JP2006225240A - Magnesium oxide particulate-dispersed liquid - Google Patents

Magnesium oxide particulate-dispersed liquid Download PDF

Info

Publication number
JP2006225240A
JP2006225240A JP2005044766A JP2005044766A JP2006225240A JP 2006225240 A JP2006225240 A JP 2006225240A JP 2005044766 A JP2005044766 A JP 2005044766A JP 2005044766 A JP2005044766 A JP 2005044766A JP 2006225240 A JP2006225240 A JP 2006225240A
Authority
JP
Japan
Prior art keywords
magnesium oxide
oxide fine
dispersion
fine particles
range
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005044766A
Other languages
Japanese (ja)
Other versions
JP4849807B2 (en
Inventor
Hiroshi Arita
洋 在田
Makoto Kono
誠 河野
Akira Ueki
明 植木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ube Material Industries Ltd
Original Assignee
Ube Material Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ube Material Industries Ltd filed Critical Ube Material Industries Ltd
Priority to JP2005044766A priority Critical patent/JP4849807B2/en
Publication of JP2006225240A publication Critical patent/JP2006225240A/en
Application granted granted Critical
Publication of JP4849807B2 publication Critical patent/JP4849807B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a magnesium oxide particulate-dispersed liquid useful for forming a magnesium oxide thin film with a uniform thickness by an applying method. <P>SOLUTION: The magnesium oxide particulate-dispersed liquid is obtained by dispersing magnesium oxide particulates in the range of 0.05 to 20 mass% into 3 to 5C monohydric alcohol, and the D<SB>50</SB>of the magnesium oxide particulates measured by a dynamic light scattering process lies in the range of 5 to 100 nm. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、酸化マグネシウム微粒子分散液に関するものである。   The present invention relates to a magnesium oxide fine particle dispersion.

プラズマディスプレイパネル(以下、PDPという)の誘電体層の保護膜として、酸化マグネシウム薄膜が用いられている。PDPの誘電体層保護用の酸化マグネシウム薄膜の製造方法としては、電子ビーム蒸着法やスパッタ法などの物理的な方法が主流である。しかしながら、これらの製造方法では大規模な製造装置を用いて厳しい製造条件の管理が必要となるなどの問題がある。このため、酸化マグネシウム微粒子の分散液を誘電体層の上に塗布、乾燥(さらに必要に応じて、焼成)することによって酸化マグネシウム薄膜を形成する方法(塗布法)の研究が進められている。   A magnesium oxide thin film is used as a protective film for a dielectric layer of a plasma display panel (hereinafter referred to as PDP). As a manufacturing method of a magnesium oxide thin film for protecting a dielectric layer of a PDP, a physical method such as an electron beam evaporation method or a sputtering method is mainly used. However, these manufacturing methods have problems such as requiring management of strict manufacturing conditions using a large-scale manufacturing apparatus. For this reason, research on a method (coating method) for forming a magnesium oxide thin film by applying a dispersion of magnesium oxide fine particles on a dielectric layer and drying (further firing if necessary) is underway.

特許文献1には、PDPの誘電体層保護膜形成用の酸化マグネシウム微粒子分散液として、酸化マグネシウム粉末分散液と、マグネシウムアルコキシド又はマグネシウムアセチルアセトネートを含むバインダ溶液とを混合して調製した分散液が開示されている。この特許文献1において、酸化マグネシウム粉末分散液は、平均粒子径が5nm〜5μm、好ましくは10〜200nmの酸化マグネシウム微粒子と、アルコールを主成分とする溶媒又はアルコールとエチレングリコール誘導体との混合溶媒とエチレングリコール誘導体を主成分とする分散剤とを混合して調製されている。   Patent Document 1 discloses a dispersion prepared by mixing a magnesium oxide powder dispersion and a binder solution containing magnesium alkoxide or magnesium acetylacetonate as a magnesium oxide fine particle dispersion for forming a PDP dielectric layer protective film. Is disclosed. In this Patent Document 1, the magnesium oxide powder dispersion is composed of magnesium oxide fine particles having an average particle diameter of 5 nm to 5 μm, preferably 10 to 200 nm, a solvent containing alcohol as a main component, or a mixed solvent of alcohol and ethylene glycol derivative. It is prepared by mixing with a dispersant mainly composed of an ethylene glycol derivative.

特許文献2には、マグネシウムアセチルアセトナート、エタノールアミン、脂肪酸、有機溶剤からなる混合液に、酸化マグネシウム微粒子を分散させて調製した酸化マグネシウム微粒子分散液が開示されている。この特許文献2では、酸化マグネシウム微粒子は平均粒子径が10nm以下の微粒子が好ましいとされている。
特開2000−129161号公報 特開平11−157832号公報
Patent Document 2 discloses a magnesium oxide fine particle dispersion prepared by dispersing magnesium oxide fine particles in a mixed liquid composed of magnesium acetylacetonate, ethanolamine, fatty acid, and an organic solvent. According to Patent Document 2, the magnesium oxide fine particles are preferably fine particles having an average particle diameter of 10 nm or less.
JP 2000-129161 A Japanese Patent Laid-Open No. 11-157832.

