JP2007136693A - Extruded foam of polyhydroxyalkanoate resin and its manufacturing method - Google Patents

Extruded foam of polyhydroxyalkanoate resin and its manufacturing method Download PDF

Info

Publication number
JP2007136693A
JP2007136693A JP2005329559A JP2005329559A JP2007136693A JP 2007136693 A JP2007136693 A JP 2007136693A JP 2005329559 A JP2005329559 A JP 2005329559A JP 2005329559 A JP2005329559 A JP 2005329559A JP 2007136693 A JP2007136693 A JP 2007136693A
Authority
JP
Japan
Prior art keywords
p3ha
extruded foam
resin
foam
extruded
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005329559A
Other languages
Japanese (ja)
Inventor
Fuminobu Hirose
文信 廣瀬
Toshio Miyagawa
登志夫 宮川
Kenichi Senda
健一 千田
Shinichi Fukunaga
真一 福永
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kaneka Corp
Original Assignee
Kaneka Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kaneka Corp filed Critical Kaneka Corp
Priority to JP2005329559A priority Critical patent/JP2007136693A/en
Publication of JP2007136693A publication Critical patent/JP2007136693A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/92Measuring, controlling or regulating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C2948/00Indexing scheme relating to extrusion moulding
    • B29C2948/92Measuring, controlling or regulating
    • B29C2948/92504Controlled parameter
    • B29C2948/92704Temperature
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C2948/00Indexing scheme relating to extrusion moulding
    • B29C2948/92Measuring, controlling or regulating
    • B29C2948/92819Location or phase of control
    • B29C2948/92857Extrusion unit
    • B29C2948/92876Feeding, melting, plasticising or pumping zones, e.g. the melt itself
    • B29C2948/92895Barrel or housing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C2948/00Indexing scheme relating to extrusion moulding
    • B29C2948/92Measuring, controlling or regulating
    • B29C2948/92819Location or phase of control
    • B29C2948/92857Extrusion unit
    • B29C2948/92904Die; Nozzle zone

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Biological Depolymerization Polymers (AREA)
  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)
  • Extrusion Moulding Of Plastics Or The Like (AREA)
  • Molding Of Porous Articles (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an extruded foam of a polyhydroxyalkanoate resin excellent in environmental compatibility and having biodegrability, and its stable manufacturing method. <P>SOLUTION: A volatile foaming agent is melted to be kneaded with a resin composition (A), which is based on a copolymer comprising at least one kind of a unit represented by the formula (1): [-O-CHR-CH<SB>2</SB>-CO-] (wherein R is an alkyl group represented by C<SB>n</SB>H<SB>2n+1</SB>wherein n is 1-15) [Hereinbelow, referred to as poly (3-hydroxyalkanoate) short for P3HA], to prepare a mixture. Immidiately after the mixture is extruded to a low pressure region through a molding die adjusted to a temperature from 80°C to the melting point of the mixture + 20°C and the extrudate is cooled so that the surface temperature thereof becomes below 80°C to manufacture the extruded foam of the P3HA resin. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

植物由来で、生分解性を有するポリヒドロキシアルカノエート樹脂押出発泡体の製造方法および該製造方法により得られる押出発泡体に関する。   The present invention relates to a method for producing a polyhydroxyalkanoate resin extruded foam derived from a plant and having biodegradability, and an extruded foam obtained by the production method.

昨今、プラスチックを使用した、シート、フィルム、繊維、射出成型品等が国内外で製品化されているが、プラスチック廃棄物の中でも包装容器、緩衝材、クッション材等に多量に用いられている発泡プラスチックは嵩高いために大きな社会問題となっており、その解決が望まれている。このため、生分解性を有するプラスチック発泡体の研究が盛んに行われており、これまで脂肪族ポリエステル系樹脂やデンプンとプラスチックの混合樹脂等の押出発泡体やバッチ式で得られる発泡粒子の検討がなされている。   In recent years, plastic, sheets, films, fibers, injection-molded products, etc., have been commercialized both in Japan and overseas, but foam used in packaging containers, cushioning materials, cushioning materials, etc. in plastic waste. Since plastic is bulky, it has become a big social problem, and its solution is desired. For this reason, research on biodegradable plastic foams has been actively conducted, and so far, investigation of extruded foams such as aliphatic polyester resins and mixed resins of starch and plastic, and foamed particles obtained in batch mode. Has been made.

生分解性の押出発泡体に関して、従来検討されている内容としては石油由来の原料から合成して得られた生分解性の脂肪族ポリエステル樹脂を、発泡性を改良するためジイソシアナート反応させ高分子量化し得られる押出発泡体(特許文献1)や、増粘剤などの添加などにより特定の溶融粘度を有することに特徴を有するポリ乳酸系樹脂の押出発泡体(特許文献2〜4)、発泡剤の種類によりポリ乳酸系樹脂や脂肪族−芳香族ポリエステル系樹脂を適正粘度に調整して得られる押出発泡体(特許文献5〜10)がある。   Regarding the biodegradable extruded foam, the content that has been studied in the past is that a biodegradable aliphatic polyester resin obtained by synthesizing from petroleum-derived raw materials is reacted with a diisocyanate to improve foamability. Extruded foam obtained by molecular weight (Patent Document 1), Polylactic acid resin extruded foam characterized by having a specific melt viscosity by adding a thickener or the like (Patent Documents 2 to 4), foaming There are extruded foams (Patent Documents 5 to 10) obtained by adjusting a polylactic acid resin or an aliphatic-aromatic polyester resin to an appropriate viscosity depending on the type of agent.

ポリエステル押出発泡体の製造方法については、ポリエチレンテレフタレートなどの芳香族を分子中に含む熱可塑性ポリエステルの押出発泡体について従来検討がなされており、例えば特定の粘度範囲を有する発泡体を急冷する押出発泡方法について報告されている(特許文献11)。特許文献11は圧力開放した後に押出発泡したポリエステルを、そのガラス転移温度以下まで急冷、結晶化を抑制して構造体を製造する方法である。   As for a method for producing a polyester extruded foam, a thermoplastic polyester extruded foam containing an aromatic molecule such as polyethylene terephthalate has been conventionally studied. For example, an extruded foam that rapidly cools a foam having a specific viscosity range. A method has been reported (Patent Document 11). Patent Document 11 is a method for producing a structure by rapidly cooling a polyester that has been extruded and foamed after releasing the pressure to a temperature below its glass transition temperature and suppressing crystallization.

一方、微生物から生産されるP3HA樹脂の押出発泡体について、特許文献12において検討がなされている。   On the other hand, Patent Document 12 discusses an extruded foam of P3HA resin produced from microorganisms.

特許文献12には、P3HA樹脂においても特定の溶融粘度、非ハロゲン系発泡剤の使用により押出発泡体を作成していることが記載されており、P3HAの一種であるポリ(3−ヒドロキシブチレート−コ−3−ヒドロキシヘキサノエート)(以下、PHBHと称す場合がある)を使用し、発泡剤として炭酸ガス、ジメチルエーテル、炭化水素を使用し、発泡体が得られることが開示されている。しかし、P3HAは一旦溶融すると、遅い結晶化のため、揮発性発泡剤が殆ど発泡に寄与せず(殆ど気泡を形成せず)に気化するため、吐出物は若干気泡の混じった外観不良の低発泡体となったり、気泡形成して発泡したとしても膨らんだ膜が固化せず、収縮し、外観不良の発泡体となってしまうという問題があった。また更にP3HA樹脂の特徴として、熱分解が挙げられる。融点以上の温度では少なからず熱分解が生じることがあり、押出安定性における問題となっている。このように、発泡体を得るうえで、外観美麗なP3HA押出発泡体を安定的に得る方法が望まれていた。   Patent Document 12 describes that an extruded foam is prepared by using a specific melt viscosity and non-halogen-based foaming agent even in P3HA resin. Poly (3-hydroxybutyrate) which is a kind of P3HA -Co-3-hydroxyhexanoate) (hereinafter may be referred to as PHBH), and carbon dioxide, dimethyl ether, and hydrocarbon are used as a foaming agent, and it is disclosed that a foam can be obtained. However, once the P3HA is melted, the volatile foaming agent hardly contributes to foaming (forms almost no bubbles) because of slow crystallization, and the ejected matter has a low appearance defect slightly mixed with bubbles. Even if foamed or foamed and foamed, the swelled film did not solidify and contracted, resulting in a foam with poor appearance. Furthermore, thermal decomposition is a characteristic of the P3HA resin. At temperatures above the melting point, thermal decomposition may occur, which is a problem in extrusion stability. Thus, in order to obtain a foam, a method for stably obtaining a P3HA extruded foam having a beautiful appearance has been desired.

