JP2007134286A - Negative electrode material for lithium secondary battery and lithium secondary battery - Google Patents

Negative electrode material for lithium secondary battery and lithium secondary battery Download PDF

Info

Publication number
JP2007134286A
JP2007134286A JP2005328870A JP2005328870A JP2007134286A JP 2007134286 A JP2007134286 A JP 2007134286A JP 2005328870 A JP2005328870 A JP 2005328870A JP 2005328870 A JP2005328870 A JP 2005328870A JP 2007134286 A JP2007134286 A JP 2007134286A
Authority
JP
Japan
Prior art keywords
negative electrode
secondary battery
lithium secondary
electrode material
average particle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
JP2005328870A
Other languages
Japanese (ja)
Inventor
Eiji Hoshi
星  栄二
Teishun Ueda
禎俊 上田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Plant Technologies Ltd
Original Assignee
Hitachi Plant Technologies Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Plant Technologies Ltd filed Critical Hitachi Plant Technologies Ltd
Priority to JP2005328870A priority Critical patent/JP2007134286A/en
Publication of JP2007134286A publication Critical patent/JP2007134286A/en
Abandoned legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

<P>PROBLEM TO BE SOLVED: To provide a negative electrode material having a high output and a high capacity; and to provide a lithium secondary battery using the same. <P>SOLUTION: The negative electrode material for a lithium secondary battery comprises a carbonaceous material obtained by carbonizing a plant material, the average particle diameter of the carbonaceous material being 1 to 8 μm. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、リチウム二次電池に使用する高出力と高容量を両立した非晶質負極材料に関する。さらには、それを用いたリチウム二次電池に関する。   The present invention relates to an amorphous negative electrode material having both high output and high capacity used for a lithium secondary battery. Furthermore, the present invention relates to a lithium secondary battery using the same.

リチウム二次電池は、ニッケル水素電池や鉛蓄電池に比べて軽量で且つ高容量、高出力であるためポータブル電子機器等に利用されている。   Lithium secondary batteries are used in portable electronic devices and the like because they are lighter, have higher capacity and higher output than nickel metal hydride batteries and lead acid batteries.

リチウム二次電池の負極材料には一般的に黒鉛質材料(例えば、天然黒鉛材料、コークス等を黒鉛化した人造黒鉛等)や非晶質炭素(例えば、石油系又は石油系タール又は石炭系ピッチを熱処理したもの)が用いられている。   Generally as a negative electrode material of a lithium secondary battery, graphite material (for example, natural graphite material, artificial graphite obtained by graphitizing coke, etc.) or amorphous carbon (for example, petroleum-based or petroleum-based tar or coal-based pitch) Heat-treated) is used.

しかしながら、黒鉛結晶が発達している天然黒鉛及びコークスを黒鉛化した人造黒鉛は、結晶層間が規則正しく並んでいるためリチウムの吸蔵・放出が一方向からしか行えず、その結果、黒鉛を用いたリチウム二次電池は高い入出力が望めない。   However, natural graphite with developed graphite crystals and artificial graphite graphitized coke can be inserted and released from lithium in only one direction because the crystal layers are regularly arranged. As a result, lithium using graphite Secondary batteries cannot be expected to have high input / output.

一方、非晶質炭素は結晶化が低いためリチウムの吸蔵・放出が全方向から行うことができ、そのため、非晶質炭素を用いたリチウム二次電池は高い入出力が可能となり、上記の高出力用リチウム二次電池として適している。   On the other hand, since amorphous carbon has low crystallization, lithium can be occluded / released from all directions. Therefore, a lithium secondary battery using amorphous carbon is capable of high input / output. Suitable as a lithium secondary battery for output.

しかしながら、非晶質炭素は、結晶化度が低いことからミクロポア中でのリチウム失活が起こるため、初回の充放電効率が低い問題がある。このような問題に対して、高い初回の充放電容量と初回の充放電効率を望める非晶質炭素の負極材料として植物性原料を焼成して得られる炭素材料が検討されている。   However, since amorphous carbon has a low crystallinity, lithium deactivation occurs in the micropore, so that there is a problem that the initial charge / discharge efficiency is low. In order to solve such a problem, a carbon material obtained by firing a plant raw material as an anode material of amorphous carbon that can be expected to have a high initial charge / discharge capacity and initial charge / discharge efficiency has been studied.

特許文献1では植物性原料焼成炭を用いることで、大きな初回の充放電容量と高い初回の充放電効率とを図れる非水電解液二次電池用負極材料を提案している。しかしながら、植物性原料は単純に焼成すると植物由来によるハニカム構造となってしまう。そのため、粉砕すると粒子構造が湾曲状または薄片状になってしまい、電池の負極として用いた場合に粒子間の接触が悪く従来の非晶質炭素に比べて十分な出力特性を得ることができない問題がある。   Patent Document 1 proposes a negative electrode material for a nonaqueous electrolyte secondary battery that can achieve a large initial charge / discharge capacity and a high initial charge / discharge efficiency by using plant raw material calcined charcoal. However, if the plant raw material is simply fired, it will have a honeycomb structure derived from plants. Therefore, when pulverized, the particle structure becomes curved or flaky, and when used as a negative electrode of a battery, the contact between the particles is poor and sufficient output characteristics cannot be obtained compared to conventional amorphous carbon. There is.

国際公開第96−27911号パンフレットInternational Publication No. 96-27911 Pamphlet

本発明の目的は、植物性原料を用いた出力特性に優れた負極材料と前記負極材料を用いたリチウム二次電池を提供することにある。   An object of the present invention is to provide a negative electrode material having excellent output characteristics using a plant material and a lithium secondary battery using the negative electrode material.

本発明者らは上記課題を解決するために鋭意検討した結果、植物性材料を炭素化して得られ、その平均粒径が1〜8μmである炭素材料をリチウム二次電池用の負極材料として用いることにより当該課題を解決できることを見出し、本発明を完成させるに至った。   As a result of intensive studies to solve the above problems, the present inventors use a carbon material obtained by carbonizing a plant material and having an average particle size of 1 to 8 μm as a negative electrode material for a lithium secondary battery. As a result, it was found that the problem can be solved, and the present invention has been completed.

