JP2007134696A - Composition of polishing solution for semiconductor substrate - Google Patents

Composition of polishing solution for semiconductor substrate Download PDF

Info

Publication number
JP2007134696A
JP2007134696A JP2006280740A JP2006280740A JP2007134696A JP 2007134696 A JP2007134696 A JP 2007134696A JP 2006280740 A JP2006280740 A JP 2006280740A JP 2006280740 A JP2006280740 A JP 2006280740A JP 2007134696 A JP2007134696 A JP 2007134696A
Authority
JP
Japan
Prior art keywords
polishing
semiconductor substrate
weight
ceria particles
polishing composition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006280740A
Other languages
Japanese (ja)
Other versions
JP5288697B2 (en
Inventor
Yasuhiro Yoneda
康洋 米田
Masami Shirota
真美 代田
Haruki Nojo
治輝 能條
Hirofumi Kashiwabara
洋文 柏原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kao Corp
Original Assignee
Kao Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kao Corp filed Critical Kao Corp
Priority to JP2006280740A priority Critical patent/JP5288697B2/en
Publication of JP2007134696A publication Critical patent/JP2007134696A/en
Application granted granted Critical
Publication of JP5288697B2 publication Critical patent/JP5288697B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a composition of a polishing solution for a semiconductor substrate whereby ceria particles are dispersed with high stability, a high-concentration product of stable quality can be prepared, the ability to selectively polish a recess is provided when the polishing solution is diluted, the influence of the density or size of an uneven pattern is small, that is, high flatness with low dependence on a pattern can be quickly obtained with a small amount of polishing, and defects can be reduced after polishing. <P>SOLUTION: The composition of the polishing solution for a semiconductor substrate contains dihydroxyethyl glycine, ceria particles, a disperser, and an aqueous medium, wherein the content of the ceria particles is 2 wt.% to 22 wt.% and the content of the disperser is 0.001 wt.% to 1.0 wt.%. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、半導体基板用研磨液組成物、該半導体基板用研磨液組成物を用いる半導体基板の研磨方法及び該研磨方法による研磨工程を有する半導体装置の製造方法に関する。   The present invention relates to a polishing composition for a semiconductor substrate, a method for polishing a semiconductor substrate using the polishing composition for a semiconductor substrate, and a method for manufacturing a semiconductor device having a polishing step by the polishing method.

半導体基板用研磨液は、製造設備や輸送のコストを低減するために、高濃度品として製造され、使用時に所定濃度まで希釈されて使用されることが望ましいが、高濃度であるほど凝集・沈降しやすくなるため、より分散安定性に優れた研磨液が求められている。   The semiconductor substrate polishing liquid is manufactured as a high-concentration product in order to reduce the cost of manufacturing equipment and transportation, and is preferably diluted to a predetermined concentration during use. Therefore, there is a demand for a polishing liquid that is more excellent in dispersion stability.

特に、かかる研磨液で研磨材として広く用いられているセリア(酸化セリウム)粒子は、その比重が約7.3g/cm3と大きいため、もともと沈降しやすい。さらに平坦化性能を付与するために加えられる添加剤が、セリア粒子の凝集を促進させ、沈降を加速して、分散安定性を低下させる傾向がある。その結果、研磨液の供給配管中での沈降やフィルターの目詰まりが発生し、スクラッチを増加させる原因となっている。 In particular, ceria (cerium oxide) particles widely used as an abrasive in such polishing liquids are likely to settle from the beginning because their specific gravity is as large as about 7.3 g / cm 3 . Furthermore, the additive added to impart flattening performance tends to promote aggregation of ceria particles, accelerate sedimentation, and reduce dispersion stability. As a result, sedimentation in the polishing liquid supply pipe and clogging of the filter occur, which causes an increase in scratches.

セリア粒子を沈降しにくくする技術として、添加剤にポリアクリル酸系共重合体を選択することが知られている(特許文献1)。しかしながら、この研磨液では、共重合体の添加量がわずかであるため、凹凸段差のある被研磨面を研磨した場合、凸部だけでなく凹部の研磨が進行するため、ディッシングが発生し、平坦な半導体基板を得ることができない。   As a technique for making ceria particles difficult to settle, it is known to select a polyacrylic acid copolymer as an additive (Patent Document 1). However, in this polishing liquid, since the addition amount of the copolymer is small, when polishing the surface to be polished having uneven steps, not only the convex portions but also the concave portions are polished, so that dishing occurs and the flatness is increased. A semiconductor substrate cannot be obtained.

一方、近年の半導体分野においては、高集積化と高速化が進んでおり、特に高集積化では配線の微細化が要求されている。その結果、半導体基板の製造プロセスにおいては、フォトレジストの露光の際の焦点深度が浅くなり、より一層の表面平坦性が望まれている。又、高集積化・微細化が進むと、研磨した後のウェハ表面上の欠陥(ディフェクトともいう)の存在により回路の切断等が発生して良品チップの歩留まりが低下するため、ディフェクトの低減もより一層要求される。 On the other hand, in the recent semiconductor field, high integration and high speed have been advanced, and in particular, high integration requires the miniaturization of wiring. As a result, in the manufacturing process of a semiconductor substrate, the depth of focus at the time of exposure of the photoresist becomes shallow, and further surface flatness is desired. In addition, as integration and miniaturization progress, circuit defects occur due to the presence of defects (also referred to as defects) on the wafer surface after polishing, and the yield of non-defective chips decreases. Even more required.

かかる半導体基板の製造プロセス、例えば、配線形成工程や埋め込み素子分離工程にお
いて、基板上には配線あるいは埋め込み用の溝の形成により、種々の幅を有する微細な凹
凸が多数存在しており、この凹凸段差を平坦化すること及びディフェクトを低減することが要求されている。
In such a semiconductor substrate manufacturing process, for example, a wiring formation process or a buried element separation process, a large number of fine irregularities having various widths exist on the substrate due to the formation of wiring or embedding grooves. There is a demand for flattening the steps and reducing defects.

この基板表面上の凹凸段差を研磨する場合、研磨材のみを含む研磨液を用いると、凸部は速やかに研磨されるが、同時に凹部も研磨されていくために、実質的に両者が平坦になるまでには、時間がかかる上に、被研磨面の部材を相当量研磨する必要があるという課題があった。   When polishing the uneven step on the surface of the substrate, if a polishing liquid containing only an abrasive is used, the convex portion is polished quickly, but the concave portion is also polished at the same time. It takes time, and there is a problem that a considerable amount of the member on the surface to be polished needs to be polished.

以上の課題に対して、従来技術では、アスパラギン酸などの低分子添加剤を添加することにより平坦化能の向上を試みている(例えば、特許文献2)。
特開2000−17195号公報 特開2001−7059号公報
With respect to the above problems, the prior art attempts to improve planarization ability by adding a low-molecular additive such as aspartic acid (for example, Patent Document 2).
JP 2000-17195 A JP 2001-7059 A

しかしながら、前記特許文献2記載の研磨液組成物では、前述のセリア粒子の分散安定性が十分でなく、有効な改善策が提示されていない。本発明の課題は、セリア粒子の分散安定性にすぐれ、品質が安定した高濃度品が製造可能で、希釈して用いた場合に凸部の選択研磨性能を付与し、凹凸パターンの密度あるいはサイズの影響を受けにくい、即ち、パターン依存性の少ない高度な平坦化を少ない研磨量で速やかに達成でき、かつ、研磨後のディフェクトを低減できる半導体基板用研磨液組成物、該半導体基板用研磨液組成物を用いる半導体基板の研磨方法、ならびに該研磨方法による研磨工程を有する半導体装置の製造方法を提供することにある。   However, in the polishing composition described in Patent Document 2, the above-mentioned dispersion stability of the ceria particles is not sufficient, and an effective improvement measure has not been presented. The object of the present invention is to produce a high-concentration product with excellent dispersion stability of ceria particles, stable quality, and imparting selective polishing performance of convex portions when used diluted, and the density or size of the concave-convex pattern Polishing liquid composition for semiconductor substrate capable of promptly achieving high level planarization with little pattern dependency and less defects after polishing, and capable of reducing defects after polishing, and polishing liquid for semiconductor substrate An object of the present invention is to provide a method for polishing a semiconductor substrate using the composition, and a method for manufacturing a semiconductor device having a polishing step by the polishing method.

すなわち、本発明は、
[1] ジヒドロキシエチルグリシン、セリア粒子、分散剤及び水系媒体を含有する半導体基板用研磨液組成物であって、該研磨液組成物中のセリア粒子の含有量が2〜22重量%、分散剤の含有量が0.001〜1.0重量%である半導体基板用研磨液組成物、
[2] ジヒドロキシエチルグリシン、セリア粒子、分散剤及び水系媒体が配合されて得られる半導体基板用研磨液組成物であって、該研磨液組成物中、セリア粒子が2〜22重量%、分散剤が0.001〜1.0重量%および水系媒体が配合されて得られる半導体基板用研磨液組成物、
[3] 前記[1]または[2]記載の半導体基板用研磨液組成物を希釈した液を、被研磨基板1cm当たり0.01〜10g/分の供給速度で該基板に供給する工程を含む半導体基板の研磨方法、及び
[4] 前記[3]記載の研磨方法により被研磨基板を研磨する工程を有する半導体装置の製造方法、
に関する。
That is, the present invention
[1] A polishing liquid composition for a semiconductor substrate containing dihydroxyethylglycine, ceria particles, a dispersant and an aqueous medium, wherein the content of ceria particles in the polishing liquid composition is 2 to 22% by weight, a dispersing agent A polishing composition for a semiconductor substrate having a content of 0.001 to 1.0% by weight,
[2] A polishing composition for a semiconductor substrate obtained by blending dihydroxyethylglycine, ceria particles, a dispersant and an aqueous medium, wherein 2 to 22% by weight of ceria particles are contained in the polishing composition. Is a polishing composition for a semiconductor substrate obtained by blending 0.001 to 1.0% by weight and an aqueous medium,
[3] A step of supplying a liquid obtained by diluting the polishing composition for a semiconductor substrate according to [1] or [2] to the substrate at a supply rate of 0.01 to 10 g / min per 1 cm 2 of the substrate to be polished. A method for polishing a semiconductor substrate, and [4] a method for manufacturing a semiconductor device comprising a step of polishing a substrate to be polished by the polishing method according to [3],
About.

本発明により、セリア粒子の分散安定性にすぐれ、品質が安定した高濃度品が製造可能で、希釈して用いた場合に凸部の選択研磨性能を付与し、凹凸パターンの密度あるいはサイズの影響を受けにくい、即ち、パターン依存性の少ない高度な平坦化を少ない研磨量で速やかに達成でき、研磨後のディフェクトを低減できる半導体基板用研磨液組成物、該半導体基板用研磨液組成物を用いる半導体基板の研磨方法、ならびに該研磨方法による研磨工程を有する半導体装置の製造方法を提供することができる。   According to the present invention, high-concentration products with excellent dispersion stability of ceria particles and stable quality can be produced, and when used by diluting, selective polishing performance of convex portions is imparted, and the influence of density or size of the concave-convex pattern A polishing composition for a semiconductor substrate that can be easily subjected to high level planarization with a small amount of polishing and that can reduce defects after polishing, and the polishing composition for a semiconductor substrate, which is less susceptible to patterning, i.e., less dependent on a pattern, can be achieved. A method for polishing a semiconductor substrate and a method for manufacturing a semiconductor device having a polishing step by the polishing method can be provided.

