JP2007132552A - Heating device for waste gypsum - Google Patents

Heating device for waste gypsum Download PDF

Info

Publication number
JP2007132552A
JP2007132552A JP2005324061A JP2005324061A JP2007132552A JP 2007132552 A JP2007132552 A JP 2007132552A JP 2005324061 A JP2005324061 A JP 2005324061A JP 2005324061 A JP2005324061 A JP 2005324061A JP 2007132552 A JP2007132552 A JP 2007132552A
Authority
JP
Japan
Prior art keywords
gypsum
heating
rotating
cylindrical rotating
heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005324061A
Other languages
Japanese (ja)
Other versions
JP4870974B2 (en
Inventor
Yasutoshi Inatomi
康利 稲富
Kazumi Kawashima
一美 川島
Hiroshi Morita
博史 森田
Original Assignee
Kyudenko Corp
株式会社九電工
Kawashima Seisakusho:Kk
株式会社川島製作所
Machine Planning:Kk
株式会社マシンプランニング
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyudenko Corp, 株式会社九電工, Kawashima Seisakusho:Kk, 株式会社川島製作所, Machine Planning:Kk, 株式会社マシンプランニング filed Critical Kyudenko Corp
Priority to JP2005324061A priority Critical patent/JP4870974B2/en
Publication of JP2007132552A publication Critical patent/JP2007132552A/en
Application granted granted Critical
Publication of JP4870974B2 publication Critical patent/JP4870974B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a heating device which efficiently creates β-hemihydrate gypsum from waste gypsum. <P>SOLUTION: The heating device for the waste gypsum comprises: a screw type supply portion for transporting the waste gypsum supplied from a supply hopper; a cylindrical rotating body receiving the waste gypsum from the supply portion, and rotated and driven; a high-frequency heating portion installed in adjacent to an outer peripheral face of the rotating body at an outer side of the rotating body; a discharge portion for discharging the β-hemihydrate gypsum from a terminal end of the cylindrical rotating body; and an air discharging means connected near the terminal end of the cylindrical rotating body and discharging the steam generated in the rotating body. The high-frequency heating portion is mounted at a lower side of the rotating body in a state of being divided into plural sections, a gypsum stirring blade having an approximately L-shaped cross-section is mounted on an inner wall surface of the cylindrical rotating body, and the gypsum lifted to an upper side of the rotating body by the stirring blade in accompany with the rotation of the rotating body falls to an upstream side in the rotating direction, of a lower portion in the rotating body. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、例えば廃石膏ボード等を破砕し紙等の不要物を取り除いた二水石膏、或いは陶器型、歯科形、模型等の廃石膏を破砕した二水石膏を、円筒状回転体に入れて外部から高周波加熱し、水和反応が可能なβ半水石膏又は無水石膏に加熱脱水する廃石膏の加熱装置に関するものである。   In the present invention, for example, dihydrate gypsum obtained by crushing waste gypsum board and removing unnecessary materials such as paper, or dihydrate gypsum obtained by crushing waste gypsum of pottery type, dental shape, model, etc., is put in a cylindrical rotating body. The present invention relates to a heating device for waste gypsum which is heated at high frequency from the outside and heated and dehydrated into β hemihydrate gypsum or anhydrous gypsum capable of hydration.
廃石膏ボードから水和硬化する焼石膏(3型無水石膏等)を得る技術として、従来、圧縮、衝撃、せん断、摩擦および切断で廃石膏ボードを破砕し、破砕した廃石膏を振動篩や回転篩等で紙と分別し、分別された廃石膏(二水石膏)を好ましくは280〜320℃で1〜4時間加熱して3型無水石膏に加熱脱水し、石膏中の紙と有機混和剤を炭化する技術が提案されている(特許文献1)。   As a technology to obtain calcined gypsum (type 3 anhydrous gypsum, etc.) that hydrates and cures from waste gypsum board, conventionally, waste gypsum board is crushed by compression, impact, shear, friction and cutting, and the crushed waste gypsum is shaken or rotated. The waste gypsum (dihydrate gypsum) separated by paper with a sieve or the like is heated at 280 to 320 ° C. for 1 to 4 hours and dehydrated to type 3 anhydrous gypsum, and the paper in the gypsum and the organic admixture Has been proposed (Patent Document 1).
回転胴型焼却炉乾燥炉としては、円筒状回転体の内部にバーナ熱風を直接吹き込み被加熱物を乾燥する装置(特許文献2)、単一の高周波加熱部を回転ドラム下側に配置しその高周波加熱部で被加熱物を乾燥するバッチ処理式の乾燥装置(特許文献3)、円筒状回転体の外側の円周方向全周に高周波加熱コイルを巻き、円筒状回転体の外部から複数台の高周波加熱部で被加熱物を連続処理する加熱炉(特許文献4,5)等が提案されている。   As a rotary barrel type incinerator drying furnace, an apparatus (Patent Document 2) that blows hot air from a burner directly into a cylindrical rotating body to dry an object to be heated, a single high-frequency heating unit is disposed below the rotating drum. A batch processing type drying device (Patent Document 3) for drying an object to be heated by a high-frequency heating unit, winding a high-frequency heating coil around the entire circumference in the circumferential direction outside the cylindrical rotating body, and a plurality of units from the outside of the cylindrical rotating body A heating furnace (Patent Documents 4 and 5) that continuously processes an object to be heated in a high-frequency heating section is proposed.
特許第3221940Japanese Patent No. 3221940 特開2001−327845JP 2001-327845 A 特開昭59−176573JP 59-176573 特開昭57−115670JP 57-115670 A 特開平11−226542JP-A-11-226542
ところで、上記特許文献1の技術は、篩を通過した廃石膏には紙が混入しており、石膏中の紙と有機混和剤は炭化する温度以下で温度制御しないと、加熱脱水した石膏に炭化物が混ざり変色するという課題がある。   By the way, in the technique of the above-mentioned Patent Document 1, paper is mixed in waste gypsum that has passed through the sieve, and unless the temperature is controlled below the temperature at which the paper and the organic admixture in the gypsum are carbonized, carbide is added to the heated dehydrated gypsum. There is a problem that is mixed and discolored.