また、一方、連続気泡率の高い押出発泡体の開発も用途の多様さから望まれている。例えば、連続気泡率の高い押出発泡体を一定長に切断したものを、通気性を有する又は有さない袋状物(好ましくは生分解性を有する袋)に充填することで、形状を自由に変化させることが可能なバラ緩衝材とできる。バラ緩衝材はクッション材、隙間部分に形状を自由に変えて挿入できる緩衝材、一方では吸音材等で優れた性能を発揮でき、また、徐放性の薬剤を混合するなどして薬剤徐放性制御粒子としたり、細胞を培養するための担体として利用できる可能性もあるためその開発が望まれている。
特開平10−152572号公報 特開2000−7815号公報 特開2000−7816号公報 特開2003−20355号公報 特開2003−35924号公報 特開2003−103595号公報 特開2003−261704号公報 特開2003−301066号公報 特開2004−58352号公報 特開2004−307662号公報 特開平6−145404号公報 特開2003−327737号公報
On the other hand, the development of an extruded foam having a high open cell ratio is also desired due to the variety of applications. For example, an extruded foam with a high open cell ratio cut to a certain length is filled into a bag-like product (preferably a biodegradable bag) with or without breathability so that the shape can be freely set. It can be a rose cushioning material that can be changed. The rose cushioning material is a cushioning material, a cushioning material that can be inserted into the gaps freely, and on the other hand, it can exhibit excellent performance with a sound absorbing material, etc. Development is desired because it may be used as a sex control particle or as a carrier for culturing cells.
Japanese Patent Laid-Open No. 10-152572 JP 2000-7815 A Japanese Patent Laid-Open No. 2000-7816 JP 2003-20355 A JP 2003-35924 A JP 2003-103595 A JP 2003-261704 A Japanese Patent Laid-Open No. 2003-301066 JP 2004-58352 A Japanese Patent Laid-Open No. 2004-307661 JP-A-6-145404 JP 2003-327737 A

そこで、本発明の課題は、外観美麗な発泡体で連続気泡率の高い、植物由来の環境適合性に優れた生分解性の樹脂押出発泡体の安定な製造方法を提供することである。   Then, the subject of this invention is providing the stable manufacturing method of the biodegradable resin extrusion foam excellent in the environmental compatibility derived from a plant with the open-cell ratio with high appearance and a high open cell ratio.

本発明者らは上記課題を解決するために鋭意研究を重ねた結果、P3HAを含んでなる樹脂組成物に、揮発性発泡剤を溶融混練して混合物を作製し、該混合物を成形ダイを通じて低圧領域に押し出した直後、吐出物の表面温度が80℃未満になるように冷媒で急冷することで、樹脂組成物の結晶化を促進し、樹脂組成物からのガス抜けを抑制でき、外観美麗な発泡体が得られることを見出し、更にイソシアネート化合物等の増粘効果を有する物質を混合した場合、気泡膜強度が向上することで急冷による外観美麗化は顕著になることを発見し本発明を完成するに至った。   As a result of intensive studies to solve the above problems, the inventors of the present invention melted and kneaded a volatile foaming agent into a resin composition containing P3HA to produce a mixture, and the mixture was subjected to low pressure through a molding die. Immediately after being extruded into the region, by quenching with a refrigerant so that the surface temperature of the discharged product becomes less than 80 ° C., crystallization of the resin composition can be promoted, gas escape from the resin composition can be suppressed, and the appearance is beautiful. Discovered that a foam can be obtained, and further discovered that when a substance having a thickening effect, such as an isocyanate compound, is mixed, the appearance of the foam is significantly improved by improving the bubble film strength, and the present invention is completed. It came to do.

即ち、本発明の第一は、微生物から生産される式(1)
[−O−CHR−CH−CO−] (1)
(ここに、RはC2n+1で表されるアルキル基で、n=1以上15以下の整数である。)
で示される一種以上の単位からなる共重合体(以下、ポリ(3−ヒドロキシアルカノエート):略称P3HA)を含んでなる樹脂組成物(A)に、揮発性発泡剤を溶融混練して混合物を作製し、該混合物を80℃以上、融点+20℃以下、に調整された成形ダイを通じて低圧領域に押し出し、吐出物の表面温度を80℃未満になるように冷却することを特徴とするP3HA樹脂押出発泡体の製造方法に関する。
但し、樹脂組成物(A)は式(2)の関係を満たす。
η>500Pa・s (2)
η:樹脂組成物(A)の融点+20℃、剪断速度122sec−1での溶融粘度
That is, the first of the present invention is a formula (1) produced from a microorganism.
[—O—CHR—CH 2 —CO—] (1)
(Here, R is an alkyl group represented by C n H 2n + 1 , and n = 1 or more and 15 or less.)
A volatile foaming agent is melt-kneaded with a resin composition (A) containing a copolymer (hereinafter, poly (3-hydroxyalkanoate): abbreviated as P3HA) composed of one or more units represented by the following formula: P3HA resin extrusion characterized in that the mixture is extruded and extruded to a low pressure region through a molding die adjusted to 80 ° C. or higher and melting point + 20 ° C. or lower, and the surface temperature of the discharged product is cooled to less than 80 ° C. The present invention relates to a method for producing a foam.
However, the resin composition (A) satisfies the relationship of the formula (2).
η> 500 Pa · s (2)
η: Melting viscosity at the melting point of the resin composition (A) + 20 ° C. and a shear rate of 122 sec −1

好ましい実施態様としては、
(1)樹脂組成物(A)が、P3HAと増粘効果を示す物質を含んでなることを特徴とする、
(2)前記増粘効果を示す物質が、イソシアネート化合物であることを特徴とする、
(3)樹脂組成物(A)が、脂肪族アミド系化合物を含んでなることを特徴とする、
(4)P3HAが、ポリ(3−ヒドロキシブチレート−コ−3−ヒドロキシヘキサノエート)である、
(5)P3HAが、ポリ(3−ヒドロキシブチレート−コ−3−ヒドロキシヘキサノエート)であり、その共重合成分の組成が、3−ヒドロキシヘキサノエートが1mol%以上20mol%以下であることを特徴とする、
(6)揮発性発泡剤が、二酸化炭素、プロパン、イソブタン、ノルマルブタン、ジメチルエーテル、ジエチルエーテル、メチルエチルエーテルからなる群より選ばれる1種以上であることを特徴とする、
前記記載のP3HA樹脂押出発泡体の製造方法に関する。
As a preferred embodiment,
(1) The resin composition (A) comprises P3HA and a substance showing a thickening effect,
(2) The substance showing the thickening effect is an isocyanate compound,
(3) The resin composition (A) comprises an aliphatic amide compound,
(4) P3HA is poly (3-hydroxybutyrate-co-3-hydroxyhexanoate),
(5) P3HA is poly (3-hydroxybutyrate-co-3-hydroxyhexanoate), and the composition of the copolymer component is such that 3-hydroxyhexanoate is 1 mol% or more and 20 mol% or less. Characterized by the
(6) The volatile blowing agent is one or more selected from the group consisting of carbon dioxide, propane, isobutane, normal butane, dimethyl ether, diethyl ether, and methyl ethyl ether.
The present invention relates to a method for producing the P3HA resin extruded foam described above.

本発明の第2は、前記記載の押出発泡体の製造方法により得られることを特徴とするP3HA樹脂押出発泡体に関し、好ましい態様としては、連続気泡率が70%以上であることを特徴とする前記記載のP3HA樹脂押出発泡体に関する。   A second aspect of the present invention relates to a P3HA resin extruded foam characterized by being obtained by the method for producing an extruded foam described above, and as a preferred embodiment, the open cell ratio is 70% or more. It relates to the P3HA resin extruded foam described above.

本発明においては押出発泡用樹脂として、P3HAを採用していることから、本発明の製造方法により耐熱性、耐水性に優れた、植物由来の環境適合性に優れた樹脂押出発泡体を外観美麗でかつ安定的に得ることが出来る。また、廃棄時に好気性、嫌気性何れの環境下でも微生物などの作用により分解し、地球上の炭素循環系に還る発泡体が得られる。さらには地球上の二酸化炭素を積極的に固定化して得られる植物由来の発泡体であり地球温暖化防止が期待できる。   In the present invention, since P3HA is adopted as the extrusion foaming resin, a resin extruded foam having excellent heat resistance and water resistance and excellent environmental compatibility derived from plants is produced by the production method of the present invention. And can be obtained stably. In addition, a foam can be obtained that decomposes by the action of microorganisms and returns to the earth's carbon circulation system in both aerobic and anaerobic environments when discarded. Furthermore, it is a plant-derived foam obtained by positively fixing carbon dioxide on the earth and is expected to prevent global warming.

以下、本発明につき、さらに詳細に説明する。   Hereinafter, the present invention will be described in more detail.

本発明のポリ(3−ヒドロキシアルカノエート)とは、式(1)で示される一種以上の3−ヒドロキシアルカノエートよりなる単位からなる共重合体である。   The poly (3-hydroxyalkanoate) of the present invention is a copolymer comprising units composed of one or more 3-hydroxyalkanoates represented by the formula (1).

