JP2007132654A - Screw conveyer type purifying device, and purifying method using same - Google Patents

Screw conveyer type purifying device, and purifying method using same Download PDF

Info

Publication number
JP2007132654A
JP2007132654A JP2006302204A JP2006302204A JP2007132654A JP 2007132654 A JP2007132654 A JP 2007132654A JP 2006302204 A JP2006302204 A JP 2006302204A JP 2006302204 A JP2006302204 A JP 2006302204A JP 2007132654 A JP2007132654 A JP 2007132654A
Authority
JP
Japan
Prior art keywords
screw conveyor
tin
temperature
mixture
impurity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006302204A
Other languages
Japanese (ja)
Other versions
JP4555812B2 (en
Inventor
Goon-Hee Lee
イ・グン−ヒ
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Publication of JP2007132654A publication Critical patent/JP2007132654A/en
Application granted granted Critical
Publication of JP4555812B2 publication Critical patent/JP4555812B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B25/00Obtaining tin
    • C22B25/08Refining
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B25/00Obtaining tin
    • C22B25/02Obtaining tin by dry processes
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C13/00Alloys based on tin
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Manufacture And Refinement Of Metals (AREA)
  • Tunnel Furnaces (AREA)
  • Waste-Gas Treatment And Other Accessory Devices For Furnaces (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To obtain only pure material by eliminating only impurities from pure material containing the impurities (mixture) by the principle of fractional crystallization or recrystallization. <P>SOLUTION: The screw conveyer type purifying device includes a screw conveyer 200 having a hollow cross section, formed so as to extend in a longitudinal direction, for moving the mixture inside, and a reaction adjusting part for separating the mixture into the pure material and impurities and moving them by controlling an internal temperature of the screw conveyer so as to repeat dissolution and solidification operation of the mixture. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明はスクリューコンベア型精製装置及びそれを使用した精製方法に関し、より詳細には、部分結晶化(fractional crystallization)又は再結晶化の原理により、不純物を含有する純粋物(以下、「混合物」という)から不純物のみを除去して純粋物のみを得るスクリューコンベア型精製装置及びそれを使用した精製方法に関する。   The present invention relates to a screw conveyor type purification apparatus and a purification method using the same, and more particularly, a pure product containing impurities (hereinafter referred to as “mixture”) based on the principle of fractional crystallization or recrystallization. The present invention relates to a screw conveyor type refining apparatus that removes only impurities from the above to obtain only a pure product, and a refining method using the same.

混合物である錫合金に含有された不純物である鉛を除去する従来の方法として、(1)非特許文献1の232ページに記載された塩素化法と、(2)同文献の239ページに記載された真空蒸発法と、(3)特許文献1に開示された結晶溶析法とがある。   As conventional methods for removing lead which is an impurity contained in a tin alloy which is a mixture, (1) chlorination method described on page 232 of Non-Patent Document 1, and (2) described on page 239 of the same document Vacuum evaporation method and (3) crystal crystallization method disclosed in Patent Document 1.

しかし、上記(1)の塩素化法は、高価なSnCl−2HO又は危険な塩素(Cl)ガスを使用するため作業が危険であり、処理コストが非常に高い。また、ドロス(SnCl−PbCl)の処理が非常に複雑であるだけでなく公害を誘発し、SnCl−2HOの製造やドロス(SnCl−PbCl)の処理は毒物劇物を取り扱うため作業が危険であり、毒物劇物の取扱許可と公害防止施設を必要とするという問題があった。特に、ドロス中の錫(Sn)と鉛(Pb)との金属含有量比は、93.46%(Sn):6.54%(Pb)であるため、鉛(Pb)の除去率が低いなどの問題があった。 However, the chlorination method of (1) uses expensive SnCl 2 -2H 2 O or dangerous chlorine (Cl 2 ) gas, and therefore the operation is dangerous, and the processing cost is very high. The processing of dross (SnCl 2 -PbCl 2) induces pollution not only very complicated, the SnCl 2 -2H 2 O manufacturing and dross (SnCl 2 -PbCl 2) processing of Poisonous and Deleterious Substances There was a problem that the work was dangerous to handle, requiring permission to handle poisonous and deleterious substances and a pollution prevention facility. In particular, since the metal content ratio of tin (Sn) and lead (Pb) in the dross is 93.46% (Sn): 6.54% (Pb), the removal rate of lead (Pb) is low. There were problems such as.

また、上記(2)の真空蒸発法は、1日に16トン処理する真空蒸発設備を用いて、作業温度1,250℃、真空度0.01mmHgの状態で鉛などの不純物を蒸留する方法であり、高価な高周波誘導炉と高真空施設とを必要とするだけでなく、処理金属1トン当たりの電力消費が600KwH/tonであり、電力消費量が大きいという問題があった。   The vacuum evaporation method (2) is a method of distilling impurities such as lead at a working temperature of 1,250 ° C. and a vacuum degree of 0.01 mmHg using a vacuum evaporation facility that processes 16 tons per day. In addition, an expensive high-frequency induction furnace and a high vacuum facility are required, and the power consumption per ton of the processed metal is 600 KwH / ton, and there is a problem that the power consumption is large.

また、上記(3)の特許文献1(中国特許公開公報第85 1 07536 A号)に開示された発明は、内槽と外槽とからなり、上部が開放されたU字状鋼製の槽と、前記U字状鋼製の槽の内部に回転可能に設置され、3つの螺旋片がそれぞれ86.5°の角度で溶接されて3方向に突設された回転軸と、前記U字状鋼製の槽の下部に設置された加熱用電熱器とから構成される。   In addition, the invention disclosed in Patent Document 1 (Chinese Patent Publication No. 85 1 07536 A) of (3) above is composed of an inner tank and an outer tank, and a U-shaped steel tank having an open top. And a rotating shaft that is rotatably installed inside the U-shaped steel tank, and in which three spiral pieces are welded at an angle of 86.5 °, and project in three directions, and the U-shape. It consists of a heating electric heater installed at the bottom of a steel tank.

しかし、これは上部が開放されたU字状鋼製の槽と螺旋片が突設された回転軸とから構成されており、正確な温度調節のための温度制御装置及び冷却装置を備えておらず、溶融と凝固(結晶化)を繰り返す再結晶化工程を行うことができないため、鉛(Pb)の除去率が低いという問題があった。
中国特許公開公報第85 1 07356 A号 Extractive metallurgy of tin second edition(1982)
However, this is composed of a U-shaped steel tank with an open top and a rotating shaft provided with a spiral piece, and is equipped with a temperature control device and a cooling device for accurate temperature control. In addition, there is a problem that the removal rate of lead (Pb) is low because a recrystallization step that repeats melting and solidification (crystallization) cannot be performed.
Chinese Patent Publication No. 85 1 07356 A Extractive metallurgy of tin second edition (1982)

本発明は、このような従来技術の問題を解決するためになされたもので、混合物から不純物を除去して純度の高い純粋物を得ることができるスクリューコンベア型精製装置及びそれを使用した精製方法を提供することを目的とする。   The present invention has been made in order to solve such problems of the prior art, and is a screw conveyor type purification apparatus capable of obtaining impurities by removing impurities from a mixture and a purification method using the same. The purpose is to provide.

本発明の他の目的は、錫金属又は錫合金中の鉛(Pb)をA(ASTM B 339−72 Classification of pig tin)規格である0.05%以下に除去できるスクリューコンベア型精製装置及びそれを使用した精製方法を提供することにある。   Another object of the present invention is a screw conveyor type refining apparatus capable of removing lead (Pb) in tin metal or a tin alloy to 0.05% or less which is A (ASTM B 339-72 Classification of pig tin) standard and the like. It is to provide a purification method using

このような目的を達成するために、本発明は、中空状の断面を有して長手方向に延びるように形成され、内部の混合物を両方向に移動させるスクリューコンベアと、混合物の溶解及び凝固作業が繰り返されるようにスクリューコンベアの内部温度を制御して、混合物を純粋物と不純物とに分離して移動させる反応調節部と、を含むスクリューコンベア型精製装置を提供する。   In order to achieve such an object, the present invention has a screw conveyor that has a hollow cross section and extends in the longitudinal direction, and moves the mixture inside in both directions, and the melting and solidification operations of the mixture. There is provided a screw conveyor type purification apparatus including a reaction control unit that controls the internal temperature of a screw conveyor to be repeated and separates and moves the mixture into a pure product and impurities.