即ち、本発明は以下の発明を包含する。
(1)植物性材料を炭素化して得られる炭素材料であり、前記炭素材料の平均粒径は1〜8μmであることを特徴とするリチウム二次電池用負極材料。
(2)タップ密度が0.76〜1.15g/cmであることを特徴とする前記(1)記載のリチウム二次電池用負極材料。
(3)植物性材料としてコーヒー豆絞り粕を用いることを特徴とする前記(1)又は(2)記載のリチウム二次電池用負極材料。
(4)セパレータを介して正極剤を有する正極及び負極剤を有する負極を備え、電解液が充填されたリチウム二次電池において、前記負極剤として前記(1)〜(3)のいずれかに記載の負極材料を用いたリチウム二次電池。
(5)固体電解質を介して正極剤を有する正極及び負極剤を有する負極を備え、電解液が充填されているリチウム二次電池において、前記負極剤として前記(1)〜(3)のいずれかに記載の負極材料を用いたリチウム二次電池。
That is, the present invention includes the following inventions.
(1) A negative electrode material for a lithium secondary battery, which is a carbon material obtained by carbonizing a plant material, and the carbon material has an average particle size of 1 to 8 μm.
(2) The negative electrode material for a lithium secondary battery according to (1), wherein the tap density is 0.76 to 1.15 g / cm 3 .
(3) The negative electrode material for a lithium secondary battery according to the above (1) or (2), wherein a coffee bean squeezed lees is used as the plant material.
(4) In a lithium secondary battery including a positive electrode having a positive electrode agent and a negative electrode having a negative electrode agent via a separator and filled with an electrolyte, the negative electrode agent may be any one of (1) to (3). Secondary battery using negative electrode material.
(5) A lithium secondary battery including a positive electrode having a positive electrode agent and a negative electrode having a negative electrode agent via a solid electrolyte and filled with an electrolyte solution, and any one of (1) to (3) as the negative electrode agent A lithium secondary battery using the negative electrode material described in 1.

本発明によれば、高出力と高容量な非晶質負極材料を得ることができ、高出力、高容量なリチウム二次電池が得られる。   According to the present invention, a high output and high capacity amorphous negative electrode material can be obtained, and a high output and high capacity lithium secondary battery can be obtained.

本発明は、植物性材料を炭素化して得られる炭素材料であり、前記炭素材料の平均粒径は1〜8μmである炭素材料を用いることを特徴とするリチウム二次電池用負極材料である。   The present invention is a carbon material obtained by carbonizing a plant material, and a carbon material having an average particle diameter of 1 to 8 μm is used as the negative electrode material for a lithium secondary battery.

本明細書で言う「植物性材料」とは、植物に由来する任意の物質及び材料を意味し、その形態は生のものに限られず、乾燥処理、発酵処理、粉末化処理、焙煎処理、抽出処理、絞り粕、加工物等の種々の処理が施されたものでも使用することができる。   As used herein, the term “plant material” means any substance and material derived from a plant, the form of which is not limited to a raw material, and a drying process, a fermentation process, a powdering process, a roasting process, Those subjected to various treatments such as an extraction treatment, a drawing rod, and a processed product can also be used.

本発明で用いることができる植物の具体例としては、これらに限定されるものではないが、例えばコーヒー豆、茶葉(例えば、緑茶や紅茶等の葉)、サトウキビ類、トウモロコシ類及び果実類(例えば、ミカンやバナナ等)、穀物(米、大麦、小麦、ライ麦、ヒエ、アワ)の藁類、籾殻類等が挙げられる。   Specific examples of plants that can be used in the present invention include, but are not limited to, coffee beans, tea leaves (for example, leaves such as green tea and black tea), sugar cane, corns and fruits (for example, , Oranges, bananas, etc.), cereals (rice, barley, wheat, rye, millet, millet), rice husks, and the like.

特に、産業廃棄物の資源化を図るという観点からは、使用済みの珈琲豆や茶葉、サトウキビの搾りかす、トウモロコシの芯、ミカンやバナナの皮、加工後の藁や籾殻は、家庭ごみ並びに酒類製造会社及び食品会社からの廃棄物として大量且つ容易に入手することができる。   In particular, from the viewpoint of recycling industrial waste, spent rice beans and tea leaves, sugarcane pomace, corn cores, mandarin oranges and banana peels, processed straws and rice husks are made from household waste and alcoholic beverages. It can be easily obtained in large quantities as waste from manufacturers and food companies.

本発明では上記植物性材料は炭素化(炭化)されて使用される。炭素化の工程は公知の方法により行うことができ、炭素化条件(例えば昇温速度、到達温度(焼成温度)、冷却条件など)は適宜設定することができる。炭素化工程の一例を以下に述べると以下のとおりである。まず上記植物性材料を第1段目の焼成として大気中、真空下又は不活性ガス(窒素、アルゴンなど)において400℃〜700℃の温度で、自燃式の焼成炉を用いて焼成し、室温まで徐冷した後に第2段目の焼成として真空下又は不活性ガス(窒素、アルゴンなど)中において700℃〜900℃の温度で、電気炉を用いて焼成を行う。次いで、これを室温まで徐冷した後に第3段目の焼成として真空又は不活性ガス(窒素、アルゴンなど)中において1000℃〜1300℃の温度で、電気炉を用いて焼成を行う。焼成炉は前記のものでなくてもかまわず、ガス炉や高周波加熱炉を用いてもよい。   In the present invention, the plant material is used after being carbonized (carbonized). The carbonization step can be performed by a known method, and the carbonization conditions (for example, the rate of temperature increase, the reached temperature (firing temperature), the cooling conditions, etc.) can be appropriately set. An example of the carbonization process is as follows. First, the above-mentioned plant material is fired as a first-stage firing in air, under vacuum or in an inert gas (nitrogen, argon, etc.) at a temperature of 400 ° C. to 700 ° C. using a self-burning firing furnace, Then, the second stage is fired in a vacuum or in an inert gas (nitrogen, argon, etc.) at a temperature of 700 ° C. to 900 ° C. using an electric furnace. Next, after slowly cooling to room temperature, firing is performed in an electric furnace at a temperature of 1000 ° C. to 1300 ° C. in a vacuum or an inert gas (nitrogen, argon, etc.) as third-stage firing. The firing furnace may not be the above, and a gas furnace or a high-frequency heating furnace may be used.

