JP2007137695A - Magnesium oxide fine power dispersion and method for producing the same - Google Patents

Magnesium oxide fine power dispersion and method for producing the same Download PDF

Info

Publication number
JP2007137695A
JP2007137695A JP2005330696A JP2005330696A JP2007137695A JP 2007137695 A JP2007137695 A JP 2007137695A JP 2005330696 A JP2005330696 A JP 2005330696A JP 2005330696 A JP2005330696 A JP 2005330696A JP 2007137695 A JP2007137695 A JP 2007137695A
Authority
JP
Japan
Prior art keywords
magnesium oxide
dispersion
oxide fine
fine particle
fine particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005330696A
Other languages
Japanese (ja)
Other versions
JP4914054B2 (en
Inventor
Hiroshi Arita
洋 在田
Makoto Kono
誠 河野
Akira Ueki
明 植木
Satoshi Sano
聡 佐野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ube Material Industries Ltd
Original Assignee
Ube Material Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ube Material Industries Ltd filed Critical Ube Material Industries Ltd
Priority to JP2005330696A priority Critical patent/JP4914054B2/en
Publication of JP2007137695A publication Critical patent/JP2007137695A/en
Application granted granted Critical
Publication of JP4914054B2 publication Critical patent/JP4914054B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide dispersion of magnesium oxide fine powder useful for forming a magnesium oxide thin film having uniform thickness by a coating method. <P>SOLUTION: The magnesium oxide fine powder dispersion is prepared by dispersing 0.05-20 mass% magnesium oxide fine powder per total quantity of the dispersion in a polar organic solvent, wherein D<SB>50</SB>of the magnesium oxide fine particle measured by a dynamic light scattering method is 5-50 nm. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、酸化マグネシウム微粒子分散液及びその製造方法に関するものである。   The present invention relates to a magnesium oxide fine particle dispersion and a method for producing the same.

プラズマディスプレイパネル(以下、PDPという)の誘電体層の保護膜として、酸化マグネシウム薄膜が用いられている。PDPの誘電体層保護用の酸化マグネシウム薄膜の製造方法としては、電子ビーム蒸着法やスパッタ法などの物理的な方法が主流である。しかしながら、これらの製造方法では大規模な製造装置を用いて厳しい製造条件の管理が必要となるなどの問題がある。このため、酸化マグネシウム微粒子の分散液を誘電体層の上に塗布、乾燥(さらに必要に応じて、焼成)することによって酸化マグネシウム薄膜を形成する方法(塗布法)の研究が進められている。   A magnesium oxide thin film is used as a protective film for a dielectric layer of a plasma display panel (hereinafter referred to as PDP). As a manufacturing method of a magnesium oxide thin film for protecting a dielectric layer of a PDP, a physical method such as an electron beam evaporation method or a sputtering method is mainly used. However, these manufacturing methods have problems such as requiring management of strict manufacturing conditions using a large-scale manufacturing apparatus. For this reason, research on a method (coating method) for forming a magnesium oxide thin film by applying a dispersion of magnesium oxide fine particles on a dielectric layer and drying (further firing if necessary) is underway.

特許文献1には、PDPの誘電体層保護膜形成用の酸化マグネシウム微粒子分散液として、酸化マグネシウム粉末分散液と、マグネシウムアルコキシド又はマグネシウムアセチルアセトネートを含むバインダ溶液とを混合して調製した分散液が開示されている。この特許文献1には、酸化マグネシウム粉末分散液は、平均粒子径が5nm〜5μm、好ましくは10〜200nmの酸化マグネシウム微粒子と、アルコールを主成分とする溶媒又はアルコールとエチレングリコール誘導体との混合溶媒と、エチレングリコール誘導体を主成分とする分散剤とを混合して粉末分散液を調製し、マグネシウムアルコキシド又はマグネシウムアセチルアセトネートを主成分とするバインダと、アルコールを主成分とする溶媒又はアルコールとエチレングリコール誘導体との混合溶媒と、エチレングリコール誘導体を主成分とする添加剤とを混合してバインダ溶液を調製し、粉末分散液とバインダ溶液をペイントシェーカーやロールミルなどを用いて混合することによって調製することができるとされている。但し、酸化マグネシウム微粒子分散液中の酸化マグネシウム微粒子の粒子径に関する記載はない。   Patent Document 1 discloses a dispersion prepared by mixing a magnesium oxide powder dispersion and a binder solution containing magnesium alkoxide or magnesium acetylacetonate as a magnesium oxide fine particle dispersion for forming a PDP dielectric layer protective film. Is disclosed. In this Patent Document 1, the magnesium oxide powder dispersion is composed of magnesium oxide fine particles having an average particle size of 5 nm to 5 μm, preferably 10 to 200 nm, a solvent mainly containing alcohol, or a mixed solvent of alcohol and ethylene glycol derivative. And a dispersant mainly containing an ethylene glycol derivative to prepare a powder dispersion, a binder mainly containing magnesium alkoxide or magnesium acetylacetonate, a solvent mainly containing alcohol or alcohol and ethylene A binder solution is prepared by mixing a mixed solvent with a glycol derivative and an additive mainly composed of an ethylene glycol derivative, and then prepared by mixing the powder dispersion and the binder solution using a paint shaker or a roll mill. It is supposed to be possible. However, there is no description regarding the particle diameter of the magnesium oxide fine particles in the magnesium oxide fine particle dispersion.