本明細書では、純粋物である錫金属、錫合金や錫共晶合金を「純粋な錫合金」といい、不純物である鉛が濃縮されているSn−Pb共晶状態の金属を「不純物錫合金」という。   In the present specification, pure tin metal, tin alloy and tin eutectic alloy are referred to as “pure tin alloy”, and Sn—Pb eutectic metal enriched in lead as impurity is referred to as “impurity tin alloy”. It is called “alloy”.

すなわち、純粋な錫合金の融点(Sn:231.9℃、Sn−Ag:221℃、Sn−Ag−Cu:216℃)と鉛が濃縮されている不純物錫合金の融点(Sn−Pb:183℃)との差を利用して、純粋な錫合金(Sn、Sn−Ag、Sn−Ag−Cu)を繰り返して結晶化させることにより純度を高める精製装置を提供する。   That is, the melting point of pure tin alloy (Sn: 231.9 ° C., Sn-Ag: 221 ° C., Sn—Ag—Cu: 216 ° C.) and the melting point of impurity tin alloy in which lead is concentrated (Sn—Pb: 183) The refinement | purification apparatus which raises purity by repeatedly crystallizing a pure tin alloy (Sn, Sn-Ag, Sn-Ag-Cu) using the difference with (degreeC) is provided.

ここで、錫合金は、Sn−Pb系、Sn−Ag系、及びSn−Ag−Cu系を含む。   Here, the tin alloy includes a Sn—Pb system, a Sn—Ag system, and a Sn—Ag—Cu system.

以下、本発明の精製装置を利用して錫合金を精製する工程について説明する。   Hereinafter, the process of refine | purifying a tin alloy using the refiner | purifier of this invention is demonstrated.

(1)純粋な錫金属(Sn100%)と錫共晶合金は単一温度の融点を有する。すなわち、純粋な錫金属の融点は231.9℃であり、Sn−Pb共晶合金の融点は183℃であり、その成分比はSnが61.9%、Pbが38.1%である。しかし、Sn−Pb合金の融点は単一温度ではなく、Sn/Pb合金の比率によって183〜231.9℃の温度範囲を有する。   (1) Pure tin metal (Sn 100%) and tin eutectic alloy have a single temperature melting point. That is, the melting point of pure tin metal is 231.9 ° C., the melting point of the Sn—Pb eutectic alloy is 183 ° C., and the component ratios are 61.9% for Sn and 38.1% for Pb. However, the melting point of the Sn—Pb alloy is not a single temperature, but has a temperature range of 183 to 231.9 ° C. depending on the ratio of the Sn / Pb alloy.

(2)通常、粗錫(crude tin metal)中の鉛(Pb)含有量は0.5%未満である。従って、粗錫中の不純物である鉛(Pb)含有量を減少させる(除去する)ために、融点が183℃であるSn−Pb共晶合金(Sn61.9%、Pb38.1%)を形成して粗錫中の鉛(Pb)を除去すると、鉛(Pb)を僅かしか含有しておらず、融点が231.9℃である錫金属は部分的に凝固して部分結晶化する。このような過程を繰り返す再結晶化工程により、精製された錫金属を安価で公害防止施設を必要とせずに鉛(Pb)を除去できる。すなわち、不純物である鉛(Pb)はSn−Pb共晶(融点:183℃)状態で分離される。   (2) Normally, the lead (Pb) content in crude tin metal is less than 0.5%. Therefore, in order to reduce (remove) the content of lead (Pb), which is an impurity in the crude tin, an Sn—Pb eutectic alloy (Sn 61.9%, Pb 38.1%) having a melting point of 183 ° C. is formed. When the lead (Pb) in the crude tin is removed, the tin metal containing only a small amount of lead (Pb) and having a melting point of 231.9 ° C. is partially solidified and partially crystallized. Through the recrystallization process of repeating such a process, the refined tin metal can be removed at low cost without requiring a pollution prevention facility. That is, lead (Pb) which is an impurity is separated in the Sn—Pb eutectic (melting point: 183 ° C.) state.

(3)不純物である鉛(Pb)はSn−Pb共晶合金に含まれて除去される。理論的な鉛(Pb)の最大含有量は38.1%であるが、実際の作業では約32〜34%まで濃縮が可能である。   (3) Lead (Pb), which is an impurity, is contained in the Sn—Pb eutectic alloy and removed. The theoretical maximum content of lead (Pb) is 38.1%, but it can be concentrated to about 32-34% in actual work.

(4)部分結晶化法での錫及び錫合金中の不純物である鉛(Pb)の除去において最も重要な点は、再結晶化工程を繰り返して純度を高めるために温度制御を正確に行う点である。例えば、粗錫金属の場合は、183〜231.9℃の温度範囲内で、任意の温度区間(例えば、230〜231.9℃の温度範囲)を正確に制御しなければならない。   (4) The most important point in the removal of lead (Pb) which is an impurity in tin and tin alloy in the partial crystallization method is that temperature control is accurately performed in order to increase the purity by repeating the recrystallization process. It is. For example, in the case of crude tin metal, an arbitrary temperature interval (for example, a temperature range of 230 to 231.9 ° C.) must be accurately controlled within a temperature range of 183 to 231.9 ° C.

同様の方法で、本発明によるスクリューコンベア型精製装置を利用して、次の原理によりSn−Ag合金の鉛(Pb)を除去できる。   In the same manner, the lead (Pb) of the Sn—Ag alloy can be removed by the following principle using the screw conveyor type purification apparatus according to the present invention.

(a)純粋な錫共晶合金は単一温度の融点を有する。すなわち、純粋なSn−Ag共晶合金(Sn96.5%、Ag3.5%)の融点は221℃であり、Sn−Pb共晶合金の融点は183℃であり、その成分比はSnが61.9%、Pbが38.1%である。しかし、Sn−Pb合金の融点は単一温度ではなく、Sn/Pb合金の比率によって183〜231.9℃の温度範囲を有する。   (A) Pure tin eutectic alloy has a single temperature melting point. That is, the melting point of a pure Sn—Ag eutectic alloy (Sn 96.5%, Ag 3.5%) is 221 ° C., the melting point of the Sn—Pb eutectic alloy is 183 ° C., and the component ratio is 61 for Sn. 0.9% and Pb 38.1%. However, the melting point of the Sn—Pb alloy is not a single temperature, but has a temperature range of 183 to 231.9 ° C. depending on the ratio of the Sn / Pb alloy.

(b)通常、Sn−Ag合金(Sn96.5%、Ag3.5%)中の鉛(Pb)含有量は1%未満である。前述したように、Sn−Ag合金系中の不純物である鉛(Pb)を利用して、融点が183℃であるSn−Pb共晶合金(Sn61.9%、Pb38.1%)を形成すると、融点が221℃であるSn−Ag共晶合金(Sn96.5%、Ag3.5%)は部分的に凝固して部分結晶化する。再結晶化工程を経ることによって精製されたSn−Ag共晶合金(Sn96.5%、Ag3.5%)が生産されるため、安価で公害防止施設を必要とせずに鉛(Pb)を除去できる。すなわち、不純物である鉛(Pb)はSn−Pb共晶(融点:183℃)状態で分離される。   (B) Usually, the lead (Pb) content in the Sn—Ag alloy (Sn 96.5%, Ag 3.5%) is less than 1%. As described above, when lead (Pb) which is an impurity in the Sn—Ag alloy system is used to form a Sn—Pb eutectic alloy (Sn 61.9%, Pb 38.1%) having a melting point of 183 ° C. The Sn—Ag eutectic alloy (Sn 96.5%, Ag 3.5%) having a melting point of 221 ° C. is partially solidified and partially crystallized. Sn-Ag eutectic alloy (Sn 96.5%, Ag 3.5%) refined by recrystallization process is produced, so lead (Pb) can be removed at low cost without the need for pollution prevention facilities it can. That is, lead (Pb) which is an impurity is separated in the Sn—Pb eutectic (melting point: 183 ° C.) state.

(c)不純物である鉛(Pb)はSn−Pb共晶合金成分の38.1%であるが、通常の作業では鉛(Pb)を約32〜34%まで濃縮可能である。   (C) Lead (Pb) as an impurity is 38.1% of the Sn—Pb eutectic alloy component, but lead (Pb) can be concentrated to about 32 to 34% in a normal operation.

(d)上記(4)で述べたとおり、本発明の精製装置を利用した部分結晶化法での錫及び錫合金中の不純物である鉛(Pb)の除去において最も重要な点は、183〜221℃の温度範囲内で温度を正確に制御できるという点である。   (D) As described in (4) above, the most important point in the removal of lead (Pb), which is an impurity in tin and tin alloy, in the partial crystallization method using the purification apparatus of the present invention is The temperature can be accurately controlled within the temperature range of 221 ° C.