次に、炭素化された植物性材料を粉砕してその平均粒径を1〜8μm、好ましくは2〜6μmにする。炭素化された植物性材料をボールミル粉砕機、らいかい機、又はジェットミル粉砕機等で粉砕、分級することにより所定の平均粒径とすることができる。平均粒径が8μmを超えると、湾曲状又は薄片状の粒子が多数存在することになり粒子間の接触が不十分になる。このため、リチウム二次電池の負極に用いた場合、粒子間の接触が悪く、十分な出力特性を得ることができない。これに対して、本発明では、平均粒径を8μm以下とすることにより、湾曲状及び薄片状の粒子が減少し、出力特性に優れた負極材料を構成することができる。   Next, the carbonized plant material is pulverized to have an average particle size of 1 to 8 μm, preferably 2 to 6 μm. The carbonized plant material can be pulverized and classified with a ball mill, a raker, a jet mill, or the like to obtain a predetermined average particle size. When the average particle diameter exceeds 8 μm, a large number of curved or flaky particles are present, resulting in insufficient contact between the particles. For this reason, when it uses for the negative electrode of a lithium secondary battery, the contact between particle | grains is bad and sufficient output characteristics cannot be acquired. On the other hand, in the present invention, by setting the average particle diameter to 8 μm or less, curved and flaky particles are reduced, and a negative electrode material having excellent output characteristics can be configured.

さらに、本発明で用いられる炭素化植物性材料は、そのタップ密度が0.76〜1.15g/cmであることが好ましい。タップ密度は粒子間の空隙の程度を示す指標である。タップ密度が0.76g/cmより低いと粒子間の空隙が多く、粒子間の接触が悪くなり、十分な出力特性を得ることができない。タップ密度の測定は次のようにして測定することができる。25cmの金属製容器に補助円筒を取り付けて、容器にふるいを通して炭素材料を充填させて900回のタッピングを行なう。タッピングにより炭素化材料の体積が減少するので、その場合はふるいを通して適宜炭素化材料を補充する。次いで補助円筒を取り外し、金属容器上部からはみ出た炭素化植物性材料を擦切り棒で擦切り、金属容器に充填された炭素材料の重量を容器体積で除して求められる。なお、タッピングの際、補助円筒の高さ2cm程度に炭素材料が充填されるように減少した場合はふるいを通して炭素材料を充填する必要がある。 Furthermore, the carbonized plant material used in the present invention preferably has a tap density of 0.76 to 1.15 g / cm 3 . The tap density is an index indicating the degree of voids between particles. When the tap density is lower than 0.76 g / cm 3 , there are many voids between the particles, the contact between the particles is deteriorated, and sufficient output characteristics cannot be obtained. The tap density can be measured as follows. An auxiliary cylinder is attached to a 25 cm 3 metal container, and the container is filled with a carbon material through a sieve and tapped 900 times. Since the volume of the carbonized material is reduced by tapping, in that case, the carbonized material is appropriately supplemented through a sieve. Next, the auxiliary cylinder is removed, the carbonized plant material protruding from the upper part of the metal container is scraped with a scraping rod, and the weight of the carbon material filled in the metal container is divided by the container volume. In the case of tapping, if the carbon material is reduced to be filled to about 2 cm in height of the auxiliary cylinder, it is necessary to fill the carbon material through a sieve.

炭素化植物性材料の粉砕は、分級による収率(収率=分級後重量/分級前重量×100%)が10%以上であることが好ましい。分級による収率が10%以下である場合、所定の平均粒径に調整しても湾曲状及び薄片状の粒子を減少させることができず、粒子間の接触が悪い。また、タップ密度も0.76g/cm以下となり、粒子間の空隙が多く、十分な出力特性を得ることができない恐れがある。 The pulverization of the carbonized plant material preferably has a yield by classification (yield = weight after classification / weight before classification × 100%) of 10% or more. When the yield by classification is 10% or less, curved and flaky particles cannot be reduced even when the average particle size is adjusted, and the contact between the particles is poor. Further, the tap density is 0.76 g / cm 3 or less, and there are many voids between particles, so that there is a possibility that sufficient output characteristics cannot be obtained.

上記のようにして得られる炭素化された植物性材料はリチウム二次電池用の負極材料として使用することができる。リチウム二次電池としては、例えば、正極剤を有する正極と負極剤を有する負極とをセパレータを介して備え、電解液が充填されているリチウム二次電池、又は、正極剤を有する正極と負極剤を有する負極とを固体電解質を介して備えたリチウム二次電池を挙げることができる。本発明の負極材料を前記負極剤として用い、これを負極集電体に加圧成形することによりリチウム二次電池の負極を構成することができる。   The carbonized plant material obtained as described above can be used as a negative electrode material for a lithium secondary battery. As the lithium secondary battery, for example, a lithium secondary battery including a positive electrode having a positive electrode agent and a negative electrode having a negative electrode agent via a separator and filled with an electrolyte solution, or a positive electrode and a negative electrode agent having a positive electrode agent And a lithium secondary battery including a negative electrode having a solid electrolyte. The negative electrode material of the present invention is used as the negative electrode agent, and the negative electrode of the lithium secondary battery can be formed by pressure-molding the negative electrode material into a negative electrode current collector.

本発明の負極材料を用いて以下のようにしてリチウム二次電池を作製することができる。   Using the negative electrode material of the present invention, a lithium secondary battery can be produced as follows.