均一な厚さの酸化マグネシウム薄膜を塗布法により形成させるためには、分散液中の酸化マグネシウム微粒子の凝集が少ないこと、すなわち酸化マグネシウム微粒子が一次粒子もしくはそれに近い小径の凝集粒子として分散されていることが望ましい。しかしながら、上記の特許文献には、酸化マグネシウム微粒子を用いて分散液を調製する旨の開示がされているものの、その酸化マグネシウム微粒子を一次粒子もしくはそれに近い形で分散させる方法についての具体的な開示がない。従って、微細な各粒子の相当部分が凝集体として分散されていると理解される。
本発明の目的は、均一な厚さの酸化マグネシウム薄膜を塗布法により形成させるのに有利な、酸化マグネシウム微粒子が一次粒子もしくはそれに近い小径の凝集粒子として分散されている酸化マグネシウム微粒子の分散液を提供することにある。
In order to form a magnesium oxide thin film having a uniform thickness by a coating method, there is little aggregation of magnesium oxide fine particles in the dispersion, that is, the magnesium oxide fine particles are dispersed as primary particles or small-sized aggregate particles close to the primary particles. It is desirable. However, although the above-mentioned patent document discloses that a dispersion liquid is prepared using magnesium oxide fine particles, a specific disclosure about a method of dispersing the magnesium oxide fine particles in primary particles or a form close thereto. There is no. Therefore, it is understood that a substantial part of each fine particle is dispersed as an aggregate.
An object of the present invention is to provide a dispersion of magnesium oxide fine particles, in which magnesium oxide fine particles are dispersed as primary particles or small aggregated particles close to them, which is advantageous for forming a magnesium oxide thin film having a uniform thickness by a coating method. It is to provide.

本発明者は、酸化マグネシウム微粒子を分散させるための分散媒体の種類、そして分散媒体中に酸化マグネシウム微粒子を分散させるための分散化方法を選ぶことによって、平均一次粒子径が5〜100nmの範囲にある酸化マグネシウム微粒子を、一次粒子もしくはそれに近い小径の凝集粒子として分散させることができることを見い出し、本発明に到達した。   The inventor chooses the type of dispersion medium for dispersing the magnesium oxide fine particles, and the dispersion method for dispersing the magnesium oxide fine particles in the dispersion medium, so that the average primary particle diameter is in the range of 5 to 100 nm. It has been found that certain magnesium oxide fine particles can be dispersed as primary particles or small-sized aggregated particles close to the primary particles, and the present invention has been achieved.

本発明は、炭素原子数3〜5のアルコール中に酸化マグネシウム微粒子が0.05〜20質量%の範囲にて分散されてなり、動的光散乱法によって測定された酸化マグネシウム微粒子のD50が5〜100nmの範囲にある酸化マグネシウム微粒子分散液にある。 In the present invention, magnesium oxide fine particles are dispersed in an alcohol having 3 to 5 carbon atoms in a range of 0.05 to 20% by mass, and the D 50 of the magnesium oxide fine particles measured by a dynamic light scattering method is The magnesium oxide fine particle dispersion is in the range of 5 to 100 nm.

本発明の酸化マグネシウム微粒子分散液の好ましい態様は、以下の通りである。
(1)動的光散乱法によって測定された酸化マグネシウム微粒子のD50が5〜20nmの範囲にあり、D10/D90が0.4以上である。
(2)動的光散乱法によって測定された酸化マグネシウム微粒子のD50が45〜90nmの範囲にあり、D10/D90が0.1以上である。
(3)一価アルコールが、イソプロピルアルコール又はブチルアルコール(1−ブタノール)、もしくはこれらの混合物である。
Preferred embodiments of the magnesium oxide fine particle dispersion of the present invention are as follows.
(1) The D 50 of the magnesium oxide fine particles measured by the dynamic light scattering method is in the range of 5 to 20 nm, and D 10 / D 90 is 0.4 or more.
(2) The D 50 of the magnesium oxide fine particles measured by the dynamic light scattering method is in the range of 45 to 90 nm, and D 10 / D 90 is 0.1 or more.
(3) The monohydric alcohol is isopropyl alcohol or butyl alcohol (1-butanol), or a mixture thereof.

本発明の酸化マグネシウム微粒子分散液は、平均一次粒子径が5〜100nmの範囲にある酸化マグネシウム微粒子と、炭素原子数3〜5の一価アルコールとを混合し、次いで、その混合物を平均粒子径が20〜300μmのビーズを用いた粉砕装置にて分散処理を行なうことからなる方法により製造することができる。   The magnesium oxide fine particle dispersion of the present invention is prepared by mixing magnesium oxide fine particles having an average primary particle diameter in the range of 5 to 100 nm and monohydric alcohol having 3 to 5 carbon atoms, and then mixing the mixture with an average particle diameter. Can be produced by a method comprising a dispersion treatment in a pulverizer using beads having a diameter of 20 to 300 μm.

本発明の酸化マグネシウム微粒子分散液は、均一な厚さの酸化マグネシウム薄膜を塗布法により形成させるのに有利である。
また、本発明の製造方法を利用することにより、酸化マグネシウム微粒子が一次粒子もしくはそれに近い小径の凝集粒子として分散されている酸化マグネシウム微粒子の分散液を工業的に有利に製造することができる。
The magnesium oxide fine particle dispersion of the present invention is advantageous for forming a magnesium oxide thin film having a uniform thickness by a coating method.
Further, by using the production method of the present invention, a dispersion of magnesium oxide fine particles in which magnesium oxide fine particles are dispersed as primary particles or small-diameter aggregate particles close thereto can be advantageously produced industrially.