このような理論に基づいて、含有される鉛(Pb)を共晶化させて除去できる錫合金は、Sn−Pb系、Sn−Ag系、Sn−Ag−Cu系などである。その組成と精製作業条件を下記の表1に示し、より詳細な作業条件を下記の表2〜表5に示す。   Based on such a theory, the tin alloys that can be removed by eutecticizing the contained lead (Pb) are Sn—Pb, Sn—Ag, Sn—Ag—Cu, and the like. The composition and purification work conditions are shown in Table 1 below, and more detailed work conditions are shown in Tables 2 to 5 below.

すなわち、前述した理論と方法を用いて、錫及び錫合金だけでなく、下記の表5と実施例6に示すように、鉛−アンチモン合金(Pb−Sb合金)中のアンチモン(Sb)金属を除去することもできる。   That is, using the theory and method described above, not only tin and tin alloys, but also antimony (Sb) metal in lead-antimony alloys (Pb-Sb alloys) as shown in Table 5 and Example 6 below. It can also be removed.

Figure 2007132654
Figure 2007132654

粗錫中のPb除去作業の要約表

Figure 2007132654
Summary table of Pb removal work in crude tin
Figure 2007132654

Sn−Ag合金中のPb除去作業の要約表   Summary table of Pb removal work in Sn-Ag alloy

Figure 2007132654
Figure 2007132654

Sn−Ag−Cu合金中のPb除去作業の要約表   Summary table of Pb removal work in Sn-Ag-Cu alloy

Figure 2007132654
Figure 2007132654

Pb−Sb合金中のPb除去作業の要約表   Summary table of Pb removal work in Pb-Sb alloy

Figure 2007132654
Figure 2007132654

本発明の別の実施態様によれば、ケトル(kettle)で粗錫又は錫合金を溶解して約250℃に維持する段階と、加熱ヒータでスクリューコンベアを250〜280℃に予熱する段階と、予熱されたスクリューコンベアの装入部を介して、ケトル内の溶解された粗錫又は錫合金をスクリューコンベアに注入する段階と、スクリューコンベアの作業温度を設定制御し、スクリューコンベアの螺旋状スクリューを徐々に回転させながら水噴射部から水を噴射して、スクリューコンベア内部の金属を部分凝固させ、凝固した金属をスクリューコンベアの上部に移送する段階とを含むことを特徴とする錫合金の精製方法が提供される。   According to another embodiment of the present invention, melting the crude tin or tin alloy with a kettle and maintaining it at about 250 ° C; preheating the screw conveyor to 250-280 ° C with a heater; Injecting the molten tin or tin alloy dissolved in the kettle into the screw conveyor through the preheated screw conveyor charging section, setting and controlling the working temperature of the screw conveyor, and controlling the helical screw of the screw conveyor. A method of refining a tin alloy, comprising the steps of jetting water from a water jet part while gradually rotating, partially solidifying the metal inside the screw conveyor, and transferring the solidified metal to the upper part of the screw conveyor Is provided.

本発明は、混合物から不純物を除去して純度の高い純粋物を得ることができ、特に、鉛(Pb)を含有する粗錫金属を、鉛(Pb)含有量がASTM Grade A(ASTM B 339−72 Classification of pig tin)規格である0.05%以下になるように精製できるだけでなく、錫合金である廃鉛フリーハンダ(Pb free solder)中の鉛(Pb)を除去して廃資源をリサイクルできるという効果がある。   In the present invention, impurities can be removed from a mixture to obtain a pure product having a high purity. In particular, a crude tin metal containing lead (Pb) is used, and a lead (Pb) content is ASTM Grade A (ASTM B 339). -72 Classification of pig tin) Not only can it be refined to 0.05% or less, but it also removes lead (Pb) from waste lead-free solder, which is a tin alloy, to reduce waste resources. There is an effect that it can be recycled.

一方、電子業界では、Sn−Pb系ハンダを接合材料として使用してきた。しかし、鉛(Pb)が環境汚染物質であるため規制対象となっているため、環境に優しい製品である鉛フリーハンダを開発又は輸入して使用している。従って、本発明は、このような環境に優しい製品である鉛フリーハンダの材料を効果的に生産でき、公害を減らして輸入を代替するという効果がある。   On the other hand, Sn-Pb solder has been used as a bonding material in the electronic industry. However, since lead (Pb) is an environmental pollutant, it is subject to regulation. Therefore, lead-free solder, which is an environmentally friendly product, is developed or imported. Therefore, the present invention can effectively produce a lead-free solder material which is such an environment-friendly product, and has the effect of reducing pollution and substituting imports.

また、現在の廃電気電子機器指令(Waste Electrical and Electronic Equipment[WEEE])及び電気電子機器に含まれる特定有害物質の使用制限に関する指令(Restriction on Hazardous Substances[RoHS])によれば、鉛フリーハンダの場合、鉛(Pb)含有量は1000PPM(0.1%)以下に規制されている。しかし、ハンダ作業を長時間継続すると、鉛フリーハンダ中の鉛(Pb)と銅(Cu)の濃度が増加して作業が続けられないため、そのハンダを交換しなければならないが、ハンダの交換中に廃ハンダが発生する。このような廃ハンダから、本発明による精製装置により、不純物である鉛(Pb)を除去することにより、廃資源(ハンダ)をリサイクルできるだけでなく、廃ハンダが銀を含有する場合は、そのハンダのリサイクルによりコストが節減されるという効果がある。   In addition, according to the current Waste Electrical and Electronic Equipment Directive (WEEEE) and the Restriction on Hazardous Substances [RoHS] Directive Free Solder In this case, the lead (Pb) content is regulated to 1000 PPM (0.1%) or less. However, if the soldering operation is continued for a long time, the concentration of lead (Pb) and copper (Cu) in the lead-free solder increases and the operation cannot be continued. Therefore, the solder must be replaced. Waste solder is generated inside. By removing lead (Pb), which is an impurity, from such waste solder by the refining apparatus according to the present invention, not only can the waste resources (solder) be recycled, but also if the waste solder contains silver, the solder Recycling can save costs.

本明細書では、特に錫又は錫合金の混合物から不純物である鉛(Pb)を除去する精製工程を中心に、本発明の一実施形態によるスクリューコンベア型精製装置及びそれを使用した精製方法について添付図面を参照して説明する。   In this specification, the screw conveyor type refining apparatus according to an embodiment of the present invention and a refining method using the refining process are attached, particularly focusing on a refining process for removing lead (Pb) as an impurity from a mixture of tin or tin alloy. This will be described with reference to the drawings.

図1〜図4に示すように、本発明によるスクリューコンベア型精製装置は、スクリューコンベア200と反応調節部とを含む。   As shown in FIGS. 1-4, the screw conveyor type | mold refiner | purifier by this invention contains the screw conveyor 200 and the reaction control part.

スクリューコンベア200はベース100に対して傾斜して設置される。ベース100はトラス状の枠であり得る。   The screw conveyor 200 is installed inclined with respect to the base 100. The base 100 can be a truss-like frame.

スクリューコンベア200は、図2及び図3に示すように、半円状の断面を有する上半部中空円筒体204と、上半部中空円筒体204の結合部202に対向して結合され、半円状の断面を有する下半部中空円筒体205とから構成される中空円筒体を含む。また、上半部中空円筒体204と下半部中空円筒体205との間には円筒断熱材201が挿入され、中空円筒体204、205の内部には螺旋状スクリュー210が駆動部により回転可能に設置される。ここで、円筒断熱材201は、スクリューコンベア200内の錫金属の溶解熱の損失を防止する。   As shown in FIGS. 2 and 3, the screw conveyor 200 is coupled to the upper half hollow cylindrical body 204 having a semicircular cross section and the coupling portion 202 of the upper half hollow cylindrical body 204 so as to face each other. A hollow cylinder composed of a lower half hollow cylinder 205 having a circular cross section is included. A cylindrical heat insulating material 201 is inserted between the upper half hollow cylindrical body 204 and the lower half hollow cylindrical body 205, and a spiral screw 210 can be rotated inside the hollow cylindrical bodies 204 and 205 by a drive unit. Installed. Here, the cylindrical heat insulating material 201 prevents the loss of the melting heat of the tin metal in the screw conveyor 200.