特許文献2には、マグネシウムアセチルアセトナート、エタノールアミン、脂肪酸、有機溶剤からなる混合液に、酸化マグネシウム微粒子を分散させて調製した酸化マグネシウム微粒子分散液が開示されている。この特許文献2には、酸化マグネシウム微粒子は平均粒子径が10nm以下であることが好ましいとされており、さらに酸化マグネシウム微粒子は、例えば、ロールミル、ホモミキサー、ボールミル等の分散機器を用いて分散させることができる旨の記載がある。但し、この特許文献2にも、酸化マグネシウム微粒子分散液中の酸化マグネシウム微粒子の粒子径に関する記載はない。
特開2000−129161号公報 特開平11−157832号公報
Patent Document 2 discloses a magnesium oxide fine particle dispersion prepared by dispersing magnesium oxide fine particles in a mixed liquid composed of magnesium acetylacetonate, ethanolamine, fatty acid, and an organic solvent. According to Patent Document 2, it is said that the average particle diameter of the magnesium oxide fine particles is preferably 10 nm or less. Further, the magnesium oxide fine particles are dispersed using, for example, a dispersing device such as a roll mill, a homomixer, or a ball mill. There is a statement that you can. However, Patent Document 2 also does not describe the particle diameter of the magnesium oxide fine particles in the magnesium oxide fine particle dispersion.
JP 2000-129161 A Japanese Patent Laid-Open No. 11-157832.

均一な厚さの酸化マグネシウム薄膜を塗布法により形成させるためには、分散液中の酸化マグネシウム微粒子の凝集が少ないこと、すなわち酸化マグネシウム微粒子が一次粒子もしくはそれに近い小径の凝集粒子として分散されていることが望ましい。しかしながら、本発明者の検討によると、前記の特許文献1、2に記載されているような分散装置では、酸化マグネシウム微粒子が一次粒子もしくはそれに近い小径の凝集粒子として分散されている酸化マグネシウム微粒子分散液を製造することは難しいことが判明した。従って、前記の特許文献1、2に記載されている酸化マグネシウム微粒子分散液では、微細な各粒子の相当部分が凝集体として分散されていると理解される。
本発明の目的は、均一な厚さの酸化マグネシウム薄膜を塗布法により形成させるのに有利な、酸化マグネシウム微粒子が一次粒子もしくはそれに近い小径の凝集粒子として分散されている酸化マグネシウム微粒子の分散液及びその製造方法を提供することにある。
In order to form a magnesium oxide thin film having a uniform thickness by a coating method, there is little aggregation of magnesium oxide fine particles in the dispersion, that is, the magnesium oxide fine particles are dispersed as primary particles or small-sized aggregate particles close to the primary particles. It is desirable. However, according to the study by the present inventor, in the dispersing apparatus as described in the above-mentioned Patent Documents 1 and 2, magnesium oxide fine particle dispersion in which magnesium oxide fine particles are dispersed as primary particles or small-sized aggregated particles close thereto. It has proven difficult to produce the liquid. Therefore, in the magnesium oxide fine particle dispersion described in Patent Documents 1 and 2, it is understood that a substantial part of each fine particle is dispersed as an aggregate.
An object of the present invention is to provide a dispersion of magnesium oxide fine particles in which magnesium oxide fine particles are dispersed as primary particles or small aggregated particles close to the primary particles, which is advantageous for forming a magnesium oxide thin film having a uniform thickness by a coating method. It is in providing the manufacturing method.

本発明は、極性有機溶媒中に、酸化マグネシウム微粒子が分散液全体量に対して0.05〜20質量%の範囲となる量にて分散されてなり、動的光散乱法によって測定された酸化マグネシウム微粒子のD50が5〜20nmの範囲にあり、D10/D90が0.3以上である酸化マグネシウム微粒子分散液にある。 In the present invention, magnesium oxide fine particles are dispersed in a polar organic solvent in an amount ranging from 0.05 to 20% by mass with respect to the total amount of the dispersion, and measured by the dynamic light scattering method. The magnesium oxide fine particle dispersion has a D 50 of magnesium fine particles in the range of 5 to 20 nm and a D 10 / D 90 of 0.3 or more.

