JP2007135346A - Yoke-integrated magnet - Google Patents

Yoke-integrated magnet Download PDF

Info

Publication number
JP2007135346A
JP2007135346A JP2005327579A JP2005327579A JP2007135346A JP 2007135346 A JP2007135346 A JP 2007135346A JP 2005327579 A JP2005327579 A JP 2005327579A JP 2005327579 A JP2005327579 A JP 2005327579A JP 2007135346 A JP2007135346 A JP 2007135346A
Authority
JP
Japan
Prior art keywords
magnet
yoke
integrated
magnetic
joined
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005327579A
Other languages
Japanese (ja)
Inventor
Fumiaki Hasegawa
文昭 長谷川
Hiroyuki Ito
弘幸 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daido Electronics Co Ltd
Original Assignee
Daido Electronics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daido Electronics Co Ltd filed Critical Daido Electronics Co Ltd
Priority to JP2005327579A priority Critical patent/JP2007135346A/en
Publication of JP2007135346A publication Critical patent/JP2007135346A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To achieve a high magnetic performance as a magnet is maintained as an isotropic magnet. <P>SOLUTION: A yoke-integrated magnet 1 is provided with the cylindrically molded magnet 3 and a yoke 2 integrally combined with the inner circumference of the magnet 3 by coinjection molding. A protrusion 21 is formed by circumferentially and circularly protruding a portion of the yoke 2 toward the magnet 3 in a plurality of positions at a regular interval. A magnetization region 31 is defined as a surface of the magnet 3 between the protrusion sections 21. Opposite magnetic poles are alternately formed in the magnetization regions 31. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明はヨーク一体型磁石に関し、特に磁気性能の改善を図ったヨーク一体型磁石に関する。   The present invention relates to a yoke-integrated magnet, and more particularly to a yoke-integrated magnet with improved magnetic performance.

磁粉と、バインダとしての適当な樹脂材とを混合してこれらを圧縮、射出ないし押出しにより所定形状に成形したボンド磁石は、形状の自由度が大きい上に、軽量小型のものが容易に製造できることから、HDD(ハードディスクドライブ)のスピンドルモータ等に多用されている。この場合、リング状に成形されたボンド磁石の周面にリング状のヨーク部を接合して一体化し、ヨーク一体型磁石として顧客に納入されることが多い。特許文献1にはこの種のヨーク一体型磁石の一例が示されている。
特開平10−201154
Bonded magnets made by mixing magnetic powder and an appropriate resin material as a binder and then compressing, injecting or extruding them into a predetermined shape have a high degree of freedom in shape and can be easily manufactured as lightweight and compact. Therefore, it is widely used for spindle motors of HDDs (Hard Disk Drives). In this case, it is often the case that a ring-shaped yoke portion is joined and integrated with the peripheral surface of a bonded magnet formed in a ring shape, and delivered to a customer as a yoke-integrated magnet. Patent Document 1 shows an example of this type of yoke-integrated magnet.
JP-A-10-201154

ところで、ボンド磁石としては、従来の等方性磁石に代えて、高い磁気性能を有する異方性磁石が注目されている。異方性磁石は金属組織中の磁気モーメントが一様に特定方向へ揃ったもので、リング状のボンド磁石の場合には、ラジアル方向磁場成形装置を使用して、成形金型の周囲に配置した電磁コイルで励起した磁界によって磁性粉の磁気モーメントをラジアル方向へ配向させている。この場合、スピンドルモータの小型化の要請に伴ってリング状ボンド磁石も小型のものが求められているが、小型のボンド磁石に応じて小型化した磁場成形装置の電磁コイルに大電流を供給することは難しいことから、異方性の小型ボンド磁石を得ることは困難であり、磁石部(ボンド磁石)を等方性磁石としたままで高い磁気性能を発揮するヨーク一体型磁石が望まれていた。   By the way, as a bonded magnet, an anisotropic magnet having high magnetic performance is attracting attention in place of a conventional isotropic magnet. Anisotropic magnets have a uniform magnetic moment in the metal structure, and in the case of ring-shaped bonded magnets, they are placed around the mold using a radial magnetic field forming device. The magnetic moment of the magnetic powder is oriented in the radial direction by the magnetic field excited by the electromagnetic coil. In this case, a ring-shaped bond magnet is required to be small in response to a request for miniaturization of the spindle motor, but a large current is supplied to the electromagnetic coil of the magnetic field forming device that is miniaturized according to the small bond magnet. Therefore, it is difficult to obtain an anisotropic small bonded magnet, and a yoke-integrated magnet that exhibits high magnetic performance while the magnet portion (bonded magnet) remains an isotropic magnet is desired. It was.