螺旋状スクリュー210は、中空円筒体204、205の内部に挿入され、駆動部、例えば、駆動モータ500に減速器600のスプロケット610及びチェーン611を介して連結される。螺旋状スクリュー210は、駆動モータ500の駆動により回転し、その外周上に螺旋状に形成されたブレード211により凝固した結晶状の金属を上方に押し上げて移動させる。ここで、溶融状態の不純物金属を不純物排出口240に流すために、中空円筒体204、205とブレード211との間には所定の間隙が形成されている。   The helical screw 210 is inserted into the hollow cylindrical bodies 204 and 205 and is connected to a drive unit, for example, the drive motor 500 via the sprocket 610 and the chain 611 of the speed reducer 600. The helical screw 210 is rotated by the drive of the drive motor 500, and pushes up and moves the crystalline metal solidified by the blade 211 formed spirally on the outer periphery thereof. Here, a predetermined gap is formed between the hollow cylindrical bodies 204 and 205 and the blade 211 in order to flow the impurity metal in the molten state to the impurity discharge port 240.

ここで、上半部中空円筒体204には、別途のケトル250から精製する粗金属を注入する装入部220が連通して形成され、下半部中空円筒体205の底面には、鉛(Pb)が濃縮されたSn−Pb合金の共晶状態で溶解された金属を排出する不純物排出口240が形成される。また、下半部中空円筒体205の不純物排出口240の対応する上部には、精製された錫を排出する純粋物排出口230(製品排出口)が連通して形成される。つまり、純粋物排出口230が不純物排出口240より、ベース100が置かれる床から高い位置に配置される。ここで、粗錫(Sn)を精製する際、鉛(Pb)が濃縮された不純物金属の流れを調節できるように、不純物排出口240にはバルブ241が取り付けられる。   Here, in the upper half hollow cylindrical body 204, a charging portion 220 for injecting a crude metal to be purified from a separate kettle 250 is formed in communication, and the bottom surface of the lower half hollow cylindrical body 205 has lead ( An impurity discharge port 240 is formed for discharging the metal dissolved in the eutectic state of the Sn—Pb alloy enriched in Pb). In addition, a pure material discharge port 230 (product discharge port) through which purified tin is discharged is formed in communication with an upper portion corresponding to the impurity discharge port 240 of the lower half hollow cylindrical body 205. That is, the pure product outlet 230 is disposed at a position higher than the impurity outlet 240 from the floor on which the base 100 is placed. Here, when the crude tin (Sn) is purified, a valve 241 is attached to the impurity outlet 240 so that the flow of the impurity metal enriched in lead (Pb) can be adjusted.

反応調節部は、図5及び図6に示すように、スクリューコンベア200を加熱する加熱部340と、スクリューコンベア200を冷却する冷却部440と、加熱部340及び冷却部440の作動を制御する温度制御部とを含む。ここで、温度制御部は、加熱部340を制御するための加熱制御部300と、冷却部440を制御するための冷却制御部400とを含む。   As shown in FIGS. 5 and 6, the reaction control unit includes a heating unit 340 that heats the screw conveyor 200, a cooling unit 440 that cools the screw conveyor 200, and temperatures that control the operation of the heating unit 340 and the cooling unit 440. And a control unit. Here, the temperature control unit includes a heating control unit 300 for controlling the heating unit 340 and a cooling control unit 400 for controlling the cooling unit 440.

加熱部340は、スクリューコンベア200の下半部中空円筒体205に装着される加熱ヒータであり得る。加熱ヒータ340は、図4に示すように、スクリューコンベア200の下半部中空円筒体205に密着した形態で複数(好ましくは、18〜21個)装着され、銅鋳物で形成された本体に電源端子342が接続されており、電源を供給することによって加熱される。また、加熱ヒータ340の底面には、半円状の断面を有するヒータ断熱部341が装着されており、加熱ヒータ340の熱損失を防止して、下半部中空円筒体205の温度を一定に維持する。   The heating unit 340 may be a heater attached to the lower half hollow cylindrical body 205 of the screw conveyor 200. As shown in FIG. 4, a plurality of heaters 340 (preferably 18 to 21) are mounted in close contact with the lower half hollow cylindrical body 205 of the screw conveyor 200, and a power source is connected to a main body formed of a copper casting. A terminal 342 is connected and heated by supplying power. In addition, a heater heat insulating portion 341 having a semicircular cross section is attached to the bottom surface of the heater 340 to prevent heat loss of the heater 340 and to keep the temperature of the lower half hollow cylindrical body 205 constant. maintain.

また、加熱の程度を正確に制御するために、加熱ヒータ340には加熱温度センサ又は熱電対331が取り付けられており、加熱制御部300の温度調節器330により加熱ヒータ340が適切な温度範囲を維持できるように制御される。   In addition, in order to accurately control the degree of heating, a heating temperature sensor or thermocouple 331 is attached to the heater 340, and the heater 340 sets an appropriate temperature range by the temperature controller 330 of the heating controller 300. It is controlled so that it can be maintained.

図2及び図5に示すように、複数(18〜21個)の加熱ヒータ340及びそのうち任意の2つの加熱ヒータに挿入された熱電対331と加熱制御部300との間には、電圧調節器320、温度調節器330、及び計器板310がそれぞれ電気的に接続される。これにより、電圧調節器320は、複数の加熱ヒータ340に印加される電圧のレベルを調節し、温度調節器330は、熱電対331を利用して加熱ヒータ340の温度を調節する。また、計器板310は、電圧調節器320の出力電圧、電流、及び動作Kwを視覚的に表示して総体的な作業管理を可能にする。   As shown in FIGS. 2 and 5, a voltage regulator is provided between a plurality of (18 to 21) heaters 340 and thermocouples 331 inserted in any two of the heaters and the heating control unit 300. 320, the temperature controller 330, and the instrument panel 310 are each electrically connected. Accordingly, the voltage adjuster 320 adjusts the level of the voltage applied to the plurality of heaters 340, and the temperature adjuster 330 adjusts the temperature of the heater 340 using the thermocouple 331. The instrument panel 310 visually displays the output voltage, current, and operation Kw of the voltage regulator 320 to enable overall work management.

図1及び図6に示すように、冷却部440は、スクリューコンベア200の上半部中空円筒体204に所定距離をおいて設置されて水を噴射し、スクリューコンベア200に沿って所定区間を往復移動可能に形成された水噴射部であり得る。   As shown in FIGS. 1 and 6, the cooling unit 440 is installed in the upper half hollow cylindrical body 204 of the screw conveyor 200 at a predetermined distance, sprays water, and reciprocates along a predetermined section along the screw conveyor 200. It may be a water injection portion formed so as to be movable.

水噴射部440は、1つの水噴射器441に2つのソレノイドバルブ430が結合したものが噴射台450上に3組固定設置されたもので、スクリューコンベア200の装入部220前後の上部にそれぞれ設置される。水噴射部440は、スクリューコンベア200の長手方向に所定距離451(約35cm)往復移動しながら水を噴射できるように、スクリューコンベア200の上部に所定距離をおいて設置される。   The water injection unit 440 is a combination of two solenoid valves 430 coupled to one water injector 441 and is fixedly installed on the injection table 450. The water injection unit 440 is provided above and below the loading unit 220 of the screw conveyor 200, respectively. Installed. The water injection unit 440 is installed at a predetermined distance above the screw conveyor 200 so that water can be injected while reciprocating at a predetermined distance 451 (about 35 cm) in the longitudinal direction of the screw conveyor 200.

また、ソレノイドバルブ430は、ゴムホース433を介して、作業場の上部に設置された水道管432と別途の空気圧縮機から圧縮空気が供給される圧縮空気パイプ431とにそれぞれ連結されている。   Further, the solenoid valve 430 is connected via a rubber hose 433 to a water pipe 432 installed in the upper part of the work place and a compressed air pipe 431 to which compressed air is supplied from a separate air compressor.

また、水噴射器441、ソレノイドバルブ430、及びマグネットスイッチ420は、冷却制御部400に形成された温度調節器410〜415(熱電対460と同じ数)の出力側にそれぞれ接続され、温度調節器410〜415の入力側には、スクリューコンベア200内の錫金属の温度を測定する6つの冷却温度センサ又は熱電対460がそれぞれ接続される。これら熱電対460は、スクリューコンベア200内部の錫金属の温度を計測するために、円筒断熱材201の長手方向に沿って挟まれている。   The water injector 441, the solenoid valve 430, and the magnet switch 420 are connected to the output side of the temperature controllers 410 to 415 (the same number as the thermocouple 460) formed in the cooling control unit 400, respectively. Six cooling temperature sensors or thermocouples 460 for measuring the temperature of tin metal in the screw conveyor 200 are connected to the input sides of 410 to 415, respectively. These thermocouples 460 are sandwiched along the longitudinal direction of the cylindrical heat insulating material 201 in order to measure the temperature of the tin metal inside the screw conveyor 200.