[−O−CHR−CH−CO−] (1)
ここで、RはC2n+1で表されるアルキル基で、nは1以上15以下の整数である。
[—O—CHR—CH 2 —CO—] (1)
Here, R is an alkyl group represented by C n H 2n + 1 , and n is an integer of 1 to 15.

本発明におけるP3HAとしては、3−ヒドロキシアルカノエートのホモポリマー、または2種以上の組み合わせからなる共重合体、つまりジ−コポリマー、トリ−コポリマー、テトラ−コポリマーなど、またはこれらの2種以上のブレンド物が挙げられ、中でもn=1の3−ヒドロキシブチレート、n=2の3−ヒドロキシバリレート、n=3の3−ヒドロキシヘキサノエート、n=5の3−ヒドロキシオクタノエート、n=15の3−ヒドロキシオクタデカノエートのホモポリマー、及びこれら3−ヒドロキシアルカノエート単位2種以上の組み合わせからなるジ−コポリマー、トリ−コポリマー等の共重合体、及びこれらのブレンド物が好ましく使用できる。中でも、n=1の3−ヒドロキシブチレートとn=3の3−ヒドロキシヘキサノエートの共重合体であるポリ(3−ヒドロキシブチレート−コ−3−ヒドロキシヘキサノエート)が好ましく、その共重合成分の組成としては、3−ヒドロキシヘキサノエートが1mol%以上20mol%以下であるのが特に好ましい。3−ヒドロキシヘキサノエートが当該範囲内にあると高温に加熱せずとも加工できるため、加熱加工時の熱分解による分子量低下を抑制出来る傾向にある。   As P3HA in the present invention, a homopolymer of 3-hydroxyalkanoate, or a copolymer composed of a combination of two or more types, that is, a di-copolymer, a tri-copolymer, a tetra-copolymer, etc., or a blend of two or more thereof N = 1 3-hydroxybutyrate, n = 2 3-hydroxyvalerate, n = 3 3-hydroxyhexanoate, n = 5 3-hydroxyoctanoate, n = 15 homopolymers of 3-hydroxyoctadecanoate, and copolymers such as di-copolymers and tri-copolymers composed of combinations of two or more of these 3-hydroxyalkanoate units, and blends thereof can be preferably used. . Among them, poly (3-hydroxybutyrate-co-3-hydroxyhexanoate) which is a copolymer of 3-hydroxybutyrate with n = 1 and 3-hydroxyhexanoate with n = 3 is preferable. As a composition of a polymerization component, it is especially preferable that 3-hydroxyhexanoate is 1 mol% or more and 20 mol% or less. If 3-hydroxyhexanoate is within the range, it can be processed without being heated to a high temperature, so that a decrease in molecular weight due to thermal decomposition during heat processing tends to be suppressed.

本発明のP3HAは、微生物から生産されたものが使用される。たとえば、P3HAの1つであるポリ(3−ヒドロキシブチレート−コ−3−ヒドロキシヘキサノエート)は、微生物として、Alcaligenes eutrophusにAeromonas caviae由来のPHA合成酵素遺伝子を導入したAlcaligenes eutrophus AC32を用いて原料、培養条件を適宜調整してJ.Bacteriol., 179, 4821(1997)記載の方法等で得ることが可能である。   The P3HA of the present invention is produced from microorganisms. For example, poly (3-hydroxybutyrate-co-3-hydroxyhexanoate), one of P3HA, uses Alcaligenes eutrophus AC32 in which a PHA synthase gene derived from Aeromonas caviae is introduced into Alcaligenes eutrophus as a microorganism. It can be obtained by the method described in J. Bacteriol., 179, 4821 (1997) or the like by appropriately adjusting the raw materials and culture conditions.

本発明のP3HAを含んでなる樹脂組成物は、樹脂組成物(A)の融点+20℃、剪断速度122sec−1での溶融粘度(η)が下記式(2)を充足する。
η>500Pa・s (2)
このような溶融粘度を有することにより安定的に発泡体を得ることが出来る。
In the resin composition comprising P3HA of the present invention, the melt viscosity (η) at the melting point + 20 ° C. and the shear rate of 122 sec −1 of the resin composition (A) satisfies the following formula (2).
η> 500 Pa · s (2)
A foam can be stably obtained by having such melt viscosity.

P3HAの重量平均分子量(Mw)の下限は、好ましくは5万である。重量平均分子量が5万未満の場合、加熱加工時の粘度変化が急激であり、また、発泡時に必要な溶融粘度を十分確保できない場合があるため、安定して発泡体が得られない傾向がある。但し、後述するイソシアネート化合物等の増粘効果を示す物質を添加することで発泡体を得るのに十分な増粘効果が得られる場合は平均分子量が5万未満であっても問題ない。前記重量平均分子量は、クロロホルム溶液を用いたゲルパーミエーションクロマトグラフィー(GPC)測定でのポリスチレン換算分子量分布測定より得られる重量平均分子量(Mw)をいう。   The lower limit of the weight average molecular weight (Mw) of P3HA is preferably 50,000. When the weight average molecular weight is less than 50,000, the viscosity change during heat processing is rapid, and the melt viscosity necessary for foaming may not be sufficiently secured, so there is a tendency that a foam cannot be stably obtained. . However, there is no problem even if the average molecular weight is less than 50,000 when a thickening effect sufficient to obtain a foam can be obtained by adding a substance showing a thickening effect such as an isocyanate compound described later. The said weight average molecular weight says the weight average molecular weight (Mw) obtained from the polystyrene conversion molecular weight distribution measurement by the gel permeation chromatography (GPC) measurement which used the chloroform solution.

本発明におけるP3HAには増粘、発泡直後の収縮防止、発泡セル膜の強度向上などの効果を示すことから、増粘効果を示す物質(以下、増粘剤と称す場合がある)を添加することが好ましい。特に好ましい増粘効果を示す物質としてはイソシアネート化合物が挙げられる。   In the present invention, P3HA has effects such as thickening, shrinkage prevention immediately after foaming, and improvement in strength of the foamed cell membrane, and therefore a substance exhibiting a thickening effect (hereinafter sometimes referred to as a thickener) is added. It is preferable. An isocyanate compound is mentioned as a substance which shows a particularly preferable thickening effect.

本発明のイソシアネート化合物としては、1分子中にイソシアネート基を2個以上有するものであり、種類としては芳香族イソシアネート、脂環族イソシアネート、脂肪族イソシアネート等が挙げられる。更に具体的には、芳香族イソシアネートとしては、トリレン、ジフェニルメタン、ナフチレン、トリジン、キシレン、トリフェニルメタンを骨格とするイソシアネート化合物、脂環族イソシアネートとしては、イソホロン、水素化ジフェニルメタンを骨格とするイソシアネート化合物、脂肪族イソシアネートとしては、ヘキサメチレン、リジンを骨格とするイソシアネート化合物等が挙げられる。更に、これらイソシアネート化合物を2種類以上組み合わせたものも使用可能である。これらの中で、汎用性、取扱い性、耐候性等から芳香族イソシアネートが好ましく、更にはトリレン、ジフェニルメタンが、特にはジフェニルメタンのポリイソシアネートが好ましく使用される。   As an isocyanate compound of this invention, it has 2 or more isocyanate groups in 1 molecule, Aromatic isocyanate, alicyclic isocyanate, aliphatic isocyanate etc. are mentioned as a kind. More specifically, the aromatic isocyanate is an isocyanate compound having a skeleton of tolylene, diphenylmethane, naphthylene, tolidine, xylene, triphenylmethane, and the alicyclic isocyanate is an isocyanate compound having a skeleton of isophorone or hydrogenated diphenylmethane. Examples of the aliphatic isocyanate include an isocyanate compound having a skeleton of hexamethylene and lysine. Further, a combination of two or more of these isocyanate compounds can be used. Of these, aromatic isocyanates are preferred from the viewpoints of versatility, handleability, weather resistance, etc., and tolylene and diphenylmethane are particularly preferred, and polyisocyanates of diphenylmethane are particularly preferred.

また、イソシアネート化合物を使用する場合の使用量は、P3HA100重量部に対して、0.1重量部以上添加することが好ましく、当該範囲であるとイソシアネート未使用の場合に対するセル膜強度向上の効果が認められる。一方、上限は10重量部であることが好ましく、10重量部を超えるとイソシアネート化合物による増粘効果が著しく、押出時の剪断発熱が激しくなり押出時の製造安定性を落としてしまう場合がある。更に好ましくは0.3重量部以上8重量部以下が品質上、又、実用上好ましい使用量である。   In addition, when the isocyanate compound is used, the amount used is preferably 0.1 parts by weight or more with respect to 100 parts by weight of P3HA. Is recognized. On the other hand, the upper limit is preferably 10 parts by weight, and if it exceeds 10 parts by weight, the thickening effect by the isocyanate compound is remarkable, and shear heat generation at the time of extrusion becomes violent, which may deteriorate the production stability at the time of extrusion. More preferably, 0.3 to 8 parts by weight is a preferable use amount in terms of quality and practical use.