本発明の酸化マグネシウム微粒子分散液は、炭素原子数3〜5の一価アルコール中に酸化マグネシウム微粒子を、分散液の全組成物の質量を基準として0.05〜20質量%の範囲、好ましくは1〜15質量%の範囲にて含む。   The magnesium oxide fine particle dispersion of the present invention comprises magnesium oxide fine particles in a monohydric alcohol having 3 to 5 carbon atoms, preferably in the range of 0.05 to 20% by mass, preferably based on the mass of the total composition of the dispersion. In the range of 1 to 15% by mass.

本発明の分散液に含まれる酸化マグネシウム微粒子は、動的光散乱法によって測定されたD50(累積通過分布の50%に相当する粒子径)が5〜100nmの範囲にある。酸化マグネシウム微粒子は、D10(累積通過分布の10%に相当する粒子径)とD90(累積通過分布の90%に相当する粒子径)との比(D10/D90)が0.1以上であることが好ましく、0.15以上であることがより好ましく、0.4以上であることが特に好ましい。D10/D90は、粒子径の分布の拡がりを評価する指標の一つであり、1に近い方が分布の拡がりが狭いこと、すなわち粒子径の均一性が高いことを表す。 The magnesium oxide fine particles contained in the dispersion of the present invention have a D 50 (particle diameter corresponding to 50% of the cumulative passage distribution) measured by a dynamic light scattering method in the range of 5 to 100 nm. MgO particles, the ratio of D 10 and D 90 (particle diameter corresponding to 10% of the accumulated passage distribution) (particle diameter corresponding to 90% of the accumulated passage distribution) (D 10 / D 90) is 0.1 Preferably, it is preferably 0.15 or more, and more preferably 0.4 or more. D 10 / D 90 is one index for evaluating the spread of the particle size distribution, and the closer to 1, the narrower the spread of the distribution, that is, the higher the uniformity of the particle size.

本発明の分散液に含まれる酸化マグネシウム微粒子は、動的光散乱法によって測定された酸化マグネシウム微粒子のD50が5〜20nmの範囲にあり、D10/D90が0.1以上(特に、0.4以上)であるか、動的光散乱法によって測定された酸化マグネシウム微粒子のD50が45〜90nmの範囲にあり、D10/D90が0.1以上(特に、0.15以上)であることが好ましい。 The magnesium oxide fine particles contained in the dispersion of the present invention have a D 50 of magnesium oxide fine particles measured by a dynamic light scattering method in the range of 5 to 20 nm and a D 10 / D 90 of 0.1 or more (in particular, 0.4 or higher) or D 50 of the magnesium oxide fine particles measured by the dynamic light scattering method is in the range of 45 to 90 nm, and D 10 / D 90 is 0.1 or higher (particularly 0.15 or higher). ) Is preferable.

酸化マグネシウム微粒子のD50が5〜20nmの範囲にある分散液は、透光性が高いという特徴がある。特に、分散媒体にブチルアルコールを用いると透光性が高くなる傾向にある。D50が5〜20nmの範囲にある酸化マグネシウム微粒子をブチルアルコールに分散させた分散液の波長700nmの光の透過率(測定:セル厚10mm)は、酸化マグネシウム微粒子濃度が5質量%の分散液で60%以上、酸化マグネシウム微粒子濃度が1質量%の分散液で90%以上の値を示す。 A dispersion having a D 50 of magnesium oxide fine particles in the range of 5 to 20 nm is characterized by high translucency. In particular, when butyl alcohol is used as the dispersion medium, the translucency tends to increase. The light transmittance at a wavelength of 700 nm (measurement: cell thickness 10 mm) of a dispersion in which magnesium oxide fine particles having a D 50 in the range of 5 to 20 nm are dispersed in butyl alcohol is a dispersion having a magnesium oxide fine particle concentration of 5% by mass. And a dispersion having a magnesium oxide fine particle concentration of 1% by mass shows a value of 90% or more.

本発明の分散液において分散媒体として用いられる炭素原子数が3〜5の一価アルコールは、分岐を有していてもよい。一価アルコールとしては、プロピルアルコール、イソプロピルアルコール、ブチルアルコール、イソブチルアルコール、sec−ブチルアルコール、tert−ブチルアルコール、ペンチルアルコール、イソペンチルアルコールなどを用いることができる。これらは二種以上を併用してもよい。一価アルコールとして好ましいのは、イソプロピルアルコール及びブチルアルコール、そしてこれらの混合物である。   The monohydric alcohol having 3 to 5 carbon atoms used as a dispersion medium in the dispersion of the present invention may have a branch. As the monohydric alcohol, propyl alcohol, isopropyl alcohol, butyl alcohol, isobutyl alcohol, sec-butyl alcohol, tert-butyl alcohol, pentyl alcohol, isopentyl alcohol, and the like can be used. Two or more of these may be used in combination. Preferred as the monohydric alcohol are isopropyl alcohol and butyl alcohol, and mixtures thereof.

本発明の酸化マグネシウム微粒子分散液は、例えば、平均一次粒子径が5〜100nmの範囲にある酸化マグネシウム微粒子を、炭素原子数3〜5の一価アルコールに投入して得た混合物を、ビーズを用いた粉砕装置にて分散処理を行なうことからなる方法により製造することができる。   In the magnesium oxide fine particle dispersion of the present invention, for example, a mixture obtained by introducing magnesium oxide fine particles having an average primary particle diameter in the range of 5 to 100 nm into a monohydric alcohol having 3 to 5 carbon atoms is used as beads. It can be produced by a method comprising carrying out a dispersion treatment with the used pulverizer.