これら熱電対460の温度情報が冷却制御部400に伝送されて、水噴射部440の水噴射量が自動的に調節され、スクリューコンベア200内部の温度を精製作業制御範囲に正確に維持する。   The temperature information of the thermocouple 460 is transmitted to the cooling control unit 400, the water injection amount of the water injection unit 440 is automatically adjusted, and the temperature inside the screw conveyor 200 is accurately maintained within the refining work control range.

従って、作業者が冷却制御部400の各温度調節器410〜415に水噴射制御温度範囲を設定して入力すると、各温度調節器410〜415により、ソレノイドバルブ430が開閉されて、水噴射部440の水噴射が自動的に作動する。これにより、スクリューコンベア200内の粗錫(Sn)の溶融温度が制御されて、前述したように再結晶化と不純物除去作業が行われる。   Accordingly, when an operator sets and inputs a water injection control temperature range to each of the temperature controllers 410 to 415 of the cooling control unit 400, the solenoid valve 430 is opened and closed by each of the temperature controllers 410 to 415, and the water injection unit The 440 water jet is automatically activated. Thereby, the melting temperature of the crude tin (Sn) in the screw conveyor 200 is controlled, and the recrystallization and impurity removal operations are performed as described above.

本発明の精製方法
以下、このように構成された本発明によるスクリューコンベア型精製装置を使用して、粗錫(Sn)金属を精製する方法を説明する。
Purification method of the present invention Hereinafter, a method of refining crude tin (Sn) metal using the screw conveyor type purification apparatus according to the present invention configured as described above will be described.

図7に示すように、別途のケトル250で粗錫金属を溶解して250℃に維持する。   As shown in FIG. 7, the crude tin metal is dissolved in a separate kettle 250 and maintained at 250 ° C.

その後、スクリューコンベア200の加熱ヒータ340によりスクリューコンベア200を250〜280℃に予熱する。そして、ケトル250の溶融金属をステンレス容器などで汲み、装入部220に注入してスクリューコンベア200に満たした後、金属の溶融状態を確認する。   Thereafter, the screw conveyor 200 is preheated to 250 to 280 ° C. by the heater 340 of the screw conveyor 200. Then, the molten metal of the kettle 250 is pumped with a stainless steel container or the like, poured into the charging section 220 and filled into the screw conveyor 200, and then the molten state of the metal is confirmed.

冷却制御部400(図6)の各温度調節器410〜415の温度は、操業初期に232℃に設定する。スクリューコンベア200に連結された駆動モータ500を稼動して螺旋状スクリュー210を徐々に回転させながら、水噴射部440を稼動して水を噴射する(冷却させる)。また、冷却制御部400の各温度調節器410〜415に作業温度を設定する。   The temperatures of the temperature controllers 410 to 415 of the cooling controller 400 (FIG. 6) are set to 232 ° C. at the beginning of operation. The water injection unit 440 is operated and water is injected (cooled) while the drive motor 500 connected to the screw conveyor 200 is operated and the spiral screw 210 is gradually rotated. In addition, the working temperature is set in each of the temperature controllers 410 to 415 of the cooling control unit 400.

例えば、錫金属の場合、最上端の温度調節器410は232℃、最下端の温度調節器415は185℃を基準にして各温度勾配を定め、徐々に1℃ずつ下げて上記表2の実操業の温度制御範囲を維持して作業を続ける。ここで、制御温度の基準は実験により得られた下記数式1により計算できる。   For example, in the case of tin metal, each temperature gradient is determined based on 232 ° C. for the uppermost temperature controller 410 and 185 ° C. for the lowermost temperature controller 415, and gradually lowered by 1 ° C. Maintain the temperature control range of operation and continue work. Here, the reference of the control temperature can be calculated by the following formula 1 obtained by experiment.

Tx℃=81.5(logx−1)+150.4 (1) Tx ° C. = 81.5 (logx−1) +150.4 (1)

ここで、合金中の錫含有量は61.9〜100%の範囲内で適用される。   Here, the tin content in the alloy is applied in the range of 61.9 to 100%.

上記数式1でxは錫含有量%であり、錫が100%、90%、61.9%の場合、次のように計算される。   In the above formula 1, x is the tin content%, and when tin is 100%, 90%, 61.9%, it is calculated as follows.

100℃=81.5(log100−1)+150.4=231.9℃であり、
90℃=81.5(log90−1)+150.4=81.5(1.95424−1)+150.4=217.13℃であり、
61.9℃=81.5(log61.9−1)+150.4=81.50.79169+150.4=183℃である。
T 100 ° C = 81.5 (log 100-1) + 150.4 = 231.9 ° C.
T 90 ° C = 81.5 (log 90-1) + 150.4 = 81.5 (1.95424-1) + 150.4 = 217.13 ° C.
T 61.9 ° C. = 81.5 (log 61.9-1) + 150.4 = 81.5 0.779169 + 150.4 = 183 ° C.

このように、作業に必要な温度調節範囲を上記数式1を用いて計算できる。   In this way, the temperature adjustment range necessary for the work can be calculated using Equation 1 above.

次に、水噴射部440により水を噴射してスクリューコンベア200内部の金属を部分凝固(部分結晶化)させる。螺旋状スクリュー210を徐々に回転させると、凝固した金属(結晶)はスクリューコンベア200の上部に少しずつ移送される。   Next, water is injected by the water injection unit 440 to partially solidify (partially crystallize) the metal inside the screw conveyor 200. When the spiral screw 210 is gradually rotated, the solidified metal (crystal) is transferred little by little to the upper part of the screw conveyor 200.

加熱制御部300の設定又は操作により加熱ヒータ340を稼動して、図9のSn−Pb合金状態図に示す液相線に沿って凝固した金属(結晶)を溶解する。   The heater 340 is operated by setting or operation of the heating control unit 300 to melt the solidified metal (crystal) along the liquidus shown in the Sn—Pb alloy state diagram of FIG.

さらに、スクリューコンベア200の上半部中空円筒体204の表面に水噴射部440により水を噴射して金属を凝固(再結晶化)させる。この過程で、冷却時に凝固した金属が純粋な金属又は合金の場合は共晶合金が形成される。   Further, water is sprayed onto the surface of the upper half hollow cylindrical body 204 of the screw conveyor 200 by the water spraying section 440 to solidify (recrystallize) the metal. In this process, when the metal solidified upon cooling is a pure metal or alloy, a eutectic alloy is formed.

このように、金属の凝固と溶解作業を無数に繰り返す再結晶化過程を経て精製作業が行われる。   As described above, the refining operation is performed through a recrystallization process in which metal solidification and dissolution operations are repeated infinitely.

正常な作業において、精製された製品(product)は、スクリューコンベア200の上部の純粋物排出口230から排出され、不純物が濃縮した金属は、スクリューコンベア200の下部の不純物排出口240のバルブ241を調節することにより、製品の約1/8〜1/15ずつ排出される。不純物金属の排出量は、各実施例に示すように、作業時に物質収支(material balance)で計算される。   In normal operation, the refined product is discharged from the pure product outlet 230 at the upper part of the screw conveyor 200, and the metal enriched with impurities passes through the valve 241 of the impurity outlet 240 at the lower part of the screw conveyor 200. By adjusting, about 1/8 to 1/15 of the product is discharged. As shown in each example, the discharge amount of the impurity metal is calculated by the material balance at the time of work.

不純物金属量の計算値を以下の各実施例と図8の不純物除去工程図に示す。   The calculated values of the amount of impurity metal are shown in the following examples and the impurity removal process diagram of FIG.

不純物金属中のPb含有量が10%前後の場合は、図8の不純物除去工程図に示すように循環させて繰り返し処理することにより製品の回収率を高める。   When the Pb content in the impurity metal is around 10%, the product recovery rate is increased by circulating and repeatedly treating as shown in the impurity removal process diagram of FIG.

作業を終了する際は、水噴射部440と螺旋状スクリュー210の稼動を中止して加熱ヒータ340のみを稼動して、スクリューコンベア200内に残っている金属を完全に溶解させた後、不純物排出口240のバルブ241を開いて金属をレードル260に受け取り、加熱ヒータ340をオフにして作業を終了する。   When the work is finished, the operation of the water injection unit 440 and the spiral screw 210 is stopped, and only the heater 340 is operated to completely dissolve the metal remaining in the screw conveyor 200, and then the impurities are discharged. The valve 241 at the outlet 240 is opened to receive the metal into the ladle 260, and the heater 340 is turned off to complete the operation.