本発明の半導体基板用研磨液組成物(以下、単に「研磨液組成物」と称することがある)は、前記のように、ジヒドロキシエチルグリシン、セリア粒子、分散剤及び水系媒体を含有する半導体基板用研磨液組成物であって、該研磨液組成物中のセリア粒子の含有量が2〜22重量%、分散剤の含有量が0.001〜1.0重量%である研磨液組成物である。本発明が、かかる構成を有することにより、セリア粒子の分散安定性にすぐれ、品質が安定した高濃度品が製造可能で、希釈して用いた場合に凸部の選択研磨性能を付与し、凹凸パターンの密度あるいはサイズの影響を受けにくい、即ち、パターン依存性の少ない高度な平坦化を少ない研磨量で速やかに達成できるという効果が奏される。   The semiconductor substrate polishing liquid composition of the present invention (hereinafter sometimes simply referred to as “polishing liquid composition”), as described above, contains dihydroxyethylglycine, ceria particles, a dispersant, and an aqueous medium. A polishing liquid composition having a ceria particle content of 2 to 22% by weight and a dispersant content of 0.001 to 1.0% by weight in the polishing liquid composition. is there. By having such a configuration, the present invention can produce a high-concentration product having excellent dispersion stability of ceria particles and stable quality, and imparting selective polishing performance of convex portions when used by diluting. There is an effect that it is difficult to be influenced by the density or size of the pattern, that is, it is possible to quickly achieve high leveling with less pattern dependency with a small amount of polishing.

〔メカニズム〕
本発明の研磨液組成物が、高い平坦化性能を示し、かつセリア粒子の分散安定性に優れる理由は、セリア粒子及びジヒドロキシエチルグリシンが共存することにより、以下のようなメカニズムが起こっているためと推定される。
ジヒドロキシエチルグリシンは、分子内にアニオン基、カチオン基、ノニオン基がバランスよく存在するため、セリア粒子に吸着しても粒子のゼータ電位や親水性を大きく低下させることがなく、また、分散剤の効果に影響を与えにくいと推定される。さらに高分子化合物のようなセリア粒子間の架橋効果もないため、高濃度に添加した場合でもセリア粒子の分散安定性に優れると推定される。
一方、研磨液組成物を半導体基板に供した場合、ジヒドロキシエチルグリシンが、セリア粒子表面及び/又は被研磨膜表面に吸着し皮膜を形成する。表面に形成された皮膜は、セリア粒子の被研磨膜表面への作用を阻害し、研磨の進行を抑制する。ところが、高い研磨荷重が加わると、ジヒドロキシエチルグリシンの吸着皮膜が破断して、セリア粒子が被研磨膜表面に作用できるため研磨が進行する。従って凹凸段差を有する被研磨膜を研磨する場合、凸部には局部的に高い研磨荷重が働くため、吸着膜が破断して研磨が進行し、反対に凹部は局部的に荷重が低く、吸着皮膜に保護され研磨が進行しない。従って凸部のみが選択的に研磨され効率的に凹凸段差の低減が進行する。
さらに、研磨が進行し、凹凸段差が減少すると凸部と凹部にかかる局部荷重は設定荷重に近づいていく。そこで予め設定荷重では研磨がほとんど進行しないような条件を設定しておくことで、凹凸段差解消後(平坦化後)は研磨がほとんど進行しなくなるという特徴的な研磨特性(凸部/平坦化後研磨選択比)を発現させることができる。
その結果、少ない研磨量でパターン依存性の少ない高度な平坦化が速やかに達成できるという優れた効果が発現する。この効果は半導体基板の表面の膜に少なくともケイ素を含む場合、特に酸化ケイ素を含む場合に顕著である。
〔mechanism〕
The reason why the polishing composition of the present invention exhibits high planarization performance and excellent dispersion stability of ceria particles is because the following mechanism is caused by the coexistence of ceria particles and dihydroxyethylglycine. It is estimated to be.
Dihydroxyethylglycine has an anion group, a cation group, and a nonion group in a balanced state in the molecule, so that even if adsorbed on ceria particles, the zeta potential and hydrophilicity of the particles are not greatly reduced. It is estimated that it is difficult to affect the effect. Furthermore, since there is no cross-linking effect between ceria particles like a polymer compound, it is estimated that the dispersion stability of ceria particles is excellent even when added at a high concentration.
On the other hand, when the polishing composition is applied to a semiconductor substrate, dihydroxyethylglycine is adsorbed on the surface of ceria particles and / or the surface of the film to be polished to form a film. The film formed on the surface inhibits the action of ceria particles on the surface of the film to be polished and suppresses the progress of polishing. However, when a high polishing load is applied, the adsorbed film of dihydroxyethylglycine breaks, and the ceria particles can act on the surface of the film to be polished, so that polishing proceeds. Therefore, when polishing a film to be polished having uneven steps, a high polishing load acts locally on the convex part, so the adsorption film breaks and polishing proceeds, and conversely, the concave part has a locally low load and adsorbs. The film is protected and polishing does not proceed. Therefore, only the convex portion is selectively polished, and the uneven step is efficiently reduced.
Further, when the polishing progresses and the uneven step is reduced, the local load applied to the convex portion and the concave portion approaches the set load. Therefore, by setting the conditions so that the polishing hardly progresses with the set load in advance, the characteristic polishing characteristic (after the convex part / after flattening) that the polishing hardly progresses after the uneven step is eliminated (after flattening). (Polishing selection ratio) can be expressed.
As a result, an excellent effect is achieved that high level planarization with little pattern dependency and a small amount of polishing can be achieved quickly. This effect is significant when the film on the surface of the semiconductor substrate contains at least silicon, particularly when silicon oxide is included.

(1)研磨液組成物
〔セリア粒子〕
本発明に用いられるセリア粒子としては、例えば種々の合成法により調製されるセリア粒子が挙げられる。この合成法としては、焼成法、水熱合成法、塩・触媒法、気相法(PSV法)等が挙げられ、中でも、研磨速度の観点から、炭酸塩、硫酸塩、シュウ酸塩等のセリウム化合物を焼成し、酸化セリウム(セリア)を得る焼成法が好ましい。
(1) Polishing liquid composition [ceria particles]
Examples of the ceria particles used in the present invention include ceria particles prepared by various synthesis methods. Examples of this synthesis method include a firing method, a hydrothermal synthesis method, a salt / catalyst method, a gas phase method (PSV method), etc. Among them, from the viewpoint of polishing rate, carbonates, sulfates, oxalates, etc. A firing method in which a cerium compound is fired to obtain cerium oxide (ceria) is preferred.

セリア粒子の体積平均粒子径としては、研磨速度の観点から30nm以上が好ましく、また、セリア粒子の水系媒体中での分散安定性・沈降分離防止の観点から1000nm以下が好ましい。セリア粒子の体積平均粒子径は、30〜1000nmが好ましく、40〜500nmがより好ましく、50〜160nmが更に好ましく、50〜140nmが更により好ましい。なお、体積平均粒子径は、レーザー回折・散乱式粒度分布計(堀場製作所製 LA−920)で超音波分散しながら希釈した状態で測定した体積基準のメジアン径である。   The volume average particle diameter of the ceria particles is preferably 30 nm or more from the viewpoint of polishing rate, and is preferably 1000 nm or less from the viewpoint of dispersion stability of the ceria particles in the aqueous medium and prevention of sedimentation separation. The volume average particle diameter of the ceria particles is preferably 30 to 1000 nm, more preferably 40 to 500 nm, still more preferably 50 to 160 nm, and still more preferably 50 to 140 nm. The volume average particle diameter is a volume-based median diameter measured in a diluted state while ultrasonically dispersing with a laser diffraction / scattering particle size distribution analyzer (LA-920, manufactured by Horiba, Ltd.).

また、セリア粒子の平均一次粒子径(結晶子サイズ)としては、研磨速度の観点から、5nm以上が好ましく、また、研磨面における傷の発生を抑える観点から、100nm以下が好ましい。前記セリア粒子の平均一次粒子径は、5〜100nmが好ましく、10〜50nmがより好ましく、20〜40nmが更に好ましい。なお、セリア粒子の平均一次粒子径の測定法としては、BET法で求めた比表面積から粒子形状を球状と仮定して求める方法やX線回折法が挙げられる。   In addition, the average primary particle diameter (crystallite size) of the ceria particles is preferably 5 nm or more from the viewpoint of polishing rate, and is preferably 100 nm or less from the viewpoint of suppressing generation of scratches on the polished surface. The average primary particle diameter of the ceria particles is preferably 5 to 100 nm, more preferably 10 to 50 nm, and still more preferably 20 to 40 nm. Examples of the method for measuring the average primary particle diameter of the ceria particles include a method for obtaining a spherical particle shape from the specific surface area obtained by the BET method, and an X-ray diffraction method.

研磨液組成物中のセリア粒子の含有量としては、製造・輸送コストの観点から2重量%以上であり、また、セリア粒子の水系媒体中での分散安定性・沈降分離防止の観点から、
22重量%以下である。従って、前記含有量は2〜22重量%、好ましくは2〜15重量%、より好ましくは2.5〜12重量%、さらに好ましくは3〜10重量%、さらにより好ましくは3〜8重量%である。
使用時において希釈された場合の研磨液組成物中のセリア粒子の含有量としては、研磨速度の観点から、0.1重量%以上が好ましく、0.2重量%以上がより好ましく、0.4重量%以上がさらに好ましく、0.5重量%以上がさらにより好ましい。また、セリア粒子の水系媒体中での分散安定性やコストの観点から、前記含有量は、8重量%以下が好ましく、5重量%以下がより好ましく、4重量%以下がさらに好ましく、3重量%以下がさらにより好ましい。従って、使用時における前記含有量は0.1〜8重量%が好ましく、0.2〜5重量%がより好ましく、0.4〜4重量%がさらに好ましく、0.5〜3重量%がさらにより好ましい。
The content of the ceria particles in the polishing liquid composition is 2% by weight or more from the viewpoint of production and transportation costs, and from the viewpoint of dispersion stability of the ceria particles in the aqueous medium and prevention of sedimentation separation,
22% by weight or less. Accordingly, the content is 2 to 22% by weight, preferably 2 to 15% by weight, more preferably 2.5 to 12% by weight, still more preferably 3 to 10% by weight, and even more preferably 3 to 8% by weight. is there.
The content of ceria particles in the polishing composition when diluted at the time of use is preferably 0.1% by weight or more, more preferably 0.2% by weight or more from the viewpoint of polishing rate, and 0.4 % By weight or more is more preferable, and 0.5% by weight or more is even more preferable. Further, from the viewpoint of dispersion stability and cost of the ceria particles in the aqueous medium, the content is preferably 8% by weight or less, more preferably 5% by weight or less, further preferably 4% by weight or less, and 3% by weight. The following are even more preferred: Accordingly, the content in use is preferably 0.1 to 8% by weight, more preferably 0.2 to 5% by weight, further preferably 0.4 to 4% by weight, and further 0.5 to 3% by weight. More preferred.