上記特許文献2のようなバーナ熱風を円筒状回転体の内部に直接吹き込む装置では、回転体内において温度分布の大きなばらつきが生じるため、二水石膏を加熱脱水する装置として使用すると、二水石膏の加熱脱水状態が安定せず、二水石膏を水和反応が可能なβ半水石膏又は3型無水石膏に加熱脱水する装置としては生成物の品質がばらつくという問題がある。また、同文献2の装置によると、高温であるバーナ吹出部において一部の石膏の温度が360℃以上になると水和しにくい2型無水石膏となり、水和反応がばらつく。さらに、化石燃料の燃焼によるスス等の石膏への混入による変色の問題と、熱風での粉末石膏の飛散処理のため排気側に集塵機等を取付ける等装置が大型化するという課題もある。   In an apparatus that blows hot air of a burner directly into the inside of a cylindrical rotating body as in Patent Document 2, a large variation in temperature distribution occurs in the rotating body. Therefore, when dihydrate gypsum is used as an apparatus for heating and dehydrating, The heat dehydration state is not stable, and there is a problem that the quality of the product varies as an apparatus for heat dehydrating dihydrate gypsum to β-half water gypsum or type 3 anhydrous gypsum capable of hydration. Moreover, according to the apparatus of the same literature 2, when the temperature of some gypsum becomes 360 degreeC or more in the burner blowing part which is high temperature, it will become 2 type anhydrous gypsum which is hard to hydrate, and a hydration reaction will vary. Furthermore, there is a problem of discoloration due to mixing of soot or the like due to combustion of fossil fuel, and a problem that the apparatus such as a dust collector is attached on the exhaust side for the dispersion treatment of the powder gypsum with hot air.
上記特許文献3は、高周波加熱部を回転ドラム下側に配置し、単一の高周波加熱部でバッチ処理する乾燥装置であるが、回転ドラム内の掻上板は垂直なフラット板であるため、下側の高周波加熱部の位置に対して回転方向の一部にしか非加熱物を落下できず、粒子間に隙間がある石膏では高周波加熱コイルで回転ドラムに渦電流を発生させ誘導加熱するため石膏に接触する高温の部分の伝熱面積が減少して熱伝達率が悪くなり、また、回転方向の最下部から下流の4分の1の範囲での被加熱物の厚みが厚くなり、石膏の場合加熱脱水の水蒸気が石膏上面より抜けにくく熱伝達率が悪くなる。   Patent Document 3 is a drying device in which a high-frequency heating unit is disposed on the lower side of a rotating drum and batch processing is performed with a single high-frequency heating unit, but the scraping plate in the rotating drum is a vertical flat plate, Non-heated material can fall only in a part of the rotation direction with respect to the position of the lower high-frequency heating part, and in the case of gypsum with a gap between particles, an induction heating is generated by generating an eddy current in the rotary drum with a high-frequency heating coil. The heat transfer area at the high temperature part in contact with the gypsum decreases and the heat transfer rate deteriorates, and the thickness of the object to be heated increases from the lowest part in the rotation direction to a quarter of the downstream. In this case, the heat-dehydrated water vapor is difficult to escape from the upper surface of the gypsum, resulting in a poor heat transfer rate.
上記特許文献4,5は、円筒状回転体の外部から複数台の高周波加熱部で被加熱物を連続処理する加熱炉であるが、円筒状回転体の外側の円周方向全周に高周波加熱コイルを巻いているものであり、石膏の場合、加熱脱水で発生した水蒸気を、円筒状回転体と両端固定部との回転摺動においてシールする必要があり、高周波加熱コイルを下部に配置することに対し円周方向全周に巻くと組立と取外し作業に時間がかかるという課題がある。   The above Patent Documents 4 and 5 are heating furnaces that continuously process an object to be heated by a plurality of high-frequency heating units from the outside of a cylindrical rotating body, but high-frequency heating is performed on the entire circumference in the circumferential direction outside the cylindrical rotating body. Coil is wound, and in the case of gypsum, it is necessary to seal the water vapor generated by heat dehydration in the rotational sliding between the cylindrical rotating body and the both-end fixed part, and the high-frequency heating coil should be arranged at the lower part On the other hand, if it is wound around the entire circumference, there is a problem that it takes time to assemble and remove.
本発明は、上記従来の課題に鑑みてなされたものであり、円筒状回転体の下側に取付けた複数台の高周波加熱部により、二水石膏を効率的に加熱して温度制御により二水石膏が混ざらないβ半水石膏または無水石膏を効率的に得ることを目的とする。また、石膏の加熱脱水により発生する水蒸気と排出する加熱脱水石膏からの排熱利用及び放熱量の削減を行なうことで省エネ化を図ることを目的とする。また装置構成も簡単な石膏の加熱装置を提供することを目的とする。   The present invention has been made in view of the above-described conventional problems. A plurality of high-frequency heating units attached to the lower side of a cylindrical rotating body are used to efficiently heat dihydrate gypsum and to control two water by temperature control. The object is to efficiently obtain β-half-water gypsum or anhydrous gypsum that is not mixed with gypsum. It is another object of the present invention to save energy by reducing the amount of heat generated from the water vapor generated by heat dehydration of gypsum and the heat dehydration gypsum discharged and the amount of heat released. It is another object of the present invention to provide a gypsum heating device having a simple device configuration.