精製作業は、原料装入と製品生産を連続的に行う、いわゆる連続作業工程である。また、図1、図3、図6、図7及び図8に示すように、作業中、スクリューコンベア断熱材201に挟まれた全6つの熱電対460が、図6の冷却制御部400の温度調節器410〜415により、処理特性に応じて予め設定された上記表2〜表5の数値のように自動的に温度を調節する。   The refining operation is a so-called continuous operation process in which raw material charging and product production are continuously performed. In addition, as shown in FIGS. 1, 3, 6, 7, and 8, all six thermocouples 460 sandwiched between the screw conveyor heat insulating materials 201 during operation are the temperatures of the cooling control unit 400 of FIG. The regulators 410 to 415 automatically adjust the temperature like the numerical values in Tables 2 to 5 set in advance according to the processing characteristics.

本発明者は粗錫中の鉛(Pb)を除去するために、前述した本発明によるスクリューコンベア型精製装置及びそれを使用した精製方法で、数百トンを処理した結果、精製装置の1日処理能力は約5トンであり、電力消費は処理金属1トン当たり平均91.6KWHである。以下、その実操業の一部を実施例に示す。   In order to remove lead (Pb) in crude tin, the present inventor processed several hundred tons with the above-described screw conveyor type refining apparatus according to the present invention and a refining method using the same. The processing capacity is about 5 tons and the power consumption averages 91.6 KWH per ton of processed metal. Hereinafter, a part of the actual operation is shown in the examples.

実施例1
本発明によるスクリューコンベア型精製装置を使用して、前述した精製方法で、粗錫金属(Sn)中の不純物である鉛(Pb)含有量を、ASTM Grade A規格である0.05%以下に除去するための作業条件(上記表2)中の実操業の制御温度範囲を230〜232℃に変更して精製作業を行った。結果は次のとおりである。
Example 1
Using the screw conveyor type refining apparatus according to the present invention, the content of lead (Pb), which is an impurity in the crude tin metal (Sn), is reduced to 0.05% or less that is ASTM Grade A standard by the above-described refining method. The purification operation was performed by changing the control temperature range of actual operation in the working conditions for removal (Table 2 above) to 230 to 232 ° C. The results are as follows.

装入物(feed)は粗錫金属であり、鉛(Pb)含有量が0.055%である粗錫金属を精製装置の装入部220に250℃の溶融状態で注入し、前述の精製作業条件で精製作業を行った。ここで、上記表2の実操業の制御温度範囲を185〜232℃から230〜232℃に変更した理由は、精製しようとする粗錫金属の鉛(Pb)含有量が低すぎて、制御温度範囲を185〜232℃にして精製作業をする場合、スクリューコンベア200内部の半溶融状態の金属が凝固して精製作業が不可能だからである。   The feed is a crude tin metal, and a crude tin metal having a lead (Pb) content of 0.055% is injected into the charging section 220 of the refiner in a molten state at 250 ° C. Purification work was performed under working conditions. Here, the reason for changing the control temperature range of the actual operation in Table 2 from 185 to 232 ° C. to 230 to 232 ° C. is that the lead (Pb) content of the crude tin metal to be refined is too low, and the control temperature This is because when the refining operation is performed at a temperature range of 185 to 232 ° C., the semi-molten metal inside the screw conveyor 200 is solidified and the refining operation is impossible.

これにより、精製装置の純粋物排出口230から排出された精製された錫金属(Sn)中の鉛(Pb)含有量は0.017%とASTM Grade A規格である0.05%より低い。また、精製装置の不純物排出口240から排出された不純物合金(Sn−Pb合金)中の鉛(Pb)含有量は1.19%であった。不純物合金は図8の不純物除去工程図に示すように循環処理される。   Thereby, the lead (Pb) content in the refined tin metal (Sn) discharged from the pure material outlet 230 of the refiner is 0.017%, which is lower than 0.05% which is the ASTM Grade A standard. Moreover, the lead (Pb) content in the impurity alloy (Sn—Pb alloy) discharged from the impurity discharge port 240 of the refiner was 1.19%. The impurity alloy is circulated as shown in the impurity removal process diagram of FIG.

これを表に示すと次のとおりである。   This is shown in the table below.

Figure 2007132654
Figure 2007132654

実施例2
実施例2の精製作業による結果を表に示すと次のとおりである。
Example 2
The results of the purification work of Example 2 are shown in the table as follows.

Figure 2007132654
Figure 2007132654

実施例3
実施例3の精製作業による結果を表に示すと次のとおりである。
Example 3
The results of the purification work of Example 3 are shown in the table as follows.

Figure 2007132654
Figure 2007132654

実施例4
実施例4の精製作業による結果を表に示すと次のとおりである。
Example 4
The results of the purification work of Example 4 are shown in the table as follows.

Figure 2007132654
Figure 2007132654

実施例5
実施例5の精製作業による結果を表に示すと次のとおりである。
Example 5
The results of the purification operation of Example 5 are shown in the table as follows.

Figure 2007132654
Figure 2007132654

実施例6
実施例6の操業は硬鉛(Pb−Sb合金)中のアンチモン(Sb)を除去する作業である。
Example 6
The operation of Example 6 is an operation for removing antimony (Sb) in the hard lead (Pb—Sb alloy).

Figure 2007132654
Figure 2007132654

以上、本発明の好ましい実施形態を例に挙げて説明したが、本発明の範囲はこのような特定の実施形態のみに限定されるものではなく、特許請求の範囲に記載された範囲内で適切に変更可能である。   The preferred embodiments of the present invention have been described above by way of example. However, the scope of the present invention is not limited to such specific embodiments, and appropriate within the scope of the claims. Can be changed.

本発明の一実施態様によるスクリューコンベア型精製装置の構成を示す図である。It is a figure which shows the structure of the screw conveyor type | mold refiner | purifier by one embodiment of this invention. 図1のII−II線断面図である。It is the II-II sectional view taken on the line of FIG. 図1のスクリューコンベアの分解斜視図である。It is a disassembled perspective view of the screw conveyor of FIG. 図1の加熱ヒータの斜視図である。It is a perspective view of the heater of FIG. 図1の加熱ヒータを制御する制御部の構成を示す概略図である。It is the schematic which shows the structure of the control part which controls the heater of FIG. 図1の水噴射部の電気的結線を示す拡大断面図である。It is an expanded sectional view which shows the electrical connection of the water injection part of FIG. 錫合金の不純物精製方法を説明するための図である。It is a figure for demonstrating the impurity refinement | purification method of a tin alloy. 図1に示す装置を利用した不純物除去工程を示す工程図である。It is process drawing which shows the impurity removal process using the apparatus shown in FIG. Sn−Pb合金の状態図である。It is a phase diagram of a Sn-Pb alloy. Sn−Ag合金の状態図である。It is a phase diagram of a Sn-Ag alloy. Sn−Ag−Cu合金の状態図である。It is a phase diagram of a Sn-Ag-Cu alloy. Sn−Ag−Cu合金の状態図である。It is a phase diagram of a Sn-Ag-Cu alloy. Pb−Sb合金の状態図である。It is a phase diagram of a Pb-Sb alloy.

符号の説明Explanation of symbols

100 ベース
200 スクリューコンベア
300 加熱制御部
400 冷却制御部
500 駆動モータ
600 減速器
100 base 200 screw conveyor 300 heating control unit 400 cooling control unit 500 drive motor 600 decelerator

Claims (17)