本発明はこのような要請に鑑みたもので、磁石部を等方性磁石としたままで高い磁気性能を発揮するヨーク一体型磁石を提供することを目的とする。   The present invention has been made in view of such a demand, and an object of the present invention is to provide a yoke-integrated magnet that exhibits high magnetic performance while the magnet portion is an isotropic magnet.

上記目的を達成するために、本第1発明では、磁石部(3)とこれに接合されたヨーク部(2)を備えるヨーク一体型磁石(1)において、ヨーク部(2)の一部を間隔をおいて複数箇所で磁石部(3)へ向けて突出させて突出部(21)とし、これら突出部(21)の間に位置する磁石部(3)の表面を着磁域(31)とする。   In order to achieve the above object, according to the first aspect of the present invention, in the yoke-integrated magnet (1) including the magnet portion (3) and the yoke portion (2) joined thereto, a part of the yoke portion (2) is formed. It protrudes toward a magnet part (3) in multiple places at intervals, and it is set as the protrusion part (21), and the surface of the magnet part (3) located between these protrusion parts (21) is a magnetization area | region (31). And

本第1発明においては、突出部を形成したことにより、磁石部を等方性磁石としたままでも、着磁域に形成された各磁極における表面磁束密度分布は、突出部を形成していない従来のヨーク一体型磁石の表面磁束密度分布よりも広幅となり、磁気性能が向上する。   In the first aspect of the present invention, since the protrusion is formed, the surface magnetic flux density distribution in each magnetic pole formed in the magnetized region does not form the protrusion even if the magnet is made an isotropic magnet. It becomes wider than the surface magnetic flux density distribution of the conventional yoke-integrated magnet, and the magnetic performance is improved.

本第2発明では、上記磁石部(3)を筒状に成形してその内周面ないし外周面にヨーク部(2)を接合し、上記突出部(21)を周方向へ等間隔で形成して、磁石部(3)の、ヨーク部(2)が接合されていない周面に形成された着磁域(31)に交互に逆極性の磁極を形成する。   In the second aspect of the invention, the magnet part (3) is formed into a cylindrical shape, the yoke part (2) is joined to the inner or outer peripheral surface thereof, and the protruding parts (21) are formed at equal intervals in the circumferential direction. Then, magnetic poles having opposite polarities are alternately formed in the magnetized region (31) formed on the peripheral surface of the magnet portion (3) where the yoke portion (2) is not joined.

本第2発明においては、スピンドルモータのロータ等に使用してモータトルクを十分に増大させることができる。   In the second aspect of the present invention, the motor torque can be sufficiently increased by using the rotor of a spindle motor or the like.

本第3発明では、上記突出部(21)を上記磁石部(3)へ向けて円弧状に突出させる。本第3発明においては、表面磁束密度分布を最も効果的に改善することができる。   In this 3rd invention, the said protrusion part (21) is protruded in circular arc shape toward the said magnet part (3). In the third invention, the surface magnetic flux density distribution can be most effectively improved.

本第4発明では、上記ヨーク部(2)は軟質磁性材を含む樹脂成形体よりなるとともに、上記磁石部(3)は硬質磁性材を含む樹脂成形体よりなり、これらヨーク部(2)と磁石部(3)とを二色成形により接合し一体化する。本第4発明のよれば、ヨーク一体型磁石を効率的に製造することができる。   In the fourth invention, the yoke part (2) is made of a resin molded body containing a soft magnetic material, and the magnet part (3) is made of a resin molded body containing a hard magnetic material, and the yoke part (2) and The magnet part (3) is joined and integrated by two-color molding. According to the fourth aspect of the invention, the yoke-integrated magnet can be efficiently manufactured.