本発明は上記課題を解決するために、
第1に、破砕された廃石膏を加熱する廃石膏の加熱装置において、供給ホッパーから供給された上記廃石膏を搬送するスクリュー式供給部と、該スクリュー式供給部から上記廃石膏の供給を受けるものであって傾斜して設置された状態で駆動手段により回転駆動される円筒状回転体と、該円筒状回転体の外側において該回転体外周面に近接して設置された高周波加熱部と、円筒状回転体の終端からβ半水石膏又は無水石膏を排出する排出部と、上記円筒状回転体内に発生する水蒸気を排気する排気手段とを備えた廃石膏の加熱装置であって、上記高周波加熱部は、上記回転体の下側外周面に対向する位置に複数に分割して設け、上記円筒状回転体の内壁面に、横断面略L字形状の石膏攪拌用羽根を複数設け、回転体の回転に伴って上記攪拌羽根により回転体上側に持ち上げられた石膏を回転体内下部の回転方向上流側に落下し得るように構成したものであることを特徴とする廃石膏の加熱装置により構成されるものである。
In order to solve the above problems, the present invention
First, in a waste gypsum heating apparatus that heats crushed waste gypsum, a screw-type supply unit that conveys the waste gypsum supplied from a supply hopper, and the supply of the waste gypsum from the screw-type supply unit A cylindrical rotating body that is rotationally driven by the driving means in a state where it is inclined and installed, and a high-frequency heating unit that is installed in the vicinity of the outer peripheral surface of the rotating body outside the cylindrical rotating body, A waste gypsum heating apparatus comprising: a discharge unit that discharges β hemihydrate gypsum or anhydrous gypsum from a terminal end of a cylindrical rotating body; and an exhaust unit that exhausts water vapor generated in the cylindrical rotating body, The heating unit is divided into a plurality of positions at a position facing the lower outer peripheral surface of the rotating body, and a plurality of gypsum stirring blades having a substantially L-shaped cross section are provided on the inner wall surface of the cylindrical rotating body. The above stirring blade as the body rotates Is formed using the heating device of the waste gypsum, characterized in that the gypsum lifted to the rotating body upper is obtained by construction so as to fall in the rotation direction upstream side of the rotating body bottom by.
このように構成すると、円筒状回転体の下側に取付けた複数台の高周波加熱部により、二水石膏を効率的に加熱して温度制御により二水石膏が混ざらないβ半水石膏または無水石膏を効率的に得ることができる。また円筒状回転体内において攪拌羽根により石膏を効率的に攪拌し得る。上記排気手段は、例えば供給装置(12)の中空パイプ(9a)、外側通路(12a)、排気パイプ(12’)等により構成される。この排気手段は円筒状回転体の始端近傍、或は始端近傍又は終端近傍、或は始端近傍及び終端近傍位置に設けることが好ましい。   With this configuration, β hemihydrate gypsum or anhydrous gypsum in which dihydrate gypsum is not mixed with temperature control by efficiently heating dihydrate gypsum by a plurality of high-frequency heating units attached to the lower side of the cylindrical rotating body. Can be obtained efficiently. Moreover, gypsum can be efficiently stirred by the stirring blade in the cylindrical rotating body. The exhaust means includes, for example, a hollow pipe (9a), an outer passage (12a), an exhaust pipe (12 '), and the like of the supply device (12). This exhaust means is preferably provided in the vicinity of the start end of the cylindrical rotating body, in the vicinity of the start end or in the vicinity of the end, or in the vicinity of the start end and in the vicinity of the end.
第2に、上記スクリュー式供給部は、上記供給ホッパーからの廃石膏を上記円筒状回転体内に搬送するスクリューを備えた供給管と、上記回転体内で発生した水蒸気を上記石膏の搬送方向とは逆方向に排出する排出管とを具備するものであり、さらに上記供給管と上記排出管とが伝熱面を介して熱交換し得るように構成したものであることを特徴とする上記第1記載の廃石膏の加熱装置により構成される。   Secondly, the screw-type supply unit includes a supply pipe including a screw that conveys waste gypsum from the supply hopper into the cylindrical rotating body, and water vapor generated in the rotating body as a conveying direction of the gypsum. A discharge pipe that discharges in the opposite direction; and the supply pipe and the discharge pipe are configured to be able to exchange heat via a heat transfer surface. It is comprised by the heating apparatus of the waste gypsum of description.
このように構成すると、加熱脱水石膏からの排熱利用を図ることができ、また放熱量の削減を行なうことで省エネ化を実現し得る。また、排出管の水蒸気通路に、凝縮水の排水構造(例えば図1の凝縮タンク(14)、図8の熱交タンク(43))、と洗浄構造(例えば図8の熱交タンク43の洗浄構造)を設けることもできる。   If comprised in this way, the exhaust heat utilization from heat | fever dehydration gypsum can be aimed at, and energy saving can be implement | achieved by reducing the emitted-heat amount. Further, a drainage structure of condensed water (for example, the condensation tank (14) in FIG. 1, the heat exchange tank (43) in FIG. 8) and a washing structure (for example, the washing of the heat exchange tank 43 in FIG. 8) are provided in the water vapor passage of the discharge pipe. Structure) can also be provided.
第3に、上記排気手段から排気された水蒸気の熱を利用して熱媒体を加熱する熱交換手段を設け、上記スクリュー式供給部は、上記供給ホッパーからの廃石膏を上記円筒状回転体内に搬送するスクリューを備えた供給管と、上記熱媒体を上記石膏の搬送方向とは逆方向に排出する排出管と具備するものであり、さらに上記供給管と上記排出管とが伝熱面を介して熱交換し得るように構成したものであることを特徴とする上記第1記載の廃石膏の加熱装置により構成される。   Third, a heat exchange means for heating the heat medium using the heat of the water vapor exhausted from the exhaust means is provided, and the screw-type supply unit disposes the waste gypsum from the supply hopper into the cylindrical rotating body. A supply pipe provided with a screw for conveying, and a discharge pipe for discharging the heat medium in a direction opposite to the conveying direction of the gypsum, and the supply pipe and the discharge pipe are further connected via a heat transfer surface. The waste gypsum heating apparatus according to the first aspect is configured to be capable of heat exchange.
第4に、上記排気手段から排気された水蒸気中の石膏粉塵を捕集する集塵部を設け、上記スクリュー式供給部は、上記供給ホッパーからの廃石膏を上記円筒状回転体内に搬送するスクリューを備えた供給管と、上記集塵部を通過した水蒸気を上記石膏の搬送方向とは逆方向に排出する排出管と具備するものであり、さらに上記供給管と上記排出管とが伝熱面を介して熱交換し得るように構成したものであることを特徴とする上記第1記載の廃石膏の加熱装置により構成される。   Fourth, a dust collecting unit for collecting gypsum dust in water vapor exhausted from the exhaust unit is provided, and the screw-type supply unit is a screw that conveys waste gypsum from the supply hopper into the cylindrical rotating body. And a discharge pipe that discharges water vapor that has passed through the dust collecting portion in a direction opposite to the direction of transport of the gypsum, and the supply pipe and the discharge pipe further include a heat transfer surface. It is comprised so that heat exchange can be carried out through, It is comprised by the heating apparatus of the waste gypsum of the said 1st characterized by the above-mentioned.