本発明の酸化マグネシウム微粒子分散液は、ジルコニウム、鉄、ニッケル、クロム及びアルミニウムをそれぞれ、分散液全体量に対して20質量ppm以上含むことがないことが好ましい。   The magnesium oxide fine particle dispersion of the present invention preferably does not contain 20 mass ppm or more of zirconium, iron, nickel, chromium and aluminum with respect to the total amount of the dispersion.

本発明はまた、平均一次粒子径が5〜20nmの範囲にある酸化マグネシウム微粒子からなる酸化マグネシウム粉末を、極性有機溶媒に分散させて分散液を調製する工程、そして該分散液に圧力を付与して分散液噴流を生成させ、次いで該分散液噴流を二以上に分岐させ、各分散液噴流を対向下に衝突させることにより分散液中の酸化マグネシウム粉末を崩壊させて微粒子の分散液とする工程を含む上記本発明の酸化マグネシウム微粒子分散液の製造方法にもある。   The present invention also includes a step of dispersing a magnesium oxide powder comprising magnesium oxide fine particles having an average primary particle diameter in the range of 5 to 20 nm in a polar organic solvent to prepare a dispersion, and applying pressure to the dispersion. A step of generating a dispersion liquid jet, then branching the dispersion liquid jet into two or more, and colliding each dispersion liquid jet against each other to collapse the magnesium oxide powder in the dispersion liquid to form a fine particle dispersion liquid There is also a method for producing a magnesium oxide fine particle dispersion of the present invention including the above.

本発明の酸化マグネシウム微粒子分散液は、均一な厚さの酸化マグネシウム薄膜を塗布法により形成させるのに有利である。
また、本発明の製造方法を利用することにより、酸化マグネシウム微粒子が一次粒子もしくはそれに近い小径の凝集粒子として分散されている酸化マグネシウム微粒子の分散液を工業的に有利に製造することができる。
The magnesium oxide fine particle dispersion of the present invention is advantageous for forming a magnesium oxide thin film having a uniform thickness by a coating method.
Further, by using the production method of the present invention, a dispersion of magnesium oxide fine particles in which magnesium oxide fine particles are dispersed as primary particles or small-diameter aggregate particles close thereto can be advantageously produced industrially.

本発明の酸化マグネシウム微粒子分散液は、極性有機溶媒中に酸化マグネシウム微粒子を、分散液の全組成物の質量を基準として0.05〜20質量%の範囲、好ましくは1〜15質量%の範囲にて含む。   The magnesium oxide fine particle dispersion of the present invention contains magnesium oxide fine particles in a polar organic solvent in a range of 0.05 to 20% by mass, preferably in a range of 1 to 15% by mass, based on the mass of the total composition of the dispersion. Included.

本発明の分散液に含まれる酸化マグネシウム微粒子は、動的光散乱法によって測定されたD50(累積通過分布の50%に相当する粒子径)が5〜20nmの範囲にあり、D10(累積通過分布の10%に相当する粒子径)とD90(累積通過分布の90%に相当する粒子径)との比(D10/D90)が0.3以上である。D10/D90は、粒子径の分布の拡がりを評価する指標の一つであり、1に近い方が分布の拡がりが狭いこと、すなわち粒子径の均一性が高いことを表す。D10/D90は、0.35以上であることがより好ましい。 The magnesium oxide fine particles contained in the dispersion of the present invention have a D 50 (particle diameter corresponding to 50% of the cumulative passage distribution) measured by the dynamic light scattering method in the range of 5 to 20 nm, and D 10 (cumulative). The ratio (D 10 / D 90 ) between D 90 (particle diameter corresponding to 10% of the passage distribution) and D 90 (particle diameter corresponding to 90% of the cumulative passage distribution) is 0.3 or more. D 10 / D 90 is one index for evaluating the spread of the particle size distribution, and the closer to 1, the narrower the spread of the distribution, that is, the higher the uniformity of the particle size. D 10 / D 90 is more preferably 0.35 or more.

本発明の分散液において用いられる極性有機溶媒の例としては、アルコール類及びケトン類を挙げることができる。アルコール類の例としては、メタノール、エタノール、プロピルアルコール、イソプロピルアルコール、ブチルアルコール、イソブチルアルコール、sec−ブチルアルコール、tert−ブチルアルコール、ペンチルアルコール、イソペンチルアルコールなどの一価アルコールを挙げることができる。ケトン類の例としては、アセトン、エチルメチルケトン、ジエチルケトンを挙げることができる。これらのアルコール類及びケトン類は、二種以上を併用してもよい。
極性有機溶媒は、炭素原子数が3〜5の一価アルコールであることが好ましく、特に好ましいのはイソプロピルアルコール及びブチルアルコール、そしてこれらの混合物であり、さらに好ましいのはブチルアルコールである。
Examples of the polar organic solvent used in the dispersion of the present invention include alcohols and ketones. Examples of alcohols include monohydric alcohols such as methanol, ethanol, propyl alcohol, isopropyl alcohol, butyl alcohol, isobutyl alcohol, sec-butyl alcohol, tert-butyl alcohol, pentyl alcohol, and isopentyl alcohol. Examples of ketones include acetone, ethyl methyl ketone, and diethyl ketone. Two or more of these alcohols and ketones may be used in combination.
The polar organic solvent is preferably a monohydric alcohol having 3 to 5 carbon atoms, particularly preferably isopropyl alcohol and butyl alcohol, and a mixture thereof, and more preferably butyl alcohol.

本発明の酸化マグネシウム微粒子分散液は、平均一次粒子径が5〜20nmの範囲にある酸化マグネシウム微粒子からなる酸化マグネシウム粉末を、極性有機溶媒に分散させて分散液を調製する工程、そして該分散液に圧力を付与して分散液噴流を生成させ、次いで該分散液噴流を二以上に分岐させ、各分散液噴流を対向下に衝突させることにより分散液中の酸化マグネシウム粉末を崩壊させて微粒子の分散液とする衝突分散処理工程を含む方法により製造することができる。   The magnesium oxide fine particle dispersion of the present invention comprises a step of preparing a dispersion by dispersing magnesium oxide powder composed of magnesium oxide fine particles having an average primary particle diameter in the range of 5 to 20 nm in a polar organic solvent, and the dispersion Pressure is applied to generate a dispersion jet, then the dispersion jet is branched into two or more, and each dispersion jet collides under the opposite direction to collapse the magnesium oxide powder in the dispersion, thereby It can be produced by a method including a collision dispersion treatment step as a dispersion.

酸化マグネシウム微粒子としては、金属マグネシウム蒸気と酸素とを反応させる方法(気相酸化合成法)により製造された平均一次粒子が20nm以下の酸化マグネシウム粉末を好適に用いることができる。気相酸化合成法により製造された平均一次粒子径が20nm以下の酸化マグネシウム粉末としては、宇部マテリアルズ(株)製の100A(平均一次粒子径:10nm)が知られている。酸化マグネシウム粉末の平均一次粒子径は、電界放射型走査電子顕微鏡(FE−SEM)を用いて測定することができる。   As the magnesium oxide fine particles, magnesium oxide powder having an average primary particle size of 20 nm or less produced by a method of reacting metal magnesium vapor with oxygen (gas phase oxidation synthesis method) can be suitably used. As a magnesium oxide powder having an average primary particle diameter of 20 nm or less manufactured by a gas phase oxidation synthesis method, 100A (average primary particle diameter: 10 nm) manufactured by Ube Materials Co., Ltd. is known. The average primary particle diameter of the magnesium oxide powder can be measured using a field emission scanning electron microscope (FE-SEM).

衝突分散処理工程においては、酸化マグネシウム粉末の分散液に圧力を付与して分散液噴流を生成させ、次いで該分散液噴流を二以上、好ましくは二つに分岐させ、各分散液を対向下に衝突させる。分散液噴流の圧力は、100〜250MPaの範囲にあることが好ましく、130〜230MPaの範囲にあることが特に好ましい。   In the collision dispersion treatment step, pressure is applied to the dispersion of the magnesium oxide powder to generate a dispersion jet, and then the dispersion jet is branched into two or more, preferably two, and each dispersion is placed under the facing. Collide. The pressure of the dispersion jet is preferably in the range of 100 to 250 MPa, and particularly preferably in the range of 130 to 230 MPa.

衝突分散処理工程は、複数回行なってもよい。衝突分散処理工程の回数は、1〜1000回の範囲にあることが好ましい。
衝突分散処理工程において用いる衝突装置の例としては、吉田機械工業(株)から販売されているナノマイザーシステムを挙げることができる。
The collision dispersion processing step may be performed a plurality of times. The number of collision dispersion treatment steps is preferably in the range of 1 to 1000 times.
As an example of the collision device used in the collision dispersion treatment process, a nanomizer system sold by Yoshida Machine Industry Co., Ltd. can be cited.

上記の衝突分散処理により得られた酸化マグネシウム微粒子分散液は、微粒子分散のための衝突分散が、分散液の金属壁への衝突によるものではなく、分散液同士の衝突により行われるため、重金属の混入が少ない。ジルコニウム、鉄、ニッケル、クロム及びアルミニウムについては、それぞれ全体量に対して20質量ppm以上含むことがない高純度の酸化マグネシウム微粒子分散液を製造することができる。   In the magnesium oxide fine particle dispersion obtained by the above-described collision dispersion treatment, collision dispersion for fine particle dispersion is not caused by collision of the dispersion against the metal wall, but by collision between the dispersions. There is little contamination. About zirconium, iron, nickel, chromium, and aluminum, it is possible to produce a high-purity magnesium oxide fine particle dispersion that does not contain 20 mass ppm or more of the total amount.

本発明の分散液は、酸化マグネシウム薄膜形成用の塗布液として有利に用いることができる。本発明の分散液を用いて形成した酸化マグネシウム薄膜は、膜厚の均一性が高い。特に、本発明の分散液を用いて形成した膜厚が500nm〜2μmの酸化マグネシウム薄膜は高い透明性を示すため、PDPの誘電体層の保護膜として有用である。本発明の分散液を用いて酸化マグネシウム薄膜を形成する方法としては、スピンコート法、スプレーコート法、スクリーン印刷法、グラビア印刷法、ディップ法、ドクタブレード法等の公知の方法を挙げることができる。   The dispersion liquid of the present invention can be advantageously used as a coating liquid for forming a magnesium oxide thin film. The magnesium oxide thin film formed using the dispersion liquid of the present invention has high film thickness uniformity. In particular, a magnesium oxide thin film having a film thickness of 500 nm to 2 μm formed using the dispersion of the present invention exhibits high transparency and is useful as a protective film for a dielectric layer of PDP. Examples of the method for forming a magnesium oxide thin film using the dispersion of the present invention include known methods such as a spin coating method, a spray coating method, a screen printing method, a gravure printing method, a dip method, and a doctor blade method. .

本発明の分散液はまた、粉体や液体に容易に混合分散させることができるため、食品、医薬あるいは化粧品のpH調製剤、高分子安定剤、各種セラミックス材料の原料及び焼結助剤としても利用することができる。また、ジルコニウム、鉄、ニッケル、クロム及びアルミニウムの混入量の少ない高純度の本発明の酸化マグネシウム微粒子分散液は、電子材料、医薬品原料、飲食料品の添加剤としても利用することができる。   Since the dispersion of the present invention can be easily mixed and dispersed in powders and liquids, it can also be used as a food, pharmaceutical or cosmetic pH adjuster, polymer stabilizer, raw materials for various ceramic materials and sintering aids. Can be used. In addition, the high-purity magnesium oxide fine particle dispersion of the present invention having a small amount of zirconium, iron, nickel, chromium, and aluminum can be used as an additive for electronic materials, pharmaceutical raw materials, and food and drink products.

[実施例1]
平均一次粒子径が10nmの酸化マグネシウム粉末(100A、宇部マテリアルズ(株)製)5質量部を、ブチルアルコール95質量部に投入して濃度5質量%の酸化マグネシウム粉末分散液を得た。この酸化マグネシウム粉末分散液を、ナノマイザーシステム(NM2、吉田機械工業(株)製、ノズル径:150μm×170μm)を用いて、分散液噴流の圧力200Mpa、衝突分散処理回数100回の条件にて、酸化マグネシウム粉末を崩壊させて酸化マグネシウム微粒子分散液を製造した。
[Example 1]
5 parts by mass of magnesium oxide powder (100A, Ube Materials Co., Ltd.) having an average primary particle size of 10 nm was added to 95 parts by mass of butyl alcohol to obtain a magnesium oxide powder dispersion having a concentration of 5% by mass. This magnesium oxide powder dispersion was subjected to a dispersion jet pressure of 200 Mpa and a collision dispersion treatment count of 100 using a nanomizer system (NM2, manufactured by Yoshida Machine Industry Co., Ltd., nozzle diameter: 150 μm × 170 μm). Then, the magnesium oxide powder was disintegrated to produce a magnesium oxide fine particle dispersion.

得られた酸化マグネシウム微粒子分散液中のジルコニウム、鉄、ニッケル、クロム及びアルミニウムを定量したところ、ジルコニウム6質量ppm、鉄1.8質量ppm、ニッケル1.0質量ppm、クロム4.0質量ppm及びアルミニウム2.0質量ppmであった。   When zirconium, iron, nickel, chromium and aluminum in the obtained magnesium oxide fine particle dispersion were quantified, zirconium 6 mass ppm, iron 1.8 mass ppm, nickel 1.0 mass ppm, chromium 4.0 mass ppm and It was 2.0 mass ppm of aluminum.

得られた酸化マグネシウム微粒子分散液中の酸化マグネシウム微粒子の粒度分布を動的光散乱法によって下記の条件にて測定した。その結果、D10は11.3nm、D50は14.2nm、D90は29.1nmであり、D10/D90は0.39であった。 The particle size distribution of the magnesium oxide fine particles in the obtained magnesium oxide fine particle dispersion was measured by the dynamic light scattering method under the following conditions. As a result, D 10 is 11.3 nm, D 50 is 14.2 nm, D 90 is 29.1nm, D 10 / D 90 was 0.39.

[粒度分布の測定条件]
酸化マグネシウム微粒子分散液を、酸化マグネシウム微粒子の濃度が3〜4質量%となるように分散媒体にて希釈し、超音波ホモジナイザー(S−150D、ブランソン製)にて、パワー強度8の条件で1分間分散処理を行なう。得られた希釈分散液中の酸化マグネシウム微粒子の粒度分布を、動的光散乱式粒度分析計(マイクロトラックUPA150、日機装製)を用いて、半導体レーザ(+3B)波長:780nm、3mWの条件にて測定する。測定は5回行い、その平均値を算出する。
[Measurement conditions of particle size distribution]
The magnesium oxide fine particle dispersion is diluted with a dispersion medium so that the concentration of the magnesium oxide fine particles is 3 to 4% by mass, and is 1 with an ultrasonic homogenizer (S-150D, manufactured by Branson) under the condition of power intensity of 8. Disperse for a minute. Using a dynamic light scattering particle size analyzer (Microtrac UPA150, manufactured by Nikkiso), the particle size distribution of the magnesium oxide fine particles in the obtained diluted dispersion was measured under the conditions of a semiconductor laser (+ 3B) wavelength: 780 nm, 3 mW. taking measurement. The measurement is performed 5 times, and the average value is calculated.

実施例2にて調製した酸化マグネシウム微粒子分散液を用いて、ガラス基板(サイズ:縦40mm×横40mm×厚さ0.5mm)上にスピンコート法により酸化マグネシウム膜を形成した。酸化マグネシウム膜は、酸化マグネシウム微粒子分散液1gをガラス基板の中心に滴下した後、ガラス基板をその中心を軸として1000rpmの回転速度で60秒、2000rpmの回転速度で20秒、3000rpmの回転速度で20秒の順で回転させる操作を5回行なって形成した。形成した酸化マグネシウム膜の膜厚と波長600nmの光の透光率をガラス基板の中心、中心から右端に15mm、中心から左端に15mmの位置にて測定した。その結果を表1に示す。   Using the magnesium oxide fine particle dispersion prepared in Example 2, a magnesium oxide film was formed on a glass substrate (size: length 40 mm × width 40 mm × thickness 0.5 mm) by spin coating. A magnesium oxide film is prepared by dropping 1 g of a magnesium oxide fine particle dispersion on the center of a glass substrate, and then rotating the glass substrate at the rotation speed of 1000 rpm for 60 seconds, the rotation speed of 2000 rpm for 20 seconds, and the rotation speed of 3000 rpm. It was formed by performing the operation of rotating in the order of 20 seconds 5 times. The thickness of the formed magnesium oxide film and the transmittance of light having a wavelength of 600 nm were measured at the center of the glass substrate, 15 mm from the center to the right end, and 15 mm from the center to the left end. The results are shown in Table 1.

表1
────────────────────────────────────────
中心から右端 中心 中心から左端
に15mm に15mm
────────────────────────────────────────
膜厚(μm) 1.93 2.08 2.05
透光率(%) 95.1 96.4 98.4
────────────────────────────────────────
Table 1
────────────────────────────────────────
Center to right edge Center Center to left edge
15mm to 15mm
────────────────────────────────────────
Film thickness (μm) 1.93 2.08 2.05
Light transmittance (%) 95.1 96.4 98.4
────────────────────────────────────────

表1に示すように、本発明の酸化マグネシウム微粒子分散液を用いることにより、均一な厚さの酸化マグネシウム膜を形成することができることが分かる。   As shown in Table 1, it can be seen that a magnesium oxide film having a uniform thickness can be formed by using the magnesium oxide fine particle dispersion of the present invention.

[実施例2]
ナノマイザーシステムによる酸化マグネシウム粉末分散液の衝突分散処理の回数を10回とする以外は実施例1と同様にして微粒子分散液を製造した。
得られた酸化マグネシウム微粒子分散液中の酸化マグネシウム微粒子の粒度分布を動的光散乱法によって下記の条件にて測定した。その結果、D10は11.7nm、D50は15.1nm、D90は28.2nmであり、D10/D90は0.41であった。
[Example 2]
A fine particle dispersion was produced in the same manner as in Example 1 except that the number of collision dispersion treatments of the magnesium oxide powder dispersion by the nanomizer system was 10.
The particle size distribution of the magnesium oxide fine particles in the obtained magnesium oxide fine particle dispersion was measured by the dynamic light scattering method under the following conditions. As a result, D 10 is 11.7 nm, D 50 is 15.1nm, D 90 is 28.2nm, D 10 / D 90 was 0.41.

[実施例3]
ナノマイザーシステムによる酸化マグネシウム粉末分散液の衝突分散処理の回数を500回とする以外は実施例1と同様にして微粒子分散液を製造した。
得られた酸化マグネシウム微粒子分散液中の酸化マグネシウム微粒子の粒度分布を動的光散乱法によって下記の条件にて測定した。その結果、D10は11.5nm、D50は15.1nm、D90は27.1nmであり、D10/D90は0.42であった。
[Example 3]
A fine particle dispersion was produced in the same manner as in Example 1 except that the number of collision dispersion treatments of the magnesium oxide powder dispersion by the nanomizer system was 500 times.
The particle size distribution of the magnesium oxide fine particles in the obtained magnesium oxide fine particle dispersion was measured by the dynamic light scattering method under the following conditions. As a result, D 10 is 11.5 nm, D 50 is 15.1nm, D 90 is 27.1nm, D 10 / D 90 was 0.42.

Claims (3)

極性有機溶媒中に、酸化マグネシウム微粒子が分散液全体量に対して0.05〜20質量%の範囲となる量にて分散されてなり、動的光散乱法によって測定された酸化マグネシウム微粒子のD50が5〜20nmの範囲にあり、D10/D90が0.3以上である酸化マグネシウム微粒子分散液。 Magnesium oxide fine particles dispersed in a polar organic solvent in an amount ranging from 0.05 to 20% by mass with respect to the total amount of the dispersion, and measured by the dynamic light scattering method. Magnesium oxide fine particle dispersion in which 50 is in the range of 5 to 20 nm and D 10 / D 90 is 0.3 or more. ジルコニウム、鉄、ニッケル、クロム及びアルミニウムをそれぞれ、分散液全体量に対して20質量ppm以上含むことがない請求項1に記載の酸化マグネシウム微粒子分散液。   2. The magnesium oxide fine particle dispersion according to claim 1, wherein zirconium oxide, iron, nickel, chromium and aluminum do not contain 20 mass ppm or more with respect to the total amount of the dispersion. 平均一次粒子径が5〜20nmの範囲にある酸化マグネシウム微粒子からなる酸化マグネシウム粉末を、極性有機溶媒に分散させて分散液を調製する工程、そして該分散液に圧力を付与して分散液噴流を生成させ、次いで該分散液噴流を二以上に分岐させ、各分散液噴流を対向下に衝突させることにより分散液中の酸化マグネシウム粉末を崩壊させて微粒子の分散液とする工程を含む請求項1に記載の酸化マグネシウム微粒子分散液の製造方法。   A step of preparing a dispersion by dispersing a magnesium oxide powder comprising magnesium oxide fine particles having an average primary particle diameter in the range of 5 to 20 nm in a polar organic solvent, and applying a pressure to the dispersion to generate a dispersion jet The method further comprises the steps of: generating and then diverging the dispersion jet into two or more and colliding each dispersion jet under the opposite direction to disintegrate the magnesium oxide powder in the dispersion to form a fine particle dispersion. A method for producing a magnesium oxide fine particle dispersion described in 1.
JP2005330696A 2005-11-15 2005-11-15 Magnesium oxide fine particle dispersion and method for producing the same Active JP4914054B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005330696A JP4914054B2 (en) 2005-11-15 2005-11-15 Magnesium oxide fine particle dispersion and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005330696A JP4914054B2 (en) 2005-11-15 2005-11-15 Magnesium oxide fine particle dispersion and method for producing the same

Publications (2)

Publication Number Publication Date
JP2007137695A true JP2007137695A (en) 2007-06-07
JP4914054B2 JP4914054B2 (en) 2012-04-11

Family

ID=38201021

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005330696A Active JP4914054B2 (en) 2005-11-15 2005-11-15 Magnesium oxide fine particle dispersion and method for producing the same

Country Status (1)

Country Link
JP (1) JP4914054B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012096951A (en) * 2010-11-01 2012-05-24 Ryukoku Univ Method of manufacturing magnesium oxide thin film
JP2015010025A (en) * 2013-07-01 2015-01-19 宇部マテリアルズ株式会社 Alkaline earth metal compound fine particle dispersion and method for producing the same
WO2015146875A1 (en) * 2014-03-24 2015-10-01 宇部マテリアルズ株式会社 Fine magnesium oxide particle dispersion liquid and method for producing same
JP2017069376A (en) * 2015-09-30 2017-04-06 宇部興産株式会社 Solar cell module and manufacturing method therefor

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02160658A (en) * 1988-12-13 1990-06-20 Mitsubishi Mining & Cement Co Ltd Method for granulating magnesium oxide raw material for forming
JP2006225240A (en) * 2005-02-21 2006-08-31 Ube Material Industries Ltd Magnesium oxide particulate-dispersed liquid

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02160658A (en) * 1988-12-13 1990-06-20 Mitsubishi Mining & Cement Co Ltd Method for granulating magnesium oxide raw material for forming
JP2006225240A (en) * 2005-02-21 2006-08-31 Ube Material Industries Ltd Magnesium oxide particulate-dispersed liquid

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012096951A (en) * 2010-11-01 2012-05-24 Ryukoku Univ Method of manufacturing magnesium oxide thin film
JP2015010025A (en) * 2013-07-01 2015-01-19 宇部マテリアルズ株式会社 Alkaline earth metal compound fine particle dispersion and method for producing the same
WO2015146875A1 (en) * 2014-03-24 2015-10-01 宇部マテリアルズ株式会社 Fine magnesium oxide particle dispersion liquid and method for producing same
CN106163988A (en) * 2014-03-24 2016-11-23 宇部材料工业株式会社 The sub-dispersion liquid of magnesium oxide particle and manufacture method thereof
KR20160136395A (en) 2014-03-24 2016-11-29 우베 마테리알즈 가부시키가이샤 Fine magnesium oxide particle dispersion liquid and method for producing same
JPWO2015146875A1 (en) * 2014-03-24 2017-04-13 宇部マテリアルズ株式会社 Magnesium oxide fine particle dispersion and method for producing the same
US10030150B2 (en) 2014-03-24 2018-07-24 Ube Material Industries, Ltd. Fine magnesium oxide particle dispersion liquid and method for producing same
KR102275613B1 (en) * 2014-03-24 2021-07-09 우베 마테리알즈 가부시키가이샤 Fine magnesium oxide particle dispersion liquid and method for producing same
JP2017069376A (en) * 2015-09-30 2017-04-06 宇部興産株式会社 Solar cell module and manufacturing method therefor

Also Published As

Publication number Publication date
JP4914054B2 (en) 2012-04-11

Similar Documents

Publication Publication Date Title
JP4611057B2 (en) Magnesium oxide fine particle dispersion for forming dielectric layer protective film of AC type plasma display panel
Baladi et al. Investigation of different liquid media and ablation times on pulsed laser ablation synthesis of aluminum nanoparticles
Jin et al. Gold nanoparticles prepared by sonochemical method in thiol-functionalized ionic liquid
JP4918790B2 (en) Method for producing transparent conductive film, transparent conductive film and coating solution
JP4914054B2 (en) Magnesium oxide fine particle dispersion and method for producing the same
JP6815071B2 (en) Metal nanoparticle composition, ink for inkjet and inkjet device, and dispersion medium composition for metal nanoparticle composition
JP4849807B2 (en) Magnesium oxide fine particle dispersion
JP2007169120A (en) Method for dispersing carbon nanotube
Nyabadza et al. Effect of liquid medium and laser processing parameters on the fabrication of carbon nanoparticles via pulsed laser ablation in liquid towards paper electronics
JP2007197296A (en) Dispersion of metal oxide fine particle and its manufacturing method
Kralova et al. Preparation and characterization of doped titanium dioxide printed layers
JP6796637B2 (en) Ink mainly composed of silver nanoparticles
Vaziri et al. Optical and structural properties of copper nanostructured thin films prepared by pulsed laser deposition
Taden et al. Inorganic films from three different phosphors via a liquid coating route from inverse miniemulsions
TW201736274A (en) Method for producing nonstoichiometric titanium oxide fine particle
JP2008120901A (en) Composite coated aluminum pigment and method for producing the same
WO2018221181A1 (en) Electroconductive ink and method of manufacturing electroconductive substrate
JP5052780B2 (en) Method for producing magnesium hydroxide fine particle dispersion
TR201820068T4 (en) Dispersions of silver nanoparticles.
JP5546907B2 (en) Transparent conductive film and method for producing the same
TW201704379A (en) Silver nanoparticle ink
JP2014029017A (en) Method for producing metal fine particle composition
Zhang et al. The preparation of Al2O3 based organic/inorganic composite films and the application in agricultural greenhouse
JP2011178845A (en) Inkjet composition containing nickel fine particle
WO2019163189A1 (en) Fine particle dispersion method, and deposition method and deposition device using same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080520

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100129

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A132

Effective date: 20110906

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111102

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120106

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120120

R150 Certificate of patent or registration of utility model

Ref document number: 4914054

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150127

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250