まず、上記の負極活物質(炭素化植物性材料)を炭素材料粉末の導電材、及びポリフッ化ビニリデン(PVDF)等の結着剤とともに混合してスラリーを作製する。上記負極活物質に対する上記導電材の混合比は、5〜15重量%が好ましい。このときに、上記負極活物質の粉末粒子がスラリー中で均一に分散するように、回転翼のような攪拌手段を具備した混合機を用いて十分な混練を行う。上記十分に混合したスラリーは、例えばロール転写式の塗布機などによって厚み10〜20μmの銅箔上に両面塗布する。前記両面塗布した後、プレス乾燥することによって負極の電極板とする。塗布電極合材の厚さは20〜120μmにすることが望ましい。   First, the negative electrode active material (carbonized plant material) is mixed with a conductive material of carbon material powder and a binder such as polyvinylidene fluoride (PVDF) to prepare a slurry. The mixing ratio of the conductive material to the negative electrode active material is preferably 5 to 15% by weight. At this time, sufficient kneading is performed using a mixer equipped with a stirring means such as a rotary blade so that the powder particles of the negative electrode active material are uniformly dispersed in the slurry. The sufficiently mixed slurry is coated on both sides of a copper foil having a thickness of 10 to 20 μm by, for example, a roll transfer type coating machine. After applying the both surfaces, press drying is performed to obtain a negative electrode plate. The thickness of the coating electrode mixture is desirably 20 to 120 μm.

正極はLiCoO,LiNiO,LiMnNi1−x,LiMn、LiMnO(但しxは0.001≦x≦0.5の範囲)等を活物質に用い、負極と同様に導電材及び、結着剤ともに混合して塗布プレスし、電極を作製する。電極合剤厚は20〜150μmとするのが望ましい。正極の場合は、集電体として厚さ15〜25μmのアルミ箔を用いる。塗布の混合比は、例えば正極活物質と導電材と結着剤の重量比で85:10:5とすることが望ましい。 The positive electrode uses LiCoO 2 , LiNiO 2 , LiMn x Ni 1-x O 2 , LiMn 2 O 4 , LiMnO 2 (where x is in the range of 0.001 ≦ x ≦ 0.5) as the active material, and is the same as the negative electrode The conductive material and the binder are mixed and applied and pressed to produce an electrode. The electrode mixture thickness is preferably 20 to 150 μm. In the case of the positive electrode, an aluminum foil having a thickness of 15 to 25 μm is used as the current collector. The mixing ratio of application is preferably 85: 10: 5 in terms of the weight ratio of the positive electrode active material, the conductive material, and the binder, for example.

塗布電極は所定の長さに切断し、電流引き出し用のタブ部をスポット溶接または超音波溶接により形成する。タブ部は正極側では集電体と同じ材質のアルミ箔を用い、負極側ではニッケル箔を用いることができ、電極から電流を取り出すために設置するものである。タブ付けされた電極は多孔性樹脂例えば、ポリエチレン(PE)やポリプロピレン(PP)などからなるセパレータを間に挟んで重ね、これを円筒状に巻いて電極群となし、円筒状容器に収納する。あるいは、セパレータに袋状のものを用いてこの中に電極を収納しこれらを順次重ねて角型容器に収納しても良い。容器の材質はステンレス、又はアルミを用いることが望ましい。電極群を電池容器に収納した後に、電解液を注入し密封する。電解液としてはエチレンカーボネート(EC)、メチルエチルカーボネート(EMC)、ジエチルカーボネート(DEC)、プロピレンカーボネート(PC)1,2−ジメトキシエタン、1,2−ジエトキシエタン、γ−ブチロラクトン、テトラヒドロフラン、1,3−ジオキソラン、ジプロピルカーボネート、ジエチルエーテル、スルホラン、メチルスルホラン、アセトニトリル、プロピルニトリル、アニソール、酢酸エステル、プロピオン酸エステル等の溶媒に、電解質としてLiPF、LiBF、LiClO、LiAsF6、LiCF3SO3、LiN(CF3SO22等のリチウム塩などを溶解させたものを用いることが望ましい。電解液を注液して、電池容器を密閉して電池が完成する。また、セパレータに代えて固体電解質を用いてもよい。 The coating electrode is cut to a predetermined length, and a tab for drawing current is formed by spot welding or ultrasonic welding. The tab portion can be made of an aluminum foil made of the same material as the current collector on the positive electrode side, and can be made of a nickel foil on the negative electrode side, and is installed to take out current from the electrode. The tabbed electrodes are stacked with a separator made of a porous resin such as polyethylene (PE) or polypropylene (PP) in between, and are rolled into a cylindrical shape to be stored in a cylindrical container. Alternatively, a bag-shaped separator may be used, and the electrodes may be accommodated therein and sequentially stacked and accommodated in a square container. The material of the container is preferably stainless steel or aluminum. After the electrode group is accommodated in the battery container, an electrolytic solution is injected and sealed. Examples of the electrolyte include ethylene carbonate (EC), methyl ethyl carbonate (EMC), diethyl carbonate (DEC), propylene carbonate (PC) 1,2-dimethoxyethane, 1,2-diethoxyethane, γ-butyrolactone, tetrahydrofuran, 1 , 3-dioxolane, dipropyl carbonate, diethyl ether, sulfolane, methyl sulfolane, acetonitrile, propyl nitrile, anisole, acetate ester, propionate ester, etc., and LiPF 6 , LiBF 4 , LiClO 4 , LiAsF 6 , LiCF as electrolytes It is desirable to use a material in which a lithium salt such as 3 SO 3 or LiN (CF 3 SO 2 ) 2 is dissolved. The electrolyte is injected, the battery container is sealed, and the battery is completed. Further, a solid electrolyte may be used instead of the separator.

なお、以下の実施例で示すバインダー、非水系溶媒、集電体、電解質等は一例であり、本発明はこれらに限定されない。   The binder, non-aqueous solvent, current collector, electrolyte, and the like shown in the following examples are examples, and the present invention is not limited to these.

(実施例1:炭素化植物性材料の調製)
リチウム二次電池用負極材料を以下のようにして調製した。原料としてコーヒー豆の絞り粕を用い、以下の条件で焼成を行った:
第1段目の焼成 大気中、600℃で2時間
第2段目の焼成 窒素ガス中、800℃で2時間
第3段目の焼成 10−2Torrの真空、1200℃で3時間
(Example 1: Preparation of carbonized plant material)
A negative electrode material for a lithium secondary battery was prepared as follows. Using coffee beans as a raw material, baking was performed under the following conditions:
First stage calcination in air at 600 ° C. for 2 hours Second stage calcination in nitrogen gas at 800 ° C. for 2 hours Third stage calcination 10 −2 Torr vacuum, 1200 ° C. for 3 hours

冷却後ボールミル粉砕機を用いて粉砕・分級することで平均粒径を3μmに調整した。このときの分級による収率は30%であった。得られた炭素化材料のタップ密度を表1に示す。実施例1のタップ密度は0.82g/cm3であり、目的とする範囲内の平均粒径、タップ密度である負極材料が得られた。 After cooling, the average particle size was adjusted to 3 μm by pulverization and classification using a ball mill pulverizer. The yield by classification at this time was 30%. Table 1 shows the tap density of the obtained carbonized material. The tap density of Example 1 was 0.82 g / cm 3 , and a negative electrode material having an average particle diameter and a tap density within the target range was obtained.