中空状の断面を有して長手方向に延びるように形成され、内部の混合物を移動させるスクリューコンベアと、
前記混合物の溶解及び凝固作業を繰り返すように前記スクリューコンベアの内部温度を制御して、前記混合物を純粋物と不純物とに分離して移動させる反応調節部と、
を含むことを特徴とするスクリューコンベア型精製装置。
A screw conveyor that has a hollow cross-section and is formed to extend in the longitudinal direction and moves the mixture inside;
A reaction controller for controlling the internal temperature of the screw conveyor so as to repeat the melting and solidification operations of the mixture, and separating and moving the mixture into pure and impurities;
A screw conveyor type refining device.
前記混合物が、Sn−Pb系、Sn−Ag系及びSn−Ag−Cu系の錫合金を含むことを特徴とする、請求項1に記載のスクリューコンベア型精製装置。   The screw conveyor type refining device according to claim 1, wherein the mixture contains Sn-Pb, Sn-Ag, and Sn-Ag-Cu tin alloys. 前記スクリューコンベアが、
内部に前記混合物が装入される中空円筒体と、
前記中空円筒体の内部に回転可能に装着される螺旋状スクリューと、
前記螺旋状スクリューに連結されて該螺旋状スクリューを回転させる駆動部と、
を含むことを特徴とする、請求項1に記載のスクリューコンベア型精製装置。
The screw conveyor is
A hollow cylinder into which the mixture is charged;
A helical screw rotatably mounted inside the hollow cylindrical body;
A drive unit connected to the helical screw to rotate the helical screw;
The screw conveyor type | mold refinement | purification apparatus of Claim 1 characterized by the above-mentioned.
前記中空円筒体が、
互いに結合される半円状の断面を有する上半部中空円筒体及び下半部中空円筒体と、
前記上半部中空円筒体と前記下半部中空円筒体との間に配置される円筒断熱材と、
を含むことを特徴とする、請求項3に記載のスクリューコンベア型精製装置。
The hollow cylindrical body is
An upper half hollow cylinder and a lower half hollow cylinder having semicircular cross-sections joined together;
A cylindrical heat insulating material disposed between the upper half hollow cylindrical body and the lower half hollow cylindrical body;
The screw conveyor type | mold refinement | purification apparatus of Claim 3 characterized by the above-mentioned.
前記中空円筒体が、
精製しようとする前記混合物を装入する装入部と、
前記不純物が溶融して排出されるように形成された不純物排出口と、
前記純粋物が凝固して排出されるように形成された純粋物排出口と、
を含むことを特徴とする、請求項3に記載のスクリューコンベア型精製装置。
The hollow cylindrical body is
A charging section for charging the mixture to be purified;
An impurity outlet formed such that the impurities are melted and discharged;
A pure product outlet formed such that the pure product is solidified and discharged;
The screw conveyor type | mold refinement | purification apparatus of Claim 3 characterized by the above-mentioned.
ベースをさらに含み、
前記中空円筒体が、前記純粋物排出口が形成された側の端部が、前記不純物排出口が形成された側の端部より高く配置されるように、前記中空円筒体が前記ベースに対して傾斜して装着されることを特徴とする、請求項5に記載のスクリューコンベア型精製装置。
Further including a base,
The hollow cylindrical body is positioned with respect to the base such that the end on the side where the pure material discharge port is formed is positioned higher than the end on the side where the impurity discharge port is formed. The screw conveyor type refining device according to claim 5, wherein the refining device is mounted with an inclination.
前記駆動部が、
駆動モータと、
前記駆動モータに連結される減速器と、
前記減速器と前記螺旋状スクリューとを連結するスプロケット及びチェーンと、
を含むことを特徴とする、請求項3に記載のスクリューコンベア型精製装置。
The drive unit is
A drive motor;
A speed reducer coupled to the drive motor;
A sprocket and a chain connecting the speed reducer and the helical screw;
The screw conveyor type | mold refinement | purification apparatus of Claim 3 characterized by the above-mentioned.
前記反応調節部が、
前記スクリューコンベアの一側に形成されて前記混合物を冷却する冷却部と、
前記スクリューコンベアの他側に形成されて前記混合物を加熱する加熱部と、
前記スクリューコンベアの内部温度を感知し、前記冷却部及び前記加熱部の作動を制御する温度制御部と、
を含むことを特徴とする、請求項1に記載のスクリューコンベア型精製装置。
The reaction controller is
A cooling part formed on one side of the screw conveyor to cool the mixture;
A heating unit formed on the other side of the screw conveyor to heat the mixture;
A temperature control unit that senses the internal temperature of the screw conveyor and controls the operation of the cooling unit and the heating unit;
The screw conveyor type | mold refinement | purification apparatus of Claim 1 characterized by the above-mentioned.
前記冷却部が、前記スクリューコンベアに離隔して配置されて水を噴射する水噴射部であり、前記加熱部が、前記スクリューコンベアに装着される加熱ヒータであることを特徴とする、請求項8に記載のスクリューコンベア型精製装置。   The cooling unit is a water injection unit that is arranged separately from the screw conveyor and injects water, and the heating unit is a heater that is attached to the screw conveyor. The screw conveyor type | mold refining apparatus as described in 1 .. 前記水噴射部が、前記スクリューコンベアの長手方向に所定距離往復移動可能に設置されることを特徴とする、請求項9に記載のスクリューコンベア型精製装置。   The screw conveyor type refining device according to claim 9, wherein the water injection unit is installed so as to be able to reciprocate a predetermined distance in the longitudinal direction of the screw conveyor. 前記加熱ヒータを覆うように前記スクリューコンベアに装着され、前記加熱ヒータの熱損失を防止するヒータ断熱部をさらに含むことを特徴とする、請求項9に記載のスクリューコンベア型精製装置。   The screw conveyor type refining device according to claim 9, further comprising a heater heat insulating part that is mounted on the screw conveyor so as to cover the heater and prevents heat loss of the heater. 前記温度制御部が、
前記冷却部の作動を制御する冷却制御部と、
前記加熱部の作動を制御する加熱制御部と、
を含むことを特徴とする、請求項8に記載のスクリューコンベア型精製装置。
The temperature controller is
A cooling control unit for controlling the operation of the cooling unit;
A heating control unit for controlling the operation of the heating unit;
The screw conveyor type | mold refinement | purification apparatus of Claim 8 characterized by the above-mentioned.
前記スクリューコンベアの内部に延びて前記冷却制御部に電気的に接続され、前記混合物の温度を計測するための冷却温度センサと、
前記加熱部に装着されて前記加熱制御部に電気的に接続され、前記加熱部の温度を計測するための加熱温度センサと、
をさらに含むことを特徴とする、請求項12に記載のスクリューコンベア型精製装置。
A cooling temperature sensor that extends into the screw conveyor and is electrically connected to the cooling controller, and measures the temperature of the mixture;
A heating temperature sensor mounted on the heating unit and electrically connected to the heating control unit for measuring the temperature of the heating unit;
The screw conveyor type refining device according to claim 12, further comprising:
ケトルで粗錫又は錫合金を溶解して約250℃に維持する段階と、
加熱ヒータでスクリューコンベアを250〜280℃に予熱する段階と、
前記予熱されたスクリューコンベアの装入部を介して、前記ケトル内の溶解された粗錫又は錫合金を前記スクリューコンベアに注入する段階と、
前記スクリューコンベアの作業温度を設定制御し、前記スクリューコンベアの螺旋状スクリューを徐々に回転させながら水噴射部から水を噴射して、前記スクリューコンベア内部の金属を部分凝固させ、前記凝固した金属を前記スクリューコンベアの上部に移送する段階と、
を含むことを特徴とする錫合金の精製方法。
Dissolving the crude tin or tin alloy in a kettle and maintaining at about 250 ° C .;
Preheating the screw conveyor to 250-280 ° C. with a heater;
Injecting the melted crude tin or tin alloy in the kettle into the screw conveyor through the preheated screw conveyor charging section;
The working temperature of the screw conveyor is set and controlled, water is jetted from a water jetting part while gradually rotating the helical screw of the screw conveyor, the metal inside the screw conveyor is partially solidified, and the solidified metal is Transferring to the top of the screw conveyor;
A method for purifying a tin alloy, comprising:
銀(Ag)を含有する錫合金Sn−Ag系中の不純物である鉛(Pb)を利用して、融点が183℃であるSn−Pb共晶系及び融点が221℃であるSn−Ag共晶系が形成されるように、操業制御温度を185〜221℃に設定して、再結晶化法で不純物である鉛(Pb)を除去することを特徴とする、請求項14に記載の錫合金の精製方法。   Utilizing lead (Pb), which is an impurity in the tin alloy Sn-Ag system containing silver (Ag), Sn-Pb eutectic system having a melting point of 183 ° C and Sn-Ag co-crystal having a melting point of 221 ° C The tin according to claim 14, wherein the operation control temperature is set to 185 to 221 ° C so that a crystal system is formed, and lead (Pb) as an impurity is removed by a recrystallization method. Alloy refining method. 銀(Ag)を含有する錫合金Sn−Ag−Cu系中の不純物である鉛(Pb)を利用して、融点が183℃であるSn−Pb共晶系及び融点が216℃であるSn−Ag−Cu共晶系が形成されるように、操業制御温度を185〜216℃に設定して、再結晶化法で不純物である鉛(Pb)を除去することを特徴とする、請求項14に記載の錫合金の精製方法。   Utilizing lead (Pb) which is an impurity in the tin alloy Sn—Ag—Cu system containing silver (Ag), Sn—Pb eutectic system with a melting point of 183 ° C. and Sn—P with a melting point of 216 ° C. The operation control temperature is set to 185 to 216 ° C so as to form an Ag-Cu eutectic system, and lead (Pb) as an impurity is removed by a recrystallization method. 2. A method for purifying a tin alloy according to 1. 前記スクリューコンベア内の粗錫(Sn)を精製するときの任意の作業制御基準温度が、数式
Tx=81.5(logx−1)+150.4
(式中、xは錫(Sn)含有量%を示し、錫含有量%が61.9〜100%である場合に適用され、Txは錫含有量%がxである場合の作業制御基準温度(℃)である)により決定され、
前記作業制御基準温度に基づいて精製作業制御温度範囲を算出することを特徴とする、請求項14に記載の錫合金の精製方法。
Arbitrary work control reference temperature when refining crude tin (Sn) in the screw conveyor is expressed by the formula Tx = 81.5 (logx-1) +150.4
(In the formula, x represents tin (Sn) content% and is applied when the tin content% is 61.9 to 100%, and Tx is the work control reference temperature when the tin content% is x. (° C)
The method for refining a tin alloy according to claim 14, wherein a refining work control temperature range is calculated based on the work control reference temperature.
JP2006302204A 2005-11-08 2006-11-08 Screw conveyor type purification apparatus and purification method using the same Expired - Fee Related JP4555812B2 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR20050106682A KR100722416B1 (en) 2005-11-08 2005-11-08 Crystallizer of tin and tin alloys and method thereof