本発明におけるP3HAには押出機内部での結晶固化防止、及び発泡後の固化に影響を与えない若しくは促進することから、さらに脂肪酸アミド系化合物を添加することが好ましい。   In the present invention, it is preferable to add a fatty acid amide compound to P3HA because it does not affect or accelerates the solidification of the crystal inside the extruder and the solidification after foaming.

脂肪酸アミド系化合物の分類としては、飽和脂肪酸や不飽和脂肪酸のモノアミド(R−CONH)、その置換アミド(R−CONH−R’)、ビスアミド(R−CONH−・・・−NHCO−R’)、メチロールアミド(R−CONHCHOH)、エステルアミド(R−CONH−・・・−OCO−)、脂肪酸アミドエチレンオキサイド化合物(R−CONH−(CHO)−H)があり、具体的には、ラウリン酸アミド、ミリスチン酸アミド、パルミチン酸アミド、ステアリン酸アミド、ベヘニン酸アミド、オレイン酸アミド、エルカ酸アミド、リシノール酸アミド、N−オレイルパルミトアミド、N−ステアリルエルカアミドなどが挙げられる。脂肪酸アミド系化合物が押出安定性を向上させたり発泡後の固化を阻害しない、若しくは促進する理由は定かではないが、押出機内部では内外滑剤のような作用、さらには結晶核剤的効果を示すためと考えられる。押出発泡の押出機では、発泡剤添加後に適正粘度および結晶化を促進するための冷却シリンダーやダイス部分があるが、脂肪酸アミド系化合物がここで発生しやすいと考えられる結晶核の押出機への付着を防止すること(外滑剤的作用)で、押出機内部での結晶成長(肥大化)が抑制され、押出安定性は向上していると考えられる。脂肪酸アミド系化合物の添加量については、使用する脂肪酸アミド系化合物の種類にもよるが、通常はP3HA樹脂100重量部に対し0.01重量部以上50重量部以下添加することが好ましい。添加量が0.01重量部未満であると押出安定効果が明確でない場合があり、50重量部より多い場合は樹脂への分散不良が起きて均一な押出発泡体が得られない場合がある。 As the classification of fatty acid amide compounds, mono-amides (R-CONH 2 ) of saturated fatty acids and unsaturated fatty acids, substituted amides (R-CONH-R ′), bisamides (R-CONH-... -NHCO-R ′) ), Methylolamide (R—CONHCH 2 OH), ester amide (R—CONH—... —OCO—), fatty acid amide ethylene oxide compound (R—CONH— (CH 2 O) n —H), specific Specifically, lauric acid amide, myristic acid amide, palmitic acid amide, stearic acid amide, behenic acid amide, oleic acid amide, erucic acid amide, ricinoleic acid amide, N-oleyl palmitoamide, N-stearyl erucamide, etc. Can be mentioned. The reason why the fatty acid amide compound improves the extrusion stability and does not inhibit or accelerate the solidification after foaming is not clear, but it acts like an internal and external lubricant inside the extruder, and also exhibits a crystal nucleating effect. This is probably because of this. In extrusion foaming extruders, there is a cooling cylinder and a die part for promoting proper viscosity and crystallization after the addition of a foaming agent, but fatty acid amide compounds are considered to be easily generated here. By preventing adhesion (external lubricant action), it is considered that crystal growth (enlargement) inside the extruder is suppressed and the extrusion stability is improved. About the addition amount of a fatty acid amide type compound, although depending on the kind of fatty acid amide type compound to be used, it is usually preferable to add 0.01 weight part or more and 50 weight part or less with respect to 100 weight part of P3HA resin. If the addition amount is less than 0.01 parts by weight, the extrusion stability effect may not be clear. If the addition amount is more than 50 parts by weight, a dispersion into the resin may be poor and a uniform extruded foam may not be obtained.

本発明におけるP3HAを含んでなる樹脂組成物(A)には、必要に応じて添加されるイソシアネート化合物、脂肪酸アミド系化合物の他に、得られる押出発泡体の要求性能を阻害しない範囲において、各種添加剤を加えても良い。ここで添加剤とは、たとえば、酸化防止剤、紫外線吸収剤、染料、顔料などの着色剤、可塑剤、滑剤、結晶化核剤、無機充填剤等目的に応じて使用できるが、中でも生分解性を有する配合剤が好ましい。添加剤としては、シリカ、タルク、ケイ酸カルシウム、ワラストナイト、カオリン、クレー、マイカ、酸化亜鉛、酸化チタン、酸化珪素等の無機化合物や、ステアリン酸ナトリウム、ステアリン酸マグネシウム、ステアリン酸カルシウムやステアリン酸バリウム等の脂肪酸金属塩、などが挙げられるが、これらに限定された物ではない。また、発泡体の気泡径を調節する必要がある場合は気泡調整剤を添加する。気泡調整剤としては無機造核剤には、タルク、シリカ、ケイ酸カルシウム、炭酸カルシウム、酸化アルミニウム、酸化チタン、珪藻土、クレー、重曹、アルミナ、硫酸バリウム、酸化アルミニウム、ベントナイト等があり、その使用量は好ましくは0.005〜10重量部である。   In the resin composition (A) comprising P3HA in the present invention, in addition to an isocyanate compound and a fatty acid amide compound that are added as necessary, various kinds of resins can be used as long as they do not impair the required performance of the obtained extruded foam. Additives may be added. Here, additives can be used according to purposes such as antioxidants, UV absorbers, dyes, pigments and other colorants, plasticizers, lubricants, crystallization nucleating agents, inorganic fillers, etc. The compounding agent which has property is preferable. Additives include inorganic compounds such as silica, talc, calcium silicate, wollastonite, kaolin, clay, mica, zinc oxide, titanium oxide, silicon oxide, sodium stearate, magnesium stearate, calcium stearate and stearic acid. Although fatty acid metal salts, such as barium, etc. are mentioned, it is not a thing limited to these. Moreover, when it is necessary to adjust the bubble diameter of a foam, a bubble regulator is added. Inorganic nucleating agents include talc, silica, calcium silicate, calcium carbonate, aluminum oxide, titanium oxide, diatomaceous earth, clay, baking soda, alumina, barium sulfate, aluminum oxide, bentonite, etc. The amount is preferably 0.005 to 10 parts by weight.

本発明では、P3HAを含んでなる樹脂組成物(A)に揮発性発泡剤を溶融混錬させることに特徴を有する。中でも、環境適合性を有し、押出時の成形ダイの温度T0において樹脂組成物(A)に溶解している発泡剤が好ましい。具体的に揮発性発泡剤としては、二酸化炭素、窒素、空気などの無機ガス、脂肪族飽和炭化水素、その他のハロゲンを含まない発泡剤等が例示できる。これらは単独で用いてもよく、2種以上を組み合わせて用いてもよい。   The present invention is characterized by melting and kneading a volatile foaming agent to the resin composition (A) containing P3HA. Among them, a foaming agent that has environmental compatibility and is dissolved in the resin composition (A) at the temperature T0 of the molding die at the time of extrusion is preferable. Specific examples of the volatile foaming agent include inorganic gases such as carbon dioxide, nitrogen and air, aliphatic saturated hydrocarbons, and other foaming agents not containing halogen. These may be used alone or in combination of two or more.

一般的には無機ガスは一般的にはP3HAへの溶解性が低いとされているが、例えば二酸化炭素などを高圧制御できる押出機であれば樹脂への可溶化も可能である。また、気泡サイズ調整剤としての作用もある。   In general, inorganic gas is generally considered to have low solubility in P3HA. However, for example, an extruder capable of controlling high pressure of carbon dioxide or the like can be solubilized in a resin. It also acts as a bubble size adjusting agent.

脂肪族飽和炭化水素としては、プロパン、ノルマルブタン、イソブタンなど炭素数3以上4以下の飽和炭化水素、ノルマルペンタン、イソペンタン、ネオペンタン等の炭素数5の飽和炭化水素が挙げられる。   Examples of the aliphatic saturated hydrocarbon include saturated hydrocarbons having 3 to 4 carbon atoms such as propane, normal butane, and isobutane, and saturated hydrocarbons having 5 carbon atoms such as normal pentane, isopentane, and neopentane.