酸化マグネシウム微粒子としては、金属マグネシウム蒸気と酸素とを反応させる方法(気相酸化合成法)により製造した酸化マグネシウム微粒子を好適に用いることができる。気相酸化合成法により製造した酸化マグネシウム微粒子としては、宇部マテリアルズ(株)から販売されている100A(平均一次粒子径:10nm)や500A(平均一次粒子径:50nm)が知られている。酸化マグネシウム微粒子の平均一次粒子径は、電界放射型走査電子顕微鏡(FE−SEM)を用いて測定することができる。   As the magnesium oxide fine particles, magnesium oxide fine particles produced by a method of reacting metal magnesium vapor and oxygen (gas phase oxidation synthesis method) can be suitably used. As magnesium oxide fine particles produced by the vapor phase oxidation synthesis method, 100A (average primary particle size: 10 nm) and 500A (average primary particle size: 50 nm) sold by Ube Materials Co., Ltd. are known. The average primary particle diameter of the magnesium oxide fine particles can be measured using a field emission scanning electron microscope (FE-SEM).

酸化マグネシウム微粒子の分散処理に用いるビーズ(ボールともいう)は、平均粒子径が20〜300μmの範囲、好ましくは20〜150μmの範囲、特に好ましくは20〜100μmの範囲にある。ビーズの材料としては、酸化ジルコニウムなどの公知のセラミックス材料が挙げられる。   The beads (also called balls) used for the dispersion treatment of the magnesium oxide fine particles have an average particle diameter in the range of 20 to 300 μm, preferably in the range of 20 to 150 μm, particularly preferably in the range of 20 to 100 μm. Examples of the material for the beads include known ceramic materials such as zirconium oxide.

粉砕装置としては、転動ミル(回転ミル)、振動ミル、揺動ミル(ロッキングミル)、遊星ミル、CFミル(遠心流動化ミル)、アニュラーミル(転動攪拌ミル)などのミル容器を駆動することによってビーズにエネルギーを伝達するビーズミル、ミル容器内に充填したビーズをミル容器中に挿入されている攪拌機にて攪拌することによってビーズにエネルギーを伝達する攪拌ミルが挙げられる。これらの中で好ましいのは、揺動ミル及び攪拌ミルである。   As the grinding device, it drives mill containers such as rolling mill (rotating mill), vibration mill, rocking mill (rocking mill), planetary mill, CF mill (centrifugal fluidization mill), annular mill (rolling stirring mill), etc. Examples thereof include a bead mill that transmits energy to the beads and a stirring mill that transmits energy to the beads by stirring the beads filled in the mill container with a stirrer inserted in the mill container. Among these, a rocking mill and a stirring mill are preferable.

本発明の分散液は、酸化マグネシウム薄膜形成用の塗布液として有利に用いることができる。本発明の分散液を用いて形成した酸化マグネシウム薄膜は、膜厚の均一性が高い。特に、本発明の分散液を用いて形成した膜厚が500nm〜2μmの酸化マグネシウム薄膜は高い透明性を示すため、PDPの誘電体層の保護膜として有用である。本発明の分散液を用いて酸化マグネシウム薄膜を形成する方法としては、スピンコート法、スプレーコート法、スクリーン印刷法、グラビア印刷法、ディップ法、ドクタブレード法等の公知の方法を挙げることができる。   The dispersion liquid of the present invention can be advantageously used as a coating liquid for forming a magnesium oxide thin film. The magnesium oxide thin film formed using the dispersion liquid of the present invention has high film thickness uniformity. In particular, a magnesium oxide thin film having a film thickness of 500 nm to 2 μm formed using the dispersion of the present invention exhibits high transparency and is useful as a protective film for a dielectric layer of PDP. Examples of the method for forming a magnesium oxide thin film using the dispersion of the present invention include known methods such as a spin coating method, a spray coating method, a screen printing method, a gravure printing method, a dip method, and a doctor blade method. .

本発明の分散液はまた、粉体や液体に容易に混合分散することができるため、食品、医薬あるいは化粧品のpH調製剤、高分子安定剤、各種セラミックス材料の焼結助剤としても利用することができる。   Since the dispersion of the present invention can be easily mixed and dispersed in powders and liquids, it can also be used as a pH adjuster for food, medicine or cosmetics, a polymer stabilizer, and a sintering aid for various ceramic materials. be able to.

[実施例1]
平均一次粒子径が10nmの酸化マグネシウム微粒子(100A、宇部マテリアルズ(株)製)5質量部を、イソプロピルアルコール95質量部に投入して混合物を得た。次いで、その混合物を、攪拌ミル(攪拌機付きミル容器の容量:170mL、ウルトラアペックスミルUAM015、寿工業(株)製)を用いて、ビーズ:平均粒子径30μmの酸化ジルコニウム製ビーズ、ミル容器内のビーズ充填率:60体積%、攪拌機の周速:8.0m/秒、処理時間:105分の条件にて分散処理を行なって、酸化マグネシウム微粒子分散液を調製した。得られた酸化マグネシウム微粒子分散液の波長700nmの光の透過率を、セル厚10mmの条件で測定したことろ、63%であった。
得られた酸化マグネシウム微粒子分散液中の酸化マグネシウム微粒子の粒度分布を動的光散乱法によって下記の条件にて測定した。そのD10、D50、D90の測定結果及びD10/D90を表1に示す。
[Example 1]
5 parts by mass of magnesium oxide fine particles (100A, manufactured by Ube Materials Co., Ltd.) having an average primary particle diameter of 10 nm were added to 95 parts by mass of isopropyl alcohol to obtain a mixture. Then, the mixture was mixed with beads: beads of zirconium oxide having an average particle size of 30 μm, using a stirring mill (capacity of mill container with stirrer: 170 mL, Ultra Apex Mill UAM015, manufactured by Kotobuki Industries Co., Ltd.) Dispersion treatment was performed under the conditions of bead filling ratio: 60% by volume, stirrer peripheral speed: 8.0 m / second, treatment time: 105 minutes, to prepare a magnesium oxide fine particle dispersion. The transmittance of light having a wavelength of 700 nm of the obtained magnesium oxide fine particle dispersion was measured under the condition of a cell thickness of 10 mm, and was 63%.
The particle size distribution of the magnesium oxide fine particles in the obtained magnesium oxide fine particle dispersion was measured by the dynamic light scattering method under the following conditions. The measurement results of D 10 , D 50 and D 90 and D 10 / D 90 are shown in Table 1.