第5に、外気を円筒状回転体に給気するファンを設けると共に、円筒状回転体における加熱脱水後の石膏の排出部に、加熱脱水後の石膏を上記給気で冷却すると共に給気を上記加熱脱水後の石膏により加熱する熱交換機構を設けたものであることを特徴とする上記第1又は4の何れかに記載の廃石膏の加熱装置により構成される。   Fifth, a fan for supplying outside air to the cylindrical rotating body is provided, and the heated and dehydrated gypsum discharge part in the cylindrical rotating body is cooled with the above-mentioned supply air and supplied with air. The waste gypsum heating apparatus according to any one of the first or fourth aspect is provided with a heat exchange mechanism that heats the gypsum after the heat dehydration.
このように構成すると、排出後の脱水石膏を冷却しながら給気を加熱して、円筒状回転体内の温度低下を防止し得る。   If comprised in this way, air supply can be heated, cooling the dehydrated gypsum after discharge | emission, and the temperature fall in a cylindrical rotary body can be prevented.
第6に、上記円筒状回転体の回転方向上流側又は回転方向下流側の外周面位置の温度を測定し得る非接触型温度センサーを上記各高周波加熱部に対応して各々設け、上記温度センサーで計測した回転体外周面温度に基づいて、上記高周波加熱部の出力と上記スクリュー式供給部による石膏供給量とを制御し得るように構成したものであることを特徴とする上記第1〜5の何れかに記載の廃石膏の加熱装置により構成される。   Sixth, a non-contact type temperature sensor capable of measuring the temperature of the outer peripheral surface position on the upstream side in the rotation direction or the downstream side in the rotation direction of the cylindrical rotating body is provided corresponding to each of the high-frequency heating units, and the temperature sensor Based on the temperature of the outer peripheral surface of the rotating body measured in step 1, the output of the high-frequency heating unit and the amount of gypsum supplied by the screw-type supply unit can be controlled. The waste gypsum heating device according to any one of the above.
このように構成すると、例えば上記温度センサーの検出温度に基づいて、石膏の供給開始と終了時等に高周波加熱出力と石膏供給量等を制御することにより、効率的な加熱処理を行うことができる。   If comprised in this way, an efficient heat processing can be performed by controlling a high frequency heating output, a gypsum supply amount, etc. at the time of the supply start of gypsum, etc. based on the detection temperature of the said temperature sensor, for example. .
第7に、上記石膏攪拌用羽根は、横断面略L型を形成する接合板部と基板部とから構成し、さらに上記基板部の端縁に該基板部に対して接合板部の方向に所定角度を以って突設された突出板部を有しており、上記石膏攪拌用羽根の両端部と上記円筒状回転体の左右閉止壁面との間に空間を設けたものであることを特徴とする上記第1〜6の何れかに記載の廃石膏の加熱装置により構成される。   Seventh, the plaster agitating blade is composed of a joining plate portion and a substrate portion that form a substantially L-shaped cross section, and further on the edge of the substrate portion toward the joining plate portion with respect to the substrate portion. It has a projecting plate portion projecting at a predetermined angle, and a space is provided between both end portions of the plaster stirring blade and the left and right closed wall surfaces of the cylindrical rotating body. It is comprised by the heating apparatus of the waste gypsum in any one of the said 1st-6th characterized.
このように構成すると、回転体の回転に基づいて石膏攪拌羽根で石膏を持ち上げて、上部より回転体の回転方向上流側に落下させることができ、これにより効率的な石膏の加熱を実現することができる。   If comprised in this way, based on rotation of a rotary body, a gypsum can be lifted with a gypsum stirring blade, and can be dropped from the upper part to the rotation direction upstream of a rotary body, and this realizes efficient heating of a plaster Can do.
第8に、上記円筒状回転体及び上記高周波加熱部を保温用筐体により覆う構成とし、上記保温用筐体内部における上記高周波加熱部の上部近傍に仕切板を設け、上記保温用筐体の内部空間を高周波加熱部の設置空間と上記円筒状回転体側の空間とに分割したものであることを特徴とする上記第1〜7の何れかに記載の廃石膏の加熱装置により構成されるものである。   Eighth, the cylindrical rotating body and the high-frequency heating unit are covered with a heat insulation case, and a partition plate is provided near the upper portion of the high-frequency heating unit inside the heat insulation case. The internal space is divided into an installation space for a high-frequency heating unit and a space on the cylindrical rotating body side, and is constituted by the waste gypsum heating device according to any one of the above first to seventh aspects It is.
このように構成すると、保温用筐体内の高温空気が対流により高周波加熱部側に流れることを防止することができ、高周波加熱部の冷却効率を高めることができる。   If comprised in this way, it can prevent that the high temperature air in the case for heat insulation flows to the high frequency heating part side by a convection, and can improve the cooling efficiency of a high frequency heating part.
第9に、上記円筒状回転体の外側に厚さ9mm以下のセラミックファイバ製断熱シートを、耐熱テープ又は耐熱接着材で巻き着け固定し、上記シートにおける上記回転体外周の非接触型温度センサーの測定点を含む部分を切欠いたものであることを特徴とする上記第1〜8の何れかに記載の廃石膏の加熱装置により構成される。   Ninth, a ceramic fiber heat insulating sheet having a thickness of 9 mm or less is wrapped around and fixed to the outside of the cylindrical rotating body with a heat-resistant tape or a heat-resistant adhesive, and a non-contact type temperature sensor on the outer periphery of the rotating body in the sheet is used. It is constituted by the waste gypsum heating device according to any one of the first to eighth aspects, wherein a portion including the measurement point is cut out.
このように構成すると、円筒状回転体内の温度低下を効率的に防止することができる。   If comprised in this way, the temperature fall in a cylindrical rotary body can be prevented efficiently.
第10に、複数台の高周波加熱部の各高周波加熱コイルの上記円筒状回転体の軸方向の長さを、円筒状回転体の供給側のコイルより排出側のコイルの方が長くなるように構成したものであることを特徴とする上記第1〜9の何れかに記載の廃石膏の加熱装置により構成される。   Tenth, the length of the cylindrical rotating body in the axial direction of each high-frequency heating coil of the plurality of high-frequency heating units is set so that the coil on the discharge side is longer than the coil on the supply side of the cylindrical rotating body. The waste gypsum heating apparatus according to any one of the first to ninth aspects, which is configured.