(比較例1:炭素化植物性材料の調製)
リチウム二次電池用負極材料を以下のようにして調製した。原料としてコーヒー豆の絞り粕を用いた。大気中、600℃で第1段目の焼成を2時間行い、冷却後、粉砕・分級して70ミクロン以上の粗粒を除去した。その後、窒素ガス雰囲気中、800℃で第2段目の焼成を2時間行い、次いで、10−2Torrの真空中、1200℃で第3段目の焼成を1時間行った。冷却後、分級して平均粒径を4μmに調整した。このときの分級による収率は3%であった。平均粒径は目的の範囲であるが、タップ密度は0.44g/cm3であり目的の範囲外であった。
(Comparative Example 1: Preparation of carbonized plant material)
A negative electrode material for a lithium secondary battery was prepared as follows. Coffee beans were used as raw materials. First stage baking was performed in the atmosphere at 600 ° C. for 2 hours, and after cooling, coarse particles of 70 microns or more were removed by pulverization and classification. Thereafter, the second stage baking was performed at 800 ° C. for 2 hours in a nitrogen gas atmosphere, and then the third stage baking was performed at 1200 ° C. for 1 hour in a vacuum of 10 −2 Torr. After cooling, classification was performed to adjust the average particle size to 4 μm. The yield by classification at this time was 3%. The average particle size was in the target range, but the tap density was 0.44 g / cm 3 , which was outside the target range.

(比較例2:炭素化植物性材料の調製)
リチウム二次電池用負極材料を以下のようにして調製した。原料としてコーヒー豆の絞り粕を用いた。大気中、600℃で第1段目の焼成を2時間行い、冷却後、粉砕・分級して70ミクロン以上の粗粒を除去した。その後、窒素ガス雰囲気中、800℃で第2段目の焼成を2時間行い、次いで、10−2Torrの真空中、1200℃で第3段目の焼成を1時間行った。得られた炭素化材料の平均粒径は18μm、タップ密度は0.75g/cm3であり、目的でない平均粒径、タップ密度であった。
(Comparative Example 2: Preparation of carbonized plant material)
A negative electrode material for a lithium secondary battery was prepared as follows. Coffee beans were used as raw materials. First stage baking was performed in the atmosphere at 600 ° C. for 2 hours, and after cooling, coarse particles of 70 microns or more were removed by pulverization and classification. Thereafter, the second stage baking was performed at 800 ° C. for 2 hours in a nitrogen gas atmosphere, and then the third stage baking was performed at 1200 ° C. for 1 hour in a vacuum of 10 −2 Torr. The obtained carbonized material had an average particle diameter of 18 μm and a tap density of 0.75 g / cm 3 , which was an undesired average particle diameter and tap density.

(比較例3:炭素化植物性材料の調製)
リチウム二次電池用負極材料を以下のようにして調製した。原料として石油系ピッチを用いた。窒素ガス中、500℃で焼成を1時間行い、冷却後、粉砕・分級して70ミクロン以上の粗粒を除去した。その後、窒素ガス雰囲気中、1200℃で焼成を1時間行い、次いで、10−2Torrの真空中、1200℃で第3段目の焼成を1時間行った。冷却後、分級することで平均粒径を3μmに調整した。このときの分級による収率は35%であった。得られた炭素化材料の平均粒径は3μm、タップ密度は0.95g/cm3であり、原料が異なる以外は目的とする範囲内の平均粒径、タップ密度であった。
(Comparative Example 3: Preparation of carbonized plant material)
A negative electrode material for a lithium secondary battery was prepared as follows. Petroleum pitch was used as a raw material. Baking was performed in nitrogen gas at 500 ° C. for 1 hour, and after cooling, pulverized and classified to remove coarse particles of 70 microns or more. Thereafter, firing was performed at 1200 ° C. for 1 hour in a nitrogen gas atmosphere, and then the third-stage firing was performed at 1200 ° C. in a vacuum of 10 −2 Torr for 1 hour. After cooling, the average particle size was adjusted to 3 μm by classification. The yield by classification at this time was 35%. The obtained carbonized material had an average particle size of 3 μm and a tap density of 0.95 g / cm 3 , and the average particle size and tap density were within the intended ranges except that the raw materials were different.

上記実施例1及び比較例1〜3で得られた炭素化材料の平均粒粒径及びタップ密度を表1に示す。   Table 1 shows the average grain size and tap density of the carbonized materials obtained in Example 1 and Comparative Examples 1 to 3.

Figure 2007134286
Figure 2007134286

(参考例1:負極及びテストセルの作製)
負極とテストセルは以下のようにして調製した。
実施例1及び比較例1〜3で作製した負極材料に、これに対して重量比で5%のアセチレンブラック粉末を加え、混合機を用いて十分に攪拌した。N−メチルピロリドン(NMP)で希釈したポリフッ化ビニリデン(PVDF)を添加してスラリーを作製し、作製したスラリーを厚さ20μmの銅箔に塗布して、乾燥した後にロールプレスでプレスした。電極密度を0.9g/cmに調整し、直径15mmに打抜いて真空乾燥してNMP溶媒を完全に蒸発させて負極を得た。
(Reference Example 1: Production of negative electrode and test cell)
The negative electrode and the test cell were prepared as follows.
To the negative electrode material produced in Example 1 and Comparative Examples 1 to 3, 5% by weight of acetylene black powder was added to this, and the mixture was sufficiently stirred using a mixer. Polyvinylidene fluoride (PVDF) diluted with N-methylpyrrolidone (NMP) was added to prepare a slurry. The prepared slurry was applied to a copper foil having a thickness of 20 μm, dried, and then pressed with a roll press. The electrode density was adjusted to 0.9 g / cm 3 , punched to a diameter of 15 mm, vacuum dried, and the NMP solvent was completely evaporated to obtain a negative electrode.