その他のハロゲンを含まない発泡剤としては、例えば、ジメチルエーテル、ジエチルエーテル、メチルエチルエーテル、イソプロピルエーテル、n−ブチルエーテル、ジイソプロピルエーテル、フラン、フルフラール、2−メチルフラン、テトラヒドロフラン、テトラヒドロピランなどのエーテル類、ジメチルケトン、メチルエチルケトン、ジエチルケトン、メチルn−プロピルケトン、メチルn−ブチルケトン、メチルi−ブチルケトン、メチルn−アミルケトン、メチルn−ヘキシルケトン、エチルn−プロピルケトン、エチルn−ブチルケトンなどのケトン類、メタノール、エタノール、プロピルアルコール、i−プロピルアルコール、ブチルアルコール、i−ブチルアルコール、t−ブチルアルコールなどのアルコール類、蟻酸メチルエステル、蟻酸エチルエステル、蟻酸プロピルエステル、蟻酸ブチルエステル、蟻酸アミルエステル、プロピオン酸メチルエステル、プロピオン酸エチルエステルなどのカルボン酸エステル類などを用いることができる。アゾ化合物などの化学発泡剤を発泡助剤や気泡サイズ調整剤として使用することも出来る。   Examples of other halogen-free blowing agents include, for example, dimethyl ether, diethyl ether, methyl ethyl ether, isopropyl ether, n-butyl ether, diisopropyl ether, furan, furfural, 2-methyl furan, tetrahydrofuran, tetrahydropyran, and other ethers, Ketones such as dimethyl ketone, methyl ethyl ketone, diethyl ketone, methyl n-propyl ketone, methyl n-butyl ketone, methyl i-butyl ketone, methyl n-amyl ketone, methyl n-hexyl ketone, ethyl n-propyl ketone, ethyl n-butyl ketone, Alcohols such as methanol, ethanol, propyl alcohol, i-propyl alcohol, butyl alcohol, i-butyl alcohol, t-butyl alcohol, methyl formate Ester, ethyl formate ester, formate, propyl ester, butyl formate ester formate, amyl esters, methyl propionate, and the like can be used carboxylic acid esters such as propionic acid ethyl ester. Chemical foaming agents such as azo compounds can also be used as foaming aids and cell size adjusting agents.

これらの揮発性発泡剤の中では、発泡性、発泡体成形性などの点から、プロパン、イソブタン、ノルマルブタン、ジメチルエーテル、ジエチルエーテル、メチルエチルエーテルが好ましく使用出来、中でもジメチルエーテルが特に好ましい。エーテル類はP3HA樹脂に対して強い溶解性、可塑性能と発泡力を有している。   Among these volatile blowing agents, propane, isobutane, normal butane, dimethyl ether, diethyl ether, and methyl ethyl ether can be preferably used from the viewpoints of foamability, foam formability, and the like, and dimethyl ether is particularly preferable. Ethers have strong solubility, plastic performance and foaming power for P3HA resins.

本発明で使用する揮発性発泡剤の添加量は、使用する揮発性発泡剤の溶解能によって異なるために一律に範囲規定はできないが、概ねP3HA100重量部に対し1重量部以上100重量部以下であることが好ましい。更に好ましくは1重量部以上30重量部以下の範囲であることが好ましい。1重量部より少ない場合は、急冷しても殆ど発泡しない場合がある。また30重量部より多い場合は、ガスの使用量が過剰であるため経済的でなく、ダイス口からガスが噴出する危険性がある。   The amount of the volatile foaming agent used in the present invention varies depending on the solubility of the volatile foaming agent to be used, and thus cannot be uniformly defined. However, it is generally 1 to 100 parts by weight with respect to 100 parts by weight of P3HA. Preferably there is. More preferably, it is in the range of 1 to 30 parts by weight. When the amount is less than 1 part by weight, there is a case where foaming hardly occurs even when quenched. On the other hand, when the amount is more than 30 parts by weight, the amount of gas used is excessive, which is not economical, and there is a risk that gas may be ejected from the die port.

本発明のP3HA樹脂押出発泡体は、P3HAを含んでなる樹脂組成物(A)を押出機で加熱溶融させ(加熱溶融温度:T1)、該溶融樹脂に揮発性発泡剤を圧入し、溶融樹脂と揮発性発泡剤を混練し、80℃以上、融点+20℃以下、に調整された成形ダイを通じて低圧領域にし、吐出物の表面温度を、80℃未満の温度、好ましくは吐出物のガラス転移温度より高く冷却する。一般的には、例えば、特開平6−145404号公報記載の方法のように、ガラス転移点以下に急冷することで発泡させる方法が採られるが、本発明においては、ガラス転移点以下にせずとも発泡させることが可能である。   In the P3HA resin extruded foam of the present invention, the resin composition (A) containing P3HA is heated and melted with an extruder (heating melting temperature: T1), and a volatile foaming agent is press-fitted into the molten resin. And a volatile foaming agent are kneaded and made into a low pressure region through a molding die adjusted to 80 ° C. or higher and melting point + 20 ° C. or lower, and the surface temperature of the discharged product is a temperature lower than 80 ° C., preferably the glass transition temperature of the discharged product. Cool higher. In general, for example, a method of foaming by quenching below the glass transition point is employed as in the method described in JP-A-6-145404. However, in the present invention, the glass transition point is not required. It is possible to make it foam.

樹脂組成物(A)を加熱溶融する際の溶融温度(T1)は、P3HAを示差走査熱量測定することによって得られる融解温度(融点:Tm)を基準として、融点+40℃以下であることが好ましい。イソシアネート化合物等の増粘効果を示す物質を添加すると、T1が融点+50℃程度までは増粘効果をしめし、安定押出できる溶融温度幅が広くなる傾向がある。また、溶融温度が融点に近ければ近いほどP3HAの自己結晶化促進効果により押出発泡時の結晶固化が改善され急冷による外観美麗な押出発泡体が得られやすいため、更に好ましくはT1が融点+20℃以下である。   The melting temperature (T1) when the resin composition (A) is heated and melted is preferably a melting point + 40 ° C. or lower based on the melting temperature (melting point: Tm) obtained by differential scanning calorimetry of P3HA. . When a substance exhibiting a thickening effect such as an isocyanate compound is added, the thickening effect tends to be widened until T1 reaches a melting point of about + 50 ° C., and the melting temperature range capable of stable extrusion tends to widen. Further, the closer the melting temperature is to the melting point, the better the solidification at the time of extrusion foaming due to the self-crystallization promoting effect of P3HA, and the easier it is to obtain an extruded foam with a beautiful appearance by rapid cooling. It is as follows.

溶融時間は、単位時間当たりの押出量、溶融手段などによって異なるので一概には決定することができないが、P3HA、発泡剤、添加剤が均一に分散混合し、熱分解による低分子量化を著しく受けない範囲の時間が選ばれる。また、溶融手段としては、例えばスクリュー型押出機など、通常の押出発泡の際に用いられる溶融、混練装置を適宜選択すればよく、特に制限するものではない。   Although the melting time varies depending on the amount of extrusion per unit time and the melting means, etc., it cannot be determined unconditionally. However, P3HA, foaming agent and additives are uniformly dispersed and mixed, and the molecular weight is significantly reduced by thermal decomposition. A range of times is chosen. Further, as a melting means, for example, a melting and kneading apparatus used in normal extrusion foaming, such as a screw type extruder, may be appropriately selected and is not particularly limited.

本発明の発泡剤の押出機への圧入は公知の方法で行うことができる。発泡剤を注入する際の圧力は、特に制限するものではなく、押出機内に圧入するために押出機の内圧力よりも高い圧力であればよい。   The foaming agent of the present invention can be pressed into the extruder by a known method. The pressure when injecting the foaming agent is not particularly limited, and may be any pressure that is higher than the internal pressure of the extruder in order to press-fit into the extruder.

本発明の発泡方法は成形ダイスから吐出物が低圧領域に押し出されて、吐出物の表面温度が、80℃未満に急速に冷却されることをきっかけに発泡し外観美麗な発泡体が得られることに特徴がある。樹脂組成物(A)は、可塑性の強い揮発性発泡剤を使用して成形ダイス温度を樹脂の結晶化の温度に調整できる場合以外は、溶解している揮発性発泡剤が、樹脂組成物(A)の結晶化が遅いため殆ど発泡に寄与せず(殆ど気泡を形成せず)に気化し、吐出物は若干気泡の混じった外観不良の低発泡体となったり、気泡形成しても固化が遅いため収縮し、形状の不均一な発泡体となる。一方、吐出物を低圧領域に押し出し、冷却することで、樹脂組成物の結晶化を促進し、気泡形成性に優れ外観を向上できる点に特徴がある。   According to the foaming method of the present invention, the foamed material is foamed when the discharged material is extruded from the molding die into the low pressure region, and the surface temperature of the discharged material is rapidly cooled to less than 80 ° C. There is a feature. In the resin composition (A), the dissolved volatile foaming agent is a resin composition (except for the case where the molding die temperature can be adjusted to the temperature of resin crystallization using a highly plastic volatile foaming agent. Since the crystallization of A) is slow, it almost does not contribute to foaming (forms almost no bubbles), and the ejected matter becomes a low-foam with a poor appearance with some bubbles mixed, or solidifies even if bubbles are formed Since it is slow, it shrinks and becomes a foam having a non-uniform shape. On the other hand, by extruding the discharged material into a low pressure region and cooling it, it is characterized in that the crystallization of the resin composition is promoted, the foam formation is excellent and the appearance can be improved.