[粒度分布の測定条件]
酸化マグネシウム微粒子分散液を、酸化マグネシウム微粒子の濃度が3〜4質量%となるように分散媒体にて希釈し、超音波ホモジナイザー(S−150D、ブランソン製)にて、パワー強度8の条件で1分間分散処理を行なう。得られた希釈分散液中の酸化マグネシウム微粒子の粒度分布を、動的光散乱式粒度分析計(マイクロトラックUPA150、日機装製)を用いて、半導体レーザ(+3B)波長:780nm、3mWの条件にて測定する。測定は5回行い、その平均値を算出する。
[Measurement conditions of particle size distribution]
The magnesium oxide fine particle dispersion is diluted with a dispersion medium so that the concentration of the magnesium oxide fine particles is 3 to 4% by mass, and is 1 with an ultrasonic homogenizer (S-150D, manufactured by Branson) at a power intensity of 8 conditions. Disperse for a minute. Using a dynamic light scattering particle size analyzer (Microtrac UPA150, manufactured by Nikkiso), the particle size distribution of the magnesium oxide fine particles in the obtained diluted dispersion was measured under the conditions of a semiconductor laser (+ 3B) wavelength: 780 nm, 3 mW. taking measurement. The measurement is performed 5 times, and the average value is calculated.

[実施例2]
実施例1において、分散媒体をブチルアルコールとし、分散処理の条件を、処理時間:135分間とした以外は、実施例1と同様にして酸化マグネシウム微粒子分散液を調製した。得られた酸化マグネシウム微粒子分散液の波長700nmの光の透過率を、セル厚10mmの条件で測定したことろ、40%であった。
得られた酸化マグネシウム微粒子分散液中の酸化マグネシウム微粒子の粒度分布を前記の方法により測定した。そのD10、D50、D90の測定結果及びD10/D90を表1に示す。
[Example 2]
A magnesium oxide fine particle dispersion was prepared in the same manner as in Example 1 except that in Example 1, the dispersion medium was butyl alcohol, and the conditions for the dispersion treatment were treatment time: 135 minutes. The transmittance of light having a wavelength of 700 nm of the obtained magnesium oxide fine particle dispersion was measured under the condition of a cell thickness of 10 mm, and was 40%.
The particle size distribution of the magnesium oxide fine particles in the obtained magnesium oxide fine particle dispersion was measured by the method described above. The measurement results of D 10 , D 50 and D 90 and D 10 / D 90 are shown in Table 1.

[実施例3]
平均一次粒子径が10nmの酸化マグネシウム微粒子(100A、宇部マテリアルズ(株)製)5質量部を、イソプロピルアルコール95質量部に投入して混合物を得た。次いで、その混合物を、ロッキングミル(ミル容器の容量:100mL、RM−01、(株)セイワ技研製)を用いて、ビーズ:平均粒子径100μmの酸化ジルコニウム製ビーズ、ミル容器内のビーズ充填率:50体積%、ミル容器の振動速度:500rpm、処理時間:60分の条件にて分散処理を行なって、酸化マグネシウム微粒子分散液を調製した。
得られた酸化マグネシウム微粒子分散液中の酸化マグネシウム微粒子の粒度分布を前記の方法により測定した。そのD10、D50、D90の測定結果及びD10/D90を表1に示す。
[Example 3]
5 parts by mass of magnesium oxide fine particles (100A, manufactured by Ube Materials Co., Ltd.) having an average primary particle diameter of 10 nm were added to 95 parts by mass of isopropyl alcohol to obtain a mixture. Subsequently, the mixture was used for rocking mill (capacity of mill container: 100 mL, RM-01, manufactured by Seiwa Giken Co., Ltd.), beads: beads made of zirconium oxide having an average particle diameter of 100 μm, and bead filling ratio in the mill container. : Dispersion treatment was performed under the conditions of 50 volume%, mill container vibration speed: 500 rpm, treatment time: 60 minutes to prepare a magnesium oxide fine particle dispersion.
The particle size distribution of the magnesium oxide fine particles in the obtained magnesium oxide fine particle dispersion was measured by the method described above. The measurement results of D 10 , D 50 and D 90 and D 10 / D 90 are shown in Table 1.

[実施例4]
実施例1において、分散媒体をブチルアルコールとし、分散処理の条件を、処理時間:120分間とした以外は、実施例1と同様にして酸化マグネシウム微粒子分散液を調製した。
得られた酸化マグネシウム微粒子分散液中の酸化マグネシウム微粒子の粒度分布を前記の方法により測定した。そのD10、D50、D90の測定結果及びD10/D90を表1に示す。
[Example 4]
In Example 1, a magnesium oxide fine particle dispersion was prepared in the same manner as in Example 1 except that the dispersion medium was butyl alcohol and the conditions for the dispersion treatment were treatment time: 120 minutes.
The particle size distribution of the magnesium oxide fine particles in the obtained magnesium oxide fine particle dispersion was measured by the method described above. The measurement results of D 10 , D 50 and D 90 and D 10 / D 90 are shown in Table 1.