なお、上記カッコ内の符号は、後述する実施形態に記載の具体的手段との対応関係を示すものである。   In addition, the code | symbol in the said parenthesis shows the correspondence with the specific means as described in embodiment mentioned later.

以上のように、本発明のヨーク一体型磁石は、磁石部を等方性磁石としたままで高い磁気性能を発揮させることができる。   As described above, the yoke-integrated magnet of the present invention can exhibit high magnetic performance while the magnet portion is an isotropic magnet.

(第1実施形態)
図1にはヨーク一体型磁石の正面図を示し、図2には図1のII−II線に沿った縦断面図を示す。各図において、ヨーク一体型磁石(以下、単に磁石という)1は円筒体で、内周側がヨーク部2、外周側が磁石部3となっている。本実施形態では、これらヨーク部2と磁石部3は2色一体成形によって互いに一体化接合されている。この成形は2色成形機により、まずヨーク部材料ないし磁石部材料の一方を射出成形し、型内冷却後、ヨーク部材料ないし磁石部材料の他方を射出して、ヨーク部2と磁石部3を一体化接合させるものである。このようにして製造された磁石1は、磁場成形装置で処理することなく磁石部3が等方性磁石のままで使用される。
(First embodiment)
FIG. 1 shows a front view of a yoke-integrated magnet, and FIG. 2 shows a longitudinal sectional view taken along line II-II in FIG. In each figure, a yoke-integrated magnet (hereinafter simply referred to as a magnet) 1 is a cylindrical body, and an inner peripheral side is a yoke part 2 and an outer peripheral side is a magnet part 3. In this embodiment, the yoke part 2 and the magnet part 3 are integrally joined to each other by two-color integral molding. In this molding, first, one of the yoke part material or the magnet part material is injection molded by a two-color molding machine, and after cooling in the mold, the other yoke part material or magnet part material is injected, and the yoke part 2 and the magnet part 3 are injected. Are integrally joined. The magnet 1 manufactured in this way is used while the magnet portion 3 remains an isotropic magnet without being processed by the magnetic field forming apparatus.

(ヨーク部材料の構成)
ヨーク部材料を構成する軟質磁性材としては鉄を主成分とする粉体(鉄粉)を使用する。その平均粒径は10μm〜200μmの範囲が好ましい。200μmを超えると、成形金型のキャビティ内に円滑に射出されず、10μmより小さいと、鉄粉の表面積が過大となって高温下での成形で酸化し、特性が低下するからである。上記鉄粉の形状はガスアトマイズ法による球体や、電解鉄粉のような異形状のものでも良い。樹脂材は熱可塑性樹脂を使用し、例えばナイロン12,ナイロン6,PPS,EEA,EVA,ポリプロピレン、ポリエチレン、PVC、CPVC等が使用できるが、これらに限定されるものではない。鉄粉と熱可塑性樹脂の混合比率は鉄粉の体積含率換算で40vol%〜80vol%が好ましい。40vol%より低いと目的とする磁気特性のうち飽和磁束密度Brが十分得られない。一方、80vol%を超えると、樹脂の混合比率が低いため射出成形の際に流れにくく、良好な成形物が得られない。
(Composition of yoke part material)
As the soft magnetic material constituting the yoke part material, powder (iron powder) containing iron as a main component is used. The average particle size is preferably in the range of 10 μm to 200 μm. If it exceeds 200 μm, it is not smoothly injected into the cavity of the molding die, and if it is less than 10 μm, the surface area of the iron powder becomes excessive and is oxidized by molding at a high temperature, and the characteristics deteriorate. The shape of the iron powder may be a sphere formed by a gas atomization method or an irregular shape such as electrolytic iron powder. As the resin material, a thermoplastic resin is used. For example, nylon 12, nylon 6, PPS, EEA, EVA, polypropylene, polyethylene, PVC, CPVC, and the like can be used, but the material is not limited thereto. The mixing ratio of the iron powder and the thermoplastic resin is preferably 40 vol% to 80 vol% in terms of the volume content of the iron powder. If it is lower than 40 vol%, the saturation magnetic flux density Br cannot be sufficiently obtained among the intended magnetic characteristics. On the other hand, when it exceeds 80 vol%, since the mixing ratio of the resin is low, it is difficult to flow during injection molding, and a good molded product cannot be obtained.