前記負極を用いてテストセル(セル構成:対極/Li金属、セパレータ/40μm厚のポリエチレン多孔質フィルム、電解液/エチレンカーボネートとメチルエチルカーボネートとの混合溶液(容量比1:2)にLiPFを1M溶解させた溶液、集電体/銅箔)を作製した。 LiPF 6 was added to a test cell (cell structure: counter electrode / Li metal, separator / polyethylene porous film having a thickness of 40 μm, electrolyte solution / mixed solution of ethylene carbonate and methyl ethyl carbonate (capacity ratio 1: 2)) using the negative electrode. 1M solution, current collector / copper foil) was prepared.

(参考例2:電極及び18650電池の作製)
電極及び18650電池は以下のようにして調製した。
正極は、正極活物質としてLiCoOを用い、これに前記正極活物質に対して重量比で13%の黒鉛及びアセチレンブラック粉末を加え、混合機を用いて十分に攪拌した。N−メチルピロリドン(NMP)で希釈したポリフッ化ビニリデン(PVDF)を添加してスラリーを作製し、このスラリーを厚さ20μmのアルミ箔に塗布して、乾燥した後にロールプレスでプレスした。
(Reference Example 2: Production of electrode and 18650 battery)
The electrode and 18650 battery were prepared as follows.
For the positive electrode, LiCoO 2 was used as the positive electrode active material, and 13% by weight of graphite and acetylene black powder were added to the positive electrode active material, and the mixture was sufficiently stirred using a mixer. Polyvinylidene fluoride (PVDF) diluted with N-methylpyrrolidone (NMP) was added to prepare a slurry. The slurry was applied to an aluminum foil having a thickness of 20 μm, dried, and then pressed with a roll press.

負極は、実施例1又は比較例1〜3で作製した負極材料を用い、これに前記負極材料に対して重量比で5%のアセチレンブラック粉末の混合比をを加え、厚さ20μmの銅箔に同様に塗布プレスして作製したものを用いた。   As the negative electrode, the negative electrode material prepared in Example 1 or Comparative Examples 1 to 3 was used, and a mixing ratio of 5% by weight of acetylene black powder was added to the negative electrode material to obtain a copper foil having a thickness of 20 μm. In the same manner, a material produced by coating press was used.

得られた正負極を幅145mmに切断してから40μm厚のポリエチレン多孔質フィルムをセパレータとして間に挟みこむようにして円筒状に捲回して電極を作製した。これを、長さ65mm、内径18mmのSUS製の電池缶に挿入し、電解液を注入後、封止して18650電池を作製した。電解液はエチレンカーボネートとメチルエチルカーボネートとの混合溶媒(容量比1:2)に電解質としてLiPF6を1M溶解させたものを用いた。 The obtained positive and negative electrodes were cut into a width of 145 mm and then wound into a cylindrical shape with a 40 μm thick polyethylene porous film sandwiched between them to produce an electrode. This was inserted into a battery can made of SUS having a length of 65 mm and an inner diameter of 18 mm, injected with an electrolytic solution, and sealed to produce an 18650 battery. As the electrolytic solution, a solution obtained by dissolving 1M LiPF 6 as an electrolyte in a mixed solvent of ethylene carbonate and methyl ethyl carbonate (capacity ratio 1: 2) was used.

(実施例2:テストセルの充放電容量と充放電効率の測定)
参考例1で作製したテストセルを用いてその充放電容量と充放電効率(充放電効率=放電容量/充電容量×100%)を測定した。
テストセルの充放電条件は、以下に示す条件で行った。充電条件は定電流充電とし、電流値は0.6mA、0.3mA、0.1mA、0.05mA、0.01mAと段階的に低くした。それぞれカット電圧を0V、休止時間を1時間とした。定電流定電圧充電としなかったのは0V付近では電解液自身の分解が起こるため正確な容量が得られないためである。放電は電流0.1mAでカット電圧1.5Vとした。この条件で充放電を行った後に、負極材料としての炭素材料の単位重量あたりの充放電容量を算出した。その結果を表2に示す。
(Example 2: Measurement of charge / discharge capacity and charge / discharge efficiency of test cell)
Using the test cell produced in Reference Example 1, the charge / discharge capacity and charge / discharge efficiency (charge / discharge efficiency = discharge capacity / charge capacity × 100%) were measured.
The charge / discharge conditions of the test cell were performed under the following conditions. The charging conditions were constant current charging, and the current values were gradually reduced to 0.6 mA, 0.3 mA, 0.1 mA, 0.05 mA, and 0.01 mA. In each case, the cut voltage was 0 V, and the rest time was 1 hour. The reason why the constant current / constant voltage charging was not used is that an accurate capacity cannot be obtained because the electrolytic solution itself decomposes near 0V. The discharge was performed at a current of 0.1 mA and a cut voltage of 1.5V. After charging / discharging under these conditions, the charge / discharge capacity per unit weight of the carbon material as the negative electrode material was calculated. The results are shown in Table 2.

(実施例3:18650電池の電池抵抗の測定)
参考例2で調製した18650電池を用いてその電池抵抗を測定した。
電池抵抗(R)は以下のようにして測定した。
0.33C相当の電流で上限電圧4.1Vで4時間の定電流定電圧充電を行った後、10分間開回路状態とした。その後、放電電流(I)3.5Aで5秒間の放電を行い、放電前の開回路電圧(V)と放電5秒目の電圧(V)を測定し、両者の差(V−V)である電圧低下(ΔV)を求めた。この電圧降下と放電電流の商(ΔV/I)を電池抵抗(R)とした。その結果を表2に示す。
(Example 3: Measurement of battery resistance of 18650 battery)
The battery resistance was measured using the 18650 battery prepared in Reference Example 2.
The battery resistance (R) was measured as follows.
After performing constant current and constant voltage charging for 4 hours at an upper limit voltage of 4.1 V with a current corresponding to 0.33 C, the circuit was opened for 10 minutes. Thereafter, discharge for 5 seconds at a discharge current (I) 3.5A, open circuit voltage before discharge (V 0) and a discharge 5 seconds th voltage (V 5) is measured, both the difference (V 0 - The voltage drop (ΔV), which is V 5 ), was determined. The quotient (ΔV / I) of this voltage drop and discharge current was taken as battery resistance (R). The results are shown in Table 2.

Figure 2007134286
Figure 2007134286

実施例1と比較例1、2とを比較すると、目的の範囲外の平均粒径及びタップ密度を有する比較例1及び2の負極材料では電池抵抗が高く、また出力特性も低いのに対し、本発明の負極材料は電池抵抗が低く高い出力特性を有し、特定の炭素化植物性材料を用いることにより優れた電池特性が得られることが分かった。   When Example 1 and Comparative Examples 1 and 2 are compared, the negative electrode materials of Comparative Examples 1 and 2 having an average particle diameter and tap density outside the target range have high battery resistance and low output characteristics. The negative electrode material of the present invention has low battery resistance and high output characteristics, and it has been found that excellent battery characteristics can be obtained by using a specific carbonized plant material.

また、実施例1と比較例3とを比較すると、石油系ピッチを使用した比較例3の負極材料では放電容量、効率が低いのに対し、植物性材料を用いた実施例1の負極材料では放電容量、効率が高く、原料に植物性材料を用いることにより優れた電池特性が得られることが分かった。   Moreover, when Example 1 and Comparative Example 3 are compared, the negative electrode material of Comparative Example 3 using a petroleum-based pitch has a low discharge capacity and efficiency, whereas the negative electrode material of Example 1 using a plant material is low. It has been found that discharge capacity and efficiency are high, and that excellent battery characteristics can be obtained by using plant materials as raw materials.

本発明の炭素化植物性材料はリチウム二次電池用の負極材料として用いることができる。   The carbonized plant material of the present invention can be used as a negative electrode material for a lithium secondary battery.

Claims (5)

植物性材料を炭素化して得られる炭素材料であり、前記炭素材料の平均粒径は1〜8μmであることを特徴とするリチウム二次電池用負極材料。   A negative electrode material for a lithium secondary battery, which is a carbon material obtained by carbonizing a plant material, wherein the carbon material has an average particle diameter of 1 to 8 µm. タップ密度が0.76〜1.15g/cmであることを特徴とする請求項1記載のリチウム二次電池用負極材料。 2. The negative electrode material for a lithium secondary battery according to claim 1, wherein the tap density is 0.76 to 1.15 g / cm 3 . 植物性材料としてコーヒー豆絞り粕を用いることを特徴とする請求項1又は2記載のリチウム二次電池用負極材料。   The negative electrode material for a lithium secondary battery according to claim 1 or 2, wherein coffee beans are used as the plant material. セパレータを介して正極剤を有する正極及び負極剤を有する負極を備え、電解液が充填されたリチウム二次電池において、前記負極剤として請求項1〜3のいずれか1項記載の負極材料を用いたリチウム二次電池。   In a lithium secondary battery comprising a positive electrode having a positive electrode agent and a negative electrode having a negative electrode agent through a separator and filled with an electrolyte, the negative electrode material according to any one of claims 1 to 3 is used as the negative electrode agent. Lithium secondary battery. 固体電解質を介して正極剤を有する正極及び負極剤を有する負極を備え、電解液が充填されているリチウム二次電池において、前記負極剤として請求項1〜3のいずれか1項記載の負極材料を用いたリチウム二次電池。   The negative electrode material according to any one of claims 1 to 3, wherein the negative electrode agent is a lithium secondary battery including a positive electrode having a positive electrode agent and a negative electrode having a negative electrode agent via a solid electrolyte and filled with an electrolyte solution. Rechargeable lithium battery.
JP2005328870A 2005-11-14 2005-11-14 Negative electrode material for lithium secondary battery and lithium secondary battery Abandoned JP2007134286A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005328870A JP2007134286A (en) 2005-11-14 2005-11-14 Negative electrode material for lithium secondary battery and lithium secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005328870A JP2007134286A (en) 2005-11-14 2005-11-14 Negative electrode material for lithium secondary battery and lithium secondary battery

Publications (1)

Publication Number Publication Date
JP2007134286A true JP2007134286A (en) 2007-05-31

Family

ID=38155765

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005328870A Abandoned JP2007134286A (en) 2005-11-14 2005-11-14 Negative electrode material for lithium secondary battery and lithium secondary battery

Country Status (1)

Country Link
JP (1) JP2007134286A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010035828A1 (en) * 2008-09-29 2010-04-01 日清オイリオグループ株式会社 Battery component and battery
JP2011057920A (en) * 2009-09-14 2011-03-24 Aska Company Coffee residue-mixed plastic molded article
CN102148415A (en) * 2010-02-09 2011-08-10 黄思伦 Banana plant battery
WO2014038491A1 (en) 2012-09-06 2014-03-13 株式会社クレハ Carbonaceous material for negative electrodes of nonaqueous electrolyte secondary batteries, and method for producing same
US8728353B2 (en) 2008-09-29 2014-05-20 Asahi Organic Chemicals Industry Co., Ltd. Burned plant material and electromagnetic shielding member
JP2014132563A (en) * 2012-12-04 2014-07-17 Gs Yuasa Corp Power storage element and power storage device
CN111244452A (en) * 2020-01-20 2020-06-05 辽宁大学 Novel lithium ion battery based on biomass porous carbon material as negative electrode material
CN115425230A (en) * 2022-11-04 2022-12-02 中科南京绿色制造产业创新研究院 Negative electrode modifier and preparation method and application thereof
KR102574545B1 (en) * 2023-01-17 2023-09-08 (주) 매그나텍 Coffee foil composition and negative electrode material for secondary battery comprising same

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08236116A (en) * 1994-12-16 1996-09-13 Moli Energy 1990 Ltd Graphite precursor carbonaceous insertion compound and its application for negative electrode of its rechargeable battery
JP2000215893A (en) * 1998-11-17 2000-08-04 Sony Corp Secondary battery negative electrode material, its manufacture and secondary battery with the same
JP2000327316A (en) * 1999-05-12 2000-11-28 Sony Corp Production of carbon material and non-aqueous electrolyte cell
JP2001148241A (en) * 1999-11-19 2001-05-29 Sony Corp Non-aqueous electrolyte battery
JP2004220972A (en) * 2003-01-16 2004-08-05 Hitachi Chem Co Ltd Carbon material for lithium secondary battery negative electrode and manufacture thereof, lithium secondary battery negative electrode and lithium secondary battery
JP2006331823A (en) * 2005-05-26 2006-12-07 Hitachi Plant Technologies Ltd Cathode material for lithium secondary battery, its manufacturing method, and lithium secondary battery

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08236116A (en) * 1994-12-16 1996-09-13 Moli Energy 1990 Ltd Graphite precursor carbonaceous insertion compound and its application for negative electrode of its rechargeable battery
JP2000215893A (en) * 1998-11-17 2000-08-04 Sony Corp Secondary battery negative electrode material, its manufacture and secondary battery with the same
JP2000327316A (en) * 1999-05-12 2000-11-28 Sony Corp Production of carbon material and non-aqueous electrolyte cell
JP2001148241A (en) * 1999-11-19 2001-05-29 Sony Corp Non-aqueous electrolyte battery
JP2004220972A (en) * 2003-01-16 2004-08-05 Hitachi Chem Co Ltd Carbon material for lithium secondary battery negative electrode and manufacture thereof, lithium secondary battery negative electrode and lithium secondary battery
JP2006331823A (en) * 2005-05-26 2006-12-07 Hitachi Plant Technologies Ltd Cathode material for lithium secondary battery, its manufacturing method, and lithium secondary battery

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010035828A1 (en) * 2008-09-29 2010-04-01 日清オイリオグループ株式会社 Battery component and battery
JPWO2010035828A1 (en) * 2008-09-29 2012-02-23 森田テック 株式会社 Battery parts and batteries
US8728353B2 (en) 2008-09-29 2014-05-20 Asahi Organic Chemicals Industry Co., Ltd. Burned plant material and electromagnetic shielding member
JP2011057920A (en) * 2009-09-14 2011-03-24 Aska Company Coffee residue-mixed plastic molded article
CN102148415A (en) * 2010-02-09 2011-08-10 黄思伦 Banana plant battery
WO2014038491A1 (en) 2012-09-06 2014-03-13 株式会社クレハ Carbonaceous material for negative electrodes of nonaqueous electrolyte secondary batteries, and method for producing same
KR20150021045A (en) 2012-09-06 2015-02-27 가부시끼가이샤 구레하 Carbonaceous material for negative electrodes of nonaqueous electrolyte secondary batteries, and method for producing same
JP2014132563A (en) * 2012-12-04 2014-07-17 Gs Yuasa Corp Power storage element and power storage device
US9761876B2 (en) 2012-12-04 2017-09-12 Gs Yuasa International Ltd. Energy storage device and energy storage unit
CN111244452A (en) * 2020-01-20 2020-06-05 辽宁大学 Novel lithium ion battery based on biomass porous carbon material as negative electrode material
CN115425230A (en) * 2022-11-04 2022-12-02 中科南京绿色制造产业创新研究院 Negative electrode modifier and preparation method and application thereof
KR102574545B1 (en) * 2023-01-17 2023-09-08 (주) 매그나텍 Coffee foil composition and negative electrode material for secondary battery comprising same

Similar Documents

Publication Publication Date Title
US5718989A (en) Positive electrode active material for lithium secondary battery
JP4906538B2 (en) Lithium secondary battery
JP3897387B2 (en) Method for producing positive electrode active material for lithium secondary battery
JP4022926B2 (en) Negative electrode material for non-aqueous electrolyte secondary battery, method for producing the same, and non-aqueous electrolyte secondary battery using the same
JP2007134286A (en) Negative electrode material for lithium secondary battery and lithium secondary battery
JP7279757B2 (en) Negative electrode material for lithium ion secondary battery, negative electrode for lithium ion secondary battery, and lithium ion secondary battery
US20100129714A1 (en) Lithium secondary battery
WO1998054779A1 (en) Nonaqueous electrolyte secondary battery
JP2002117833A (en) Nonaqueous electrolyte secondary battery
JP2010267540A (en) Nonaqueous electrolyte secondary battery
WO2012133729A1 (en) Active material, electrode, lithium-ion secondary battery, and process for producing active material
JP2007035358A (en) Positive electrode active substance, its manufacturing method and lithium ion secondary battery
JP6128481B2 (en) Nonaqueous electrolyte secondary battery
JP5467264B2 (en) Method for producing electrode material for non-aqueous electrolyte secondary battery, electrode material for non-aqueous electrolyte secondary battery, and non-aqueous electrolyte secondary battery using the electrode material
JP2007234277A (en) Positive electrode for nonaqueous electrolyte secondary battery, its manufacturing method, and nonaqueous electrolyte secondary battery
JP2006196234A (en) Negative electrode material for lithium secondary battery, its manufacturing method, and lithium secondary battery
JP2001243943A (en) Non-aqueous electrolyte secondary battery
JP2003077460A (en) Non-aqueous electrolyte secondary battery
KR101417588B1 (en) Anode active material with high electrical conductivity and method for preparing the same
JP2002117836A (en) Negative electrode for nonaqueous electrolyte secondary battery and battery using it
JP4821023B2 (en) Positive electrode for lithium secondary battery and lithium ion battery using the same
JP7143855B2 (en) Positive electrode active material for non-aqueous electrolyte secondary battery, method for producing positive electrode active material for non-aqueous electrolyte secondary battery, evaluation method for lithium metal composite oxide powder
JPH09274920A (en) Nonaqueous electrolyte battery
JP2008124034A (en) Manufacturing method of negative electrode material for nonaqueous electrolyte secondary battery
JP2006114507A (en) Anode material for nonaqueous electrolyte secondary battery and nonaqueous electrolyte secondary battery using the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080213

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110218

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110412

A762 Written abandonment of application

Free format text: JAPANESE INTERMEDIATE CODE: A762

Effective date: 20110601