[実施例5]
実施例1において、酸化マグネシウム微粒子を平均一次粒子径が50nmの酸化マグネシウム微粒子(500A、宇部マテリアルズ(株)製)とし、分散処理の条件を、攪拌機の周速:14/秒、処理時間:105分間とした以外は、実施例1と同様にして酸化マグネシウム微粒子分散液を調製した。
得られた酸化マグネシウム微粒子分散液中の酸化マグネシウム微粒子の粒度分布を前記の方法により測定した。そのD10、D50、D90の測定結果及びD10/D90を表1に示す。
[Example 5]
In Example 1, the magnesium oxide fine particles are magnesium oxide fine particles having an average primary particle diameter of 50 nm (500A, manufactured by Ube Materials Co., Ltd.), and the dispersion treatment conditions are as follows: peripheral speed of stirrer: 14 / second, treatment time: A magnesium oxide fine particle dispersion was prepared in the same manner as in Example 1 except that the duration was 105 minutes.
The particle size distribution of the magnesium oxide fine particles in the obtained magnesium oxide fine particle dispersion was measured by the method described above. The measurement results of D 10 , D 50 and D 90 and D 10 / D 90 are shown in Table 1.

表1
────────────────────────────────────────
10509010/D90
(nm) (nm) (nm) (−)
────────────────────────────────────────
実施例1 9.0 11.6 17.0 0.53
実施例2 6.6 8.5 13.4 0.49
実施例3 8.0 10.1 16.4 0.49
実施例4 7.6 8.9 14.9 0.51
実施例5 34.7 53.9 189.2 0.18
────────────────────────────────────────
注)平均一次粒子径は、FE−SEMにて測定した値。
Table 1
────────────────────────────────────────
D 10 D 50 D 90 D 10 / D 90
(Nm) (nm) (nm) (-)
────────────────────────────────────────
Example 1 9.0 11.6 17.0 0.53
Example 2 6.6 8.5 13.4 0.49
Example 3 8.0 10.1 16.4 0.49
Example 4 7.6 8.9 14.9 0.51
Example 5 34.7 53.9 189.2 0.18
────────────────────────────────────────
Note) The average primary particle diameter is a value measured by FE-SEM.

[実施例6]
実施例2にて調製した酸化マグネシウム微粒子分散液を用いて、ガラス基板(サイズ:縦40mm×横40mm×厚さ0.5mm)上にスピンコート法により酸化マグネシウム膜を形成した。酸化マグネシウム膜は、酸化マグネシウム微粒子分散液1gをガラス基板の中心に滴下した後、ガラス基板をその中心を軸として1000rpmの回転速度で60秒、2000rpmの回転速度で20秒、3000rpmの回転速度で20秒の順で回転させる操作を5回行なって形成した。形成した酸化マグネシウム膜厚をガラス基板の中心から右端に15mm、中心から右端に5mm、中心から左端に5mm、中心から左端に15mmの位置にて反射分光膜厚計を用いて測定した。その結果を表2に示す。
[Example 6]
Using the magnesium oxide fine particle dispersion prepared in Example 2, a magnesium oxide film was formed on a glass substrate (size: length 40 mm × width 40 mm × thickness 0.5 mm) by spin coating. The magnesium oxide film is prepared by dropping 1 g of a magnesium oxide fine particle dispersion on the center of the glass substrate, and then rotating the glass substrate at the rotation speed of 1000 rpm for 60 seconds, the rotation speed of 2000 rpm for 20 seconds, and the rotation speed of 3000 rpm. It was formed by performing the operation of rotating in the order of 20 seconds 5 times. The formed magnesium oxide film thickness was measured using a reflection spectral film thickness meter at a position of 15 mm from the center of the glass substrate to the right end, 5 mm from the center to the right end, 5 mm from the center to the left end, and 15 mm from the center to the left end. The results are shown in Table 2.

表2
────────────────────────────────────────
中心から右端 中心から右端 中心から左端 中心から左端
に15mm に5mm に5mm に15mm
────────────────────────────────────────
酸化マグネシウム膜
の膜厚(nm) 1643 1561 1561 1539
────────────────────────────────────────
Table 2
────────────────────────────────────────
Center to right edge Center to right edge Center to left edge Center to left edge
15mm to 5mm to 5mm to 15mm
────────────────────────────────────────
Magnesium oxide film thickness (nm) 1643 1561 1561 1539
────────────────────────────────────────

表2に示すように、本発明の酸化マグネシウム微粒子分散液を用いることにより、均一な厚さの酸化マグネシウム膜を形成することができることが分かる。   As shown in Table 2, it can be seen that a magnesium oxide film having a uniform thickness can be formed by using the magnesium oxide fine particle dispersion of the present invention.

