以下のとおりである。   A method for observing the surface of a living cell where single silicon particles are bonded is as follows.

シリコン粒子をレセプターと特異的に結合する分子と共有結合させ、あらかじめ生細胞の培養液(growth mediumもしくはbalanced salt solution)に混入して培養しておく。実施例としては、上述したようなアミノ基を持ったシリコン粒子をトランスフェリン(鉄イオンを細胞内に輸送するタンパク質)に結合させた。トランスフェリンとシリコンナノ粒子の複合体は細胞表面にあるトランスフェリン受容体に結合した。この際細胞はラットの腎臓由来の株細胞であるNRK細胞を使用した。培養にはFCS(ウシ胎児血清、fetal calf serum)10%を含むHamF12を使用した。細胞は最初にハンクス液中で37度で30分培養したあとで、トランスフェリンとシリコン粒子の複合体を混入した。この複合体は、NRK細胞表面のトランフェリン受容体に結合した。   Silicon particles are covalently bound to molecules that specifically bind to the receptor, and are mixed in advance in a culture medium (growth medium or balanced salt solution) of living cells and cultured. As an example, silicon particles having an amino group as described above were bound to transferrin (a protein that transports iron ions into cells). The complex of transferrin and silicon nanoparticles bound to the transferrin receptor on the cell surface. In this case, NRK cells, which are cell lines derived from rat kidney, were used. For the culture, HamF12 containing 10% FCS (fetal calf serum) was used. The cells were first incubated in Hanks' solution at 37 degrees for 30 minutes and then mixed with transferrin and silicon particle complexes. This complex bound to the transferrin receptor on the NRK cell surface.

観察は倒立顕微鏡を用い、全反射照明条件で観察した。開口数1.45油浸対物レンズを用い、落射照明装置の光路より543nmのHeNeレーザを対物レンズ内へ光軸と平行に導入し、対物レンズの後焦点面にレーザの焦点を結び、その焦点の位置をレンズの周辺部近くになるように調整することで、対物内全反射照明状態になるようにした。粒子像の撮影には、高感度CCDカメラもしくはSITカメラにイメージインテンシファイアーを設置したものを使用した。   Observation was performed using an inverted microscope under total reflection illumination conditions. Using a 1.45 oil immersion objective lens, a HeNe laser of 543 nm is introduced into the objective lens parallel to the optical axis from the optical path of the epi-illuminator, and the focal point of the laser is focused on the back focal plane of the objective lens. Was adjusted to be close to the periphery of the lens so that it would be in the state of total internal reflection illumination. A particle image was captured using a high-sensitivity CCD camera or SIT camera with an image intensifier.

その結果、細胞膜上のトランスフェリン受容体の運動の様子を明確に観察することができた。   As a result, the movement of the transferrin receptor on the cell membrane could be clearly observed.

以上、実施例により本願発明を詳細に説明した。   As described above, the present invention has been described in detail by way of examples.

本願発明の蛍光性シリコン粒子の製造方法では、電気化学的手法を用いないので、操作が簡便である。また、近年、生細胞内もしくは細胞表面における単一の生体分子の挙動を観察することによって、分子の機能を解明し、これらの分子の機能の異常が原因となっているさまざまな病気の探求や治療法の開発がなされている。本願発明で製造された蛍光性シリコン粒子は、生物材料の標識として使用することができる。   In the method for producing fluorescent silicon particles of the present invention, since an electrochemical method is not used, the operation is simple. In recent years, by observing the behavior of single biomolecules in living cells or on the cell surface, the functions of the molecules have been elucidated, and various diseases caused by abnormal functions of these molecules have been investigated. Therapies are being developed. The fluorescent silicon particles produced in the present invention can be used as a label for biological materials.

また、上記実施例では、シリコン基体の表面からシリコン粒子を分離した後にシラン化するのではなく、生成したポーラスシリコンをシラン化した後にシリコン粒子を分離している。こうすることで、粒子のそれぞれに対して均一にシラン化を行うことができる。   Further, in the above embodiment, the silicon particles are not separated from the surface of the silicon substrate and then silanized, but the produced porous silicon is silanized and then the silicon particles are separated. By doing so, silanization can be performed uniformly on each of the particles.

なお、上記実施形態および実験例は、本願発明の技術的思想の範囲内で様々な変形が可能である。   The above embodiment and experimental examples can be variously modified within the scope of the technical idea of the present invention.

例えば、上記で説明した方法でポーラスシリコンを生成し、シラン化し、さらに生体分子を結合させた後に、シリコン基体からシリコン粒子を分離するようにしてもよい。こうすれば、均一に生体分子が結合したシリコン粒子を得ることができる。   For example, porous silicon may be generated by the method described above, silanized, and after biomolecules are bonded, the silicon particles may be separated from the silicon substrate. In this way, silicon particles in which biomolecules are uniformly bonded can be obtained.