Publications (2)

Publication Number Publication Date
JP2007132654A true JP2007132654A (en) 2007-05-31
JP4555812B2 JP4555812B2 (en) 2010-10-06

Family

ID=38154457

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006302204A Expired - Fee Related JP4555812B2 (en) 2005-11-08 2006-11-08 Screw conveyor type purification apparatus and purification method using the same

Country Status (2)

Country Link
JP (1) JP4555812B2 (en)
KR (1) KR100722416B1 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010111912A (en) * 2008-11-06 2010-05-20 Tamura Kaken Co Ltd Method of removing lead, reclaimed metal and reclaimed product
WO2013073695A1 (en) 2011-11-16 2013-05-23 エム・テクニック株式会社 Solid metal alloy
WO2013073241A1 (en) 2011-11-16 2013-05-23 エム・テクニック株式会社 Solid silver-copper alloy
WO2017136881A1 (en) * 2016-02-08 2017-08-17 Newsouth Innovations Pty Limited A method, apparatus and system for processing a composite waste source
KR102176241B1 (en) * 2020-06-19 2020-11-09 김용훈 Sand cleaning apparatus of sediment treatment system
CN113737016A (en) * 2021-09-18 2021-12-03 安徽华铂再生资源科技有限公司 Process for smelting crude tin from sodium stannate solution filter-pressed solid
WO2023165540A1 (en) * 2022-03-04 2023-09-07 昆明理工大学 Vertical vacuum spiral crystallization apparatus and method for continuously separating binary eutectic alloy

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101006936B1 (en) 2008-07-11 2011-01-10 한국생산기술연구원 Tin alloy refining method
KR101274764B1 (en) * 2011-06-07 2013-06-17 덕산하이메탈(주) Manufacturing method of tin for radiating low alpha radioactive rays using vacuum refining
KR101442134B1 (en) * 2013-07-25 2014-09-23 한국생산기술연구원 Dual Fluidized-Bed including screw for circulation of fluid

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN85107356A (en) * 1985-09-26 1986-09-03 云南锡业公司 The method of tin refinement deleading, bismuth and device
JPH02228432A (en) * 1989-02-28 1990-09-11 Showa Alum Corp Method for refining metal
JPH0610071A (en) * 1992-01-16 1994-01-18 Riedhammer Gmbh & Co Kg Apparatus and method for separating metal

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2564485B1 (en) * 1984-05-17 1986-08-14 Pechiney Aluminium PROCESS OF CONTINUOUS PURIFICATION OF METALS BY FRACTIONAL CRYSTALLIZATION ON A ROTATING CYLINDER
JPH05186839A (en) * 1992-01-10 1993-07-27 Kobe Steel Ltd Method for removing pb from molten brassy alloy
JPH06330197A (en) * 1993-05-17 1994-11-29 Ishikawajima Harima Heavy Ind Co Ltd Scrap treating furnace

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN85107356A (en) * 1985-09-26 1986-09-03 云南锡业公司 The method of tin refinement deleading, bismuth and device
JPH02228432A (en) * 1989-02-28 1990-09-11 Showa Alum Corp Method for refining metal
JPH0610071A (en) * 1992-01-16 1994-01-18 Riedhammer Gmbh & Co Kg Apparatus and method for separating metal

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010111912A (en) * 2008-11-06 2010-05-20 Tamura Kaken Co Ltd Method of removing lead, reclaimed metal and reclaimed product
US10829838B2 (en) 2011-11-16 2020-11-10 M. Technique Co., Ltd. Solid metal alloy
WO2013073241A1 (en) 2011-11-16 2013-05-23 エム・テクニック株式会社 Solid silver-copper alloy
KR20140092801A (en) 2011-11-16 2014-07-24 엠. 테크닉 가부시키가이샤 Solid silver-copper alloy
KR20140093672A (en) 2011-11-16 2014-07-28 엠. 테크닉 가부시키가이샤 Solid metal alloy
US9732401B2 (en) 2011-11-16 2017-08-15 M. Technique Co., Ltd. Solid metal alloy
US10006105B2 (en) 2011-11-16 2018-06-26 M. Technique Co., Ltd. Solid silver-copper alloy having mainly a non-eutectic structure not containing a eutectic at room temperature
WO2013073695A1 (en) 2011-11-16 2013-05-23 エム・テクニック株式会社 Solid metal alloy
WO2017136881A1 (en) * 2016-02-08 2017-08-17 Newsouth Innovations Pty Limited A method, apparatus and system for processing a composite waste source
US11884992B2 (en) 2016-02-08 2024-01-30 Newsouth Innovations Pty Limited Method, apparatus and system for processing a composite waste source
KR102176241B1 (en) * 2020-06-19 2020-11-09 김용훈 Sand cleaning apparatus of sediment treatment system
CN113737016A (en) * 2021-09-18 2021-12-03 安徽华铂再生资源科技有限公司 Process for smelting crude tin from sodium stannate solution filter-pressed solid
WO2023165540A1 (en) * 2022-03-04 2023-09-07 昆明理工大学 Vertical vacuum spiral crystallization apparatus and method for continuously separating binary eutectic alloy

Also Published As

Publication number Publication date
KR20070049506A (en) 2007-05-11
JP4555812B2 (en) 2010-10-06
KR100722416B1 (en) 2007-05-29

Similar Documents

Publication Publication Date Title
JP4555812B2 (en) Screw conveyor type purification apparatus and purification method using the same
CN111676380B (en) Short-process preparation device for titanium and titanium alloy
JPH05247550A (en) Direct production of electroslag refined metal
CN104561619B (en) A kind of preparation method of aluminium titanium boron wire grain refiner
US5985206A (en) Electroslag refining starter
US6368375B1 (en) Processing of electroslag refined metal
CN102534249A (en) Method for refining tin from high-silver crude tin
CN106270423B (en) A kind of method in current-conductive mold electroslag remelting control ingot solidification tissue direction
CN103667744B (en) A kind of production method containing Sn99.99% grade tin
CN209227035U (en) Voltage controls electroslag remelting device
CN102912156B (en) System and method for recycling magnesium and magnesium alloy waste
CN101484596B (en) Method and device for metal purification and separation of purified metal from a metal mother liquid such as aluminium
CN107574342A (en) A kind of production technology for being used to manufacture the aluminium alloy extrusions of fishing gear
CN107245592A (en) A kind of founding of aluminium ingot
CN109355510A (en) The dedicated slag system of electroslag remelting mould steel and its device used
CN110819823A (en) Method for preparing high-purity aluminum and prepared 5N high-purity aluminum
US3669178A (en) Direct reduction process and simultaneous continuous casting of metallic materials in a crucible to form rods
CN104928491B (en) It is a kind of in containing silver-tin alloy plus wood chip desilver method
CN1976773A (en) Casting method and installation for casting aluminium or aluminium alloys
RU2603409C2 (en) Electroslag remelting furnace with hollow nonconsumable electrode
CN106191481B (en) A kind of preparation technology of molten-salt growth method production aluminum-vanadium alloy
SE452268B (en) SET AND DEVICE FOR MANUFACTURE OF ALLOY COPPER WIRE THROUGH CASTING
RU155761U1 (en) NON-CONSUMABLE ELECTRODE ELECTRIC SLAG REMOVING FURNACE
RU2242526C2 (en) Method for producing of multilayer ingots by electroslag remelting process
CN102605189A (en) Method for preparing copper and copper-alloy cast ingots by electroslag refining technology

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091124

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100224

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100406

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100528

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100622

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100716

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130723

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130723

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140723

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees