JP2007134095A - Solid oxide fuel cell - Google Patents

Solid oxide fuel cell Download PDF

Info

Publication number
JP2007134095A
JP2007134095A JP2005324258A JP2005324258A JP2007134095A JP 2007134095 A JP2007134095 A JP 2007134095A JP 2005324258 A JP2005324258 A JP 2005324258A JP 2005324258 A JP2005324258 A JP 2005324258A JP 2007134095 A JP2007134095 A JP 2007134095A
Authority
JP
Japan
Prior art keywords
tube
cell
tube plate
fuel cell
gas chamber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005324258A
Other languages
Japanese (ja)
Other versions
JP4848177B2 (en
Inventor
Hisato Kato
久人 加藤
Katsuaki Inoue
克明 井上
Yoshiaki Inoue
好章 井上
Kenichiro Kosaka
健一郎 小阪
Hirotsuyo Watanabe
大剛 渡辺
Osao Kudome
長生 久留
Koji Ikeda
浩二 池田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Electric Power Development Co Ltd
Mitsubishi Heavy Industries Ltd
Original Assignee
Electric Power Development Co Ltd
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Electric Power Development Co Ltd, Mitsubishi Heavy Industries Ltd filed Critical Electric Power Development Co Ltd
Priority to JP2005324258A priority Critical patent/JP4848177B2/en
Publication of JP2007134095A publication Critical patent/JP2007134095A/en
Application granted granted Critical
Publication of JP4848177B2 publication Critical patent/JP4848177B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Fuel Cell (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To reduce loads imposed on tube plates through cell tubes, in a fuel cell having a structure where cell tubes of a cylindrical solid oxide fuel cell are used for support members for an upper header and a lower header. <P>SOLUTION: The solid oxide fuel cell has the plurality of cell tubes, the upper and lower headers with the tube plates fixed and supported thereto, and a support base for supporting the lower header, and is structured such that the upper and lower ends of the plurality of cell tubes penetrate the tube plates; the upper header is supported to the cell tubes at parts where the upper ends of the cell tubes penetrate; and the upper header supported by the cell tubes and the cell tubes are supported to the tube plate of the lower header supported to the support base in parts where the lower ends of the cell tubes penetrate. The solid oxide fuel cell is structured such that a load resistant tube plate mainly bearing a vertical load and a seal tube plate mainly carrying out a seal function are provided, and a load imposed on the seal tube plate through a junction part to the cell tubes is remarkably reduced. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、固体酸化物形燃料電池(SOFC)に係り、特に周面に燃料電池セルが形成された複数の燃料電池セルチューブと、前記複数の燃料電池セルチューブ内に燃料ガスを供給するための第1ガス室と、前記燃料電池セルで発電反応済みの燃料ガスを排出するための第2ガス室とが前記燃料電池セルに酸化剤ガスを供給する第3ガス室を介して隔離して配置してなる固体酸化物形燃料電池に関する。   The present invention relates to a solid oxide fuel cell (SOFC), and more particularly, to supply a plurality of fuel cell tubes having fuel cells formed on a peripheral surface thereof and fuel gas into the plurality of fuel cell tubes. The first gas chamber and the second gas chamber for discharging the fuel gas that has undergone the power generation reaction in the fuel cell are isolated via a third gas chamber that supplies an oxidant gas to the fuel cell. The present invention relates to a solid oxide fuel cell.

従来から、発電体を多孔性の基体管の表面に形成した固体酸化物形燃料電池(Solid Oxide Fuel Cell、以下SOFCという)は周知であり、発電反応は以下のようにして生じる。例えば、1000℃の温度に保持された基体管の表面に、燃料極、固体電解質、空気極等の各層が形成された燃料電池セルが設けられたセルチューブの内側に燃料ガスを流し、外側に酸化剤としての空気を流すと、電池セル内ではO2-イオンが移動して電気化学反応が起り空気極と燃料極電位差が生じ発電が行なわれる。なお、セルチューブの内側に空気を流し外側に燃料ガスを流すように構成してもよい。 Conventionally, a solid oxide fuel cell (hereinafter referred to as SOFC) in which a power generator is formed on the surface of a porous base tube is well known, and a power generation reaction occurs as follows. For example, the fuel gas is allowed to flow inside the cell tube provided with the fuel cells in which layers such as the fuel electrode, the solid electrolyte, and the air electrode are formed on the surface of the base tube maintained at a temperature of 1000 ° C. When air as an oxidant is flowed, O 2− ions move in the battery cell, an electrochemical reaction occurs, and a potential difference between the air electrode and the fuel electrode is generated to generate power. In addition, you may comprise so that air may be flowed inside a cell tube and fuel gas may be flowed outside.

近年、このようなSOFCは電池セルでの動作温度が約1000℃と高温であるため発電効率が高く、第3世代の発電システムとして期待されている。
一般に、SOFCのセル構造には平板型と円筒型があり、円筒型には円筒縦縞型と円筒横縞型がある。平板型は単位体積当たりの出力が高いという特徴があるが、実用化においてはセル側面のガスシール性やセル内の温度分布の不均一性の問題がある。一方、円筒型は出力密度においては平板型に劣るものの、その形状から機械的強度が高いという特徴がある。
また、円筒型固体酸化物形燃料電池の基体管は開気通気孔率が30%程度のCaO安定化ZrO2等の多孔質セラミックからなり、その外側にLaMnO3系材料からなる多通気孔性の空気極、Y2O3安定化ZrO2等からなる固体電解質、多通気孔性のNi/ZrO2等の燃料極が順次設けられている。
In recent years, such SOFCs are expected to be a third generation power generation system because of their high power generation efficiency because the operating temperature of the battery cells is as high as about 1000 ° C.
In general, the SOFC cell structure includes a flat plate type and a cylindrical type, and the cylindrical type includes a cylindrical vertical stripe type and a cylindrical horizontal stripe type. The flat plate type is characterized in that the output per unit volume is high. However, in practical use, there are problems of gas sealability on the side surface of the cell and nonuniformity of temperature distribution in the cell. On the other hand, the cylindrical type is inferior to the flat plate type in terms of power density, but is characterized by high mechanical strength due to its shape.
The base tube of the cylindrical solid oxide fuel cell is made of a porous ceramic such as CaO-stabilized ZrO 2 having an open air porosity of about 30%, and a multi-porous property made of LaMnO 3 based material on the outside thereof. air electrode, Y 2 O 3 consisting of stabilized ZrO 2 or the like solid electrolyte, a multi-vent of Ni / ZrO 2 such as a fuel electrode of are sequentially provided.

このような構成になる円筒横縞型の燃料電池の例として、円板状の基体部と該基体部に接合された複数の基体管(燃料セル支持管)を有する燃料電池が開示されている(例えば、特許文献1参照。)。また、複数の燃料電池セル管とそれに支持される管板を備えた燃料電池が開示されている(例えば、特許文献2参照。)。   As an example of a cylindrical horizontal stripe type fuel cell having such a configuration, a fuel cell having a disk-shaped base portion and a plurality of base tube (fuel cell support pipe) joined to the base portion is disclosed ( For example, see Patent Document 1.) Further, a fuel cell including a plurality of fuel cell tubes and a tube plate supported by the tube is disclosed (for example, see Patent Document 2).

特開2003−308854号公報JP 2003-308854 A 特開2004−22368号公報JP 2004-22368 A

しかしながら、特許文献1に開示されたものは、基体部と燃料セル支持管の接合部分をガスの不透過膜である電解質で被覆したことを特徴としており、基体部によるセル支持管の支持構造に関しては何らの開示もなされていない。また、特許文献2に開示されたものは、燃料電池セル支持管(セルチューブ)と管板とを締り嵌めにより接合した構造であり、本願はこの特許文献2に記載の燃料電池の改良に関するものである。   However, the one disclosed in Patent Document 1 is characterized in that the joint portion of the base portion and the fuel cell support pipe is covered with an electrolyte that is a gas-impermeable membrane. There is no disclosure. Further, what is disclosed in Patent Document 2 is a structure in which a fuel cell support tube (cell tube) and a tube plate are joined by an interference fit, and the present application relates to an improvement of the fuel cell described in Patent Document 2. It is.

特許文献2に記載の燃料電池モジュールを断熱壁で覆った状態の概略構成を図8に示す。このような断熱壁で覆ったモジュールを複数個連ねて大容量の燃料電池が構成される。同図において、1はセルチューブ、2は上部ヘッダーで、該上部ヘッダー2は管板5と該管板5を固定支持する額縁部材3、4を含む。2’は下部ヘッダーで、該下部ヘッダー2’は管板5’と該管板5’を固定支持する額縁部材3’、4’を含み、これらは図示しない手段で結合されている。下部ヘッダー2’は支持台8に支持されている。9は断熱材よりなる壁であり、10は上部ヘッダー2を覆うカバーである。前記断熱壁9と額縁部材3、4、3’、4’の間はシールされて複数の燃料電池セルチューブ1が存在する空間が形成されている。燃料電池セルチューブ1は管板5、5’を貫通し、該貫通部で締り嵌めされており、該締り嵌めによる接合によりシール効果と接着効果が保持されている。セルチューブ1の該締り嵌め嵌合部には、例えば酸化アルミニューム等の耐熱性の電気絶縁層が形成されている。断熱壁9及びカバー10を取り除いた内部モジュールの斜視図を図9に示し、図8と同じ構成部材には同じ符号を付してある。21は図8においては省略した断熱部材である。また、31は燃料電池セルである。この燃料電池は各セル31が直列に連結された横縞型の円筒型固体酸化物形燃料電池である。図10は図8におけるX矢視に相当する図で、多数のセルチューブが配列されている状況を示したものである。   FIG. 8 shows a schematic configuration in a state where the fuel cell module described in Patent Document 2 is covered with a heat insulating wall. A large-capacity fuel cell is formed by connecting a plurality of modules covered with such heat insulating walls. In the figure, 1 is a cell tube, 2 is an upper header, and the upper header 2 includes a tube plate 5 and frame members 3 and 4 for fixing and supporting the tube plate 5. Reference numeral 2 'denotes a lower header, and the lower header 2' includes a tube plate 5 'and a frame member 3', 4 'for fixing and supporting the tube plate 5', which are coupled by means not shown. The lower header 2 ′ is supported by the support base 8. Reference numeral 9 denotes a wall made of a heat insulating material, and reference numeral 10 denotes a cover that covers the upper header 2. A space between the heat insulating wall 9 and the frame members 3, 4, 3 ′, 4 ′ is sealed to form a plurality of fuel cell tubes 1. The fuel cell tube 1 penetrates through the tube plates 5 and 5 ′ and is interference-fitted at the penetration part, and a sealing effect and an adhesion effect are maintained by joining by the interference fit. A heat-resistant electric insulating layer such as aluminum oxide is formed on the interference fitting portion of the cell tube 1. FIG. 9 shows a perspective view of the internal module with the heat insulating wall 9 and the cover 10 removed, and the same components as those in FIG. 8 are given the same reference numerals. Reference numeral 21 denotes a heat insulating member omitted in FIG. Reference numeral 31 denotes a fuel battery cell. This fuel cell is a horizontal stripe type cylindrical solid oxide fuel cell in which the cells 31 are connected in series. FIG. 10 is a view corresponding to the arrow X in FIG. 8 and shows a state in which a large number of cell tubes are arranged.

図8に戻って、燃料ガスが、図示しない通路を介して上部ヘッダー2内に供給され、セルチューブ内を通って下部ヘッダーに流され、下部ヘッダーから図示しない通路を介して外部の装置に排出される。一方酸化剤としての空気が図示しない通路を介して管板5、5’と断熱壁9で囲まれた空間に供給され図示しない通路を介して外部の装置に排出される。セルチューブ1は、基体管の外周に燃料極、電解質、空気極の層が順次に形成された燃料電池セル31を含む。供給された空気中の酸素はチューブ外面の空気極(カソード)で電子を受け取ってO2-イオンとなり、電解質層を通過する。一方、セルチューブ1の空洞を通る燃料ガスは多孔質の基体管を通過して燃料極(アノード)で電解質を移動してきたO2-イオンと反応して水と二酸化炭素に変わる。このとき電子が放出され、電流となってセルチューブ先端部で取り出されるが、集電部については図示省略してある。燃料電池セル31は発電中は温度900℃〜1000℃に保持される。未反応の燃料ガスを含んだ排気ガスは下部ヘッダーから図示しない外部装置に送られる。酸素が消費されて未消費の残存酸素を含んだガスも図示しない外部装置に送られる。これらのガスは外部装置で再燃焼されて燃料や空気の予熱や燃料の改質などに利用された後に大気中に排出される。 Returning to FIG. 8, the fuel gas is supplied into the upper header 2 through a passage (not shown), flows into the lower header through the cell tube, and is discharged from the lower header to an external device through a passage (not shown). Is done. On the other hand, air as an oxidant is supplied to a space surrounded by the tube plates 5, 5 ′ and the heat insulating wall 9 through a passage (not shown) and discharged to an external device through a passage (not shown). The cell tube 1 includes a fuel cell 31 in which a fuel electrode layer, an electrolyte layer, and an air electrode layer are sequentially formed on the outer periphery of the base tube. Oxygen in the supplied air receives electrons at the air electrode (cathode) on the outer surface of the tube and becomes O 2− ions, and passes through the electrolyte layer. On the other hand, the fuel gas passing through the cavity of the cell tube 1 reacts with the O 2− ions that have passed through the porous substrate tube and moved through the electrolyte at the fuel electrode (anode) to be changed into water and carbon dioxide. At this time, electrons are emitted and become current, which is taken out at the tip of the cell tube, but the current collector is not shown. The fuel cell 31 is maintained at a temperature of 900 ° C. to 1000 ° C. during power generation. Exhaust gas containing unreacted fuel gas is sent from the lower header to an external device (not shown). Oxygen is consumed and gas containing residual oxygen that has not been consumed is also sent to an external device (not shown). These gases are recombusted by an external device, used for preheating fuel or air, reforming fuel, and the like, and then discharged into the atmosphere.

しかしながら、特許文献2の燃料電池の構成では、上部ヘッダー2及び下部ヘッダー2’の管板5、5’にセルチューブ1が締り嵌めにより接合され、上部ヘッダーはセルチューブにより支持され、上部ヘッダーとセルチューブは下部ヘッダーの管板に支持され、これらが下部ヘッダーを介して支持台8に支持される構成であり、管板の熱変形やヘッダーの重量による変形のためにセルチューブと管板の接合部に曲げモーメントが掛かってセルチューブが折損することがあり、セルチューブに対する荷重を軽減する支持構造が求められている。また、セルチューブが破損に至らなくてもセルチューブと管板との嵌合部の変形により燃料ガス側と空気側の気密が損なわれることがある。   However, in the structure of the fuel cell of Patent Document 2, the cell tube 1 is joined to the tube plates 5 and 5 ′ of the upper header 2 and the lower header 2 ′ by an interference fit, and the upper header is supported by the cell tube. The cell tube is supported by the tube plate of the lower header, and these are supported by the support base 8 via the lower header. The cell tube and the tube plate are deformed due to thermal deformation of the tube plate and deformation due to the weight of the header. A bending moment is applied to the joint portion and the cell tube may break, and a support structure that reduces the load on the cell tube is required. Even if the cell tube does not break, the fuel gas side and air side airtightness may be impaired by deformation of the fitting portion between the cell tube and the tube sheet.

従って、本発明は、セルチューブに対する荷重を軽減して燃料ガス側と空気側の気密が損なわれるのを防止し、さらにはセルチューブの破損を防止する支持構造の円筒型固体酸化物形燃料電池を提供することを目的とする。   Accordingly, the present invention provides a cylindrical solid oxide fuel cell having a support structure that reduces the load on the cell tube to prevent the airtightness of the fuel gas side and the air side from being impaired, and further prevents the cell tube from being damaged. The purpose is to provide.

前記目的を達成するため、本発明は、周面に燃料電池セルが形成された複数の燃料電池セルチューブと、前記複数の燃料電池セルチューブ内に燃料ガスを供給するための第1ガス室と、前記燃料電池セルで発電反応済みの燃料ガスを排出するための第2ガス室とが前記燃料電池セルに酸化剤ガスを供給する第3ガス室を介して隔離して配置してなる固体酸化物形燃料電池において、前記第1若しくは第2ガス室(以下燃料ガス室という)と前記第3ガス室とを区画する管板を少なくとも2枚の管板からなり燃料ガス室側にて支持された多重管板で形成するとともに、該多重管板より燃料ガス室側に挿設されてなる燃料電池セルチューブの両端部の前記管板嵌合部において、燃料ガス室側に位置する1の管板側に気密機能を持たせ、第3ガス室側に位置する他の管板にセル支持機能を持たせるように、前記嵌合部形状若しくは管板肉厚を異ならせたことを特徴とする固体酸化物形燃料電池を提案する。   In order to achieve the above object, the present invention provides a plurality of fuel cell tubes having fuel cells formed on a peripheral surface, a first gas chamber for supplying fuel gas into the plurality of fuel cell tubes, And a second gas chamber for discharging the fuel gas that has undergone a power generation reaction in the fuel cell, separated by a third gas chamber for supplying an oxidant gas to the fuel cell. In a fuel cell, a tube plate that divides the first or second gas chamber (hereinafter referred to as a fuel gas chamber) and the third gas chamber is composed of at least two tube plates and is supported on the fuel gas chamber side. One tube located on the fuel gas chamber side at the tube plate fitting portion at both ends of the fuel cell tube formed by the multiple tube plate and inserted on the fuel gas chamber side from the multiple tube plate The third gas chamber has an airtight function on the plate side. So as to have a cell support function in addition to the tube plate positioned proposes a solid oxide fuel cell characterized by that has the fitting portion shape or different tubesheet thickness.

例えば、前記第1ガス室を上部に、第2ガス室を下部に配置すれば、前記第1ガス室は第1管板と燃料電池セルチューブとの接合部で該セルチューブに支持されることになり、第1ガス室とセルチューブの接合体が第2ガスの管板である第2管板とセルチューブとの接合部で該第2管板に支持されることになる。この場合、下部に配置された第2ガス室は支持台に支持される。発電中は燃料電池セルは900〜1000℃の高温に保たれるので、セルチューブと管板との接合部には第1ガス室の重量や第1ガス室とセルチューブの合計重量による垂直荷重に加えて管板等の熱膨張に起因する荷重が掛かることになる。そしてこれらの荷重はセルチューブに対してその軸方向に沿う力に加え曲げモーメントとして作用し、第1及び第2管板の周縁部がそれぞれの燃料ガス室の側壁に固定支持された固定支持端に隣接する位置で管板に接合されたセルチューブと管板との接合部で最も大きくなる。   For example, if the first gas chamber is disposed in the upper part and the second gas chamber is disposed in the lower part, the first gas chamber is supported by the cell tube at the junction between the first tube plate and the fuel cell tube. Thus, the joined body of the first gas chamber and the cell tube is supported by the second tube plate at the joint portion between the second tube plate, which is the second gas tube plate, and the cell tube. In this case, the second gas chamber disposed in the lower part is supported by the support base. During power generation, the fuel cell is kept at a high temperature of 900 to 1000 ° C. Therefore, the vertical load due to the weight of the first gas chamber or the total weight of the first gas chamber and the cell tube is applied to the joint portion between the cell tube and the tube plate. In addition to this, a load due to thermal expansion of the tube sheet or the like is applied. These loads act as a bending moment on the cell tube in addition to the force along the axial direction, and the fixed support ends in which the peripheral portions of the first and second tube sheets are fixedly supported on the side walls of the respective fuel gas chambers. It becomes the largest at the joint between the cell tube and the tube plate joined to the tube plate at a position adjacent to the tube plate.

第1管板とセルチューブの接合部においては第1ガス室の重量による垂直荷重が掛かり、第2管板とセルチューブの接合部においては第1ガス室とセルチューブの合計重量による垂直荷重がかかるので、第2管板とセルチューブとの接合部に掛かる垂直荷重の第1管板とセルチューブとの接合部にかかる垂直荷重よりも大きくなる。従って、少なくとも下部に配置された第2ガス室の管板である第2管板は2重以上の多重管板とするのがよい。そして、前記多重管板のうち、第2ガス室に面する管板以外には穴を設けて管板間に形成される空間を第3ガス室に連通させ、それらの空間が密閉空間とならないようにする。これにより、密閉空間とされた場合には該密閉空間内に閉じ込められたガスの温度上昇による密閉空間内の圧力上昇により管板とセルチューブとの接合部に掛かる力を排除することができる。   The vertical load due to the weight of the first gas chamber is applied at the junction of the first tube plate and the cell tube, and the vertical load due to the total weight of the first gas chamber and the cell tube is applied at the junction of the second tube plate and the cell tube. Therefore, the vertical load applied to the joint portion between the second tube sheet and the cell tube is larger than the vertical load applied to the joint portion between the first tube plate and the cell tube. Accordingly, at least the second tube plate, which is the tube plate of the second gas chamber disposed in the lower part, is preferably a double tube plate or more. Of the multiple tube plates, a hole is provided in addition to the tube plate facing the second gas chamber so that a space formed between the tube plates communicates with the third gas chamber, and these spaces do not become a sealed space. Like that. Thereby, when it is set as sealed space, the force applied to the junction part of a tube plate and a cell tube by the pressure rise in sealed space by the temperature rise of the gas confine | sealed in this sealed space can be excluded.

また、前記燃料ガス室側に位置する1の管板周縁部を固定する固定支持端から該固定支持端に最も隣接する燃料電池セルチューブの嵌合部までの距離を、前記第3ガス室側に位置する他の管板周縁部を固定する固定支持端から該固定支持端に最も隣接する燃料電池セルチューブの嵌合部までの距離よりも長くするのが好ましい。   Further, the distance from the fixed support end that fixes the peripheral portion of one tube plate located on the fuel gas chamber side to the fitting portion of the fuel cell tube that is closest to the fixed support end is set to the third gas chamber side. It is preferable that the distance is longer than the distance from the fixed support end that fixes the other peripheral portion of the tube plate positioned at the position to the fitting portion of the fuel cell tube that is closest to the fixed support end.

固体酸化物形燃料電池を、例えば第2ガス室が支持台に支持され、該第2ガス室の管板(第2管板)にセルチューブ下端部が接合され、セルチューブ上端部に第1ガス室の管板(第1管板)が接合された構成とすると、第1管板とセルチューブとの接合部には第1ガス室の重量が、第2管板とセルチューブとの接合部には第1ガス室とセルチューブの合計重量が垂直荷重として掛かる。垂直荷重により、特に管板周辺の固定支持端の隣に位置するセルチューブと管板との接合部と前記固定支持端との間に撓みが生じ、セルチューブは管板との接合部においてセルチューブの軸方向に沿う力の他にモーメントが生じる。また、燃料電池の発電中はヘッダーの管板の温度はヘッダーの他の部分の温度よりも高くなる。管板がその周縁部において固定支持されているため、管板が伸びようとしても前記固定支持端で拘束されるので管板には圧縮応力が生じ、セルチューブは管板に押され、前記固定支持端と前記接合部の間で管板に上下方向の変形が生じる、つまり管板が撓みセルチューブには曲げモーメントが掛かる。これらのセルチューブに掛かる垂直荷重及び前記温度差により生じる曲げモーメントは、固定支持端に隣接するセルチューブ、即ち固定支持端の隣に位置するセルチューブにおいて最も大きく、固定支持端から離れた所に位置するセルチューブでは小さくなる。したがって、セルチューブへの荷重が過大となって破損するのは、先ず管板の固定支持端の隣に位置するセルチューブである。   In the solid oxide fuel cell, for example, the second gas chamber is supported on a support base, the lower end portion of the cell tube is joined to the tube plate (second tube plate) of the second gas chamber, and the first upper end portion of the cell tube is joined. Assuming that the tube plate (first tube plate) of the gas chamber is joined, the weight of the first gas chamber is at the joint between the first tube plate and the cell tube, and the joint between the second tube plate and the cell tube. The total weight of the first gas chamber and the cell tube is applied to the part as a vertical load. Due to the vertical load, bending occurs between the joint between the tube tube and the tube plate, which is located next to the fixed support end around the tube plate, and the fixed support end. In addition to the force along the axial direction of the tube, a moment is generated. Further, during power generation of the fuel cell, the temperature of the header tube plate is higher than the temperature of the other part of the header. Since the tube plate is fixedly supported at its peripheral edge, the tube plate is restrained by the fixed support end even if the tube plate tries to extend, so that compressive stress is generated in the tube plate, the cell tube is pushed by the tube plate, and the fixed The tube sheet is deformed in the vertical direction between the support end and the joint, that is, the tube sheet is bent and a bending moment is applied to the cell tube. The vertical load applied to these cell tubes and the bending moment caused by the temperature difference are the largest in the cell tube adjacent to the fixed support end, that is, the cell tube located next to the fixed support end, and away from the fixed support end. It becomes smaller in the cell tube located. Therefore, it is the cell tube located next to the fixed support end of the tube sheet that is damaged due to excessive load on the cell tube.

多重管板構造において、燃料ガス室に面する管板には気密機能を持たせ、その他の管板にはセルチューブ支持機能を持たせるのがよい。このため、燃料ガス室に面する管板の周縁部を固定する固定支持端から該固定支持端に隣接する位置で管板に接合されたセルチューブへの接合部までの間の距離を他の管板のそれよりも長くしておくと、垂直荷重による管板の撓みは前記距離が短い方の管板によって略決まり、前記距離が短い方の管板と前記距離が長い方の管板の撓みは同じになるから、前記接合部における管板の撓み角度は前記距離が長い方の管板が前記距離が短い方の管板のそれよりも小さくなる。従って前記距離が長い方の管板からセルチューブとの接合部に掛かる曲げモーメントは小さくなる。該接合部は後述のように管板のフジツボ状の穴とセルチューブとの締り嵌めにより接合する場合、該接合部における曲げモーメントが小さい程フジツボ状の穴部の変形が小さくなり、フジツボ状の穴における変形により接合部のシール機能が低下してガスの漏洩が生じるような不具合を防止することができる。即ち、本発明の多重管板構造によれば、前記距離が短い方の管板、即ち燃料ガス室に面する管板以外をセルチューブとの接合部で荷重を担う耐荷管板とし、燃料ガス室に面する前記距離が長い方の管板をセルチューブとの接合部でシール機能を受け持つシール管板として役割分担をすることができる。   In the multiple tube plate structure, the tube plate facing the fuel gas chamber may have an airtight function, and the other tube plates may have a cell tube support function. For this reason, the distance from the fixed support end that fixes the peripheral edge of the tube plate facing the fuel gas chamber to the cell tube bonded to the tube plate at a position adjacent to the fixed support end is set to another distance. If the tube plate is longer than that of the tube plate, the deflection of the tube plate due to the vertical load is substantially determined by the tube plate with the shorter distance, and the tube plate with the shorter distance and the tube plate with the longer distance are Since the bending becomes the same, the bending angle of the tube sheet at the joint is smaller in the tube sheet having the longer distance than that of the tube sheet having the shorter distance. Accordingly, the bending moment applied from the tube sheet having the longer distance to the joint portion with the cell tube is reduced. As will be described later, when the joint is joined by an interference fit between the barnacle-like hole of the tube plate and the cell tube, the smaller the bending moment at the joint is, the smaller the deformation of the barnacle-like hole becomes. It is possible to prevent such a problem that the sealing function of the joint portion is lowered due to deformation in the hole and gas leakage occurs. That is, according to the multiple tube plate structure of the present invention, the tube plate having a shorter distance, that is, the tube plate facing the fuel gas chamber, is used as a load-resistant tube plate that bears a load at the joint with the cell tube, and the fuel gas The tube sheet having the longer distance facing the chamber can be used as a seal tube sheet having a sealing function at the joint with the cell tube.

そして、燃料ガス室に面する1の管板は第3ガス室に面する他の管板よりも肉薄に形成するのがよく、特に燃料ガス室に面する管板周縁部を固定する固定支持端から該固定支持端に隣接する位置で管板に接合されたセルチューブへの接合部までの間の距離を長くした管板を距離が短い管板よりも薄くするのがよい。ガスシール機能を持たせるシール管板は、できるだけシール機能保持に可能な限り薄くし、また前記の距離を長くすることによって、温度差や垂直荷重によるセルチューブと管板の締り嵌め嵌合部における前記したような温度差による荷重を低減することができる。この締り嵌めによる接合部、即ちフジツボ状の穴部における荷重が大きい程フジツボ状の穴部の変形が大きくなり、極端な場合には嵌合部に部分的隙間が生じてシール機能が損なわれる虞があるが、この嵌合部の荷重を軽減することによりそのような危惧を排除することができる。   One tube plate facing the fuel gas chamber should be formed thinner than the other tube plate facing the third gas chamber, and in particular, a fixed support for fixing the peripheral portion of the tube plate facing the fuel gas chamber It is preferable to make the tube plate having a longer distance from the end to the joint portion to the cell tube joined to the tube plate at a position adjacent to the fixed support end thinner than the tube plate having a shorter distance. The sealing tube plate that has the gas sealing function is made as thin as possible to keep the sealing function as much as possible, and by increasing the distance as described above, in the interference fitting part between the cell tube and the tube plate due to temperature difference or vertical load The load due to the temperature difference as described above can be reduced. The larger the load at the joint, that is, the barnacle-shaped hole due to the interference fit, the larger the deformation of the barnacle-shaped hole, and in extreme cases, a partial gap may occur in the mating part and the sealing function may be impaired. However, it is possible to eliminate such a concern by reducing the load on the fitting portion.

次に、管板とセルチューブの接合については、セルチューブが管板のフジツボ(富士壷)状に形成された穴に嵌入されて締り嵌めにより管板に接合するのがよい。このように、管板のフジツボ状に形成された穴にセルチューブを圧入して締り嵌めで接合すること自体は特許文献2における図に教示されている。本発明では、前記フジツボ(富士壷)状の穴はセルチューブの先端側に向かって窄む形状に形成する。これによりセルチューブの嵌入が容易になる。即ち、フジツボ(富士壷)状の穴のアール面側からセルチューブ先端側を容易に圧入できる。   Next, regarding the joining of the tube plate and the cell tube, the cell tube is preferably inserted into a hole formed in the shape of a barnacle (Fujitsumi) of the tube plate and joined to the tube plate by an interference fit. Thus, it is taught in the drawing of Patent Document 2 that the cell tube is press-fitted into a hole formed in a barnacle shape of the tube plate and joined by an interference fit. In the present invention, the barnacle (Fuji 壷) -shaped hole is formed in a shape that narrows toward the tip side of the cell tube. This facilitates the insertion of the cell tube. That is, the tip end side of the cell tube can be easily press-fitted from the rounded surface side of the barnacle (Fuji Aoi) -shaped hole.

セルチューブは多孔質のセラミック材からなり、セルチューブの管板に嵌入される部位の最外周表面には電気絶縁層が形成されるのであるが、その外周の真円度を保証することは必ずしも容易ではない。セルチューブには外周の真円度が保証されたリング部材を固着し、該リング部材の外周を管板のフジツボ状穴に嵌入して管板と接合することにより、接合部におけるガス漏洩をより完全に防止することができる。このことも前記特許文献2に教示されている。前記リング部材のセルチューブへの固着は適切な耐熱性と接着強度を有する無機系接着剤或はその他の手段で行なわれてガスシールされる。   The cell tube is made of a porous ceramic material, and an electrical insulating layer is formed on the outermost surface of the portion to be inserted into the tube plate of the cell tube, but it is not always guaranteed that the roundness of the outer periphery is guaranteed. It's not easy. A ring member with a guaranteed roundness of the outer periphery is fixed to the cell tube, and the outer periphery of the ring member is fitted into a barnacle-like hole in the tube plate and joined to the tube plate, thereby preventing gas leakage at the joint. It can be completely prevented. This is also taught in Patent Document 2. The ring member is fixed to the cell tube by an inorganic adhesive having appropriate heat resistance and adhesive strength or other means and gas-sealed.

前記セルチューブ先端部にリング部材を固着し、該リング部材を前記管板のフジツボ(富士壺)状に形成された穴に嵌入して溶接により管板に気密接合してもよい。   A ring member may be fixed to the tip of the cell tube, and the ring member may be fitted into a hole formed in a barnacle (Fujitsumi) shape of the tube plate and hermetically bonded to the tube plate by welding.

前記管板の周縁部を固定支持する部材の固定支持端の形状を該固定支持端に隣接する位置で管板に接合されたセルチューブの前記固定支持端に対面する側の外周に一定の距離をおいて沿う形状としてもよい。管板が垂直方向にある量撓んだ際に管板のセルチューブとの接合部に生じる応力は、先に述べたように、固定支持端からセルチューブと管板の接合部位までの距離により異なり、該距離が大きい程小さくなる。従って、この距離がセルチューブとの接合部位(円周上の部位)によって異なれば、異なる接合部位における管板の応力、つまりセルチューブが管板から受ける力も異なり不均一となる、即ち円筒セルの前記管板固定支持端側の外周に掛かる荷重が不均一になる。上記のように、固定支持端の形状を該固定支持端の隣に位置して管板に接合されたセルチューブの外径と一定の距離をおいて該外径に沿う形状とすることにより、管板から受ける荷重が最も過酷になる固定支持端の隣に位置して管板に接合されたセルチューブの前記固定支持端側の円周に掛かる荷重が均等化される。荷重そのものは同じ大きさであるので、均等化されれば特に大きな荷重が掛かる円周上の部位がなくなり、信頼性が向上する。   The shape of the fixed support end of the member that fixedly supports the peripheral edge of the tube plate is a fixed distance on the outer periphery of the cell tube joined to the tube plate at a position adjacent to the fixed support end on the side facing the fixed support end. It is good also as a shape which goes along. When the tube plate is bent in a certain amount in the vertical direction, the stress generated at the joint between the tube plate and the cell tube depends on the distance from the fixed support end to the joint portion between the cell tube and the tube plate as described above. In contrast, the larger the distance, the smaller. Therefore, if this distance varies depending on the joint part (circumferential part) with the cell tube, the stress of the tube plate at the different joint part, that is, the force that the cell tube receives from the tube plate will be different and non-uniform. The load applied to the outer periphery on the tube plate fixing support end side becomes uneven. As described above, the shape of the fixed support end is located next to the fixed support end and is formed along the outer diameter with a certain distance from the outer diameter of the cell tube joined to the tube plate, The load applied to the circumference on the fixed support end side of the cell tube which is located next to the fixed support end where the load received from the tube sheet is the most severe and is joined to the tube sheet is equalized. Since the load itself is the same size, if it is equalized, there is no part on the circumference where a particularly large load is applied, and the reliability is improved.

前記第1、第2管板を共に2枚の管板からなる2重管板とするとともに、前記燃料電池セルチューブの両端部に直径段差部を設け、前記第3ガス室に面する管板の貫通穴周縁面を前記セルチューブの直径段差部の肩に当接させることによりセルチューブ支持機能を持たせるように構成することもよい。   Both the first and second tube plates are double tube plates made of two tube plates, and a diameter step portion is provided at each end of the fuel cell tube, and the tube plate faces the third gas chamber. It is also possible to provide a cell tube support function by bringing the peripheral surface of the through hole into contact with the shoulder of the diameter step portion of the cell tube.

このような構成では、セルチューブに掛かる垂直荷重を前記セルチューブに設けた直径段差部に第3ガス室に面する管板を当接させて担持するので、締り嵌めの場合に生じる嵌合部の緩みによる支持力低下の虞はなくなる。前記直径段差部における管板の貫通穴をセルチューブとの嵌合部に隙間を設けておけば、該管板の熱膨張に起因する変形に伴う荷重は排除することができる。   In such a configuration, the vertical load applied to the cell tube is carried by bringing the tube plate facing the third gas chamber into contact with the diameter step portion provided on the cell tube, so that the fitting portion generated in the case of an interference fit There is no risk of lowering the supporting force due to the looseness of the. If a through hole of the tube plate in the diameter step portion is provided with a gap in the fitting portion with the cell tube, a load accompanying deformation due to thermal expansion of the tube plate can be eliminated.

また、前記第3ガス室に面する管板は、前記燃料電池セルチューブに直径段差部を設けたリング部材を固着し該リング部材の直径段差部に当接させてセルチューブ支持機能を持たせるのもよい。このような構成では、セルチューブを小径部と大径部を有する段付き形状に形成する代わりにリング部材を段付き形状にしてセルチューブに固着するので、セルチューブの製作が容易になる。   The tube plate facing the third gas chamber has a cell tube support function by affixing a ring member having a diameter step portion to the fuel cell tube and contacting the diameter step portion of the ring member. It's also good. In such a configuration, instead of forming the cell tube in a stepped shape having a small diameter portion and a large diameter portion, the ring member is formed in a stepped shape and fixed to the cell tube, so that the cell tube can be easily manufactured.

さらに、第3ガス室に面する管板が特定のセルチューブ、特に管板の固定支持端に隣接するセルチューブの直径段差部或はセルチューブに固着されたリング部材の直径段差部で管板に当接してセルチューブ支持機能を持たせるようにしてもよい。   Further, the tube plate facing the third gas chamber is a specific cell tube, in particular, a diameter step portion of a cell tube adjacent to a fixed support end of the tube plate or a diameter step portion of a ring member fixed to the cell tube. A cell tube support function may be provided by abutting on the tube.

周面に燃料電池セルが形成された複数の燃料電池セルチューブと、前記複数の燃料電池セルチューブ内に燃料ガスを供給するための第1ガス室と、前記燃料電池セルで発電反応済みの燃料ガスを排出するための第2ガス室とが前記燃料電池セルに酸化剤ガスを供給する第3ガス室を介して隔離して配置してなる固体酸化物形燃料電池において、燃料ガス室やセルチューブの重力及び各部温度差による熱変形により管板からセルチューブに掛かる荷重を軽減でき、セルチューブの破損やセルチューブと管板との接合部におけるガス漏洩の発生を防止できる。   A plurality of fuel battery cell tubes having fuel cells formed on the peripheral surface, a first gas chamber for supplying fuel gas into the plurality of fuel battery cell tubes, and a fuel that has undergone a power generation reaction in the fuel battery cells In a solid oxide fuel cell in which a second gas chamber for discharging gas is disposed separately from a third gas chamber for supplying an oxidant gas to the fuel cell, the fuel gas chamber and the cell The load applied to the cell tube from the tube plate by thermal deformation due to the gravity of the tube and the temperature difference of each part can be reduced, and the cell tube can be prevented from being broken and the gas leak occurring at the joint between the cell tube and the tube plate.

以下、図面を参照して本発明の好適な実施例を例示的に説明する。但しこの実施例に記載されている構成部品の寸法、材質、形状、その相対的配置等は、特に特定的な記載がない限りはこの発明の範囲をそれに限定する趣旨ではなく、単なる説明例に過ぎない。   DESCRIPTION OF EXEMPLARY EMBODIMENTS Hereinafter, exemplary embodiments of the invention will be described with reference to the drawings. However, the dimensions, materials, shapes, relative arrangements, and the like of the components described in this embodiment are not intended to limit the scope of the present invention unless otherwise specified, but are merely illustrative examples. Not too much.

図1は本発明の円筒型固体酸化物形燃料電池の第1の実施形態の概略構成を示す図である。燃料電池としてのとしての全体的構成は図7、9の従来構成で説明したのと同じであり、説明は省略する。図1は内部モジュールの概略構成のみを示したものである。図1においては、管板を2重にし、1枚を主として荷重を支える耐荷管板とし、他の1枚は板厚を薄くして主としてセルチューブと管板との接合部のガスシール機能を確実にするシール管板となるように構成してある。同図において、符号1は燃料電池セルチューブ、2は上部ヘッダー(第1ガス室)で、該上部ヘッダー2は上部第1管板5、上部第2管板6、上部額縁部材3、4、7を含み、これらは図示しない手段で結合されている。2’は下部ヘッダー(第2ガス室)で前記上部ヘッダーと同様な構成であり、同じ構成には’を付してある。セルチューブ1は後述するように管板5、6、5’、6’に締り嵌めにより接合され、セルチューブ1の該接合部には例えは酸化アルミニュームなどの耐熱性の電気絶縁層が形成されている。前記上部第1管板5は上部額縁部材3、4に挟まれて固定支持され、上部第2管板6は上部額縁部材4、7に挟まれて固定支持される。下部ヘッダー(第2ガス室)についても同様である。上部第2管板6を固定支持する額縁部材の固定支持端と該固定支持端の隣に位置するセルチューブ1との間の距離Lは上部第1管板5を固定支持する額縁部材の固定支持端と該固定支持端の隣に位置するセルチューブ1との間の距離Lよりも長くしてある。 FIG. 1 is a diagram showing a schematic configuration of a first embodiment of a cylindrical solid oxide fuel cell of the present invention. The overall configuration as a fuel cell is the same as that described in the conventional configuration of FIGS. FIG. 1 shows only the schematic configuration of the internal module. In Fig. 1, the tube sheet is doubled, one sheet is a load-bearing tube sheet that mainly supports the load, and the other sheet is thin to reduce the thickness and mainly provide a gas seal function at the joint between the cell tube and the tube sheet. It is configured to be a sealed tube plate to ensure. In the figure, reference numeral 1 denotes a fuel cell tube, 2 denotes an upper header (first gas chamber), and the upper header 2 includes an upper first tube plate 5, an upper second tube plate 6, upper frame members 3, 4, 7 and these are connected by means not shown. Reference numeral 2 ′ denotes a lower header (second gas chamber) having the same configuration as the upper header, and the same configuration is indicated by “′”. As will be described later, the cell tube 1 is joined to the tube plates 5, 6, 5 'and 6' by an interference fit, and a heat-resistant electrical insulating layer such as aluminum oxide is formed at the joined portion of the cell tube 1, for example. Has been. The upper first tube sheet 5 is fixedly supported by being sandwiched between upper frame members 3 and 4, and the upper second tube sheet 6 is fixedly supported by being sandwiched by upper frame members 4 and 7. The same applies to the lower header (second gas chamber). Of the frame member the distance L 2 between the cell tube 1 is located next to the fixed support end and the fixed supporting end of the frame member for fixing and supporting the upper second tube sheet 6 for fixing and supporting the first tube sheet 5 top It is longer than the distance L 1 between the cell tube 1 is located next to the fixed support end and the fixed support edge.

上部ヘッダー2の重量による垂直荷重やヘッダーの管板とヘッダーの他の部分との温度差による熱膨張差により管板とセルチューブとの接合部には荷重が掛かるが、その荷重は先に説明したように前記距離L2が長い第2管板6の方が距離L1の短い第1管板よりも小さくなる。しかしながら、距離Lが長いと、垂直荷重による撓みが大きくなり、上部ヘッダー2の管板5、6がセルチューブ1に、また上部ヘッダー2とセルチューブ1の接合体が下部ヘッダー2’の管板5’、6’に安定的に支持できなくなるので、この撓みは第1管板5、5’で小さく抑えるようにしてある。従って、第2管板6、6’から該管板とセルチューブとの接合部に掛かる力は小さくなり、該接合部においてはガス漏洩が生じることがなくなる。即ち、第1管板5、5’は主として荷重を担う耐荷管板として、第2管板6、6’はシール管板として機能する。 A load is applied to the joint between the tube plate and the cell tube due to the vertical load due to the weight of the upper header 2 and the thermal expansion difference due to the temperature difference between the header tube plate and the other part of the header. towards the distance L 2 is longer second tube sheet 6 as smaller than the shorter first tube sheet of the distance L 1. However, if the distance L is long, the deflection due to the vertical load increases, and the tube plates 5 and 6 of the upper header 2 become the cell tube 1, and the joined body of the upper header 2 and the cell tube 1 becomes the tube plate of the lower header 2 '. Since it cannot be stably supported by 5 'and 6', this bending is made small by the first tube sheet 5, 5 '. Accordingly, the force applied from the second tube sheet 6, 6 'to the joint between the tube sheet and the cell tube is reduced, and gas leakage does not occur at the joint. That is, the first tube plates 5 and 5 ′ function as load-resistant tube plates that mainly bear loads, and the second tube plates 6 and 6 ′ function as seal tube plates.

図3に示すように管板5の穴をフジツボ(富士壷)状の穴に形成して該穴にセルチューブを締り嵌めした場合で、板厚0.5mmの管板1枚の場合と、0.5mmと0.3mmの2重管板の場合について、管板からセルチューブに掛かる力の指標となる前記フジツボ状穴のアール部5bの応力を、垂直荷重を掛けた場合とヘッダーと管板間に温度差を与えた場合につき測定した。その結果、垂直荷重に対しては2重管板構成の0.5mm管板の応力は1枚管板の場合より若干低下し、0.3mm管板の応力は1/7〜1/10になり、温度差に対しては同じ温度差で2重管板構成の0.5mm管板の応力は1枚管板の場合より若干低下し、0.3mm管板の応力は1/2〜1/3になった。上記応力が小さい程、セルチューブと管板の接合部のへたり等によるガス漏洩発生の虞も小さくなる。従って、管板を2重管板に構成し、一方の管板は薄くするとともに同じ変位に対する撓みの傾斜角が小さくなるように支持してシール機能に優れた管板にし、他方の管板に荷重を支える機能を持たせるようにすることにより、セルチューブと管板の接合部におけるガス漏洩の発生を完全に防止することができる。   As shown in FIG. 3, when a hole in the tube sheet 5 is formed in a barnacle (Fuji-an) -shaped hole and a cell tube is tightly fitted in the hole, In the case of double tube plates of mm and 0.3 mm, the stress of the rounded portion 5b of the barnacle-shaped hole, which is an index of the force applied from the tube plate to the cell tube, is applied between the header and the tube plate when a vertical load is applied. The measurement was performed when a temperature difference was given. As a result, the stress of a 0.5mm tube sheet with a double tube sheet configuration is slightly lower than that of a single tube sheet for vertical loads, and the stress of a 0.3mm tube sheet is 1/7 to 1/10. For the temperature difference, the stress of the 0.5mm tube sheet with the double tube plate configuration is slightly lower than that of the single tube sheet at the same temperature difference, and the stress of the 0.3mm tube sheet is 1/2 to 1/3. Became. The smaller the stress, the smaller the risk of gas leakage due to the sag of the joint between the cell tube and the tube sheet. Therefore, the tube plate is configured as a double tube plate, and one tube plate is made thin and supported so that the inclination angle of bending with respect to the same displacement is reduced to form a tube plate having an excellent sealing function. By providing the function of supporting the load, it is possible to completely prevent the occurrence of gas leakage at the joint between the cell tube and the tube sheet.

2重管板は図1に示すように、ヘッダー内空間に面する方の管板を第2管板(シール管板)6、6’に、燃料電池セル側(セルチューブ1の中央側)の空間に面する管板を第1管板(耐荷管板)5、5’に構成し、耐荷管板5、5’に穴5a、5a’を設けるのが好ましい。これにより、ヘッダー内の空間(燃料ガス室)と燃料電池セル側空間(第3ガス室)とがシール機能が優れたシール管板でシールされる。   As shown in FIG. 1, the double tube plate has a tube plate facing the space in the header on the second tube plate (seal tube plate) 6 and 6 ', on the fuel cell side (center side of the cell tube 1). It is preferable that the tube plate facing the space is configured as the first tube plate (load-resistant tube plate) 5, 5 ′, and the holes 5a, 5a ′ are provided in the load-resistant tube plates 5, 5 ′. As a result, the space in the header (fuel gas chamber) and the fuel cell side space (third gas chamber) are sealed with the sealing tube plate having an excellent sealing function.

図1の実施例は2枚の管板の厚さと固定支持の支点距離(L1、L)が異なる構成であるが、2枚の管板を同じ構成としても荷重が分散されるので、セルチューブに掛かる荷重は軽減される。セルチューブと管板の接合部に掛かる垂直荷重は下部ヘッダーの管板においてはセルチューブの重力による垂直荷重が追加されるので、下部ヘッダーの管板における方が上部ヘッダーの管板におけるよりも大きくなる。このことから、下部ヘッダーの管板のみを2重管板とし上部ヘッダーの管板は1枚の管板としてもよい。 The embodiment of FIG. 1 has a configuration in which the thickness of the two tube plates and the fulcrum distance (L 1 , L 2 ) of the fixed support are different, but even if the two tube plates have the same configuration, the load is dispersed. The load on the cell tube is reduced. The vertical load applied to the joint between the cell tube and the tube sheet is higher in the lower header tube plate than in the upper header tube plate because the vertical load due to the gravity of the cell tube is added to the lower header tube plate. Become. Therefore, only the tube sheet of the lower header may be a double tube plate, and the tube sheet of the upper header may be a single tube sheet.

図2は第2の実施形態の概略構成を示す図で、第2管板(シール管板)6、6’の額縁部材4、7及び4’、7’への固定支持端と該固定支持端に隣接する位置で管板に接合されたセルチューブ1までの間を波状6a、6’aに形成して熱膨張による管板の変形に柔軟性をもたせたもので、図1と同じ構成については同じ符号を付し、説明は省略する。この第2管板(シール管板)の柔軟性により、垂直荷重及び管板の熱膨張に起因して掛かる荷重が軽減されるので、セルチューブの圧入部における前記シール管板の変形によってセルチューブに掛かる荷重が小さくなって嵌合部に局部的な隙間が生じるような事態が防止され、シール機能が向上する。そして、垂直荷重は殆どが第1管板によって担われる。   FIG. 2 is a diagram showing a schematic configuration of the second embodiment. The fixed support ends of the second tube plates (seal tube plates) 6 and 6 ′ to the frame members 4, 7 and 4 ′ and 7 ′ and the fixed support are shown. The portion up to the cell tube 1 joined to the tube plate at a position adjacent to the end is formed in a wave shape 6a, 6'a to give flexibility to the deformation of the tube plate due to thermal expansion. Are denoted by the same reference numerals, and description thereof is omitted. Due to the flexibility of the second tube sheet (seal tube sheet), the vertical load and the load applied due to the thermal expansion of the tube sheet are reduced, so that the cell tube is deformed by the deformation of the seal tube sheet in the press-fitting portion of the cell tube. As a result, a situation in which the load applied to the surface becomes small and a local gap is generated in the fitting portion is prevented, and the sealing function is improved. The vertical load is mostly borne by the first tube sheet.

図3及び図4はセルチューブと管板との接合部を説明するための図で、このような接合方法は本発明と同一出願人の出願になる前記特許文献2に開示されているが簡単に説明する。図3において、管板5のセルチューブを圧入して締り嵌めする穴はセルチューブの先端側に向かって窄む形状フジツボ(富士壷)状に形成されていて、このフジツボ(富士壷)状の穴の縁がセルチューブ1を締め付けることによりセルチューブ1が管板5に接合されている。   3 and 4 are diagrams for explaining a joint portion between the cell tube and the tube sheet. Such a joint method is disclosed in Patent Document 2 filed by the same applicant as the present invention. Explained. In FIG. 3, the hole for press-fitting the cell tube of the tube sheet 5 is formed in a shape barnacle (Fuji-an) shape that narrows toward the tip side of the cell tube. The cell tube 1 is joined to the tube plate 5 by the edge of the hole tightening the cell tube 1.

図4ではリング部材31が接着材32によりセルチューブ1に接着され、前記リング部材31が管板1のフジツボ(富士壷)状穴の縁での締り嵌めによりセルチューブ1に接合されている。接着剤32としては適切な耐熱性と接着強度を有する無機系接着剤などが用いられる。前記リング内径にはショットピーニングを施すと接着剤の接着力が向上する。図3、4に示すように、前記フジツボ(富士壷)状の穴はセルチューブの先端側に向かって窄む形状に形成することによりセルチューブの嵌入が容易になる。即ち、フジツボ(富士壷)状の穴のアール面側からセルチューブ先端側を容易に圧入できる。   In FIG. 4, the ring member 31 is bonded to the cell tube 1 with an adhesive 32, and the ring member 31 is joined to the cell tube 1 by an interference fit at the edge of a barnacle (Fujitsumi) -shaped hole of the tube plate 1. As the adhesive 32, an inorganic adhesive having appropriate heat resistance and adhesive strength is used. When shot peening is applied to the inner diameter of the ring, the adhesive strength of the adhesive is improved. As shown in FIGS. 3 and 4, the barnacle (Fuji-an) -shaped hole is formed so as to be narrowed toward the distal end side of the cell tube, thereby facilitating the insertion of the cell tube. That is, the tip end side of the cell tube can be easily press-fitted from the rounded surface side of the barnacle (Fuji Aoi) -shaped hole.

図5は本発明の第3実施形態に係るセルチューブを介してのヘッダー支持構造を示す局部断面図である。同図において、2は上部ヘッダーで、該上部ヘッダー2は上部第1管板12、上部第2管板6、額縁部材(符号省略)を含む。2’は下部ヘッダーで、該下部ヘッダー2’は下部第1管板13、下部第2管板6’、額縁部材(符号省略)を含む。11はセルチューブである。この実施例では、セルチューブ11は上下の先端部が小径11a、11bに形成されており、上部の小径部11aが上部第1管板12の穴を貫通して該上部第1管板の嵌合穴周縁面が前記セルチューブの上端部が小径となる直径段差部の肩に当接し、下部の小径部11bが下部第1管板13の穴を貫通して前記セルチューブの下端部が小径となる直径段差部の肩が下部第1管板13の嵌合穴周縁面に当接している。   FIG. 5 is a local sectional view showing a header support structure through a cell tube according to a third embodiment of the present invention. In the figure, 2 is an upper header, and the upper header 2 includes an upper first tube plate 12, an upper second tube plate 6, and a frame member (reference numeral omitted). Reference numeral 2 'denotes a lower header. The lower header 2' includes a lower first tube plate 13, a lower second tube plate 6 ', and a frame member (reference numeral omitted). 11 is a cell tube. In this embodiment, the upper and lower tip portions of the cell tube 11 are formed with small diameters 11a and 11b, and the upper small diameter portion 11a passes through the hole of the upper first tube plate 12 to fit the upper first tube plate. The peripheral surface of the joint hole is in contact with the shoulder of the diameter step portion where the upper end portion of the cell tube has a small diameter, the lower small diameter portion 11b penetrates the hole of the lower first tube plate 13, and the lower end portion of the cell tube has a small diameter. The shoulder of the diameter step portion that is in contact with the peripheral surface of the fitting hole of the lower first tube sheet 13.

図5では上部第1管板12及び下部第1管板13のセルチューブ11の小径部11a、11bが貫通する穴はそれぞれセルチューブ11の中央側方向へ窄むフジツボ(富士壷)状に形成されているが、単なる穴に形成してもよい。管板は薄板で形成する場合、各穴をフジツボ(富士壷)状に形成することにより管板の剛性を増大することができる。上部第1管板12及び下部第1管板13の穴とセルチューブの小径部11a、11bの間に適当な間隙を設けてはおけば、管板12、13の嵌合穴周縁面はセルチューブ11の前記直径段差部の肩に当接するのみで、該セルチューブ11に拘束されることはない。従って、管板12、13が熱変形してもセルチューブに力を及ぼすことはない。   In FIG. 5, the holes through which the small-diameter portions 11 a and 11 b of the cell tube 11 of the upper first tube plate 12 and the lower first tube plate 13 pass are each formed in a barnacle (Fuji 壷) shape constricted toward the center side of the cell tube 11. However, it may be formed in a simple hole. When the tube plate is formed of a thin plate, the rigidity of the tube plate can be increased by forming each hole in a barnacle shape. If an appropriate gap is provided between the holes of the upper first tube plate 12 and the lower first tube plate 13 and the small diameter portions 11a and 11b of the cell tube, the peripheral surface of the fitting hole of the tube plates 12 and 13 is the cell. The cell tube 11 is not restrained by merely contacting the shoulder of the stepped diameter portion of the tube 11. Therefore, even if the tube sheets 12 and 13 are thermally deformed, no force is exerted on the cell tube.

上部第2管板6及び下部第2管板6’のセルチューブ11の小径部11a、11bが貫通する穴はフジツボ(富士壷)状に形成され、該穴とセルチューブ11の小径部11a、11bは締り嵌めとされて該締り嵌め部でシール機能を果たす。
このような構成によれば、前記セルチューブ11の肩部を介して垂直荷重が管板の熱膨張に起因する力を受けることなく担持され、シール機能は熱膨張に起因してセルチューブに掛かる力が低減されるように構成された第2管板6、6’により保持される。
The holes through which the small diameter portions 11a and 11b of the cell tube 11 of the upper second tube plate 6 and the lower second tube plate 6 ′ pass are formed in a barnacle shape (Fujitsu), and the holes and the small diameter portions 11a of the cell tube 11 are formed. 11b is an interference fit, and the interference fit portion performs a sealing function.
According to such a configuration, the vertical load is carried through the shoulder portion of the cell tube 11 without receiving a force due to the thermal expansion of the tube sheet, and the sealing function is applied to the cell tube due to the thermal expansion. It is held by the second tube sheet 6, 6 'configured to reduce the force.

第1管板の穴部の全てが多数のセルチューブの直径段差部の肩に当接するようにすることは精度上の困難を伴うので、特定のセルチューブ、特に第1管板が額縁部材に固定される固定支持端に最も近接する位置に配置されたセルチューブを前記直径段差部を有するように形成して該段差部の肩を介して垂直荷重を担持するようにしてもよい。   Since it is difficult to ensure that all the hole portions of the first tube plate are in contact with the shoulders of the diameter step portions of many cell tubes, a specific cell tube, in particular, the first tube plate is used as a frame member. A cell tube arranged at a position closest to the fixed support end to be fixed may be formed to have the stepped portion of the diameter so as to carry a vertical load through the shoulder of the stepped portion.

図6は本発明の第3実施形態に係るセルチューブを介してのヘッダー支持構造を示す局部断面図である。この実施例はセルチューブ11にリング部材33、34を固着し、該リング部材33、34の外径は大径部と小径部からなる段付きに形成されており、該直径段差部の肩部を介して垂直荷重を担持するもので、その他は図5の第4実施例と同様であり、説明は省略する。セルチューブは多孔性のセラミックで作製されるので、前記肩の位置を精度よく製作するのは必ずしも容易ではなく、また、セルチューブの外周に形成された燃料電池セルで発電された電流を前記肩部を通過してセルチューブの先端側に導く構造も複雑にならざるを得ないが、これらの点でこの第4の実施例によればセルチューブの製作がより容易になる。この場合も、特定のセルチューブのみ直径段差部を有するリング部材を固着して支持機能を受け持つようにしてもよい。なお、リング部材33、34のセルチューブ1への固着は適切な耐熱性と接着強度を有する無機系接着剤などが用いられる。   FIG. 6 is a partial cross-sectional view showing a header support structure through a cell tube according to a third embodiment of the present invention. In this embodiment, ring members 33 and 34 are fixed to the cell tube 11, and the outer diameters of the ring members 33 and 34 are formed in steps having a large diameter portion and a small diameter portion, and a shoulder portion of the diameter step portion. The other parts are the same as those in the fourth embodiment shown in FIG. Since the cell tube is made of porous ceramic, it is not always easy to accurately manufacture the position of the shoulder, and the current generated by the fuel cell formed on the outer periphery of the cell tube is used as the shoulder. The structure of passing through the section and leading to the tip side of the cell tube must be complicated, but in these respects, according to the fourth embodiment, the cell tube can be more easily manufactured. Also in this case, a ring member having a diameter step portion may be fixed only to a specific cell tube so as to have a support function. For fixing the ring members 33, 34 to the cell tube 1, an inorganic adhesive having appropriate heat resistance and adhesive strength is used.

図7は本発明の実施形態に係る管板の周縁部を固定する額縁部材の固定端部形状を示す平面図で、1はセルチューブ、4は額縁部材、5は管板である。同図はセルチューブの配列が5列でチューブ104本の場合を示すが、管板5を固定支持する額縁部材4固定支持端4cの形状は、該固定支持端に隣接する位置で管板に接合されたセルチューブの前記固定支持端に対面する側の外周に一定の距離をおいて沿う形状としてある。従来技術の場合の平面図である図10では、額縁部材4固定支持端4aの形状は直線に形成されている。この場合、直線状の固定支持端から該固定支持端の隣に位置するセルチューブの前記固定支持端に面する側の外周までの距離はセルチューブと管板の接合部位、つまり接合部の前記セルチューブ中心からの方向によって異なる。前述したように、管板が垂直方向にある量撓んだ際に管板のセルチューブとの接合部に生じる応力は固定支持端からセルチューブと管板の接合部位までの距離によって異なり、該距離が大きい程小さくなる。従って、この距離が接合部位によって異なれば、セルチューブとの接合部における管板の応力、つまりセルチューブが管板から受ける力も接合部位によって異なり不均一となる。   FIG. 7 is a plan view showing a fixed end portion shape of a frame member for fixing the peripheral edge portion of the tube plate according to the embodiment of the present invention, wherein 1 is a cell tube, 4 is a frame member, and 5 is a tube plate. This figure shows the case where the cell tube is arranged in 5 rows and 104 tubes. The shape of the frame member 4 fixed support end 4c for fixing and supporting the tube plate 5 is the same as that of the tube plate at a position adjacent to the fixed support end. A shape is formed along the outer periphery of the joined cell tube facing the fixed support end with a certain distance. In FIG. 10, which is a plan view in the case of the prior art, the shape of the frame member 4 fixed support end 4a is formed in a straight line. In this case, the distance from the linear fixed support end to the outer periphery of the cell tube located next to the fixed support end on the side facing the fixed support end is the joint portion of the cell tube and the tube plate, that is, the joint portion. It depends on the direction from the center of the cell tube. As described above, when the tube plate is bent by a certain amount in the vertical direction, the stress generated in the joint portion of the tube plate with the cell tube varies depending on the distance from the fixed support end to the joint portion of the cell tube and the tube plate. The smaller the distance, the smaller. Therefore, if this distance differs depending on the joining portion, the stress of the tube sheet at the joint portion with the cell tube, that is, the force that the cell tube receives from the tube plate also varies depending on the joining portion and becomes non-uniform.

この実施例では、図7に示すように、額縁部材4の管板の周縁部を固定支持する支持部材の固定支持端4cの形状を該固定支持端の隣に位置するセルチューブの前記固定支持端に面する側の外周に一定の距離をおいて沿う形状とした。これにより、垂直荷重により管板から管板とセルチューブの接合部の前記固定支持端側部位に掛かる力が均一化され、一方垂直荷重そのものは同じであるので、特に大きな力を受ける部位がなくなる。そして、管板のセルチューブとの接合穴部の変形も均一化され、不均一な変形による締り嵌め力の不均一化が接合部からのガス漏洩を惹起することもなくなる。なお、額縁部材の前記固定支持端はセルチューブの前記固定支持端に面する側の外周においてセルチューブ中心角で大体120°に亘って沿うように形成される。   In this embodiment, as shown in FIG. 7, the shape of the fixed support end 4c of the support member that fixes and supports the peripheral edge of the tube plate of the frame member 4 is the fixed support of the cell tube located next to the fixed support end. It was made into the shape which followed a fixed distance and the outer periphery of the side which faces an end. As a result, the force applied from the tube sheet to the fixed support end side portion of the joint between the tube plate and the cell tube by the vertical load is made uniform, while the vertical load itself is the same, so there is no portion that receives particularly large force. . And the deformation | transformation of the joint hole part with the cell tube of a tube sheet is also equalized, and the nonuniformity of the interference fitting force by nonuniform deformation does not cause gas leakage from a junction part. In addition, the said fixed support end of a frame member is formed in the outer periphery of the side facing the said fixed support end of a cell tube so that a cell tube center angle may extend along about 120 degrees.

円筒型固体酸化物形燃料電池のセルチューブを上部ヘッダーの及び下部ヘッダーに対する支持部材として利用する構成の燃料電池において、セルチューブと管板の接合部に掛かる垂直力による荷重及びヘッダーと管板の温度差による膨張の差異に起因する荷重を軽減することができ、また、垂直荷重を担う耐荷管板とシール機能を果たすシール管板を設けることにより、セルチューブの折損やセルチューブと管板の接合部におけるガス漏洩の発生を防止することができるので、信頼性の高い円筒型固体酸化物形燃料電池を提供できる。   In a fuel cell having a structure in which a cell tube of a cylindrical solid oxide fuel cell is used as a support member for the upper header and the lower header, a load caused by a vertical force applied to a joint portion between the cell tube and the tube sheet, and the header and the tube sheet The load caused by the difference in expansion due to the temperature difference can be reduced, and by providing a load-bearing tube plate that bears the vertical load and a seal tube plate that performs the sealing function, cell tube breakage and cell tube and tube plate Since the occurrence of gas leakage at the joint can be prevented, a highly reliable cylindrical solid oxide fuel cell can be provided.

本発明の第1の実施例に係る固体酸化物形燃料電池のモジュールの概略構成を示す図である。It is a figure which shows schematic structure of the module of the solid oxide fuel cell which concerns on the 1st Example of this invention. 本発明の第2の実施例に係る固体酸化物形燃料電池のモジュールの概略構成を示す図である。It is a figure which shows schematic structure of the module of the solid oxide fuel cell which concerns on the 2nd Example of this invention. 固体酸化物形燃料電池におけるセルチューブと管板との接合形態を示す一実施例の局部断面図である。It is local sectional drawing of one Example which shows the joining form of the cell tube and tube sheet in a solid oxide fuel cell. 固体酸化物形燃料電池におけるセルチューブと管板との接合形態を示す他の実施例の局部断面図である。It is a local sectional view of other examples showing a joined form of a cell tube and a tube sheet in a solid oxide fuel cell. 本発明の第3の実施例に係るセルチューブを介してのヘッダー支持構造を示す局部断面図である。It is local sectional drawing which shows the header support structure via the cell tube which concerns on the 3rd Example of this invention. 本発明の第4の実施例に係るセルチューブを介してのヘッダー支持構造を示す局部断面図である。It is local sectional drawing which shows the header support structure via the cell tube which concerns on the 4th Example of this invention. 本発明の実施例に係る管板の周縁部を固定支持する額縁部材の固定端部形状を示す平面図である。It is a top view which shows the fixed end part shape of the frame member which fixes and supports the peripheral part of the tube sheet which concerns on the Example of this invention. 本発明が適用される従来の円筒型固体酸化物形燃料電池の概略構成を示す図である。It is a figure which shows schematic structure of the conventional cylindrical solid oxide fuel cell to which this invention is applied. 本発明が適用される従来の円筒型固体酸化物形燃料電池の内部モジュールの斜視図である。1 is a perspective view of an internal module of a conventional cylindrical solid oxide fuel cell to which the present invention is applied. 図8におけるX矢視に相当する平面図である。It is a top view equivalent to the X arrow view in FIG.

符号の説明Explanation of symbols

1、11 セルチューブ
2 上部ヘッダー
2’ 下部ヘッダー
3、4、7 額縁部材
5、12、13 管板(耐荷管板)
6、 管板(シール管板)
8 支持台
9 断熱壁
10 カバー
21 断熱部材
31 リング部材
32 接着剤
33、34 リング部材
1, 11 Cell tube 2 Upper header 2 'Lower header 3, 4, 7 Frame member 5, 12, 13 Tube plate (load-resistant tube plate)
6. Tube sheet (seal tube sheet)
8 Support stand 9 Heat insulation wall 10 Cover 21 Heat insulation member 31 Ring member 32 Adhesive 33, 34 Ring member

Claims (8)

周面に燃料電池セルが形成された複数の燃料電池セルチューブと、
前記複数の燃料電池セルチューブ内に燃料ガスを供給するための第1ガス室と、前記燃料電池セルで発電反応済みの燃料ガスを排出するための第2ガス室とが前記燃料電池セルに酸化剤ガスを供給する第3ガス室を介して隔離して配置してなる固体酸化物形燃料電池において、
前記第1若しくは第2ガス室(以下燃料ガス室という)と前記第3ガス室とを区画する管板を少なくとも2枚の管板からなり燃料ガス室側にて支持された多重管板で形成するとともに、該多重管板より燃料ガス室側に挿設されてなる燃料電池セルチューブの両端部の前記管板嵌合部において、燃料ガス室側に位置する1の管板側に気密機能を持たせ、第3ガス室側に位置する他の管板にセル支持機能を持たせるように、前記嵌合部形状若しくは管板肉厚を異ならせたことを特徴とする固体酸化物形燃料電池。
A plurality of fuel battery cell tubes having fuel cells formed on the peripheral surface;
A first gas chamber for supplying fuel gas into the plurality of fuel cell tubes and a second gas chamber for discharging fuel gas that has been subjected to a power generation reaction in the fuel cells are oxidized to the fuel cells. In the solid oxide fuel cell, which is disposed separately from the third gas chamber for supplying the agent gas,
A tube plate that divides the first or second gas chamber (hereinafter referred to as a fuel gas chamber) and the third gas chamber is formed of a multiple tube plate that is composed of at least two tube plates and is supported on the fuel gas chamber side. In addition, in the tube plate fitting portion at both ends of the fuel cell tube inserted into the fuel gas chamber side from the multiple tube plate, an airtight function is provided on one tube plate side located on the fuel gas chamber side. A solid oxide fuel cell characterized in that the fitting portion shape or the tube plate thickness is made different so that the other tube plate located on the third gas chamber side has a cell support function. .
前記燃料ガス室側に位置する1の管板周縁部を固定する固定支持端から該固定支持端に最も隣接する燃料電池セルチューブの嵌合部までの距離を、前記第3ガス室側に位置する他の管板周縁部を固定する固定支持端から該固定支持端に最も隣接する燃料電池セルチューブの嵌合部までの距離よりも長くしたことを特徴とする請求項1記載の固体酸化物形燃料電池。   The distance from the fixed support end that fixes the peripheral edge of one tube plate located on the fuel gas chamber side to the fitting portion of the fuel cell tube closest to the fixed support end is located on the third gas chamber side. 2. The solid oxide according to claim 1, wherein the distance is longer than the distance from the fixed support end for fixing the other peripheral edge of the tube sheet to the fitting portion of the fuel cell tube closest to the fixed support end. Fuel cell. 前記燃料ガス室に面する1の管板の厚さを前記第3ガス室に面する他の管板よりも薄肉に形成したことを特徴とする請求項1記載の固体酸化物形燃料電池。   2. The solid oxide fuel cell according to claim 1, wherein the thickness of one tube plate facing the fuel gas chamber is thinner than the other tube plate facing the third gas chamber. 前記管板嵌合部の気密機能部が、管板に形成された穴に、前記セルチューブが嵌入され締り嵌めにより管板に接合されて構成されていることを特徴とする請求項1記載の固体酸化物形燃料電池。   The airtight function part of the said tube sheet fitting part is comprised by the said cell tube being inserted in the hole formed in the tube sheet, and being joined to the tube sheet by interference fitting, The structure of Claim 1 characterized by the above-mentioned. Solid oxide fuel cell. 前記管板嵌合部の支持機能部が、セルチューブに固着されたリング部材と、該リング部材外周が管板の穴に嵌入されてなる締り嵌め部とにより構成されてなることを特徴とする請求項4記載の固体酸化物形燃料電池。   The support function portion of the tube plate fitting portion is composed of a ring member fixed to the cell tube and an interference fitting portion in which the outer periphery of the ring member is inserted into a hole of the tube plate. The solid oxide fuel cell according to claim 4. 前記管板嵌合部の支持機能部が、前記燃料電池セルチューブ側に直径段差部を設け、前記管板の嵌合穴周縁面を前記セルチューブの直径段差部の肩に当接させるころによりセルチューブを支持させてなることを特徴とする請求項1記載の固体酸化物形燃料電池。   The support function part of the tube sheet fitting part is provided with a roller having a diameter stepped portion on the fuel cell tube side, and a fitting hole peripheral surface of the tube sheet is brought into contact with a shoulder of the diameter step part of the cell tube. 2. The solid oxide fuel cell according to claim 1, wherein the cell tube is supported. 前記管板嵌合部の支持機能が、前記燃料電池セルチューブの両端部に直径段差部を設けたリング部材を固着し、前記管板の嵌合穴周縁面を前記リング部材の直径段差部の肩に当接させるころによりセルチューブを支持させてなることを特徴とする請求項1記載の固体酸化物形燃料電池。   The support function of the tube plate fitting portion is to fix a ring member provided with a diameter step portion at both ends of the fuel cell tube, and the fitting hole peripheral surface of the tube plate is connected to the diameter step portion of the ring member. 2. The solid oxide fuel cell according to claim 1, wherein the cell tube is supported by a roller brought into contact with the shoulder. 前記管板を周縁部を固定支持する支持部材の固定支持端の形状を該固定支持端に隣接する位置で管板に接合された燃料電池セルチューブの前記固定支持端に対面する側の外周に一定の距離をおいて沿う形状としたことを特徴とする請求項1記載の固体酸化物形燃料電池。   The shape of the fixed support end of the support member that fixes and supports the peripheral edge of the tube plate is formed on the outer periphery of the fuel cell tube that is joined to the tube plate at a position adjacent to the fixed support end on the side facing the fixed support end. 2. The solid oxide fuel cell according to claim 1, wherein the fuel cell has a shape along a certain distance.
JP2005324258A 2005-11-09 2005-11-09 Solid oxide fuel cell Active JP4848177B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005324258A JP4848177B2 (en) 2005-11-09 2005-11-09 Solid oxide fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005324258A JP4848177B2 (en) 2005-11-09 2005-11-09 Solid oxide fuel cell

Publications (2)

Publication Number Publication Date
JP2007134095A true JP2007134095A (en) 2007-05-31
JP4848177B2 JP4848177B2 (en) 2011-12-28

Family

ID=38155593

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005324258A Active JP4848177B2 (en) 2005-11-09 2005-11-09 Solid oxide fuel cell

Country Status (1)

Country Link
JP (1) JP4848177B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017017015A (en) * 2015-07-06 2017-01-19 日本碍子株式会社 Fuel cell

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04104475A (en) * 1990-08-23 1992-04-06 Mitsubishi Heavy Ind Ltd Cylindrical solid electrolyte fuel cell
JP2001043886A (en) * 1999-07-29 2001-02-16 Mitsubishi Heavy Ind Ltd Fuel cell module
JP2002298877A (en) * 2001-03-30 2002-10-11 Mitsubishi Heavy Ind Ltd Fuel cell system
JP2003086226A (en) * 2001-09-12 2003-03-20 Mitsubishi Heavy Ind Ltd Fuel cell system
JP2004039331A (en) * 2002-07-01 2004-02-05 Mitsubishi Heavy Ind Ltd Fuel cell module
JP2005166470A (en) * 2003-12-03 2005-06-23 Toho Gas Co Ltd Solid oxide fuel cell sub-module and solid oxide fuel cell module using it

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04104475A (en) * 1990-08-23 1992-04-06 Mitsubishi Heavy Ind Ltd Cylindrical solid electrolyte fuel cell
JP2001043886A (en) * 1999-07-29 2001-02-16 Mitsubishi Heavy Ind Ltd Fuel cell module
JP2002298877A (en) * 2001-03-30 2002-10-11 Mitsubishi Heavy Ind Ltd Fuel cell system
JP2003086226A (en) * 2001-09-12 2003-03-20 Mitsubishi Heavy Ind Ltd Fuel cell system
JP2004039331A (en) * 2002-07-01 2004-02-05 Mitsubishi Heavy Ind Ltd Fuel cell module
JP2005166470A (en) * 2003-12-03 2005-06-23 Toho Gas Co Ltd Solid oxide fuel cell sub-module and solid oxide fuel cell module using it

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017017015A (en) * 2015-07-06 2017-01-19 日本碍子株式会社 Fuel cell

Also Published As

Publication number Publication date
JP4848177B2 (en) 2011-12-28

Similar Documents

Publication Publication Date Title
JP4587659B2 (en) Manufacturing method of fuel cell stack
JP4848178B2 (en) Solid oxide fuel cell
WO2008123576A1 (en) Solid state oxide fuel cell
US11742510B2 (en) Cell stack device, module, and module housing device
US8404398B2 (en) Hermetic high temperature dielectric with groove and thermal expansion compensator
CN107431231A (en) Stack of cells device, module and module accommodation apparatus
EP2927999B1 (en) Three layered electrically insulating gasket for SOC unit
JP4848177B2 (en) Solid oxide fuel cell
US8092950B2 (en) Tubular fuel cell module and the sealing device thereof
JP4900364B2 (en) Fuel cell
JP5100094B2 (en) Fuel cell stack and fuel cell
TWI657614B (en) Hermetic high temperature dielectric conduit assemblies
JP6953146B2 (en) How to assemble a fuel cell module and a combined power generation system equipped with a fuel cell module and submodules
JP2004119300A (en) Cylindrical solid oxide fuel cell (sofc) generator
US20050255363A1 (en) Contact element for a fuel cell stack
JP2003282128A (en) Fuel cell
US8986904B2 (en) Solid oxide fuel cell and manufacturing method thereof
US20150171458A1 (en) Fuel cell module, fuel cell, manufacturing method of fuel cell module, and method for supplying oxidant to fuel cell module
JP3727906B2 (en) Fuel cell module
JP2006004759A (en) Connection structure of communication tube of fuel cell
US20130022889A1 (en) Fuel cell stack
US11916265B2 (en) Metal-dielectric conduit assemblies and methods of making thereof
US10693152B2 (en) Fuel cell stack with thin endplate with integrated gas distribution tubes
JP2007335226A (en) Fuel cell
JP2004200021A (en) Connection structure of gas supply pipe for solid oxide fuel cell

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080313

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110623

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110708

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110905

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110930

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111017

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141021

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4848177

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250