P3HA押出発泡体が成形ダイスから押出される低圧領域とは、大気圧未満の減圧雰囲気や若干の加圧雰囲気に調整された、気相、液相が選択し得る。押出された直後に、80℃未満の冷媒で吐出物を冷却することが好ましい。冷却方法は、例えば、温水や冷水による冷却や、冷風による冷却などの方法がある。   The low pressure region in which the P3HA extruded foam is extruded from the molding die can be selected from a gas phase and a liquid phase adjusted to a reduced pressure atmosphere below atmospheric pressure or a slightly pressurized atmosphere. Immediately after being extruded, it is preferable to cool the discharge with a refrigerant of less than 80 ° C. The cooling method includes, for example, cooling with hot water or cold water, cooling with cold air, or the like.

この様にして製造したP3HA樹脂押出発泡体は、比較的均一なセルを形成し外観が美麗である。また、連続気泡率が好ましくは70%以上、更には90%以上である。このような発泡倍率となることで、軽量性、経済性の点で好ましく、また連続気泡率が70%以上であることでクッション性、形状自由度が高い等の点で好ましい。   The P3HA resin extruded foam produced in this way forms a relatively uniform cell and has a beautiful appearance. Further, the open cell ratio is preferably 70% or more, and more preferably 90% or more. Such a foaming ratio is preferable in terms of lightness and economy, and an open cell ratio of 70% or more is preferable in terms of cushioning properties and high shape freedom.

また、連続気泡率は、ASTM D−2856に準じて、例えば、マルチピクノメーター(ベックマン・ジャパン(株)社製)を用いて得ることが出来る。   The open cell ratio can be obtained, for example, using a multi-pynometer (manufactured by Beckman Japan Co., Ltd.) according to ASTM D-2856.

以下に実施例を示し、本発明をより具体的に説明するが、本発明はこれらの実施例に何ら限定されるものではない。本発明で使用した物質は以下の様に略した。
PHBH:ポリ(3−ヒドロキシブチレート−コ−3−ヒドロキシヘキサノエート)
HH率:PHBH中のヒドロキシヘキサノエートのモル分率(mol%)
なお、実施例において特に断りのない限り「部」は重量基準である。
各実施例におけるP3HA樹脂発泡体の物性測定は以下のように行った。
EXAMPLES Hereinafter, the present invention will be described more specifically with reference to examples. However, the present invention is not limited to these examples. Substances used in the present invention were abbreviated as follows.
PHBH: poly (3-hydroxybutyrate-co-3-hydroxyhexanoate)
HH ratio: mole fraction of hydroxyhexanoate in PHBH (mol%)
In the examples, “parts” are based on weight unless otherwise specified.
The physical properties of the P3HA resin foam in each example were measured as follows.

<P3HA樹脂の融点(Tm)、ガラス転移温度(Tg)>
示差走査熱量測定は、JIS K−7121に準じて行った。押出発泡に使用するP3HA樹脂約5mgを精秤し、示差走査熱量計(セイコー電子工業(株)製、SSC5200)にて10℃/分の昇温速度で−20℃から200℃まで昇温を実施し、DSC曲線を得、吸熱曲線の絶対値が最大のピークトップの温度を融点とし、ベースラインの階段状変化において変化前後のベースラインの延長した直線から縦軸方向に等距離にある直線と、ガラス転移の階段状変化部分の曲線が交わる点の温度をTgとした。
<Melting point (Tm) and glass transition temperature (Tg) of P3HA resin>
Differential scanning calorimetry was performed according to JIS K-7121. About 5 mg of P3HA resin used for extrusion foaming is precisely weighed, and the temperature is raised from −20 ° C. to 200 ° C. at a rate of temperature increase of 10 ° C./min with a differential scanning calorimeter (Seiko Electronics Co., Ltd., SSC5200). The DSC curve is obtained, the temperature at the peak top where the absolute value of the endothermic curve is the maximum is the melting point, and the straight line that is equidistant from the extended straight line of the baseline before and after the change in the stepwise change of the baseline. The temperature at the point where the curves of the step-like change portion of the glass transition intersect was defined as Tg.

<溶融粘度(η)>
キャピログラフ(東洋精機製作所製)を用い、1mmφ×10mmのダイスを使用して上述の方法で測定した融点を元に、融点+20℃、剪断速度122sec−1にて、P3HAを含んでなる樹脂組成物(A)の溶融粘度ηを測定した。溶融粘度の評価は以下のように判断した。
○:η>500Pa・s
×:η≦500Pa・s
<Melt viscosity (η)>
Resin composition comprising P3HA at a melting point of + 20 ° C. and a shear rate of 122 sec −1 based on the melting point measured by the above method using a capilograph (manufactured by Toyo Seiki Seisakusho) using a 1 mmφ × 10 mm die. The melt viscosity η of (A) was measured. Evaluation of melt viscosity was judged as follows.
○: η> 500 Pa · s
×: η ≦ 500 Pa · s

<P3HA樹脂組成物の吐出物の表面温度>
非接触温度計(サーモハンターPT−7LD、オプテックス社製)により吐出物表面の温度を測定した。
○:80℃未満
×:80℃以上
<Surface temperature of discharged material of P3HA resin composition>
The temperature of the discharged material surface was measured with a non-contact thermometer (Thermo Hunter PT-7LD, manufactured by Optex).
○: Less than 80 ° C ×: 80 ° C or more

<P3HA樹脂押出発泡体の発泡倍率>
23℃のエタノールの入ったメスシリンダーを用意し、該メスシリンダーに相対湿度50%、23℃、1atmの条件にて7日間放置した押出発泡体(重量W(g))を、金網などを使用して沈め、エタノール水位上昇分より読みとられる発泡粒子群の容積V(cm)としたときに、P3HA樹脂密度ρ(g/cm)から次式で与えられる。
発泡倍率=V/(W/ρ)
<Foaming ratio of P3HA resin extruded foam>
Prepare a graduated cylinder containing ethanol at 23 ° C. Use an extruded foam (weight W (g)) left in the graduated cylinder for 7 days under conditions of 50% relative humidity, 23 ° C and 1 atm using a wire mesh or the like. Then, when the volume V (cm 3 ) of the expanded particle group is read from the ethanol water level rise, it is given by the following equation from the P3HA resin density ρ (g / cm 3 ).
Foaming ratio = V / (W / ρ)

<P3HA樹脂押出発泡体の連続気泡率>
マルチピクノメーター(ベックマン・ジャパン(株)社製)を用い、ASTM D−2856に準じて測定した。
<Open cell ratio of P3HA resin extruded foam>
It measured according to ASTM D-2856 using a multi-pynometer (manufactured by Beckman Japan Co., Ltd.).

<P3HA樹脂押出発泡体の外観評価>
押出発泡体を目視で観察した。
○:未発泡部分が殆ど観察されない。
×:未発泡部分が多く確認され、吐出物表面が荒れている。
<Appearance evaluation of P3HA resin extruded foam>
The extruded foam was visually observed.
A: Almost no unfoamed portion is observed.
X: Many unfoamed parts are confirmed, and the surface of the discharged material is rough.

<P3HA樹脂押出発泡体の生分解性>
P3HA樹脂押出発泡体20mm×20mm×1.5〜2.5mmを、深さ10cmの土中に埋めて6ヶ月後、形状変化を観察し分解性を以下の基準で評価した。
○:かなりの部分が分解されており形状の変化が確認できるほど分解
×:ほとんど形状に変化なく押出発泡体が観察され、分解していない
<Biodegradability of P3HA resin extruded foam>
A P3HA resin extruded foam 20 mm × 20 mm × 1.5 to 2.5 mm was buried in soil having a depth of 10 cm, and after 6 months, the shape change was observed and the degradability was evaluated according to the following criteria.
○: Decomposed so that a considerable part is decomposed and the change in shape can be confirmed. ×: Extruded foam is observed with almost no change in shape, and is not decomposed.

(実施例1)
微生物として、Alcaligenes eutrophusにAeromonas caviae由来のPHA合成酵素遺伝子を導入したAlcaligenes eutrophus AC32(J. Bacteriol., 179, 4821(1997))を用いて原料、培養条件を適宜調整して生産されたPHBH(HH率10mol%、Mw=53万)100重量部とポリイソシアネート化合物4重量部(日本ポリウレタン製、ミリオネートMR-200(イソシアネート基2.7〜2.8当量/モル))と脂肪酸アミド系化合物としてベヘニン酸アミド3重量部をニーダー付きφ35mm単軸押出成形機でシリンダー温度135℃にて溶融混練し、押出機先端に取り付けられた3mmφの小孔ダイより押し出されたストランドを、ペレタイザーでカットして粒重量5mgのPHBH樹脂組成物(A1)ペレット(融点135℃、Tg=1℃)を作製した。該ペレットについては溶融粘度を測定したところ、式(2)の条件を満たしていた。該ペレットを、口径65mmのものと口径90mmのものを直列に連結した二段押出機へ約40kg/hrの割合で供給した。前記口径65mmの押出機に供給した樹脂混合物を、T1=155℃に加熱して溶融混練し、発泡剤を添加、これに連結された口径90mmの押出機で樹脂温度Toを135℃(≦融点+20)に冷却し、口径90mmの押出機の先端に設けた厚さ方向1mm、幅方向50mmの長方形断面の口金より連続的に押出、20℃のエアを長方形断面の上下面に約20秒吹き付け吐出物を急冷すると均一に発泡し、厚さ約2mm、幅約120mmの板状の押出発泡体を得た。約20秒エアを吹き付けた時の吐出物の表面温度は80℃未満であった。
Example 1
PHBH produced by using Alcaligenes eutrophus AC32 (J. Bacteriol., 179, 4821 (1997)) in which a PHA synthase gene derived from Aeromonas caviae was introduced into Alcaligenes eutrophus as a microorganism, with appropriate adjustment of raw materials and culture conditions ( HH ratio 10 mol%, Mw = 530,000) 100 parts by weight and polyisocyanate compound 4 parts by weight (manufactured by Nippon Polyurethane, Millionate MR-200 (2.7 to 2.8 equivalents / mol isocyanate group)) and fatty acid amide compound 3 parts by weight of behenic acid amide was melt-kneaded at a cylinder temperature of 135 ° C. with a φ35 mm single screw extruder equipped with a kneader, and the strand extruded from a 3 mmφ small hole die attached to the tip of the extruder was cut with a pelletizer. A PHBH resin composition (A1) pellet having a particle weight of 5 mg (melting point: 135 ° C., Tg = 1 ° C.) was prepared. When the melt viscosity of the pellet was measured, the condition of formula (2) was satisfied. The pellets were fed at a rate of about 40 kg / hr to a two-stage extruder having a diameter of 65 mm and a diameter of 90 mm connected in series. The resin mixture supplied to the 65 mm diameter extruder is melted and kneaded by heating to T1 = 155 ° C., a foaming agent is added, and the resin temperature To is 135 ° C. (≦ melting point) with the 90 mm diameter extruder connected thereto. +20), continuously extruded from a rectangular cross-section die with a thickness of 1 mm and a width of 50 mm provided at the tip of an extruder with a diameter of 90 mm, and air at 20 ° C. was blown onto the upper and lower surfaces of the rectangular cross-section for about 20 seconds. When the discharged product was rapidly cooled, it uniformly foamed to obtain a plate-like extruded foam having a thickness of about 2 mm and a width of about 120 mm. The surface temperature of the discharged product when air was blown for about 20 seconds was less than 80 ° C.

このとき添加した発泡剤として、樹脂組成物(A1)ペレット100重量部に対してジメチルエーテルを10部、前記口径65mmの押出機の先端付近(口径90mmの押出機の口金と反対側の端部側に接続される側の端部)から前記樹脂中に圧入した。得られた発泡体は、発泡倍率7倍、連続気泡率は82%であった。また、運転中押出機の状態は安定していた。また、得られた発泡体の外観および生分解性は良好であった。結果を表1に示す。   As a foaming agent added at this time, 10 parts of dimethyl ether with respect to 100 parts by weight of the resin composition (A1) pellets, near the tip of the 65 mm diameter extruder (the end side opposite to the die of the 90 mm diameter extruder) The resin was press-fitted into the resin from the end portion on the side connected to the resin. The obtained foam had an expansion ratio of 7 times and an open cell ratio of 82%. In addition, the state of the extruder was stable during operation. Further, the appearance and biodegradability of the obtained foam were good. The results are shown in Table 1.

(実施例2)
押出す際の樹脂温度Toを105℃(≦融点+20)とした以外は、実施例1と同様の方法で長方形断面の口金より大気中へ押し出した。発泡体は若干収縮したが、厚さ約2mm、幅約180mmの板状の押出発泡体を得た。得られた発泡体は、発泡倍率14倍、連続気泡率は88%であった。また、運転中押出機の状態は安定していた。また、得られた発泡体の外観および生分解性は良好であった。結果を表1に示す。
(Example 2)
Extrusion was performed from the rectangular cross-section die into the atmosphere in the same manner as in Example 1 except that the resin temperature To during extrusion was 105 ° C. (≦ melting point + 20). Although the foam was slightly shrunk, a plate-like extruded foam having a thickness of about 2 mm and a width of about 180 mm was obtained. The obtained foam had an expansion ratio of 14 times and an open cell ratio of 88%. In addition, the state of the extruder was stable during operation. Further, the appearance and biodegradability of the obtained foam were good. The results are shown in Table 1.

(実施例3)
長方形断面の口金より連続的に押出した吐出物を、水温30℃の水槽に約10秒浸漬した以外は、実施例1と同様の方法で発泡体を作成した。急冷により均一に発泡した。水槽から取り出した時の吐出物の表面温度は80℃未満であった。発泡体は、厚さ約2.5mm、幅約180mmの板状の押出発泡体であった。得られた発泡体は、発泡倍率15倍、連続気泡率は90%であった。また、運転中押出機の状態は安定していた。また、得られた発泡体の外観および生分解性は良好であった。結果を表1に示す。
(Example 3)
A foam was prepared in the same manner as in Example 1 except that the discharge product continuously extruded from the die having a rectangular cross section was immersed in a water bath having a water temperature of 30 ° C. for about 10 seconds. Foamed uniformly by rapid cooling. The surface temperature of the discharged material when taken out from the water tank was less than 80 ° C. The foam was a plate-like extruded foam having a thickness of about 2.5 mm and a width of about 180 mm. The obtained foam had an expansion ratio of 15 times and an open cell ratio of 90%. In addition, the state of the extruder was stable during operation. Further, the appearance and biodegradability of the obtained foam were good. The results are shown in Table 1.

(実施例4)
長方形断面の口金より連続的に押出した吐出物を、水温5℃の水槽に約10秒浸漬した以外は、実施例2と同様の方法で発泡体を作成した。急冷により均一に発泡した。水槽から取り出した時の吐出物の表面温度は80℃未満であった。発泡体は、厚さ約2.5mm、幅約180mmの板状の押出発泡体であった。得られた発泡体は、発泡倍率15倍、連続気泡率は80%であった。また、運転中押出機の状態は安定していた。また、得られた発泡体の外観および生分解性は良好であった。結果を表1に示す。
Example 4
A foam was prepared in the same manner as in Example 2 except that the discharged material continuously extruded from the die having a rectangular cross section was immersed in a water bath at a water temperature of 5 ° C. for about 10 seconds. Foamed uniformly by rapid cooling. The surface temperature of the discharged material when taken out from the water tank was less than 80 ° C. The foam was a plate-like extruded foam having a thickness of about 2.5 mm and a width of about 180 mm. The obtained foam had an expansion ratio of 15 times and an open cell ratio of 80%. In addition, the state of the extruder was stable during operation. Further, the appearance and biodegradability of the obtained foam were good. The results are shown in Table 1.

(実施例5)
発泡剤として、樹脂組成物(A1)ペレット100重量部に対してイソブタンを5部添加した以外は、実施例1と同様の方法で発泡体を作成した。急冷により均一に発泡した。約20秒エアを吹き付けた時の吐出物の表面温度は80℃未満であった。発泡体は、厚さ約1.5mm、幅約120mmの板状の押出発泡体であった。得られた発泡体は、発泡倍率4倍、連続気泡率は71%であった。また、運転中押出機の状態は安定していた。また、得られた発泡体の外観および生分解性は良好であった。結果を表1に示す。
(Example 5)
As a foaming agent, a foam was prepared in the same manner as in Example 1 except that 5 parts of isobutane was added to 100 parts by weight of the resin composition (A1) pellets. Foamed uniformly by rapid cooling. The surface temperature of the discharged product when air was blown for about 20 seconds was less than 80 ° C. The foam was a plate-like extruded foam having a thickness of about 1.5 mm and a width of about 120 mm. The obtained foam had a foaming ratio of 4 times and an open cell ratio of 71%. In addition, the state of the extruder was stable during operation. Further, the appearance and biodegradability of the obtained foam were good. The results are shown in Table 1.

(比較例1)
エアによる強制冷却をしなかった以外は実施例1と同様の方法で、長方形断面の口金より大気中へ押し出した。ダイスから出てから約20秒後の吐出物の表面温度は80℃以上であった。吐出物は発泡にムラがあり、発泡、未発泡部分が発生し、厚さ約2mm、幅約75mmの板状のまだらな発泡体を得た。得られた発泡体は、発泡倍率3倍、連続気泡率は55%で、不均一な形態で外観不良であった。
(Comparative Example 1)
Except not performing forced cooling by air, it was extruded into the atmosphere from a base having a rectangular cross section in the same manner as in Example 1. The surface temperature of the discharged material after about 20 seconds after coming out of the die was 80 ° C. or higher. The discharged product was uneven in foaming, and foamed and unfoamed portions were generated, and a plate-like mottled foam having a thickness of about 2 mm and a width of about 75 mm was obtained. The obtained foam had a foaming ratio of 3 times and an open cell ratio of 55%.

Figure 2007136693
Figure 2007136693

Claims (9)

微生物から生産される式(1)
[−O−CHR−CH−CO−] (1)
(ここに、RはC2n+1で表されるアルキル基で、n=1以上15以下の整数である。)
で示される一種以上の単位からなる共重合体(以下、ポリ(3−ヒドロキシアルカノエート):略称P3HA)を含んでなる樹脂組成物(A)に、揮発性発泡剤を溶融混練して混合物を作製し、該混合物を80℃以上、融点+20℃以下、に調整された成形ダイを通じて低圧領域に押し出し、吐出物の表面温度を80℃未満になるように冷却することを特徴とするP3HA樹脂押出発泡体の製造方法。
但し、樹脂組成物(A)は式(2)の関係を満たす。
η>500Pa・s (2)
η:樹脂組成物(A)の融点+20℃、剪断速度122sec−1での溶融粘度
Formula (1) produced from microorganisms
[—O—CHR—CH 2 —CO—] (1)
(Here, R is an alkyl group represented by C n H 2n + 1 , and n = 1 or more and 15 or less.)
A volatile foaming agent is melt-kneaded with a resin composition (A) containing a copolymer (hereinafter, poly (3-hydroxyalkanoate): abbreviated as P3HA) composed of one or more units represented by the following formula: P3HA resin extrusion characterized in that the mixture is extruded and extruded to a low pressure region through a molding die adjusted to 80 ° C. or higher and melting point + 20 ° C. or lower, and the surface temperature of the discharged product is cooled to less than 80 ° C. A method for producing a foam.
However, the resin composition (A) satisfies the relationship of the formula (2).
η> 500 Pa · s (2)
η: Melting viscosity of resin composition (A) at melting point + 20 ° C. and shear rate of 122 sec −1
樹脂組成物(A)が、P3HAと増粘効果を示す物質を含んでなることを特徴とする請求項1記載のP3HA樹脂押出発泡体の製造方法。   The method for producing a P3HA resin extruded foam according to claim 1, wherein the resin composition (A) comprises P3HA and a substance exhibiting a thickening effect. 前記増粘効果を示す物質が、イソシアネート化合物であることを特徴とする請求項2記載のP3HA樹脂押出発泡体の製造方法。   The method for producing a P3HA resin extruded foam according to claim 2, wherein the substance exhibiting the thickening effect is an isocyanate compound. 樹脂組成物(A)が、脂肪族アミド系化合物を含んでなることを特徴とする請求項1〜3何れか1項記載のP3HA樹脂押出発泡体の製造方法。   The method for producing a P3HA resin extruded foam according to any one of claims 1 to 3, wherein the resin composition (A) comprises an aliphatic amide compound. P3HAが、ポリ(3−ヒドロキシブチレート−コ−3−ヒドロキシヘキサノエート)である、請求項1〜4何れか1項記載の押出発泡体の製造方法。   The method for producing an extruded foam according to any one of claims 1 to 4, wherein P3HA is poly (3-hydroxybutyrate-co-3-hydroxyhexanoate). P3HAが、ポリ(3−ヒドロキシブチレート−コ−3−ヒドロキシヘキサノエート)であり、その共重合成分の組成が、3−ヒドロキシヘキサノエートが1mol%以上20mol%以下であることを特徴とする請求項1〜5何れか1項記載のP3HA押出発泡体の製造方法。   P3HA is poly (3-hydroxybutyrate-co-3-hydroxyhexanoate), and the composition of the copolymer component is characterized in that 3-hydroxyhexanoate is 1 mol% or more and 20 mol% or less. A method for producing a P3HA extruded foam according to any one of claims 1 to 5. 揮発性発泡剤が、二酸化炭素、プロパン、イソブタン、ノルマルブタン、ジメチルエーテル、ジエチルエーテル、メチルエチルエーテルからなる群より選ばれる1種以上であることを特徴とする請求項1〜6何れか1項記載のP3HA樹脂押出発泡体の製造方法。   The volatile blowing agent is at least one selected from the group consisting of carbon dioxide, propane, isobutane, normal butane, dimethyl ether, diethyl ether, and methyl ethyl ether. Manufacturing method of P3HA resin extruded foam. 請求項1〜7の何れか1項記載の押出発泡体の製造方法により得られることを特徴とするP3HA樹脂押出発泡体。   A P3HA resin extruded foam obtained by the method for producing an extruded foam according to any one of claims 1 to 7. 連続気泡率が70%以上であることを特徴とする請求項8記載のP3HA樹脂押出発泡体。   9. The P3HA resin extruded foam according to claim 8, wherein the open cell ratio is 70% or more.
JP2005329559A 2005-11-15 2005-11-15 Extruded foam of polyhydroxyalkanoate resin and its manufacturing method Pending JP2007136693A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005329559A JP2007136693A (en) 2005-11-15 2005-11-15 Extruded foam of polyhydroxyalkanoate resin and its manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005329559A JP2007136693A (en) 2005-11-15 2005-11-15 Extruded foam of polyhydroxyalkanoate resin and its manufacturing method

Publications (1)

Publication Number Publication Date
JP2007136693A true JP2007136693A (en) 2007-06-07

Family

ID=38200143

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005329559A Pending JP2007136693A (en) 2005-11-15 2005-11-15 Extruded foam of polyhydroxyalkanoate resin and its manufacturing method

Country Status (1)

Country Link
JP (1) JP2007136693A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007302778A (en) * 2006-05-11 2007-11-22 Kaneka Corp Method for producing polyhydroxyalkanoate resin extruded foam and extruded foam obtained by the production method

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09263651A (en) * 1995-11-28 1997-10-07 Dainippon Ink & Chem Inc Foam and laminate
JP2003327737A (en) * 2002-05-09 2003-11-19 Kanegafuchi Chem Ind Co Ltd Biodegradable polyhydroxy alkanoate extruded foam and its production method

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09263651A (en) * 1995-11-28 1997-10-07 Dainippon Ink & Chem Inc Foam and laminate
JP2003327737A (en) * 2002-05-09 2003-11-19 Kanegafuchi Chem Ind Co Ltd Biodegradable polyhydroxy alkanoate extruded foam and its production method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007302778A (en) * 2006-05-11 2007-11-22 Kaneka Corp Method for producing polyhydroxyalkanoate resin extruded foam and extruded foam obtained by the production method

Similar Documents

Publication Publication Date Title
US8076381B2 (en) Polyhydroxyalkanoate-based resin foamed particle, molded article comprising the same and process for producing the same
JP7123980B2 (en) Poly(3-hydroxyalkanoate) foamed particles and poly(3-hydroxyalkanoate) foamed molded product
EP1870431B1 (en) Method of producing polyhydroxyalkanoate resin foamed particles
JP2007130763A (en) Polyhydroxyalkanoate resin extrusion foam and its manufacturing method
JPWO2009001525A1 (en) Biodegradable aliphatic polyester-based expanded particles and molded articles thereof
JP4954603B2 (en) Process for producing extruded polyhydroxyalkanoate resin and extruded foam obtained by the process
JP5408877B2 (en) POLYHYDROXYALKANOATE RESIN FOAM PARTICLE, FORMED ITS THEREOF AND METHOD FOR PRODUCING THE RESIN FOAM PARTICLE
JP4733694B2 (en) Process for producing extruded polyhydroxyalkanoate resin and extruded foam obtained from the process
JPWO2006103972A1 (en) Polyhydroxyalkanoate resin expanded particles
JP2009073955A (en) Polylactic acid resin foam
JP4653162B2 (en) Method for producing extruded product of polyhydroxyalkanoate resin
JP2007136693A (en) Extruded foam of polyhydroxyalkanoate resin and its manufacturing method
JP2012241166A (en) Poly(3-hydroxyalkanoate)-based preliminarily foamed particle and in-mold expansion-molded body
JP2007119564A (en) Method for producing polyhydroxyalkanoate resin extrusion foam and extrusion foam obtained by the production method
JP2022104389A (en) Method for producing poly(3-hydroxy alkanoate)-based foam molding
JP4357998B2 (en) Method for producing polylactic acid resin foam
WO2023188942A1 (en) Poly(3-hydroxyalkanoate)-based resin foam particles
JP2007314670A (en) Foamed polylactic acid-resin particle molding and method for producing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080929

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101022

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101026

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110308