このように構成すると、高周波加熱コイルの円筒状回転体長手方向の単位長さ当りの高周波加熱量を、供給側のコイルに比べて排出側のコイルを低くすることができ、これにより温度制御を実行し易くなり、高品質の加熱脱水石膏を得ることができる。   With this configuration, the amount of high-frequency heating per unit length in the longitudinal direction of the cylindrical rotating body of the high-frequency heating coil can be made lower on the discharge-side coil than on the supply-side coil. It becomes easy to carry out, and high-quality heat-dehydrated gypsum can be obtained.
第11に、円筒状回転体の内部に傾斜板を設け、上記石膏攪拌用羽根から落下した石膏を傾斜板上面を移動させ高周波加熱部の設置位置より回転方向上流側に落下させる構造を有することを特徴とする上記第1〜10の何れかに記載の廃石膏の加熱装置により構成される。   Eleventh, an inclined plate is provided inside the cylindrical rotating body, and the gypsum dropped from the plaster agitating blade is moved on the upper surface of the inclined plate and dropped from the installation position of the high-frequency heating unit to the upstream side in the rotation direction. The waste gypsum heating device according to any one of the above first to tenth features.
このように構成することにより、回転体内の石膏を回転方向上流側に確実に落として攪拌することができ、石膏の効率的な加熱処理を行うことができる。   By comprising in this way, the gypsum in a rotary body can be reliably dropped and stirred to the upstream side of a rotation direction, and an efficient heat processing of gypsum can be performed.
第12に、上記円筒状回転体の端面側固定端の外側にバーナ燃焼部を取付けて、固定端から円筒状回転体内にバーナ放熱筒を固定し取付け、バーナによる熱風をバーナ放熱筒に流して石膏を間接加熱し、供給装置において燃焼ガスを石膏と熱交換して排気し、バーナ加熱を円筒状回転体の供給側の石膏の加熱に用いることを特徴とする上記第1の廃石膏の加熱装置により構成される。   12thly, a burner combustion part is attached to the outer side of the fixed end on the end surface side of the cylindrical rotating body, and a burner radiating cylinder is fixed and attached to the cylindrical rotating body from the fixed end, and hot air from the burner is passed through the burner radiating cylinder. The heating of the first waste gypsum, wherein the gypsum is indirectly heated, the combustion gas is exchanged with the gypsum in the supply apparatus and exhausted, and the burner heating is used to heat the gypsum on the supply side of the cylindrical rotating body. Consists of devices.
このように構成すると、バーナ加熱を併用しながら温度分布のばらつきを生じさせることなく、効率的な加熱を実現し得る。上記供給装置は、例えば図9における供給装置(63)等をいう。   If comprised in this way, efficient heating can be implement | achieved, without producing the dispersion | variation in temperature distribution, combining burner heating. The supply device is, for example, the supply device (63) in FIG.
このように本発明によれば、高品質なβ半水石膏を得ることができる。   Thus, according to the present invention, high-quality β hemihydrate gypsum can be obtained.
さらに、石膏の加熱脱水により発生する水蒸気を石膏の加熱に利用することができ、省エネを実現し得る。   Furthermore, water vapor generated by heating and dehydrating gypsum can be used for heating gypsum, and energy saving can be realized.
また、装置構成も簡単な廃石膏の加熱装置を得ることができる。   Also, a waste gypsum heating device having a simple device configuration can be obtained.
以下、本発明に係る石膏の加熱装置の構成を詳細に説明する。   Hereinafter, the structure of the heating apparatus for gypsum according to the present invention will be described in detail.
図1において、1は内部で石膏を加熱脱水する中空の円筒状回転体であり、該円筒状回転体1の材質は円筒状の鋼板(比透磁率が大きい)、または鋼板の錆が石膏に混入するのを避けるため外側が鋼板で内側が比透磁率の小さいステンレス板を接合したもの、もしくは、鋼板の内と外側にステンレス板を接合したもの、鋼板の表面にセラミックや樹脂等をコーティングしたものを使用する。   In FIG. 1, 1 is a hollow cylindrical rotating body that heats and dehydrates gypsum inside, and the material of the cylindrical rotating body 1 is a cylindrical steel plate (having a high relative permeability), or the rust of the steel plate is transformed into gypsum. In order to avoid contamination, a steel plate on the outside and a stainless steel plate with a small relative permeability on the inside are joined, or a stainless steel plate is joined on the inside and outside of the steel plate, and the surface of the steel plate is coated with ceramic or resin. Use things.
該円筒状回転体1は円筒状の形状であり、回転体1下部の両側付近に設けたローラ2で4点以上を支持され、回転駆動モータ(駆動手段)3で歯車又はチェーン2a等を介してローラ2を回転させ、当該ローラ2により当該円筒状回転体1を矢印m方向に回転させる。上記回転駆動モータ3は、インバータにより回転数を可変制御できるように構成する。   The cylindrical rotating body 1 has a cylindrical shape, and is supported at four or more points by rollers 2 provided near both sides of the lower portion of the rotating body 1, and a rotation driving motor (driving means) 3 via a gear or a chain 2a. Then, the roller 2 is rotated, and the cylindrical rotating body 1 is rotated in the arrow m direction by the roller 2. The rotational drive motor 3 is configured such that the rotational speed can be variably controlled by an inverter.
円筒状回転体1は、供給側Aから排出側Bに向かい下り勾配を0〜数度の角度で設ける。これにより、回転体1の供給側Aと排出側Bに高低差ができ石膏は供給側から出口側に流れる。   The cylindrical rotating body 1 is provided with a downward gradient from the supply side A toward the discharge side B at an angle of 0 to several degrees. Thereby, there is a height difference between the supply side A and the discharge side B of the rotator 1 and the gypsum flows from the supply side to the outlet side.