シリコン基体をHF+HNO混合溶液に作用させる様子を示す図。Diagram showing how to apply a silicon substrate to HF + HNO 3 mixed solution. シリコン基体をHF+HNO混合溶液に作用させる様子を示す図。Diagram showing how to apply a silicon substrate to HF + HNO 3 mixed solution. 実施例1−1のポーラスシリコンの蛍光スペクトル。The fluorescence spectrum of the porous silicon of Example 1-1. 実施例1−2のポーラスシリコンの蛍光スペクトル。The fluorescence spectrum of the porous silicon of Example 1-2. 実施例1−3のポーラスシリコンの蛍光スペクトル。The fluorescence spectrum of the porous silicon of Example 1-3. 実施例3におけるHPLCの結果。The HPLC result in Example 3. 実施例3におけるHPLCの結果(参照用)。Results of HPLC in Example 3 (for reference).

符号の説明Explanation of symbols

10…シリコン基体(シリコンウエハ)
20…容器、25…シャーレ
30…混合溶液
10 ... Silicon substrate (silicon wafer)
20 ... container, 25 ... petri dish 30 ... mixed solution

Claims (7)

シリコン基体にHFとHNO3の混合溶液を作用させる工程と、
前記シリコン基体にHFとHNO3とH2Oとの混合溶液を作用させる工程と
を含むことを特徴とする蛍光性シリコン粒子の製造方法。
A step of allowing a mixed solution of HF and HNO 3 to act on a silicon substrate;
And a step of allowing a mixed solution of HF, HNO 3 and H 2 O to act on the silicon substrate.
シリコン基体をHFとHNO3の混合溶液の蒸気にさらす工程と、
前記シリコン基体をHFとHNO3とH2Oとの混合溶液に浸す工程とを含む
ことを特徴とする蛍光性シリコン粒子の製造方法。
Exposing the silicon substrate to a vapor mixture of HF and HNO 3 ;
And a step of immersing the silicon substrate in a mixed solution of HF, HNO 3 and H 2 O.
請求項1または2において、
前記シリコン基体にシランカップリング剤を作用させる工程を含む
ことを特徴とする蛍光性シリコン粒子の製造方法。
In claim 1 or 2,
A method for producing fluorescent silicon particles, comprising a step of applying a silane coupling agent to the silicon substrate.
請求項1〜3のいずれか一項において、
前記シリコン基体からポーラスシリコンを分離する工程を含む
ことを特徴とする蛍光性シリコン粒子の製造方法。
In any one of Claims 1-3,
A method for producing fluorescent silicon particles, comprising a step of separating porous silicon from the silicon substrate.
請求項4において、
前記シリコン基体から分離された蛍光性シリコン粒子を液体クロマトグラフィーにより精製する工程を含む
ことを特徴とする蛍光性シリコン粒子の製造方法。
In claim 4,
A method for producing fluorescent silicon particles, comprising a step of purifying the fluorescent silicon particles separated from the silicon substrate by liquid chromatography.
請求項4または5に記載の蛍光性シリコン粒子の製造方法で製造された蛍光性シリコン粒子。   The fluorescent silicon particle manufactured with the manufacturing method of the fluorescent silicon particle of Claim 4 or 5. 請求項6に記載の蛍光性シリコン粒子を用いて生体細胞内もしくは細胞膜上の分子の運動を観察する方法。
A method for observing the movement of a molecule in a living cell or on a cell membrane using the fluorescent silicon particles according to claim 6.
JP2005331172A 2005-11-16 2005-11-16 Method for producing fluorescent silicon particles, fluorescent silicon particles and method for observing biological material using the same Active JP4721340B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005331172A JP4721340B2 (en) 2005-11-16 2005-11-16 Method for producing fluorescent silicon particles, fluorescent silicon particles and method for observing biological material using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005331172A JP4721340B2 (en) 2005-11-16 2005-11-16 Method for producing fluorescent silicon particles, fluorescent silicon particles and method for observing biological material using the same

Publications (2)

Publication Number Publication Date
JP2007137700A true JP2007137700A (en) 2007-06-07
JP4721340B2 JP4721340B2 (en) 2011-07-13

Family

ID=38201026

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005331172A Active JP4721340B2 (en) 2005-11-16 2005-11-16 Method for producing fluorescent silicon particles, fluorescent silicon particles and method for observing biological material using the same

Country Status (1)

Country Link
JP (1) JP4721340B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009043903A (en) * 2007-08-08 2009-02-26 Stanley Electric Co Ltd Led light source
JP2009091168A (en) * 2007-10-04 2009-04-30 Akihiro Kusumi Fluorescent nanoparticle and method of observing biological material using the same

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06144822A (en) * 1992-10-30 1994-05-24 Tonen Chem Corp Production of highly pure fine silicon particle and production of highly pure polycrystalline silicon using the same particle
JPH06268255A (en) * 1993-03-11 1994-09-22 Rikagaku Kenkyusho Porous silicon and manufacture thereof
JPH09169513A (en) * 1995-11-22 1997-06-30 Dow Corning Corp Silicon microparticle
JP2002068885A (en) * 2000-08-28 2002-03-08 Shin Etsu Chem Co Ltd Silicon component and method of measuring amount of metal impurity on its surface
JP2004024953A (en) * 2002-06-21 2004-01-29 Kiyoshi Yatsui Fine particle and fine particle production method
JP2005170749A (en) * 2003-12-12 2005-06-30 Morita Kagaku Kogyo Kk Fine semiconductor particle having ultrafine pores on its surface, its forming method and device using it
JP2006071330A (en) * 2004-08-31 2006-03-16 Tokyo Denki Univ Nanosilicon fluorescence element for detecting/visual sensing cancerous cells and its manufacturing method
WO2007026533A1 (en) * 2005-08-30 2007-03-08 Tokyo Denki University Soluble tablet containing nanosilicon particles and process for production thereof

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06144822A (en) * 1992-10-30 1994-05-24 Tonen Chem Corp Production of highly pure fine silicon particle and production of highly pure polycrystalline silicon using the same particle
JPH06268255A (en) * 1993-03-11 1994-09-22 Rikagaku Kenkyusho Porous silicon and manufacture thereof
JPH09169513A (en) * 1995-11-22 1997-06-30 Dow Corning Corp Silicon microparticle
JP2002068885A (en) * 2000-08-28 2002-03-08 Shin Etsu Chem Co Ltd Silicon component and method of measuring amount of metal impurity on its surface
JP2004024953A (en) * 2002-06-21 2004-01-29 Kiyoshi Yatsui Fine particle and fine particle production method
JP2005170749A (en) * 2003-12-12 2005-06-30 Morita Kagaku Kogyo Kk Fine semiconductor particle having ultrafine pores on its surface, its forming method and device using it
JP2006071330A (en) * 2004-08-31 2006-03-16 Tokyo Denki Univ Nanosilicon fluorescence element for detecting/visual sensing cancerous cells and its manufacturing method
WO2007026533A1 (en) * 2005-08-30 2007-03-08 Tokyo Denki University Soluble tablet containing nanosilicon particles and process for production thereof

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009043903A (en) * 2007-08-08 2009-02-26 Stanley Electric Co Ltd Led light source
JP2009091168A (en) * 2007-10-04 2009-04-30 Akihiro Kusumi Fluorescent nanoparticle and method of observing biological material using the same

Also Published As

Publication number Publication date
JP4721340B2 (en) 2011-07-13

Similar Documents

Publication Publication Date Title
Yang et al. Diatoms: self assembled silica nanostructures, and templates for bio/chemical sensors and biomimetic membranes
Acres et al. Mechanisms of aggregation of cysteine functionalized gold nanoparticles
Ivanova‐Mitseva et al. Cubic molecularly imprinted polymer nanoparticles with a fluorescent core
JP4567627B2 (en) Nucleic acid separation method and solid substrate for nucleic acid separation
Jantschke et al. Decoration of diatom biosilica with noble metal and semiconductor nanoparticles (< 10 nm): assembly, characterization, and applications
JP2004150797A (en) Extraction method for nucleic acid and protein by dendrimer and dendrimer composition
Sweetman et al. Porous silicon films micropatterned with bioelements as supports for mammalian cells
FR2737574A1 (en) APPARATUS FOR PARALLEL MACROMOLECULE ALIGNMENT AND USE
Marsico et al. Enhanced laser desorption/ionization mass spectrometric detection of biomolecules using gold nanoparticles, matrix, and the coffee ring effect
Kasyanenko et al. DNA modified with metal nanoparticles: preparation and characterization of ordered metal-DNA nanostructures in a solution and on a substrate
JP5100291B2 (en) Fluorescent nanoparticles and method for observing biological material using the same
Yuan et al. A fluorimetric study on the interaction between a Trp‐containing beta‐strand peptide and amphiphilic polymer‐coated gold nanoparticles
JP4721340B2 (en) Method for producing fluorescent silicon particles, fluorescent silicon particles and method for observing biological material using the same
CN104020147A (en) Preparation method for fluorescent molecular imprinted probe
JP2007275064A (en) Method for cytoclasis and nucleic acid purification using single chamber and apparatus therefor
WO2016157220A1 (en) A process for the preparation of bio-organic coated gold and silver nanoparticles using blue light
JP7192783B2 (en) Aggregated nanoparticles and fluorescent labels
Kim et al. Stabilization of α-helices by the self-assembly of macrocyclic peptides on the surface of gold nanoparticles for molecular recognition
Lu et al. Highly uniform SERS-active microchannel on hydrophobic PDMS: a balance of high reproducibility and sensitivity for detection of proteins
Borberg et al. Depletion of highly abundant protein species from biosamples by the use of a branched silicon nanopillar on-chip platform
CA3001637A1 (en) Method for producing erythrocyte proteins
Zissi et al. The Generation and Study of a Gold‐Based Chemobrionic Plant‐Like Structure
JP2010229440A (en) Water-dispersible metal nanoparticle
Psarouli et al. Covalent binding vs. adsorption of biomolecules on silicon nitride planar waveguides
WO2020262617A1 (en) Cell fusion-accelerating agent

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20081010

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081201

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110215

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110308

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110401

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140415

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250