なお、鉄粉と熱可塑性樹脂材との結合力を増進するために、鉄粉表面にカップリング処理を行ってもよい。使用するカップリング剤としてはシラン系のγアミノプロピルトリエトキシシラン、γ−アミノプロピルトリエトキシシラン等、チタネート系のテトライソプロピルチタネート、テトライソブチルオルソチタネート等、アルミニウム系のアセトアルコキシアルミニウムジイソプロピレート、ジルコニウム系のジルコニウムトリブトキシステアレート等が使用できるが、これらに限定されるものではない。   In addition, in order to improve the bonding force between the iron powder and the thermoplastic resin material, a coupling treatment may be performed on the surface of the iron powder. Coupling agents used include silane-based γ-aminopropyltriethoxysilane, γ-aminopropyltriethoxysilane, etc., titanate-based tetraisopropyl titanate, tetraisobutyl orthotitanate, etc., aluminum-based acetoalkoxyaluminum diisopropylate, zirconium Zirconium tributoxy systemate and the like can be used, but are not limited thereto.

(磁石部材料の構成)
磁石部材料を構成する硬質磁性材としてはNd−Fe−B系を主成分とする合金系の粉体(磁性粉)が使用できる。Nd−Fe−B系のほかにもフェライト、SmCo5,Sm2Co17等を使用することができる。磁性粉の平均粒径は10μm〜200μm の範囲が好ましい。 200μmを超えると、成形金型のキャビティ内に円滑に射出されず、一方、10μmより小さいと、磁性粉の表面積が過大となって高温使用において磁気性能が低下するからである。樹脂材は熱可塑性樹脂を使用し、ナイロン12,ナイロン6,PPS,EEA,EVA,ポリプロピレン、ポリエチレン、PVC、CPVC等が使用できるが、これらに限定されるものではない。磁性粉と熱可塑性樹脂の混合比率は磁性粉の体積含率換算で40vol%〜80vol%が好ましい。40vol%より低いと目的とする磁力が得られない。80vol%を超えると、樹脂の混合比率が低いため射出成形の際に流れにくく、良好な成形物が得られない。
(Composition of magnet part material)
As the hard magnetic material constituting the magnet part material, an alloy-based powder (magnetic powder) mainly composed of Nd—Fe—B can be used. In addition to the Nd—Fe—B system, ferrite, SmCo5, Sm2Co17, and the like can be used. The average particle size of the magnetic powder is preferably in the range of 10 μm to 200 μm. If it exceeds 200 μm, it is not smoothly injected into the cavity of the molding die. On the other hand, if it is less than 10 μm, the surface area of the magnetic powder becomes excessive, and the magnetic performance deteriorates at high temperature use. As the resin material, a thermoplastic resin is used, and nylon 12, nylon 6, PPS, EEA, EVA, polypropylene, polyethylene, PVC, CPVC, and the like can be used, but are not limited thereto. The mixing ratio of the magnetic powder and the thermoplastic resin is preferably 40 vol% to 80 vol% in terms of the volume content of the magnetic powder. If it is lower than 40 vol%, the desired magnetic force cannot be obtained. When it exceeds 80 vol%, since the mixing ratio of the resin is low, it is difficult to flow during injection molding, and a good molded product cannot be obtained.

なお、磁性粉と熱可塑性樹脂材との結合力を増進するために、磁性粉表面にカップリング処理を行ってもよい。使用するカップリング剤としてはシラン系のγアミノプロピルトリエトキシシラン、γ−アミノプロピルトリエトキシシラン等、チタネート系のテトライソプロピルチタネート、テトライソブチルオルソチタネート等、アルミニウム系のアセトアルコキシアルミニウムジイソプロピレート、ジルコニウム系のジルコニウムトリブトキシステアレート等が使用できるが、これらに限定されるものではない。   In addition, in order to increase the bonding force between the magnetic powder and the thermoplastic resin material, a coupling treatment may be performed on the surface of the magnetic powder. Coupling agents used include silane-based γ-aminopropyltriethoxysilane, γ-aminopropyltriethoxysilane, titanate-based tetraisopropyl titanate, tetraisobutyl orthotitanate, etc., aluminum-based acetoalkoxyaluminum diisopropylate, zirconium Zirconium tributoxy systemate and the like can be used, but are not limited thereto.

本実施形態においては、磁石部3の内周に接するヨーク部2の外周に、周方向等間隔で12箇所に、磁石部3へ向けて突出する突出部21が形成されている。そして、これら突出部21を境界域として磁石部3外周に周方向へ12箇所形成された各着磁域31には、周方向へ交互に、互いに逆極性のN極、S極の12の磁極が形成されている。突出部21の形状の一例は図1に示すように半円形であり、その詳細を図3に示す。図3において、ヨーク部2の内径R1、ヨーク部2の外径(磁石部3の内径)R2、磁石部3の外径R3、突出部21の半径R4の一例はそれぞれ5.75mm、6.75mm、8.05mm、0.65mmである。   In the present embodiment, projecting portions 21 projecting toward the magnet portion 3 are formed on the outer periphery of the yoke portion 2 in contact with the inner periphery of the magnet portion 3 at twelve locations at equal intervals in the circumferential direction. Then, each of the magnetized regions 31 formed in the circumferential direction on the outer periphery of the magnet unit 3 with the protruding portions 21 serving as boundary regions has 12 magnetic poles of N and S poles having opposite polarities alternately in the circumferential direction. Is formed. An example of the shape of the protrusion 21 is a semicircular shape as shown in FIG. 1, and the details thereof are shown in FIG. 3, examples of the inner diameter R1 of the yoke part 2, the outer diameter of the yoke part 2 (the inner diameter of the magnet part 3) R2, the outer diameter R3 of the magnet part 3, and the radius R4 of the protruding part 21 are 5.75 mm and 6.5, respectively. 75 mm, 8.05 mm, and 0.65 mm.

図4は、このような突出部21を形成した本発明の磁石の表面磁束密度分布(線X)を、突出部21を形成していない従来の磁石の表面磁束密度分布(線Y)と比較したもので、本発明の磁石1では各磁極における磁束密度分布が従来のものよりも十分幅広となって磁気性能が向上しており、スピンドルモータ等に使用してそのモータトルクを十分に増大させることができる。   FIG. 4 compares the surface magnetic flux density distribution (line X) of the magnet of the present invention in which such protrusions 21 are formed with the surface magnetic flux density distribution (line Y) of a conventional magnet in which the protrusions 21 are not formed. Therefore, in the magnet 1 of the present invention, the magnetic flux density distribution in each magnetic pole is sufficiently wider than that of the conventional one, and the magnetic performance is improved, and the motor torque is sufficiently increased when used in a spindle motor or the like. be able to.

(他の実施形態)
突出部21の形状は半円形である必要はなく、例えば図5に示すような矩形の突出部22や、図6に示すような三角形の突出部23としても良い。また、上記実施形態において、磁石部3を内周側とし、ヨーク部2を外周側としても良い。さらに、磁石1は必ずしも2色成形で一体化接合される必要はなく、金属製ヨーク体(部)をインサート材として金型内に挿置して磁石部を射出成形する方法や、金属製ヨーク体に別体のボンド磁石を嵌着する方法等が採用できる。
(Other embodiments)
The shape of the protrusion 21 does not have to be semicircular, and may be, for example, a rectangular protrusion 22 as shown in FIG. 5 or a triangular protrusion 23 as shown in FIG. Moreover, in the said embodiment, it is good also considering the magnet part 3 as an inner peripheral side and the yoke part 2 as an outer peripheral side. Furthermore, the magnet 1 does not necessarily need to be integrally joined by two-color molding. A method of inserting a metal yoke body (part) into a mold as an insert material and injection molding the magnet part, or a metal yoke A method of fitting a separate bonded magnet to the body can be employed.

本発明の一実施形態を示すヨーク一体型磁石の正面図である。It is a front view of the yoke integrated magnet which shows one Embodiment of this invention. 図1のII−II線に沿ったヨーク一体型磁石の縦断面図である。It is a longitudinal cross-sectional view of the yoke integrated magnet along the II-II line of FIG. ヨーク一体型磁石の要部拡大正面図である。It is a principal part enlarged front view of a yoke integrated magnet. ヨーク一体型磁石の表面磁束密度の分布曲線である。It is a distribution curve of the surface magnetic flux density of a yoke integrated magnet. 本発明の他の実施形態を示すヨーク一体型磁石の要部拡大正面図である。It is a principal part enlarged front view of the yoke integrated magnet which shows other embodiment of this invention. 本発明のさらに他の実施形態を示すヨーク一体型磁石の要部拡大正面図である。It is a principal part enlarged front view of the yoke integrated magnet which shows other embodiment of this invention.

符号の説明Explanation of symbols

1…ヨーク一体型磁石、2…ヨーク部、21…突出部、3…磁石部、31…着磁域。 DESCRIPTION OF SYMBOLS 1 ... Yoke integral magnet, 2 ... Yoke part, 21 ... Projection part, 3 ... Magnet part, 31 ... Magnetization area | region.

Claims (4)

磁石部とこれに接合されたヨーク部を備えるヨーク一体型磁石において、前記ヨーク部の一部を間隔をおいて複数箇所で前記磁石部へ向けて突出させて突出部とし、これら突出部の間に位置する磁石部の表面を着磁域としたことを特徴とするヨーク一体型磁石。 In a yoke-integrated magnet including a magnet part and a yoke part joined thereto, a part of the yoke part is projected toward the magnet part at a plurality of positions at intervals to form a projecting part between the projecting parts. A yoke-integrated magnet characterized in that the surface of the magnet portion located in the region is a magnetized region. 前記磁石部を筒状に成形してその内周面ないし外周面に前記ヨーク部を接合し、前記突出部を周方向へ等間隔で形成して、前記磁石部の、前記ヨーク部が接合されていない周面に形成された前記着磁域に交互に逆極性の磁極を形成した請求項1に記載のヨーク一体型磁石。 The magnet part is formed into a cylindrical shape, the yoke part is joined to the inner peripheral surface or the outer peripheral surface, the protruding parts are formed at equal intervals in the circumferential direction, and the yoke part of the magnet part is joined. The yoke-integrated magnet according to claim 1, wherein magnetic poles having opposite polarities are alternately formed in the magnetized region formed on a peripheral surface that is not formed. 前記突出部を前記磁石部へ向けて円弧状に突出させた請求項1又は2に記載のヨーク一体型磁石。 The yoke-integrated magnet according to claim 1 or 2, wherein the protruding portion protrudes in an arc shape toward the magnet portion. 前記ヨーク部は軟質磁性材を含む樹脂成形体よりなるとともに、前記磁石部は硬質磁性材を含む樹脂成形体よりなり、これらヨーク部と磁石部とを二色成形により接合し一体化した請求項1ないし3のいずれかに記載のヨーク一体型磁石。 The yoke part is made of a resin molded body containing a soft magnetic material, and the magnet part is made of a resin molded body containing a hard magnetic material, and the yoke part and the magnet part are joined and integrated by two-color molding. The yoke-integrated magnet according to any one of 1 to 3.
JP2005327579A 2005-11-11 2005-11-11 Yoke-integrated magnet Pending JP2007135346A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005327579A JP2007135346A (en) 2005-11-11 2005-11-11 Yoke-integrated magnet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005327579A JP2007135346A (en) 2005-11-11 2005-11-11 Yoke-integrated magnet

Publications (1)

Publication Number Publication Date
JP2007135346A true JP2007135346A (en) 2007-05-31

Family

ID=38156559

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005327579A Pending JP2007135346A (en) 2005-11-11 2005-11-11 Yoke-integrated magnet

Country Status (1)

Country Link
JP (1) JP2007135346A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009189155A (en) * 2008-02-06 2009-08-20 Mitsubishi Electric Corp Rotor of synchronous electric motor, blower electric motor, air conditioner, pump and water heater
JP2010193568A (en) * 2009-02-16 2010-09-02 Daido Electronics Co Ltd Integral assembly composed of motor case and magnet in electric motor, and method of manufacturing the same
JP2010283978A (en) * 2009-06-04 2010-12-16 Kayaba Ind Co Ltd Electric motor and rotor therefor
JP2011092006A (en) * 2011-02-04 2011-05-06 Mitsubishi Electric Corp Rotor of synchronous motor, electric motor for air blower, air conditioner, pump, and water heater
JP2013042660A (en) * 2012-11-26 2013-02-28 Mitsubishi Electric Corp Rotor of synchronous electric motor, electric motor for air blower, air conditioner, pump, and water heater

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1075555A (en) * 1996-01-31 1998-03-17 Fuji Xerox Co Ltd Motor and its manufacturing method
JP2004242378A (en) * 2003-02-03 2004-08-26 Aichi Steel Works Ltd Motor, motor rotor, and compound anisotropic magnet
JP2005295775A (en) * 2004-04-05 2005-10-20 Nidec Shibaura Corp Rotor of motor
JP2005304178A (en) * 2004-04-12 2005-10-27 Ichinomiya Denki:Kk Rotor for brushless motor and brushless motor

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1075555A (en) * 1996-01-31 1998-03-17 Fuji Xerox Co Ltd Motor and its manufacturing method
JP2004242378A (en) * 2003-02-03 2004-08-26 Aichi Steel Works Ltd Motor, motor rotor, and compound anisotropic magnet
JP2005295775A (en) * 2004-04-05 2005-10-20 Nidec Shibaura Corp Rotor of motor
JP2005304178A (en) * 2004-04-12 2005-10-27 Ichinomiya Denki:Kk Rotor for brushless motor and brushless motor

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009189155A (en) * 2008-02-06 2009-08-20 Mitsubishi Electric Corp Rotor of synchronous electric motor, blower electric motor, air conditioner, pump and water heater
JP2010193568A (en) * 2009-02-16 2010-09-02 Daido Electronics Co Ltd Integral assembly composed of motor case and magnet in electric motor, and method of manufacturing the same
JP2010283978A (en) * 2009-06-04 2010-12-16 Kayaba Ind Co Ltd Electric motor and rotor therefor
JP2011092006A (en) * 2011-02-04 2011-05-06 Mitsubishi Electric Corp Rotor of synchronous motor, electric motor for air blower, air conditioner, pump, and water heater
JP2013042660A (en) * 2012-11-26 2013-02-28 Mitsubishi Electric Corp Rotor of synchronous electric motor, electric motor for air blower, air conditioner, pump, and water heater

Similar Documents

Publication Publication Date Title
JP2003244870A (en) Dc brush motor apparatus and its permanent magnet
JP2007135346A (en) Yoke-integrated magnet
JP2005064448A (en) Method of manufacturing laminated polar anisotropic hybrid magnet
JP2007214393A (en) Annular polar anisotropic plastic magnet and rotor used for motor
JP4029679B2 (en) Bond magnet for motor and motor
JP4701641B2 (en) Composite bond magnet, method for producing composite bond magnet, rotor of DC brushless motor equipped with composite bond magnet.
JP4478869B2 (en) Method for manufacturing anisotropic bonded magnet
JPH0576147A (en) Rotor for motor
JP4577604B2 (en) Method for producing anisotropic rare earth bonded magnet
WO2018199271A1 (en) Permanent-magnet-field dc motor as well as stator therefor and rare earth anisotropic bond magnet therefor
JP2005300935A (en) Magnet roller or its manufacturing method
JP2000243620A (en) Magnet roll and manufacture thereof
JP2010098863A (en) Cylindrical magnet material and surface magnet type motor
JP2003151825A (en) Magnet roller
JP2007068323A (en) Dc brushless motor device and its permanent magnet
JP2003086421A (en) Magnet roller
JP2004087644A (en) Magnet roller
JPS62196057A (en) Permanent magnet-type motor
JP2002151324A (en) Magnet roller
JP2006339565A (en) Yoke-integrated magnet
JP2004274860A (en) Rotor and brushless motor
JP2006090995A5 (en)
JP2005294757A (en) Anisotropy rare earth bond magnet
JP2005312166A (en) Anisotropic bond magnet for four magnetic pole motor and motor employing it
JP2006108330A (en) Method for manufacturing magnet piece

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080722

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101130

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110524

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110713

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120614

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120807

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20130326