Claims (5)

炭素原子数3〜5の一価アルコール中に、酸化マグネシウム微粒子が0.05〜20質量%の範囲にて分散されてなり、動的光散乱法によって測定された酸化マグネシウム微粒子のD50が5〜100nmの範囲にある酸化マグネシウム微粒子分散液。 Magnesium oxide fine particles dispersed in a monohydric alcohol having 3 to 5 carbon atoms in the range of 0.05 to 20% by mass, and the D 50 of the magnesium oxide fine particles measured by the dynamic light scattering method is 5 Magnesium oxide fine particle dispersion in the range of ˜100 nm. 動的光散乱法によって測定された酸化マグネシウム微粒子のD50が5〜20nmの範囲にあり、D10/D90が0.4以上である請求項1に記載の酸化マグネシウム微粒子分散液。 D 50 of the magnesium oxide particles measured by dynamic light scattering method is in the range of 5 to 20 nm, the magnesium oxide particle dispersion according to claim 1 D 10 / D 90 is 0.4 or more. 動的光散乱法によって測定された酸化マグネシウム微粒子のD50が45〜90nmの範囲にあり、D10/D90が0.1以上である請求項1に記載の酸化マグネシウム微粒子分散液。 D 50 of the magnesium oxide particles measured by dynamic light scattering method is in the range of 45~90Nm, magnesium oxide fine particle dispersion according to claim 1 D 10 / D 90 is 0.1 or more. 一価アルコールが、イソプロピルアルコール又はブチルアルコール、もしくはこれらの混合物である請求項1に記載の酸化マグネシウム微粒子分散液。   The magnesium oxide fine particle dispersion according to claim 1, wherein the monohydric alcohol is isopropyl alcohol, butyl alcohol, or a mixture thereof. 平均一次粒子径が5〜100nmの範囲にある酸化マグネシウム微粒子と、炭素原子数3〜5の一価アルコールとを混合し、次いで、該混合物を平均粒子径が20〜300μmのビーズを用いた粉砕装置にて分散処理を行なうことからなる請求項1に記載の酸化マグネシウム微粒子分散液の製造方法。   Magnesium oxide fine particles having an average primary particle diameter in the range of 5 to 100 nm and monohydric alcohol having 3 to 5 carbon atoms are mixed, and then the mixture is pulverized using beads having an average particle diameter of 20 to 300 μm. The method for producing a magnesium oxide fine particle dispersion according to claim 1, wherein the dispersion treatment is performed in an apparatus.
JP2005044766A 2005-02-21 2005-02-21 Magnesium oxide fine particle dispersion Active JP4849807B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005044766A JP4849807B2 (en) 2005-02-21 2005-02-21 Magnesium oxide fine particle dispersion

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005044766A JP4849807B2 (en) 2005-02-21 2005-02-21 Magnesium oxide fine particle dispersion

Publications (2)

Publication Number Publication Date
JP2006225240A true JP2006225240A (en) 2006-08-31
JP4849807B2 JP4849807B2 (en) 2012-01-11

Family

ID=36986930

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005044766A Active JP4849807B2 (en) 2005-02-21 2005-02-21 Magnesium oxide fine particle dispersion

Country Status (1)

Country Link
JP (1) JP4849807B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007137695A (en) * 2005-11-15 2007-06-07 Ube Material Industries Ltd Magnesium oxide fine power dispersion and method for producing the same
JP2010015699A (en) * 2008-07-01 2010-01-21 Panasonic Corp Method of manufacturing plasma display panel, and method of manufacturing metal oxide paste for plasma display panel
WO2011007638A1 (en) * 2009-07-14 2011-01-20 堺化学工業株式会社 Magnesium oxide particles, method for producing same, heat dissipating filler, resin composition, heat dissipating grease, and heat dissipating coating composition
WO2012043564A1 (en) * 2010-09-28 2012-04-05 タテホ化学工業株式会社 Magnesium hydroxide microparticles, magnexium oxide microparticles, and method for producing each
JP2014114178A (en) * 2012-12-07 2014-06-26 Ube Material Industries Ltd Magnesium oxide fine particle fluid dispersion
WO2015146875A1 (en) * 2014-03-24 2015-10-01 宇部マテリアルズ株式会社 Fine magnesium oxide particle dispersion liquid and method for producing same

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58191759A (en) * 1982-05-06 1983-11-09 Shin Nippon Kagaku Kogyo Co Ltd Magnesia for coating and its composition
JPH11157832A (en) * 1997-11-28 1999-06-15 Tsuchiya Co Ltd Coating liquid for forming transparent magnesium oxide coating film
JP2000129161A (en) * 1998-10-21 2000-05-09 Mitsubishi Materials Corp Coating solution for fpd protecting film and its preparation
JP2006173129A (en) * 2004-12-16 2006-06-29 Lg Electronics Inc Dispersion solvent and manufacturing method of same

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58191759A (en) * 1982-05-06 1983-11-09 Shin Nippon Kagaku Kogyo Co Ltd Magnesia for coating and its composition
JPH11157832A (en) * 1997-11-28 1999-06-15 Tsuchiya Co Ltd Coating liquid for forming transparent magnesium oxide coating film
JP2000129161A (en) * 1998-10-21 2000-05-09 Mitsubishi Materials Corp Coating solution for fpd protecting film and its preparation
JP2006173129A (en) * 2004-12-16 2006-06-29 Lg Electronics Inc Dispersion solvent and manufacturing method of same

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007137695A (en) * 2005-11-15 2007-06-07 Ube Material Industries Ltd Magnesium oxide fine power dispersion and method for producing the same
JP2010015699A (en) * 2008-07-01 2010-01-21 Panasonic Corp Method of manufacturing plasma display panel, and method of manufacturing metal oxide paste for plasma display panel
WO2011007638A1 (en) * 2009-07-14 2011-01-20 堺化学工業株式会社 Magnesium oxide particles, method for producing same, heat dissipating filler, resin composition, heat dissipating grease, and heat dissipating coating composition
JP2011020870A (en) * 2009-07-14 2011-02-03 Sakai Chem Ind Co Ltd Magnesium oxide particle, method for producing the same, heat dissipating filler, resin composition, heat dissipating grease, and heat dissipating coating composition
KR101742555B1 (en) * 2009-07-14 2017-06-01 사까이가가꾸고오교가부시끼가이샤 Magnesium oxide particles, method for producing same, heat dissipating filler, resin composition, heat dissipating grease, and heat dissipating coating composition
EP2455339A4 (en) * 2009-07-14 2015-06-10 Sakai Chemical Industry Co Magnesium oxide particles, method for producing same, heat dissipating filler, resin composition, heat dissipating grease, and heat dissipating coating composition
CN102471082A (en) * 2009-07-14 2012-05-23 堺化学工业株式会社 Magnesium oxide particles, method for producing same, heat dissipating filler, resin composition, heat dissipating grease, and heat dissipating coating composition
TWI481563B (en) * 2009-07-14 2015-04-21 Sakai Chemical Industry Co Magnesium oxide particles, a method for producing the same, a heat-dissipating filler, a resin composition, a heat-dissipating grease, and a heat-dissipating paint composition
KR101495777B1 (en) 2010-09-28 2015-02-25 다테호 가가쿠 고교 가부시키가이샤 Magnesium hydroxide microparticles, magnesium oxide microparticles, and method for producing each
JP2012072004A (en) * 2010-09-28 2012-04-12 Tateho Chemical Industries Co Ltd Magnesium hydroxide microparticle, magnesium oxide microparticle, and method for producing each microparticle
WO2012043564A1 (en) * 2010-09-28 2012-04-05 タテホ化学工業株式会社 Magnesium hydroxide microparticles, magnexium oxide microparticles, and method for producing each
JP2014114178A (en) * 2012-12-07 2014-06-26 Ube Material Industries Ltd Magnesium oxide fine particle fluid dispersion
WO2015146875A1 (en) * 2014-03-24 2015-10-01 宇部マテリアルズ株式会社 Fine magnesium oxide particle dispersion liquid and method for producing same
CN106163988A (en) * 2014-03-24 2016-11-23 宇部材料工业株式会社 The sub-dispersion liquid of magnesium oxide particle and manufacture method thereof
KR20160136395A (en) 2014-03-24 2016-11-29 우베 마테리알즈 가부시키가이샤 Fine magnesium oxide particle dispersion liquid and method for producing same
JPWO2015146875A1 (en) * 2014-03-24 2017-04-13 宇部マテリアルズ株式会社 Magnesium oxide fine particle dispersion and method for producing the same
US10030150B2 (en) 2014-03-24 2018-07-24 Ube Material Industries, Ltd. Fine magnesium oxide particle dispersion liquid and method for producing same

Also Published As

Publication number Publication date
JP4849807B2 (en) 2012-01-11

Similar Documents

Publication Publication Date Title
JP4611057B2 (en) Magnesium oxide fine particle dispersion for forming dielectric layer protective film of AC type plasma display panel
JP4849807B2 (en) Magnesium oxide fine particle dispersion
JP2022023164A (en) Metal powder atomization manufacturing processes
TWI391329B (en) A method for producing tungsten trioxide powder for photocatalyst, tungsten trioxide powder for photocatalyst and photocatalyst product
JP5870041B2 (en) Flaked mesoporous granules and method for producing the same
Bagga et al. Laser assisted synthesis of carbon nanoparticles with controlled viscosities for printing applications
JP4918790B2 (en) Method for producing transparent conductive film, transparent conductive film and coating solution
JP2007217258A (en) Carbon nanoparticle dispersion and its production method, and core/shell type carbon nanoparticle and its production method
JP2007197296A (en) Dispersion of metal oxide fine particle and its manufacturing method
JP2014094881A (en) Method for manufacturing vanadium dioxide particles
KR101735980B1 (en) Method for producing aluminum flake paste
Tulli et al. Photocatalytic efficiency tuning by the surface roughness of TiO2 coatings on glass prepared by the doctor blade method
Habib et al. Synthesis of silver nanoparticles by atmospheric pressure plasma jet
Taden et al. Inorganic films from three different phosphors via a liquid coating route from inverse miniemulsions
Ye et al. Synthesis and infrared emissivity study of collagen-g-PMMA/Ag@ TiO2 composite
Tahara et al. Low-energy bead-milling dispersions of rod-type titania nanoparticles and their optical properties
JP4914054B2 (en) Magnesium oxide fine particle dispersion and method for producing the same
JP5446052B2 (en) Zinc oxide ultrafine particle dispersion solution, method for producing the zinc oxide ultrafine particle dispersion solution, and zinc oxide thin film
Shabalina et al. Ag/SiOx nanocomposite powders synthesized from colloids obtained by pulsed laser ablation
WO2014098163A1 (en) Core-shell-particle production method, and hollow-particle production method
JP5025541B2 (en) Magnesium oxide thin film and method for producing the same
JP2008222496A (en) Highly dispersible strontium carbonate fine powder
WO2020110183A1 (en) Surface-modified barium titanate particle material, barium titanate-containing resin composition, and barium titanate dispersion
JP2007070141A (en) Tin-containing indium oxide nanoparticle, its dispersed solution, and its production method
Hirasawa et al. Synthesis of size-selected TiOx nanoparticles

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070808

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090824

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101022

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101220

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110701

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110930

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111018

R150 Certificate of patent or registration of utility model

Ref document number: 4849807

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141028

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250