〔ジヒドロキシエチルグリシン〕
研磨液組成物中のジヒドロキシエチルグリシンの含有量としては、製造・輸送コストの観点から0.4重量%以上が好ましく、また、セリア粒子の水系媒体中での分散安定性・沈降分離防止の観点から、40重量%以下が好ましい。従って前記含有量は、好ましくは0.4〜40重量%、より好ましくは1〜20重量%、さらに好ましくは2〜15重量%、さらにより好ましくは3〜12重量%である。
使用時において希釈された場合の研磨液組成物中のジヒドロキシエチルグリシンの含有量としては、平坦化性能の観点から、0.2重量%以上が好ましく、10重量%以下が好ましい。従って前記含有量は0.2〜10重量%が好ましく、0.5〜8重量%がより好ましく、1〜6重量%がさらに好ましい。
[Dihydroxyethylglycine]
The content of dihydroxyethyl glycine in the polishing liquid composition is preferably 0.4% by weight or more from the viewpoint of production and transportation costs. Also, the viewpoint of dispersion stability of ceria particles in an aqueous medium and prevention of sedimentation separation. Therefore, 40% by weight or less is preferable. Therefore, the content is preferably 0.4 to 40% by weight, more preferably 1 to 20% by weight, still more preferably 2 to 15% by weight, and even more preferably 3 to 12% by weight.
The content of dihydroxyethyl glycine in the polishing composition when diluted at the time of use is preferably 0.2% by weight or more and preferably 10% by weight or less from the viewpoint of planarization performance. Therefore, the content is preferably 0.2 to 10% by weight, more preferably 0.5 to 8% by weight, and further preferably 1 to 6% by weight.

また、本発明の効果を損なわない範囲で、他の成分を含有することができるが、平坦化性能の観点から、ジヒドロキシエチルグリシンの含有量は、本発明の研磨液組成物から水系媒体とセリア粒子とを除く成分中、80重量%以上が好ましく、90重量%以上がより好ましく、95重量%以上が更に好ましく、97重量%以上がより更に好ましい。さらにジヒドロキシエチルグリシンの含有量は99.98重量%以下が好ましく、99.97重量%以下がより好ましい。従って前記含有量は、好ましくは80〜99.98重量%、より好ましくは90〜99.98重量%、さらに好ましくは95〜99.98重量%、さらにより好ましくは97〜99.97重量%である。   Further, other components can be contained within the range not impairing the effects of the present invention, but from the viewpoint of planarization performance, the content of dihydroxyethylglycine is determined from the polishing composition of the present invention to the aqueous medium and ceria. In the component excluding the particles, 80% by weight or more is preferable, 90% by weight or more is more preferable, 95% by weight or more is further preferable, and 97% by weight or more is more preferable. Further, the content of dihydroxyethylglycine is preferably 99.98% by weight or less, and more preferably 99.97% by weight or less. Accordingly, the content is preferably 80 to 99.98% by weight, more preferably 90 to 99.98% by weight, still more preferably 95 to 99.98% by weight, and even more preferably 97 to 99.97% by weight. is there.

〔ジヒドロキシエチルグリシンとセリア粒子含有量比(重量比)〕
本発明の研磨液組成物において、前記ジヒドロキシエチルグリシン/セリア粒子の含有量比(重量比)は、ディッシング防止及びディフェクト低減の観点から、1/5以上が好ましく、1/4以上がより好ましく、1/3以上がさらに好ましい。また、平坦化速度の観点から、15/1以下が好ましく、12/1以下がより好ましく、10/1以下がさらに好ましい。
従って、ジヒドロキシエチルグリシン/セリア粒子の含有量比(重量比)は、1/5〜15/1が好ましく、1/4〜12/1がより好ましく、1/3〜10/1がさらに好ましい。
[Dihydroxyethylglycine and ceria particle content ratio (weight ratio)]
In the polishing composition of the present invention, the content ratio (weight ratio) of the dihydroxyethylglycine / ceria particles is preferably 1/5 or more, more preferably 1/4 or more, from the viewpoint of dishing prevention and defect reduction. 1/3 or more is more preferable. Further, from the viewpoint of the flattening speed, 15/1 or less is preferable, 12/1 or less is more preferable, and 10/1 or less is more preferable.
Therefore, the content ratio (weight ratio) of dihydroxyethylglycine / ceria particles is preferably 1/5 to 15/1, more preferably 1/4 to 12/1, and still more preferably 1/3 to 10/1.

〔分散剤〕
分散剤としては、アニオン性界面活性剤、ノニオン性界面活性剤等の界面活性剤、あるいは、アクリル酸共重合体、エチレンオキサイド−プロピレンオキサイドブロック共重合体(プルロニック類)等の高分子分散剤等が挙げられる。中でも、分散効果の観点から、アクリル酸共重合体、特にポリアクリル酸又はその塩が好ましく、その重量平均分子量としては1000〜10000が好ましく、1000〜6000がより好ましい。ここで、前記の重量平均分子量は、以下のゲルパーミエーションクロマトグラフィー(GPC)法で測定された値である。
<GPC条件>
カラム:G4000PWXL+G2500PWXL(東ソー(社)製)
溶離液:0.2Mリン酸バッファー/CHCN=9/1
流量:1.0mL/min
カラム温度:40℃
検出:RI
標準物質:ポリアクリル酸換算
[Dispersant]
Examples of the dispersant include surfactants such as anionic surfactants and nonionic surfactants, or polymer dispersants such as acrylic acid copolymers and ethylene oxide-propylene oxide block copolymers (pluronics). Is mentioned. Among these, from the viewpoint of the dispersion effect, acrylic acid copolymers, particularly polyacrylic acid or salts thereof are preferable, and the weight average molecular weight is preferably 1000 to 10,000, and more preferably 1000 to 6000. Here, the weight average molecular weight is a value measured by the following gel permeation chromatography (GPC) method.
<GPC conditions>
Column: G4000PWXL + G2500PWXL (manufactured by Tosoh Corporation)
Eluent: 0.2M phosphate buffer / CH 3 CN = 9/1
Flow rate: 1.0 mL / min
Column temperature: 40 ° C
Detection: RI
Reference material: Polyacrylic acid equivalent

また、研磨液組成物中の分散剤の含有量は、適度な分散効果を得る観点から、0.001〜1.0重量%であり、0.003〜0.3重量%が好ましく、0.005〜0.1重量%がより好ましい。
使用時において希釈された場合の研磨液組成物中の分散剤の含有量は、分散効果の観点から0.0005〜0.5重量%が好ましく、0.001〜0.1重量%がさらに好ましい。
なお、分散効果の観点から、アクリル酸共重合体の好ましい塩としては、アンモニウム塩、テトラメチルアンモニウム塩、水溶性アミン塩、カリウム塩等が、より好ましくはアンモニウム塩が挙げられる。
In addition, the content of the dispersant in the polishing liquid composition is 0.001 to 1.0% by weight, preferably 0.003 to 0.3% by weight, and more preferably 0.005 to 0.1% by weight from the viewpoint of obtaining an appropriate dispersion effect.
The content of the dispersant in the polishing composition when diluted at the time of use is preferably 0.0005 to 0.5% by weight, more preferably 0.001 to 0.1% by weight from the viewpoint of the dispersion effect.
From the viewpoint of the dispersion effect, preferred salts of the acrylic acid copolymer include ammonium salts, tetramethylammonium salts, water-soluble amine salts, potassium salts, and more preferably ammonium salts.

〔水系媒体〕
本発明において、水系媒体とは、水、及び水と混合することが可能な溶媒(アルコール等)と水との混合媒体をいう。水系媒体としては、イオン交換水等の水を用いることが好ましい。
研磨液組成物中の水系媒体の含有量としては、研磨速度を向上する観点及びセリア粒子の水系媒体中での分散安定性・沈降分離防止の観点から、60〜97.599重量%が好ましく、70〜96重量%がより好ましい。
使用時において希釈された場合の研磨液組成物中の水系媒体の含有量としては、研磨速度を向上する観点及びセリア粒子の水系媒体中での分散安定性・沈降分離防止の観点から、80〜99.6995重量%が好ましく、85〜99重量%がより好ましい。
[Aqueous medium]
In the present invention, the aqueous medium refers to water and a mixed medium of water and a solvent (alcohol or the like) that can be mixed with water. As the aqueous medium, it is preferable to use water such as ion exchange water.
The content of the aqueous medium in the polishing composition is preferably 60 to 97.599% by weight from the viewpoint of improving the polishing rate and from the viewpoint of dispersion stability and prevention of sedimentation separation in the aqueous medium of the ceria particles. 70 to 96% by weight is more preferable.
As the content of the aqueous medium in the polishing liquid composition when diluted at the time of use, from the viewpoint of improving the polishing rate and dispersion stability of the ceria particles in the aqueous medium and prevention of sedimentation separation, 80 to 99.6995 weight% is preferable and 85-99 weight% is more preferable.

〔研磨液組成物の調製方法〕
本発明の研磨液組成物は、前記のセリア粒子、ジヒドロキシエチルグリシン、分散剤、及び所望により後述の任意成分を水系媒体に配合することにより調製することができる。中でも配合時のセリア粒子の分散安定性の観点から、予めセリア粒子、又はセリア粒子と分散剤、を含む水分散体(セリアスラリー)を調製し、このセリアスラリーとジヒドロキシエチルグリシンを溶解した水溶液とを混合撹拌する方法が好ましい。また、セリアスラリー及びジヒドロキシエチルグリシン水溶液を混合する前にそれぞれ設定pHに予め調製しておいてから混合する方法、あるいは混合後に設定pHに調製する方法を用いることができる。
[Method for preparing polishing liquid composition]
The polishing liquid composition of the present invention can be prepared by blending the above-mentioned ceria particles, dihydroxyethyl glycine, a dispersant, and, if desired, optional components described later into an aqueous medium. Above all, from the viewpoint of dispersion stability of ceria particles at the time of blending, an aqueous dispersion (ceria slurry) containing ceria particles or ceria particles and a dispersant is prepared in advance, and an aqueous solution in which this ceria slurry and dihydroxyethylglycine are dissolved Is preferably mixed and stirred. Alternatively, a method of mixing the ceria slurry and the dihydroxyethylglycine aqueous solution after preparing each in advance to a set pH before mixing, or a method of adjusting to a set pH after mixing can be used.

〔セリアスラリーの調製〕
セリアスラリーは、分散処理を行うことで調製することができる。分散処理としては、ホモミキサー、ホモジナイザー、超音波分散機、湿式ボールミル等の攪拌機で分散する方法が挙げられる。また、セリア粒子の分散性の観点から、分散処理の際に、前記の分散剤を併用することが好ましい。なお、セリアスラリーのpHは、3〜10に調整されることが好ましい。
[Preparation of ceria slurry]
The ceria slurry can be prepared by performing a dispersion treatment. Examples of the dispersion treatment include a method of dispersing with a stirrer such as a homomixer, a homogenizer, an ultrasonic disperser, or a wet ball mill. In addition, from the viewpoint of dispersibility of the ceria particles, it is preferable to use the above dispersant in combination during the dispersion treatment. The pH of the ceria slurry is preferably adjusted to 3-10.

前記のようにして得られたセリアスラリーを次いで粗大粒子除去することが好ましい。この粗大粒子を除去する方法としては、例えば、分散処理後の遠心分離法やフィルターろ過法が挙げられる。   It is preferable to remove coarse particles from the ceria slurry obtained as described above. Examples of the method for removing the coarse particles include a centrifugal separation method and a filter filtration method after the dispersion treatment.

また、ジヒドロキシエチルグリシンを溶解した水溶液のpHは、3〜10に調整されることが好ましい。   Moreover, it is preferable that pH of the aqueous solution which melt | dissolved dihydroxyethylglycine is adjusted to 3-10.

〔任意成分〕
また、本発明の研磨液組成物には、任意成分(添加剤)として、ベンザルコニウムクロライド、ベンゼトニウムクロライド、1,2−ベンズイソチアゾリン−3−オン、(5−クロロ−)2−メチル−4−イソチアゾリン−3−オン、過酸化水素、次亜塩素酸塩等の防腐剤を混合してもよい。また、過酸化物又は過マンガン酸、クロム酸、硝酸、ペルオキソ酸もしくはそれらの塩等の酸化剤を混合することができる。加えて、ジヒドロキシエチルグリシン以外のキレート剤として、エチレンジアミン四酢酸(EDTA)、シクロヘキサンジアミン四酢酸(CyDTA)、ニトリロトリ酢酸(NTA)、ヒドロキシエチルエチレンジアミン三酢酸(HEDTA)、ジエチレントリアミン五酢酸(DTPA)、トリエチレンテトラミン六酢酸(TTHA)、L−グルタミン酸二酢酸(GLDA)、アミノトリ(メチレンホスホン酸)、1−ヒドロキシエチリデン1,1−ジホスホン酸、エチレンジアミンテトラ(メチレンホスホン酸)、ジエチレントリアミンペンタ(メチレンホスホン酸)、β−アラニン二酢酸(β−ADA)、α−アラニン二酢酸(α−ADA)、アスパラギン酸二酢酸(ASDA)、エチレンジアミンニコハク酸(EDDS)、イミノジ酢酸(IDA)、ヒドロキシエチルイミノジ酢酸(HEIDA)、1,3−プロパンジアミン四酢酸(1,3−PDTA)、リンゴ酸、酒石酸、グルコン酸、クエン酸、アスパラギン酸、グルタミン酸、グリシン、4−アミノ酪酸、アルギニン、フタル酸等を本発明の効果を損なわない範囲で混合することができる。これらの任意成分は、前記セリアスラリー、ジヒドロキシエチルグリシン水溶液のいずれに混合してもよい。
以上の任意成分は、本発明の効果を損なわない範囲で添加できるが、かかる任意成分の量としては、研磨液組成物中において0.001〜1.0重量%が好ましく、0.01〜0.5重量%がより好ましい。
[Optional ingredients]
Further, in the polishing liquid composition of the present invention, as an optional component (additive), benzalkonium chloride, benzethonium chloride, 1,2-benzisothiazolin-3-one, (5-chloro-) 2-methyl-4 -Preservatives such as isothiazoline-3-one, hydrogen peroxide and hypochlorite may be mixed. Moreover, oxidizing agents, such as a peroxide or permanganic acid, chromic acid, nitric acid, peroxo acid, or those salts, can be mixed. In addition, as chelating agents other than dihydroxyethylglycine, ethylenediaminetetraacetic acid (EDTA), cyclohexanediaminetetraacetic acid (CyDTA), nitrilotriacetic acid (NTA), hydroxyethylethylenediaminetriacetic acid (HEDTA), diethylenetriaminepentaacetic acid (DTPA), Ethylenetetramine hexaacetic acid (TTHA), L-glutamic acid diacetic acid (GLDA), aminotri (methylenephosphonic acid), 1-hydroxyethylidene 1,1-diphosphonic acid, ethylenediaminetetra (methylenephosphonic acid), diethylenetriaminepenta (methylenephosphonic acid) , Β-alanine diacetic acid (β-ADA), α-alanine diacetic acid (α-ADA), aspartic acid diacetic acid (ASDA), ethylenediaminenicosuccinic acid (EDDS), iminodiacetic acid IDA), hydroxyethyliminodiacetic acid (HEIDA), 1,3-propanediaminetetraacetic acid (1,3-PDTA), malic acid, tartaric acid, gluconic acid, citric acid, aspartic acid, glutamic acid, glycine, 4-aminobutyric acid Arginine, phthalic acid, and the like can be mixed as long as the effects of the present invention are not impaired. These optional components may be mixed in either the ceria slurry or the dihydroxyethylglycine aqueous solution.
The above optional components can be added within a range not impairing the effects of the present invention. The amount of such optional components is preferably 0.001 to 1.0% by weight in the polishing composition, and 0.01 to 0. More preferred is 5% by weight.

〔研磨液組成物のpH〕
以上のような方法で得られる本発明の研磨液組成物のpH範囲としては、研磨速度の観点から、3〜10が好ましく、4〜8がより好ましく、4.5〜7が更に好ましく、5〜7が更に好ましく、5.8〜6.5が更に好ましい。
[PH of polishing composition]
The pH range of the polishing composition of the present invention obtained by the method as described above is preferably 3 to 10, more preferably 4 to 8, still more preferably 4.5 to 7, from the viewpoint of polishing rate. To 7 is more preferable, and 5.8 to 6.5 is more preferable.

前記の研磨液組成物のpHは、pH調整剤により調整することができる。pH調整剤としては、アンモニア、水酸化カリウム、水溶性有機アミン、四級アンモニウムハイドロオキサイド等の塩基性物質、硝酸、塩酸、硫酸、リン酸等の無機酸及び酢酸、シュウ酸、コハク酸、グリコール酸、リンゴ酸、クエン酸、安息香酸等の有機酸等の酸性物質が挙げられる。   The pH of the polishing composition can be adjusted with a pH adjuster. pH adjusters include basic substances such as ammonia, potassium hydroxide, water-soluble organic amines, quaternary ammonium hydroxides, inorganic acids such as nitric acid, hydrochloric acid, sulfuric acid, phosphoric acid, and acetic acid, oxalic acid, succinic acid, glycol Acid substances such as organic acids such as acid, malic acid, citric acid, and benzoic acid can be mentioned.

本発明の研磨液組成物は、希釈して使用されることが好ましい。希釈倍率としては、製造・輸送コストの観点から、1.5倍以上が好ましく、2倍以上がより好ましく、3倍以上がさらに好ましく、4倍以上がさらに好ましく、また、研磨速度の観点から、20倍以下が好ましく、15倍以下がより好ましく、10倍以下がさらに好ましく、8倍以下がさらに好ましい。従って、本発明の研磨液組成物の使用時の希釈倍率としては1.5〜20倍が好ましく、2〜15倍がより好ましく、2〜10倍がさらに好ましく、2〜8倍がさらに好ましい。
希釈方法としては、本発明の研磨液組成物に所定量の水系媒体を加え、撹拌混合する方法を用いることができる。さらに具体的には、研磨前に本発明の研磨液組成物をタンクにとり、それに所定量の水系媒体を加え撹拌混合する方法や、研磨中に本発明の研磨液とは別に水系媒体を加える方法を用いることができる。
The polishing composition of the present invention is preferably used after being diluted. The dilution factor is preferably 1.5 times or more, more preferably 2 times or more, further preferably 3 times or more, further preferably 4 times or more, from the viewpoint of production / transport costs, and from the viewpoint of polishing rate, It is preferably 20 times or less, more preferably 15 times or less, further preferably 10 times or less, and further preferably 8 times or less. Accordingly, the dilution ratio when using the polishing composition of the present invention is preferably 1.5 to 20 times, more preferably 2 to 15 times, further preferably 2 to 10 times, and further preferably 2 to 8 times.
As a dilution method, a method of adding a predetermined amount of an aqueous medium to the polishing composition of the present invention and stirring and mixing can be used. More specifically, a method of taking the polishing composition of the present invention in a tank before polishing and adding a predetermined amount of the aqueous medium to the tank and stirring and mixing, or a method of adding an aqueous medium separately from the polishing liquid of the present invention during polishing. Can be used.

〔半導体基板〕
本発明の研磨液組成物は、半導体基板の研磨に用いられる。
本発明における半導体基板について、詳細は後述するが、その材質としては、シリコン、アルミニウム、ニッケル、タングステン、銅、タンタル、チタン等の金属又は半金属、及びこれらの金属を主成分とした合金、ガラス、ガラス状カーボン、アモルファスカーボン等のガラス状物質、アルミナ、二酸化ケイ素、窒化ケイ素、窒化タンタル、窒化チタン等のセラミック材料、ポリイミド樹脂等の樹脂等が挙げられるが、効率的な平坦化発現の観点から中でも基板表面にケイ素を含み凹凸段差形状を有する膜が形成されたものが好適である。ケイ素を含む膜としては、TEOS(Tetraethoxysilane)、石英、ガラス等の酸化ケイ素、BPSG(Boro-Phospho-Silicate Glass)、PSG(Phospho-Silicate Glass)等のリン、ホウ素等の元素がドープされた酸化ケイ素、窒化ケイ素、ポリシリコン等が挙げられる。特に、二酸化ケイ素を主成分とする被研磨膜を有する半導体基板を研磨する際に本発明の研磨液組成物を用いた場合、効率的に平坦化が実現できる。
BPSGやPSGのようにリン、ホウ素等の元素がドープされた酸化ケイ素の場合、平坦化性能の発現には通常の酸化ケイ素膜に比べ、より多くの添加剤の添加が必要となる。しかし、添加剤が高濃度であるほど塩析効果等により、セリア粒子が凝集・沈降しやすくなるため、より分散安定性に優れた本発明の研磨液組成物がより好適に用いられる。
[Semiconductor substrate]
The polishing composition of the present invention is used for polishing a semiconductor substrate.
The semiconductor substrate in the present invention will be described in detail later, but the material thereof is a metal or semi-metal such as silicon, aluminum, nickel, tungsten, copper, tantalum, and titanium, and an alloy or glass mainly composed of these metals. Glassy materials such as glassy carbon and amorphous carbon, ceramic materials such as alumina, silicon dioxide, silicon nitride, tantalum nitride, and titanium nitride, and resins such as polyimide resin. Among them, those in which a film including silicon and having an uneven step shape is formed on the substrate surface are preferable. As a film containing silicon, TEOS (Tetraethoxysilane), silicon oxide such as quartz and glass, oxidation such as phosphorus and boron such as BPSG (Boro-Phospho-Silicate Glass) and PSG (Phospho-Silicate Glass) are doped. Examples thereof include silicon, silicon nitride, and polysilicon. In particular, when the polishing composition of the present invention is used when polishing a semiconductor substrate having a film to be polished containing silicon dioxide as a main component, planarization can be realized efficiently.
In the case of silicon oxide doped with elements such as phosphorus and boron, such as BPSG and PSG, more additives need to be added in order to achieve planarization performance compared to a normal silicon oxide film. However, the higher the concentration of the additive, the easier it is for the ceria particles to aggregate and settle due to the salting-out effect and the like, and therefore the polishing liquid composition of the present invention having better dispersion stability is more preferably used.

中でも、本発明の研磨液組成物は、50〜2000nm、好ましくは100〜1500nmの凹凸段差形状を有する半導体基板を平坦化する目的で行う研磨に好適である。凹凸段差はプロファイル測定装置(例えばKLA−Tencor社製、商品名:HRP−100)により求めることができる。
本発明の「凹凸段差形状」とは、半導体基板の表面に少なくともケイ素を含む膜が凹凸の段差を生じた状態にパターンニングされたものをいう。例えば、前記の膜を有する半導体基板としてはシリコン基板上に、窒化ケイ素をCVD(Chemical vapor deposition)法で製膜後、エッチングして、パターンニングし、さらに、HDP−TEOS(High-density plasma tetraethoxysilane)酸化珪素を製膜した際に形成される凹凸段差状にパターンニングされたものが挙げられる。同様にシリコン基板をエッチングして、パターニングし、さらにその上にBPSG(Boro-Phospho-Silicate Glass)を製膜した際に形成される凹凸段差状にパターンニングされたものが挙げられる。これらの場合、先にエッチングした際のパターニングの深さが半導体基板表面のケイ素を含む膜の「凹凸段差形状」に反映される。後述の実施例では、窒化ケイ素をCVD法で製膜後または、BPSG(Boro-Phospho-Silicate Glass)を製膜する前にエッチングしているが、このエッチングした際のパターンニングの深さが各半導体基板の表面のケイ素を含む膜の「凹凸段差形状」に反映される。
特に、凹凸段差が同一の部材からなる場合、本発明の研磨液組成物は、凸部を速やかに研磨して平坦化することができるという優れた効果が発現される。
Especially, the polishing liquid composition of this invention is suitable for the grinding | polishing performed in order to planarize the semiconductor substrate which has 50-2000 nm, Preferably it is 100-1500 nm. The uneven step can be obtained by a profile measuring device (for example, trade name: HRP-100, manufactured by KLA-Tencor).
The “concavo-convex step shape” of the present invention refers to a film in which at least a silicon-containing film is patterned on the surface of a semiconductor substrate so as to form an uneven step. For example, as a semiconductor substrate having the above film, silicon nitride is formed on a silicon substrate by a CVD (Chemical Vapor Deposition) method, etched, patterned, and further HDP-TEOS (High-density plasma tetraethoxysilane). ) What is patterned in the uneven step formed when the silicon oxide film is formed. Similarly, the silicon substrate may be etched and patterned, and further patterned into uneven steps formed when BPSG (Boro-Phospho-Silicate Glass) is formed thereon. In these cases, the depth of patterning at the time of the previous etching is reflected in the “uneven step shape” of the silicon-containing film on the surface of the semiconductor substrate. In the examples described later, silicon nitride is etched after the CVD method is formed or before BPSG (Boro-Phospho-Silicate Glass) is formed. This is reflected in the “uneven step shape” of the silicon-containing film on the surface of the semiconductor substrate.
In particular, when the uneven step is made of the same member, the polishing liquid composition of the present invention exhibits an excellent effect that the convex portion can be quickly polished and flattened.

(2)研磨方法
本発明の研磨方法としては、前記の研磨液組成物を希釈した液を、被研磨基板1cm当たり0.01〜10g/分の供給速度で該基板に供給する工程を含む半導体基板の研磨方法が挙げられる。
(2) Polishing Method The polishing method of the present invention includes a step of supplying a liquid obtained by diluting the above polishing liquid composition to the substrate at a supply rate of 0.01 to 10 g / min per 1 cm 2 of the substrate to be polished. A method for polishing a semiconductor substrate may be mentioned.

〔研磨液組成物供給速度〕
研磨液組成物(希釈液)の供給速度は、被研磨基板1cm当たり、高い研磨速度を維持し、短時間で平坦化する観点から、0.01g/分以上、好ましくは0.1g/分以上であり、また、経済性の観点と廃液処理の観点から、10g/分以下、好ましくは5g/分以下である。従って、該供給速度は、0.01〜10g/分、好ましくは0.1〜5g/分である。
[Polishing composition supply speed]
The supply rate of the polishing composition (dilution solution) is 0.01 g / min or more, preferably 0.1 g / min from the viewpoint of maintaining a high polishing rate per 1 cm 2 of the substrate to be polished and flattening in a short time. From the viewpoints of economy and waste liquid treatment, it is 10 g / min or less, preferably 5 g / min or less. Therefore, the supply rate is 0.01 to 10 g / min, preferably 0.1 to 5 g / min.

〔研磨荷重〕
研磨荷重としては、研磨速度の観点から、好ましくは5kPa以上、より好ましくは10kPa以上であり、また、被研磨面の平坦化及び傷抑制の観点から、好ましくは100kPa以下、より好ましくは70kPa以下、さらに好ましくは50kPa以下である。従って研磨荷重は、好ましくは5〜100kPa、より好ましくは10〜70kPa、さらに好ましくは10〜50kPaである。
[Polishing load]
The polishing load is preferably 5 kPa or more, more preferably 10 kPa or more from the viewpoint of the polishing rate, and preferably 100 kPa or less, more preferably 70 kPa or less, from the viewpoint of flattening the polished surface and suppressing scratches. More preferably, it is 50 kPa or less. Therefore, the polishing load is preferably 5 to 100 kPa, more preferably 10 to 70 kPa, and still more preferably 10 to 50 kPa.

研磨液組成物を希釈した液としては、例えば前記の好ましい希釈倍率で前記の研磨液組成物を希釈した液を用いればよい。   As a liquid obtained by diluting the polishing liquid composition, for example, a liquid obtained by diluting the above polishing liquid composition at the above-described preferable dilution ratio may be used.

本発明の研磨液組成物(希釈液)を用いる半導体基板の研磨装置としては、特に制限はなく、半導体基板に代表される被研磨物を保持する治具と研磨布(研磨パッド)を備える研磨装置が用いられる。該研磨装置を用いる研磨方法の具体例としては、研磨布として、有機高分子系の発泡体、無発泡体、不織布状の研磨布等を張り付けた定盤に、上記被研磨物を保持する治具を押しつけ、あるいは、研磨布を張り付けた定盤に、上記被研磨物を挟み込み、本発明の研磨液組成物を被研磨物表面に供給し、一定の圧力(荷重)を加えながら定盤や被研磨物を動かすことにより被研磨物表面を研磨する方法が挙げられる。   There is no restriction | limiting in particular as a semiconductor substrate polishing apparatus using the polishing liquid composition (dilution liquid) of this invention, Polishing provided with the jig | tool and polishing cloth (polishing pad) which hold | maintain the to-be-polished object represented by the semiconductor substrate. A device is used. As a specific example of a polishing method using the polishing apparatus, as a polishing cloth, a jig for holding the object to be polished on a surface plate on which an organic polymer foam, non-foam, non-woven polishing cloth or the like is attached. The object to be polished is sandwiched between a surface plate pressed with a tool or a polishing cloth, the polishing composition of the present invention is supplied to the surface of the object to be polished, and a constant pressure (load) is applied while applying a constant pressure (load). The method of grind | polishing the to-be-polished object surface by moving to-be-polished object is mentioned.

なお、前記研磨液組成物の供給量、研磨荷重以外の研磨条件については特に限定はない。   The polishing conditions other than the supply amount of the polishing composition and the polishing load are not particularly limited.

(3)半導体装置の製造方法
メモリーIC、ロジックIC、あるいはシステムLSI等の半導体装置は、一般に、シリコンを代表とする単結晶基板(ウェハ)上に酸化ケイ素等の絶縁膜を形成しその上に金属電極を配してトランジスタ、抵抗、コンデンサ、ダイオード、容量等の素子を形成する工程、前記素子間を金属配線化する配線工程、前記工程を経て得られる基板をチップ化する工程を含む。また、金属電極を配するとは、ウェハ上に絶縁膜等の薄膜を形成しリソグラフィーによりパターニングする、さらに不純物を拡散してp型及び/又はn型領域を形成する等の工程を経て金属電極を形成する場合を含む。絶縁膜素子形成工程及び/又は配線工程には、具体的には、埋め込み素子分離工程、層間絶縁膜の平坦化工程、埋め込み金属配線の形成工程、埋め込みキャパシタ形成工程等が含まれる。ここに、前記素子を形成する工程及び/又は素子間を金属配線化する工程で得られる素子又は素子と配線が結合するウェハを半導体基板という。
本発明の半導体装置の製造方法は、前記の研磨液組成物(希釈液)を用いて半導体基板を研磨する工程を有する方法である。その例としては、前記の研磨方法により被研磨基板を研磨する工程を有する半導体装置の製造方法が挙げられる。
なお、研磨パッド等の研磨条件については、前記の研磨方法と同じものであればよい。
(3) Manufacturing Method of Semiconductor Device Generally, a semiconductor device such as a memory IC, a logic IC, or a system LSI forms an insulating film such as silicon oxide on a single crystal substrate (wafer) typified by silicon. A step of forming an element such as a transistor, a resistor, a capacitor, a diode, and a capacitor by disposing a metal electrode; a wiring step of forming a metal wiring between the devices; and a step of chipping a substrate obtained through the step. In addition, arranging the metal electrode means forming a thin film such as an insulating film on the wafer and patterning it by lithography, and further diffusing impurities to form a p-type and / or n-type region. Including the case of forming. Specifically, the insulating film element forming step and / or the wiring step include a buried element separating step, an interlayer insulating film planarizing step, a buried metal wiring forming step, a buried capacitor forming step, and the like. Here, the element obtained in the step of forming the element and / or the step of forming a metal wiring between the elements or a wafer in which the element and the wiring are combined is called a semiconductor substrate.
The manufacturing method of the semiconductor device of this invention is a method which has the process of grind | polishing a semiconductor substrate using the said polishing liquid composition (dilution liquid). As an example thereof, a semiconductor device manufacturing method including a step of polishing a substrate to be polished by the above polishing method can be given.
In addition, about polishing conditions, such as a polishing pad, what is necessary is just the same as the said polishing method.

具体的には、凹凸段差形状のある半導体基板の上方にケイ素を含む薄膜を形成する工程と、該薄膜を研磨する研磨工程とを備え、上記研磨工程においてセリア粒子とジヒドロキシエチルグリシン及び分散剤を含有する研磨液組成物を研磨パッド表面に供給して、凹凸段差形状のある該薄膜表面をCMP(ケミカル・メカニカル・ポリッシング)により平坦化することからなる方法が挙げられ、このような工程として、埋め込み素子分離工程、層間絶縁膜の平坦化工程、埋め込み金属配線の形成工程、埋め込みキャパシタ形成工程等があるが、特に埋め込み素子分離工程、層間絶縁膜平坦化工程に適しており、メモリーIC、ロジックIC、あるいはシステムLSI等の半導体装置の製造に好適に用いられる。   Specifically, the method includes a step of forming a thin film containing silicon above a semiconductor substrate having a stepped shape, and a polishing step of polishing the thin film. In the polishing step, ceria particles, dihydroxyethylglycine, and a dispersing agent are provided. A method comprising supplying the polishing liquid composition contained on the surface of the polishing pad and planarizing the surface of the thin film having an uneven step shape by CMP (Chemical Mechanical Polishing) is exemplified. There are embedded element isolation process, interlayer insulation film planarization process, buried metal wiring formation process, embedded capacitor formation process, etc., but it is particularly suitable for embedded element isolation process, interlayer insulation film planarization process, memory IC, logic It is suitably used for manufacturing semiconductor devices such as ICs or system LSIs.

実施例1〜7及び比較例1〜10
1.分散安定性評価
表2記載の所定量のジヒドロキシエチルグリシン(キレスト社製、キレストGA)、アスパラギン酸(和光純薬工業社製)、エチレンジアミン四酢酸(同仁化学社製、4H)、ニトリロトリ酢酸(キレスト社製、キレストNT)、フタル酸(キシダ化学社製)又はポリアクリル酸(アンモニア中和度65mol%、分子量6000、固形分40重量%)にイオン交換水を加えて混合溶解した。該溶液に撹拌状態で、さらに表2記載の所定量のセリアの水分散体(セリア固形分40重量%、セリア粒子の平均粒子径125nm、セリア粒子の結晶子サイズ28nm、分散剤として分子量6000のポリアクリル酸アンモニウム塩を0.1重量%を含有)を加え、アンモニア水(アンモニア28重量%)(富山薬品工業社製)によりpH6.0〜6.3に調整し、実施例1〜7及び比較例1〜10の研磨液組成物を得た。なお、セリア粒子の平均粒子径は、レーザー回折・散乱式粒度分布計(堀場製作所製 LA−920)で測定した体積基準のメジアン径である。
このようにして調製した研磨液組成物を用い、以下の条件でセリア粒子径の測定及び分散性試験を行った。
Examples 1-7 and Comparative Examples 1-10
1. Evaluation of dispersion stability Dihydroxyethylglycine (Kyrest GA, manufactured by Crest, Inc.), aspartic acid (Wako Pure Chemical Industries, Ltd.), ethylenediaminetetraacetic acid (Dojindo, 4H), nitrilotriacetic acid (Chirest) listed in Table 2 Ion-exchange water was added to and mixed and dissolved in phthalic acid (manufactured by Kyres NT), phthalic acid (manufactured by Kishida Chemical Co., Ltd.) or polyacrylic acid (ammonia neutralization degree 65 mol%, molecular weight 6000, solid content 40 wt%). In a state of stirring the solution, a predetermined amount of an aqueous dispersion of ceria shown in Table 2 (ceria solid content 40% by weight, average particle diameter of ceria particles 125 nm, crystallite size of ceria particles 28 nm, molecular weight 6000 as a dispersing agent. Polyacrylic acid ammonium salt containing 0.1% by weight) was added, and the pH was adjusted to 6.0 to 6.3 with aqueous ammonia (28% by weight of ammonia) (manufactured by Toyama Pharmaceutical Co., Ltd.). 1-10 polishing liquid compositions were obtained. The average particle diameter of the ceria particles is a volume-based median diameter measured with a laser diffraction / scattering particle size distribution analyzer (LA-920, manufactured by Horiba, Ltd.).
Using the polishing composition thus prepared, ceria particle size was measured and a dispersibility test was performed under the following conditions.

〈研磨液組成物中のセリア粒子径測定〉
高濃度状態の研磨液組成物におけるセリア粒子の凝集レベルの指標として、調製後、1日放置した研磨液組成物中のセリア粒子径を測定した。具体的には、マイクロトラック粒度測定装置 UPA−150(日機装社製)を用い、測定直前に前記研磨液組成物を振とうし、十分に分散させてから測定を行った。測定条件は、セリア比重を7.3とし、測定時間2分で、連続して3回繰り返し測定を行った。セリア粒子径は、体積平均粒径のメジアン径(D50)の値とした。
<Measurement of ceria particle size in polishing composition>
As an index of the level of aggregation of ceria particles in the high-concentration polishing liquid composition, the ceria particle diameter in the polishing liquid composition that was allowed to stand for one day after preparation was measured. Specifically, using a Microtrac particle size measuring device UPA-150 (manufactured by Nikkiso Co., Ltd.), the polishing composition was shaken immediately before the measurement and sufficiently dispersed, and then the measurement was performed. The measurement conditions were ceria specific gravity of 7.3, measurement time of 2 minutes, and repeated measurements three times in succession. The ceria particle diameter was the median diameter (D50) of the volume average particle diameter.

<分散性試験>
各研磨液組成物100mlをマグネチックスターラーで10分間撹拌後、共栓付比色管(直径29mm、容量100ml)中で室温(20〜25℃)で静置し、一定時間経過後(1日後、3日後、7日後)のセリア粒子の沈降による上澄み液の分離状態より分散安定性を判定した。判定基準を表1に、結果を表2に示す。
<Dispersibility test>
After stirring 100 ml of each polishing composition with a magnetic stirrer for 10 minutes, the mixture was allowed to stand at room temperature (20 to 25 ° C.) in a colorimetric tube with a stopper (diameter 29 mm, volume 100 ml), and after a certain period of time (1 day later) The dispersion stability was determined from the state of separation of the supernatant liquid by sedimentation of ceria particles after 3 days and after 7 days. The judgment criteria are shown in Table 1, and the results are shown in Table 2.

Figure 2007134696
Figure 2007134696

Figure 2007134696
Figure 2007134696

<分散性試験結果>
表2の結果の通り、実施例1〜7及び比較例2の研磨液組成物は、研磨液組成物中のセリア粒子径が小さいことから、凝集はみられず、また、良好な分散安定性を示す。一方、比較例1および3〜5、7〜10の研磨液組成物は、研磨液組成物中のセリア粒子径が大きいことから、凝集がみられ、また、分散安定性に問題があった。また、比較例6の研磨液組成物は、不溶物が存在した。
<Dispersibility test results>
As the results of Table 2, the polishing liquid compositions of Examples 1 to 7 and Comparative Example 2 are free from agglomeration because of the small ceria particle diameter in the polishing liquid composition, and also have good dispersion stability. Indicates. On the other hand, the polishing liquid compositions of Comparative Examples 1 and 3 to 5 and 7 to 10 had aggregation due to the large ceria particle diameter in the polishing liquid composition, and had a problem in dispersion stability. In addition, the polishing liquid composition of Comparative Example 6 had insolubles.

2.平坦化性能の評価(1)
さらに、上記の研磨液組成物をイオン交換水で希釈した希釈品を用いて、以下の条件で研磨試験を行った。
<研磨試験(1)>
1.研磨条件
研磨試験機 :片面研磨機(品番:LP−541、ラップマスターSFT製、定盤径 540mm)
研磨パッド :IC-1000/Sub400(ニッタ・ハース社製)
定盤回転数 :60rpm
ヘッド回転数:62rpm(回転方向は定盤と同じ)
研磨荷重 :40kPa
研磨液供給量:200ml/min( 0.6g/cm・min)
被研磨基板 :CMP特性評価用市販パターンウエハであるSematech864(シリコン基板上に膜厚170nmの窒化ケイ素をCVD(Chemical vapor deposition)法で製膜後、エッチングで500nmの深さにパターンニングされた基板上に厚さ600nmのHDP−TEOS(High-density plasma tetraethoxysilane)酸化珪素膜を形成したもの)又は、BPSG膜パターンウエハ(370nmの深さにパターンニング(Sematech864と同じ形状)されたシリコン基板上に厚さ1000nmのBPSG膜を形成したもの)
2. Evaluation of planarization performance (1)
Furthermore, a polishing test was conducted under the following conditions using a diluted product obtained by diluting the above polishing liquid composition with ion-exchanged water.
<Polishing test (1)>
1. Polishing conditions Polishing tester: Single-side polishing machine (Part No .: LP-541, manufactured by Lapmaster SFT, surface plate diameter 540 mm)
Polishing pad: IC-1000 / Sub400 (Nitta Haas)
Surface plate rotation speed: 60 rpm
Head rotation speed: 62 rpm (Rotation direction is the same as the surface plate)
Polishing load: 40 kPa
Polishing liquid supply amount: 200 ml / min (0.6 g / cm 2 · min)
Substrate to be polished: Sematech864, a commercially available pattern wafer for CMP characteristics evaluation (Substrate patterned on a silicon substrate with a thickness of 170 nm by CVD (Chemical vapor deposition) and then etched to a depth of 500 nm) On top of a silicon substrate patterned on HDP-TEOS (high-density plasma tetraethoxysilane) silicon oxide film having a thickness of 600 nm or a BPSG film patterned wafer (same shape as Sematech864) at a depth of 370 nm (Those with a BPSG film with a thickness of 1000 nm)

上記研磨条件で、2分間研磨を行った後、Sematech864又はBPSG膜パターンウエハの残存膜厚を測定することで評価した。具体的には、D20、D50、D80パターン部(D20:凸部幅20μm/凹部幅80μmのLine&Spaceパターン、D50:凸部幅50μm/凹部幅50μmのLine&Spaceパターン、D80:凸部幅80μm/凹部幅20μmのLine&Spaceパターン)の残存膜厚を測定し、さらにこれら残存膜厚の値からStep Height(凹凸段差)を算出する。ここで、用語Line&Spaceとは、ICの配線構造などで、ライン状(線状)のパターンが繰り返し並んでいる箇所における、線状パターン幅(ライン)と線状パターン間の間隔(スペース)をワンセットにしたものをいい、用語配線ピッチとは、配線のラインとスペースを合わせた寸法をいう。   After polishing for 2 minutes under the above polishing conditions, evaluation was performed by measuring the remaining film thickness of the Sematech864 or BPSG film pattern wafer. Specifically, D20, D50, D80 pattern part (D20: Line & Space pattern with convex part width 20μm / concave part width 80μm, D50: Line & Space pattern with convex part width 50μm / concave part width 50μm, D80: Convex part width 80μm / concave part width The remaining film thickness (20 μm Line & Space pattern) is measured, and the step height (uneven step) is calculated from these remaining film thickness values. Here, the term Line & Space refers to the width of the linear pattern (line) and the interval (space) between the linear patterns at the location where the linear (linear) patterns are repeatedly arranged in the IC wiring structure, etc. The term “wiring pitch” refers to the dimension of wiring lines and spaces combined.

Sematech864: Step Height=凸部残存膜厚(HDP膜+SiN膜)+Si段差−凹部残存膜厚
BPSG膜パターンウエハ: Step Height=凸部残存膜厚+Si段差−凹部残存膜厚
ここで、Si段差とは、シリコンウエハ上にパターン形成された凹部の深さを表す。
Sematech864: Step Height = Remaining film thickness of protrusion (HDP film + SiN film) + Si step-Remaining film thickness of recess
BPSG film pattern wafer: Step Height = protrusion remaining film thickness + Si step-recess remaining film thickness Here, the Si step represents the depth of the recess formed in the pattern on the silicon wafer.

今回評価に用いたウエハのSi段差は、Sematech864で330nm、BPSG膜パターンウエハで370nmである。なお、残存膜厚の測定は光干渉式膜厚計(大日本スクリーン製造(株)製、商品名:VM−1000)を用いた。判定基準を表3に、結果を表4に示す。   The Si level difference of the wafer used in this evaluation is 330 nm for Sematech 864 and 370 nm for the BPSG film pattern wafer. In addition, the measurement of the remaining film thickness used the optical interference type film thickness meter (Dainippon Screen Mfg. Co., Ltd. product name: VM-1000). The judgment criteria are shown in Table 3, and the results are shown in Table 4.

Figure 2007134696
Figure 2007134696

Figure 2007134696
Figure 2007134696

<平坦化性能評価結果(1)>
Sematech864:実施例1希釈品では窒化ケイ素膜上の凸部HDP膜は消失しており、窒化ケイ素膜の研磨量もわずかである。さらに凹部のHDP残存膜厚のD20とD80のパターン間での差が150nm以内という、パターン依存性が小さく良好な平坦化性能が得られた。また、比較例1および3の希釈品でも、実施例1の希釈品と同様に良好な平坦化表面が得られた。ただし、比較例3希釈品では、研磨速度の低下により、2分間の研磨では凸部HDP膜が残存し目標とする平坦化が完了せず、研磨時間を5分間に延長する必要があった。一方、比較例2希釈品では、凸部HDP膜は消失しているが、その下の窒化ケイ素膜の研磨も進行しD20パターン部では窒化ケイ素膜が消失した。さらに凹部のHDP残存膜厚の差もD20とD80のパターン間で250nm以上であったことから、パターン依存性が大きく良好な平坦化性能は得られなかった。
BPSG膜パターンウエハ:実施例2の希釈品ではD20、D50、D80各パターンでのStep Heightは30nm以内となり、さらに凹部残存膜厚もD20とD80のパターン間でその差が100nm以内とパターン依存性が小さく良好な平坦化性能が得られた。比較例4の希釈品では、凹部残存膜厚のD20とD80のパターン間でその差が100nm以内とパターン依存性に優れるものの、D80パターンでStep Heightが137nmとなり段差が解消しなかった。一方、比較例2希釈品では2分間の研磨で凸部のBPSG膜が全て消失したため、研磨時間を1分に短縮したが、D20パターンでは凸部BPSG膜が消失した。さらに凹部残存膜厚もD20とD80のパターンの間でその差が200nm以上とパターン依存性が大きく、良好な平坦化性能は得られなかった。
<Flatification performance evaluation result (1)>
Sematech864: In the diluted product of Example 1, the convex HDP film on the silicon nitride film disappears, and the polishing amount of the silicon nitride film is also small. In addition, the difference in HDP residual film thickness of the recesses between the patterns D20 and D80 was within 150 nm, and the patterning dependency was small and good planarization performance was obtained. In addition, in the diluted products of Comparative Examples 1 and 3, a good planarized surface was obtained as in the diluted product of Example 1. However, in the diluted product of Comparative Example 3, due to the decrease in the polishing rate, the convex HDP film remained in the polishing for 2 minutes, and the target flattening was not completed, and it was necessary to extend the polishing time to 5 minutes. On the other hand, in the diluted product of Comparative Example 2, the convex HDP film disappeared, but the polishing of the underlying silicon nitride film also progressed, and the silicon nitride film disappeared in the D20 pattern portion. Furthermore, since the difference in the HDP residual film thickness of the recesses was 250 nm or more between the D20 and D80 patterns, the pattern dependency was large and good planarization performance could not be obtained.
BPSG film pattern wafer: In the diluted product of Example 2, the step height in each pattern of D20, D50, and D80 is within 30 nm, and the remaining film thickness of the recess is within 100 nm between the patterns of D20 and D80. And good planarization performance was obtained. In the diluted product of Comparative Example 4, although the difference between the D20 and D80 patterns of the recess remaining film thickness was within 100 nm and excellent in the pattern dependency, the step height was 137 nm in the D80 pattern and the step was not eliminated. On the other hand, in the diluted product of Comparative Example 2, since the convex BPSG film disappeared after 2 minutes of polishing, the polishing time was shortened to 1 minute, but in the D20 pattern, the convex BPSG film disappeared. Furthermore, the remaining film thickness of the recesses was as large as 200 nm or more between the D20 and D80 patterns, and the pattern dependency was large, and good planarization performance could not be obtained.

3.平坦化性能の評価(2)
実施例7、2及び比較例10の研磨液組成物を、イオン交換水で表5に記載した希釈倍率で希釈した希釈品(希釈後の組成を表5に記載)を用いて、以下の条件で研磨試験(2)を行なった。
<研磨試験(2)>
1.研磨条件
研磨試験機 :片面研磨機(品番:EPO222D、荏原製作所社製)
研磨パッド :IC-1000/Sub400(ニッタ・ハース社製)
定盤回転数 :100rpm
ヘッド回転数:107rpm(回転方向は定盤と同じ)
研磨荷重 :30kPa
研磨液供給量:200ml/min( 0.6g/cm・min)
被研磨基板 :CMP特性評価用市販パターンウエハであるSematech864(シリコン基板上に膜厚150nmの窒化ケイ素をCVD法で製膜後、エッチングで500nmの深さにパターンニングされた基板上に厚さ550nmのHDP−TEOS酸化珪素膜を形成したもの)又は、BPSG膜パターンウエハ(350nmの深さにパターンニングされたシリコン基板上に厚さ1000nmのBPSG膜を形成したもの)
3. Evaluation of planarization performance (2)
The following conditions were used, using diluted products (compositions after dilution are shown in Table 5) obtained by diluting the polishing liquid compositions of Examples 7 and 2 and Comparative Example 10 with ion-exchanged water at the dilution ratio shown in Table 5. A polishing test (2) was conducted.
<Polishing test (2)>
1. Polishing conditions Polishing tester: Single-side polishing machine (Part number: EPO222D, manufactured by Ebara Corporation)
Polishing pad: IC-1000 / Sub400 (Nitta Haas)
Surface plate rotation speed: 100 rpm
Head rotation speed: 107 rpm (Rotation direction is the same as the surface plate)
Polishing load: 30 kPa
Polishing liquid supply amount: 200 ml / min (0.6 g / cm 2 · min)
Substrate to be polished: Sematech 864, a commercial pattern wafer for CMP characteristics evaluation (thickness 550 nm on a substrate patterned by etching a silicon nitride film with a thickness of 150 nm on a silicon substrate to a depth of 500 nm by etching) HDP-TEOS silicon oxide film) or BPSG film pattern wafer (1000 nm thick BPSG film formed on a 350 nm deep silicon substrate)

研磨時間は、パターンウエハと研磨パッドの間の摩擦係数変化を定盤の駆動モーター電流を測定することでおよび研磨終点を検出することで測定し、研磨液ごとに決定した。
平坦化性能は、Sematech864又はBPSG膜パターンウエハの残存膜厚を測定することで評価した。具体的には、P25、P50、P100、P250、P500パターン部(P25:凸部幅12.5μm/凹部幅12.5μmのLine&Spaceパターン、P50:凸部幅25μm/凹部幅25μmのLine&Spaceパターン、P100:凸部幅50μm/凹部幅50μmのLine&Spaceパターン、P250:凸部幅125μm/凹部幅125μmのLine&Spaceパターン、P500:凸部幅250μm/凹部幅250μmのLine&Spaceパターン)の残存膜厚を測定し、さらにこれら残存膜厚の値からStep Height(凹凸段差)を算出する。
The polishing time was determined for each polishing liquid by measuring the change in the friction coefficient between the pattern wafer and the polishing pad by measuring the driving motor current of the surface plate and detecting the polishing end point.
The planarization performance was evaluated by measuring the remaining film thickness of the Sematech864 or BPSG film pattern wafer. Specifically, P25, P50, P100, P250, P500 pattern part (P25: Line & Space pattern with convex part width 12.5μm / concave part width 12.5μm, P50: Line & Space pattern with convex part width 25μm / concave part width 25μm, P100: Convex part Measure the remaining film thickness of the line & space pattern (part width 50μm / recess width 50μm, P250: line & space pattern with protrusion width 125μm / recess width 125μm, P500: line & space pattern with protrusion width 250μm / recess width 250μm) Step Height (unevenness level difference) is calculated from the value of the film thickness.

Sematech864: Step Height=凸部残存膜厚(HDP膜+SiN膜)+Si段差−凹部残存膜厚
BPSG膜パターンウエハ: Step Height=凸部残存膜厚+Si段差−凹部残存膜厚
ここで、Si段差とは、シリコンウエハ上にパターン形成された凹部の深さを表す。
Sematech864: Step Height = Remaining film thickness of protrusion (HDP film + SiN film) + Si step-Remaining film thickness of recess
BPSG film pattern wafer: Step Height = protrusion remaining film thickness + Si step-recess remaining film thickness Here, the Si step represents the depth of the recess formed in the pattern on the silicon wafer.

今回評価に用いたウエハのSi段差は、Sematech864で350nm、BPSG膜パターンウエハで350nmである。なお、残存膜厚の測定は光干渉式膜厚計(KLAテンコール社製、商品名:Aset F5x)を用いた。各パターンのStep Heightの測定結果を表5に示す。   The Si step of the wafer used in this evaluation is 350 nm for Sematech 864 and 350 nm for the BPSG film pattern wafer. In addition, the measurement of the remaining film thickness used the optical interference type film thickness meter (KLA Tencor company make, brand name: Aset F5x). Table 5 shows the measurement results of Step Height of each pattern.

Figure 2007134696
Figure 2007134696

<平坦化性能評価結果(2)>
実施例7希釈品および実施例2希釈品は比較例10希釈品に比べ、いずれのパターンにおいてもStep Heightの値は小さくなっており、平坦化性能が優れることがわかった。
<Flatification performance evaluation result (2)>
As compared with the diluted product of Example 7 and the diluted product of Example 2, the Step Height value was small in any pattern, indicating that the planarization performance was excellent.

4.ディフェクトの評価
さらに実施例7、2及び比較例10の研磨液組成物の希釈品(表5に記載)で、平坦化性能評価(2)と同様に研磨試験を行った。ただし、被研磨基板には熱酸化膜のブランケットウエハを使用した。60秒間研磨を行った後、過酸化水素(2%)を用い、ロールブラシで60秒洗浄を行った。ディフェクトはレーザー式欠陥検査装置(KLAテンコール社製、商品名:サーフスキャンSP1)を用い、ブランケットウエハ全面1枚あたりの数とサイズを求めた。なお、測定方法はウエハ表面にレーザーを照射し反射光の強度と角度から、ディフェクトの数とサイズを換算している。
表6にディフェクト数の結果を示す。
4. Evaluation of Defects Further, a polishing test was conducted in the same manner as in the planarization performance evaluation (2) with diluted products of the polishing liquid compositions of Examples 7 and 2 and Comparative Example 10 (described in Table 5). However, a blanket wafer made of a thermal oxide film was used as the substrate to be polished. After polishing for 60 seconds, hydrogen peroxide (2%) was used, and cleaning was performed with a roll brush for 60 seconds. Defects were determined by using a laser type defect inspection apparatus (trade name: Surfscan SP1 manufactured by KLA Tencor) and the number and size of each blanket wafer. In the measurement method, the number of defects and the size are converted from the intensity and angle of reflected light by irradiating the wafer surface with a laser.
Table 6 shows the results of the number of defects.

Figure 2007134696
Figure 2007134696

<ディフェクト評価結果>
検査装置のレシピの設定上最も現実的と考えられる0.14μm以上レベルでのディフェクト数は比較例10の希釈品に対して実施例7、2の希釈品の方が、少なく性能に優れることがわかった。
<Defect evaluation result>
The number of defects at a level of 0.14 μm or more, which is considered to be the most realistic in the setting of the inspection apparatus recipe, is smaller in the diluted products of Examples 7 and 2 than in the diluted product of Comparative Example 10, and is superior in performance. all right.

以上より、本発明の研磨液組成物は、高濃度状態における優れた分散安定性とパターン依存性のない高度な平坦化、及び研磨後のディフェクト低減を達成できることがわかる。   From the above, it can be seen that the polishing composition of the present invention can achieve excellent dispersion stability in a high concentration state, high level flatness without pattern dependency, and reduction of defects after polishing.

本発明の半導体基板用研磨液組成物は、例えば、埋め込み素子分離工程、層間絶縁膜の平坦化工程、埋め込み金属配線の形成工程、埋め込みキャパシタ形成工程等に用いられ、特に埋め込み素子分離膜の形成工程、層間絶縁膜平坦化工程に適しており、メモリーIC、ロジックIC、あるいはシステムLSI等の半導体装置の製造に好適に用いられる。
The polishing composition for a semiconductor substrate of the present invention is used, for example, in an embedded element isolation step, an interlayer insulating film planarization step, an embedded metal wiring formation step, an embedded capacitor formation step, etc. It is suitable for the process and the interlayer insulating film flattening process, and is suitably used for manufacturing a semiconductor device such as a memory IC, a logic IC, or a system LSI.

Claims (12)

ジヒドロキシエチルグリシン、セリア粒子、分散剤及び水系媒体を含有する半導体基板用研磨液組成物であって、該研磨液組成物中のセリア粒子の含有量が2〜22重量%、分散剤の含有量が0.001〜1.0重量%である半導体基板用研磨液組成物。   A polishing composition for a semiconductor substrate containing dihydroxyethylglycine, ceria particles, a dispersant and an aqueous medium, wherein the content of ceria particles in the polishing composition is 2 to 22% by weight, and the content of the dispersant Polishing liquid composition for semiconductor substrates whose is 0.001-1.0 weight%. ジヒドロキシエチルグリシン、セリア粒子、分散剤及び水系媒体が配合されて得られる半導体基板用研磨液組成物であって、該研磨液組成物中、セリア粒子が2〜22重量%、分散剤が0.001〜1.0重量%および水系媒体が配合されて得られる半導体基板用研磨液組成物。   A polishing composition for a semiconductor substrate obtained by blending dihydroxyethylglycine, ceria particles, a dispersant and an aqueous medium, wherein the ceria particles are contained in an amount of 2 to 22% by weight and the dispersant is 0. A polishing composition for a semiconductor substrate obtained by blending 001 to 1.0% by weight and an aqueous medium. 水系媒体とセリア粒子とを除く成分中のジヒドロキシエチルグリシンの含有量が80〜99.98重量%である請求項1又は2記載の半導体基板用研磨液組成物。   The polishing composition for a semiconductor substrate according to claim 1 or 2, wherein the content of dihydroxyethylglycine in the component excluding the aqueous medium and the ceria particles is 80 to 99.98 wt%. ジヒドロキシエチルグリシンの半導体基板用研磨液組成物中の含有量が0.4〜40重量%である請求項1〜3いずれか記載の半導体基板用研磨液組成物。   The polishing composition for a semiconductor substrate according to claim 1, wherein the content of dihydroxyethylglycine in the polishing composition for a semiconductor substrate is 0.4 to 40% by weight. ジヒドロキシエチルグリシンとセリア粒子の含有量比(ジヒドロキシエチルグリシン/セリア粒子)が1/5〜15/1(重量比)である請求項1〜4いずれか記載の半導体基板用研磨液組成物。   The polishing composition for a semiconductor substrate according to any one of claims 1 to 4, wherein the content ratio of dihydroxyethylglycine to ceria particles (dihydroxyethylglycine / ceria particles) is 1/5 to 15/1 (weight ratio). 水系媒体の半導体基板用研磨液組成物中の含有量が60〜97.599重量%である請求項1〜5いずれか記載の半導体基板用研磨液組成物。   6. The polishing composition for a semiconductor substrate according to claim 1, wherein the content of the aqueous medium in the polishing composition for a semiconductor substrate is 60 to 97.599 wt%. 分散剤が、アニオン性界面活性剤、ノニオン性界面活性剤、アクリル酸共重合体、アクリル酸共重合体の塩およびエチレンオキサイド−プロピレンオキサイドブロック共重合体からなる群より選択される少なくとも1種である請求項1〜6いずれか記載の半導体基板用研磨液組成物。   The dispersant is at least one selected from the group consisting of an anionic surfactant, a nonionic surfactant, an acrylic acid copolymer, a salt of an acrylic acid copolymer, and an ethylene oxide-propylene oxide block copolymer. A polishing composition for a semiconductor substrate according to any one of claims 1 to 6. 半導体基板が、その表面に少なくともケイ素を含み50〜2000nmの凹凸段差形状を有する膜が形成されてなるものである請求項1〜7いずれか記載の半導体基板用研磨液組成物。   The polishing composition for a semiconductor substrate according to any one of claims 1 to 7, wherein the semiconductor substrate is formed by forming a film having at least silicon and having an uneven step shape of 50 to 2000 nm on the surface thereof. 請求項1〜8いずれか記載の半導体基板用研磨液組成物を希釈した液を、被研磨基板1cm当たり0.01〜10g/分の供給速度で該基板に供給する工程を含む半導体基板の研磨方法。 A step of supplying a liquid obtained by diluting the polishing composition for a semiconductor substrate according to claim 1 to the substrate at a supply rate of 0.01 to 10 g / min per 1 cm 2 of the substrate to be polished. Polishing method. 5〜100kPaの研磨荷重で研磨パッドを押し当てて被研磨基板を研磨する請求項9記載の半導体基板の研磨方法。   The method for polishing a semiconductor substrate according to claim 9, wherein the substrate to be polished is polished by pressing a polishing pad with a polishing load of 5 to 100 kPa. 請求項9又は10記載の研磨方法により被研磨基板を研磨する工程を有する半導体装置の製造方法。   A method for manufacturing a semiconductor device, comprising a step of polishing a substrate to be polished by the polishing method according to claim 9. 単結晶基板上に絶縁膜を形成しその上に金属電極を配する素子形成工程、前記素子間を金属配線化する配線工程、前記工程を経て得られる基板をチップ化する工程を含む半導体装置の製造方法であって、素子形成工程及び/又は配線工程で請求項9又は10記載の研磨方法により被研磨基板を研磨する工程を有する半導体装置の製造方法。
An element forming step in which an insulating film is formed on a single crystal substrate and a metal electrode is disposed thereon, a wiring step in which a metal wiring is formed between the elements, and a step in which a substrate obtained through the step is chipped A method for manufacturing a semiconductor device, comprising: a step of polishing a substrate to be polished by the polishing method according to claim 9 or 10 in an element formation step and / or a wiring step.
JP2006280740A 2005-10-14 2006-10-13 Polishing liquid composition for semiconductor substrate Active JP5288697B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006280740A JP5288697B2 (en) 2005-10-14 2006-10-13 Polishing liquid composition for semiconductor substrate

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2005300633 2005-10-14
JP2005300633 2005-10-14
JP2006280740A JP5288697B2 (en) 2005-10-14 2006-10-13 Polishing liquid composition for semiconductor substrate

Publications (2)

Publication Number Publication Date
JP2007134696A true JP2007134696A (en) 2007-05-31
JP5288697B2 JP5288697B2 (en) 2013-09-11

Family

ID=38156056

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006280740A Active JP5288697B2 (en) 2005-10-14 2006-10-13 Polishing liquid composition for semiconductor substrate

Country Status (1)

Country Link
JP (1) JP5288697B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012502501A (en) * 2008-09-12 2012-01-26 フエロ コーポレーション Chemical mechanical polishing composition, method for producing the same, and method for using the same

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003060163A (en) * 2001-08-14 2003-02-28 Hitachi Ltd Method for manufacturing semiconductor integrated circuit device
JP2003234315A (en) * 2001-12-04 2003-08-22 Sanyo Chem Ind Ltd Polishing liquid for cmp process
JP2004027042A (en) * 2002-06-26 2004-01-29 Yuka Sangyo Kk Gelled product of fine particle dispersion and fine particle dispersion obtained from the same
JP2004247542A (en) * 2003-02-14 2004-09-02 Kao Corp Method for manufacturing substrate for precision component
JP2004247605A (en) * 2003-02-14 2004-09-02 Toshiba Corp Cmp slurry and manufacturing method of semiconductor device
JP2005175110A (en) * 2003-12-10 2005-06-30 Matsushita Electric Ind Co Ltd Method for manufacturing semiconductor device

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003060163A (en) * 2001-08-14 2003-02-28 Hitachi Ltd Method for manufacturing semiconductor integrated circuit device
JP2003234315A (en) * 2001-12-04 2003-08-22 Sanyo Chem Ind Ltd Polishing liquid for cmp process
JP2004027042A (en) * 2002-06-26 2004-01-29 Yuka Sangyo Kk Gelled product of fine particle dispersion and fine particle dispersion obtained from the same
JP2004247542A (en) * 2003-02-14 2004-09-02 Kao Corp Method for manufacturing substrate for precision component
JP2004247605A (en) * 2003-02-14 2004-09-02 Toshiba Corp Cmp slurry and manufacturing method of semiconductor device
JP2005175110A (en) * 2003-12-10 2005-06-30 Matsushita Electric Ind Co Ltd Method for manufacturing semiconductor device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012502501A (en) * 2008-09-12 2012-01-26 フエロ コーポレーション Chemical mechanical polishing composition, method for producing the same, and method for using the same

Also Published As

Publication number Publication date
JP5288697B2 (en) 2013-09-11

Similar Documents

Publication Publication Date Title
TWI384058B (en) Polishing composition for a semiconductor substrate
JP6434501B2 (en) CMP composition having high removal rate and low defects selective to oxides and nitrides
JPWO2007029465A1 (en) Abrasive, method for polishing surface to be polished, and method for manufacturing semiconductor integrated circuit device
CN104835732B (en) The method for optionally polishing silicon carbide film
KR102283152B1 (en) Wet process ceria compositions for polishing substrates, and methods related thereto
CN101568615A (en) Polishing liquid composition
KR102444499B1 (en) Polishing composition and polishing method using same
JP5105869B2 (en) Polishing liquid composition
KR102556208B1 (en) Cmp compositons exhibiting reduced dishing in sti wafer polishing
JP2009272601A (en) Abrasive, substrate polishing method using same, and solution and slurry for use in this method
JP4027929B2 (en) Polishing liquid composition for semiconductor substrate
JP5516594B2 (en) CMP polishing liquid, and polishing method and semiconductor substrate manufacturing method using the same
JP7356932B2 (en) Polishing composition and polishing method
JP2009260236A (en) Abrasive powder, polishing method of substrate employing the same as well as solution and slurry employed for the polishing method
JP5288697B2 (en) Polishing liquid composition for semiconductor substrate
JP6191433B2 (en) Abrasive and polishing method
TWI625372B (en) Method of polishing a low-k substrate
CN112552824B (en) Polishing composition and polishing method
JP6551136B2 (en) Polishing solution for CMP and polishing method
JP2006173411A (en) Polishing solution composition for semiconductor substrate
JP2018053138A (en) Metal oxide particle-dispersed liquid
JP2015120846A (en) Polishing agent and polishing method
JP6627283B2 (en) Polishing liquid and polishing method
JP2023082545A (en) Polishing liquid composition for silicon oxide film
JP2022085857A (en) Polishing liquid composition for silicon oxide film

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090915

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120131

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120329

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120926

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121122

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130603

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130604

R151 Written notification of patent or utility model registration

Ref document number: 5288697

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250