円筒状回転体1の内面には長手方向に持上げ部(石膏攪拌用羽根)4を溶接等で取付ける。この持上げ部4の個数は8個から16個で、円周方向にほぼ均等に配置する。   A lifting portion (gypsum stirring blade) 4 is attached to the inner surface of the cylindrical rotating body 1 by welding or the like in the longitudinal direction. The number of the lifting portions 4 is 8 to 16, and they are arranged almost evenly in the circumferential direction.
供給ホッパー6には二水石膏7を貯蔵し、定期的にバイブレータ8を作動して貯蔵された二水石膏をスクリューコンベア9に落下させ、スクリューコンベア9の回転により上記二水石膏を円筒状回転体1内に供給していく。スクリューコンベア9の中心回転軸は中空パイプ9aにより構成されており、当該スクリューコンベア9は上記中空パイプ9aを歯車またはチェーン10aを介してモータ10で駆動することにより、上記二水石膏を上記円筒状回転体1内に供給し得る方向に回転駆動される。上記モータ10はインバータにより回転数可変制御ができるものであり、これにより上記スクリューコンベア9の回転数制御を行うことで上記二水石膏の回転体1への供給量を制御し得るように構成する。   Dihydrate gypsum 7 is stored in the supply hopper 6, the dihydrate gypsum stored by periodically operating the vibrator 8 is dropped on the screw conveyor 9, and the dihydrate gypsum is rotated in a cylindrical shape by the rotation of the screw conveyor 9. Supply to the body 1. The central axis of rotation of the screw conveyor 9 is constituted by a hollow pipe 9a, and the screw conveyor 9 drives the hollow pipe 9a with a motor 10 via a gear or a chain 10a, thereby converting the dihydrate gypsum into the cylindrical shape. It is rotationally driven in a direction that can be supplied into the rotating body 1. The motor 10 is capable of variable speed control by an inverter, and is configured so that the amount of dihydrate gypsum supplied to the rotating body 1 can be controlled by controlling the rotational speed of the screw conveyor 9. .
供給ホッパー6の二水石膏の出口部分には、静電容量式等の材料検知センサー11を設け、ホッパー6内に二水石膏の貯蔵がなくなったか否かを検知できるようにしている。   A material detection sensor 11 such as a capacitance type is provided at the outlet portion of the dihydrate gypsum of the supply hopper 6 so that it can be detected whether or not the dihydrate gypsum is stored in the hopper 6.
12は上記スクリューコンベア9及び中空パイプ9aを含む二水石膏の供給装置(スクリュー式供給部)であり、全体として2重管構造をなしている。この供給装置12の外側管(排出管)には円筒状回転体1内で加熱脱水して生じた水蒸気が通る外側通路12aが形成され、内側管(供給管)には上記ホッパー6からの二水石膏がスクリューコンベア9で送られる内側通路12bが形成されている。この供給装置12と上記円筒状回転体1の外周端縁の接続部1aの隙間はパッキン12cでシールされている。   Reference numeral 12 denotes a dihydrate gypsum supply device (screw type supply unit) including the screw conveyor 9 and the hollow pipe 9a, and has a double pipe structure as a whole. The outer pipe (discharge pipe) of the supply device 12 is formed with an outer passage 12a through which water vapor generated by heating and dehydration in the cylindrical rotating body 1 passes, and the inner pipe (supply pipe) is provided with two pipes from the hopper 6. An inner passage 12b through which water gypsum is sent by the screw conveyor 9 is formed. A gap between the supply device 12 and the connecting portion 1a at the outer peripheral edge of the cylindrical rotating body 1 is sealed with a packing 12c.
加熱乾燥中における上記回転体1内の水蒸気は、スクリューコンベア9の中空パイプ9aの内部を通り排気され、回転する中空パイプ9aはロータリージョイント13を介して回転しないホース13aと接続されている。よって、上記中空パイプ9aは排気管としても機能するものである。ここで、外側通路12aと内側通路12bの境界面、内側通路12bと中空パイプ9aの境界面が伝熱面となる。   The water vapor in the rotating body 1 during the heat drying is exhausted through the hollow pipe 9 a of the screw conveyor 9, and the rotating hollow pipe 9 a is connected to the non-rotating hose 13 a through the rotary joint 13. Therefore, the hollow pipe 9a also functions as an exhaust pipe. Here, the boundary surface between the outer passage 12a and the inner passage 12b and the boundary surface between the inner passage 12b and the hollow pipe 9a are heat transfer surfaces.
中空パイプ9a外面又はスクリューコンベア9に、該パイプ9a又はスクリューコンベア9と一体で回転するようにパドル9bを取付け、スクリューコンベア9で移送される石膏を通路内で撹拌し、水蒸気の通路と伝熱面を介して石膏へ熱交換する熱伝達を向上することもできる。   A paddle 9b is attached to the outer surface of the hollow pipe 9a or the screw conveyor 9 so as to rotate integrally with the pipe 9a or the screw conveyor 9, the gypsum transferred by the screw conveyor 9 is stirred in the passage, and the steam passage and heat transfer It is also possible to improve the heat transfer through the surface to the gypsum.
ホース13a及び外側通路12aを通過した水蒸気と一部が凝縮した凝縮水は、凝縮タンク14に入って凝縮水は溜まり、排気出口15aから外気に自然排気するか、または排気ファン15を取付け強制排気する。   The water vapor that has passed through the hose 13a and the outer passage 12a and the condensed water partially condensed enter the condensation tank 14 and the condensed water accumulates, and is naturally exhausted to the outside air from the exhaust outlet 15a, or is forcedly exhausted by installing an exhaust fan 15 To do.
上記円筒状回転体1の終端には、終端固定蓋16を固定設置し、円筒状回転体1と終端固定蓋16の間の隙間はパッキン16aでシールされる。   A terminal fixing lid 16 is fixedly installed at the end of the cylindrical rotating body 1, and a gap between the cylindrical rotating body 1 and the terminal fixing lid 16 is sealed with a packing 16a.
加熱脱水された石膏は、円筒状回転体1の終端の本体排出口17から落下し、排出装置18内の排出スクリューコンベア19の回転で移送され上部の排出口21から排出され、例えば袋22に入れ貯蔵されていく。排出スクリューコンベア19の回転はモータ20で行なう。   The heated and dehydrated gypsum falls from the main body discharge port 17 at the end of the cylindrical rotating body 1, is transferred by the rotation of the discharge screw conveyor 19 in the discharge device 18, and is discharged from the upper discharge port 21. It will be stored. The discharge screw conveyor 19 is rotated by a motor 20.
上記凝縮水タンク14に排気ファン(ファン)15を設け、排気ファン15で強制排気し円筒状回転体1内を負圧にする。この場合、排出装置18の上部に設けた給気口23から外気が排出装置18の内面上部と排出スクリューコンベア19の上面を通り円筒状回転体1内に給気(入力)する。本体排出口(排出部)17での温度が130℃以上の加熱脱水石膏と上記給気口23からの給気(空気)は排出装置18内で熱交換を行ない、給気(空気)の温度は上昇し加熱脱水石膏は給気空気により冷却される。このように、排気ファン15、排出装置18、スクリューコンベア19、給気口23等により熱交換機構が構成される。   An exhaust fan (fan) 15 is provided in the condensate tank 14, and the exhaust fan 15 forcibly exhausts the inside of the cylindrical rotating body 1 to a negative pressure. In this case, outside air is supplied (input) into the cylindrical rotating body 1 from the air supply port 23 provided in the upper portion of the discharge device 18 through the inner surface upper portion of the discharge device 18 and the upper surface of the discharge screw conveyor 19. Heated dehydrated gypsum whose temperature at the main body discharge port (discharge unit) 17 is 130 ° C. or higher and the supply air (air) from the supply port 23 perform heat exchange in the discharge device 18 and the temperature of the supply air (air) The heated dehydrated gypsum is cooled by the supply air. In this manner, the heat exchange mechanism is configured by the exhaust fan 15, the discharge device 18, the screw conveyor 19, the air supply port 23, and the like.
円筒状回転体1内の水蒸気の排気を終端部から行なうために、終端固定蓋16の上部に排気パイプ12’を接続し、供給装置12の外側通路12aに連結することも可能である。尚、回転体1始端近傍の中空パイプ9a、外側通路12a、回転体1の終端近傍の排気パイプ12’等により排気手段が構成されている。   In order to exhaust the water vapor in the cylindrical rotating body 1 from the terminal portion, an exhaust pipe 12 ′ may be connected to the upper portion of the terminal fixing lid 16 and connected to the outer passage 12 a of the supply device 12. The exhaust means is constituted by the hollow pipe 9a near the starting end of the rotating body 1, the outer passage 12a, the exhaust pipe 12 'near the end of the rotating body 1, and the like.
排気ファン15の代わりに、給気口23に給気ファン(図示せず)を設けて、円筒状回転体1内に強制給気し、水蒸気と共に供給装置12の熱交換器を通り排気することも可能である。   Instead of the exhaust fan 15, an air supply fan (not shown) is provided at the air supply port 23 to forcibly supply air into the cylindrical rotating body 1 and exhaust the steam together with water vapor through the heat exchanger of the supply device 12. Is also possible.
図3において、高周波加熱部5は、内部に渦巻き状の高周波加熱コイル24を持ち、高周波インバータ(図示せず)から数10KHzの高周波電流を流すと、円筒状回転体1には電磁誘導作用により誘導電流が流れてジュール熱により発熱する。高周波加熱部5の加熱コイル24と円筒状回転体1の金属表面との隙間は、加熱コイル材の断面にもよるが10〜17mm程度離して設置し、渦巻き状の加熱コイル24は円筒状回転体1の曲率に添って隙間を保ちながら円弧状(楕円形状)に成型する(図3(b)参照)。また、加熱コイル24の上面(円筒状回転体1側)は加熱コイル24の熱劣化防止と加熱コイル24の成形のため、エポキシ樹脂やテフロン(登録商標)等の耐熱薄板シート25を上記コイル24上に被覆して熱遮断を行なう。   In FIG. 3, the high-frequency heating unit 5 has a spiral high-frequency heating coil 24 inside, and when a high-frequency current of several tens KHz is passed from a high-frequency inverter (not shown), the cylindrical rotating body 1 is subjected to electromagnetic induction action. An induced current flows and generates heat due to Joule heat. The clearance between the heating coil 24 of the high-frequency heating unit 5 and the metal surface of the cylindrical rotating body 1 is set about 10 to 17 mm apart depending on the cross section of the heating coil material, and the spiral heating coil 24 rotates in a cylindrical shape. A circular arc shape (elliptical shape) is formed while keeping a gap along the curvature of the body 1 (see FIG. 3B). Further, the upper surface of the heating coil 24 (on the side of the cylindrical rotating body 1) is coated with a heat resistant thin sheet 25 such as epoxy resin or Teflon (registered trademark) in order to prevent thermal deterioration of the heating coil 24 and molding of the heating coil 24. Cover the top to shut off heat.
高周波加熱部5の加熱コイル24は通常銅線であり、ファン27で外気をフィルタ28から吸込み空冷するが、加熱コイル24の下側には空気通路穴を有した多孔成形板シート26を設け、空冷後の排気は排気ダクト29で排気する。また、多孔成形板シート26の下側にはフェーライトコア等(図示せず)を取付けて磁気シールドを行なう。   The heating coil 24 of the high-frequency heating unit 5 is usually a copper wire, and outside air is sucked from the filter 28 by a fan 27 and air-cooled. A porous molded plate sheet 26 having an air passage hole is provided below the heating coil 24, Exhaust air after cooling is exhausted through an exhaust duct 29. Further, a ferrite core or the like (not shown) is attached to the lower side of the porous molded plate sheet 26 to provide a magnetic shield.
上記高周波加熱コイル24に中空銅管を用い、内部に冷却水を循環して水冷することも可能である。 It is also possible to use a hollow copper tube for the high-frequency heating coil 24 and circulate cooling water inside to cool it.
上記円筒状回転体1の下側に高周波加熱部5を設置することで、円筒状回転体1と加熱コイル24との隙間距離が調整ボルト30等を用いて容易に調整でき、取付けや製作がし易くなる。   By installing the high-frequency heating unit 5 on the lower side of the cylindrical rotating body 1, the clearance distance between the cylindrical rotating body 1 and the heating coil 24 can be easily adjusted by using the adjusting bolt 30 or the like, so that the mounting and manufacturing can be performed. It becomes easy to do.
この高周波加熱部5は、図4に示すように、3つの高周波加熱部5a、5b、5cにより構成する。これらの高周波加熱部5a、5b、5cは、円筒状回転体1の長手方向に複数台設け、円筒状回転体1の長手方向の加熱量と温度分布を制御可能にする。本実施形態では高周波加熱部5は3個設けているが、その個数は、加熱総出力や円筒状回転体1の長さ、直径等により適宜増減することができる。   As shown in FIG. 4, the high-frequency heating unit 5 includes three high-frequency heating units 5a, 5b, and 5c. A plurality of these high-frequency heating units 5 a, 5 b, and 5 c are provided in the longitudinal direction of the cylindrical rotating body 1, and the heating amount and temperature distribution in the longitudinal direction of the cylindrical rotating body 1 can be controlled. In the present embodiment, three high-frequency heating sections 5 are provided, but the number can be appropriately increased or decreased depending on the total heating output, the length, diameter, etc. of the cylindrical rotating body 1.
石膏の転移のピーク温度は、微量の不純物や添加物や昇温スピードにより影響されるが、二水石膏(CaSO・2H2O)からβ半水石膏(CaSO・1/2H2O)へは約150℃で吸熱して転移し、3/2H2Oの結晶水を離脱する。また、約170℃で吸熱して1/2H2Oの結晶水を離脱し3型無水石膏(CaSO)に転移するが、吸湿や水和時の接水でβ半水に戻り水和反応には影響がない。さらに温度を上昇させると、約360℃で2型無水石膏(CaSO)に転移するが、水和がしにくい特性を持っている。 The peak temperature of gypsum transition is affected by a small amount of impurities, additives, and heating speed, but dihydrate gypsum (CaSO 4 · 2H 2 O) to β hemihydrate gypsum (CaSO 4 · 1 / 2H 2 O). Endothermally absorbs and transitions to about 150 ° C. and releases crystal water of 3 / 2H 2 O. In addition, it absorbs heat at about 170 ° C, removes 1 / 2H 2 O crystal water and transfers to type 3 anhydrous gypsum (CaSO 4 ), but returns to β-half water upon moisture absorption or water contact during hydration. Has no effect. When the temperature is further increased, it transitions to type 2 anhydrous gypsum (CaSO 4 ) at about 360 ° C., but has a characteristic that it is difficult to hydrate.
水和作用がある加熱脱水石膏を生産する場合は、2型無水石膏が混在しないように、円筒状回転体1の石膏と接する部分の温度を上げないように温度制御する必要がある。   When producing heated dehydrated gypsum having a hydration action, it is necessary to control the temperature so as not to raise the temperature of the portion of the cylindrical rotating body 1 in contact with the gypsum so that type 2 anhydrous gypsum is not mixed.
図4に示すように、複数台の高周波加熱部5a、5b、5cは、これらの加熱部の出力が同じ場合、石膏排出側の高周波加熱部5cは、高周波加熱部5a、5bより円筒状回転体1の長手方向の長さが長く、長手方向の単位長さ当りの高周波加熱量の最大値が低くなる。   As shown in FIG. 4, when a plurality of high-frequency heating units 5a, 5b, and 5c have the same output, the high-frequency heating unit 5c on the gypsum discharge side is more cylindrically rotated than the high-frequency heating units 5a and 5b. The length of the body 1 in the longitudinal direction is long, and the maximum value of the high-frequency heating amount per unit length in the longitudinal direction is lowered.
水和作用があるβ半水石膏または3型無水石膏を生産する場合は、供給側の高周波加熱部5a、5bでは、約150℃で二水石膏がβ半水化するので石膏の温度上昇が抑えられ円筒状回転体1の長手方向単位長さ当りの高周波加熱量の最大値を大きくしても加熱脱水石膏はβ半水化が進むだけで品質低下とならない。これに対して、排出側の高周波加熱部5cでは二水石膏の単位体積当りの割合が少なくなるため、長手方向単位長さ当りの高周波加熱量の最大値を低くすることで、温度を制御し易くし加熱脱水石膏の品質の安定性を良くすることができる。   When producing β hemihydrate gypsum or type 3 anhydrous gypsum with hydration action, the high frequency heating sections 5a and 5b on the supply side dihydrate the dihydrate gypsum at about 150 ° C, so the temperature of the gypsum increases. Even if the maximum value of the high-frequency heating amount per unit length in the longitudinal direction of the cylindrical rotating body 1 is increased, the quality of the heated dehydrated gypsum does not deteriorate because the β-semihydration proceeds. On the other hand, since the ratio per unit volume of dihydrate gypsum decreases in the discharge-side high-frequency heating unit 5c, the temperature is controlled by reducing the maximum value of the high-frequency heating amount per unit length in the longitudinal direction. This makes it easy to improve the stability of the quality of the heated dehydrated gypsum.
図4に示すように、上記円筒状回転体1は、高周波加熱部5と共にその全体が保温用筐体31で覆われている。この保温用筐体31の内面に保温剤32を取付けた保温壁32’を設け、かつ該筐体31内における高周波加熱部5の上部に仕切板33を設けて当該筐体31内の高周波加熱部5側と回転体1側の空間を分割し、冷却が必要な高周波加熱部5が存在する保温用筐体31内の下部の空気と、円筒状回転体1の外側上部の温度が高い空気が対流により混ざることを抑制して、放熱量を減少させることとが可能となる。   As shown in FIG. 4, the cylindrical rotating body 1 is entirely covered with a high-temperature heating unit 5 and a heat insulation casing 31. A heat insulating wall 32 ′ with a heat insulating agent 32 attached is provided on the inner surface of the heat insulating case 31, and a partition plate 33 is provided on the upper side of the high frequency heating unit 5 in the case 31 to provide high frequency heating in the case 31. The space between the part 5 side and the rotating body 1 side is divided, and the air in the lower part in the heat retaining casing 31 where the high-frequency heating part 5 that needs to be cooled is present and the air in which the temperature at the outer upper part of the cylindrical rotating body 1 is high It is possible to suppress the mixing by convection and reduce the heat radiation amount.
図4の円筒状回転体1の外周に、厚み9mm以下のセラミックファイバ製断熱シート34(34a乃至34d)を、耐熱テープ又は耐熱接着材で巻き着け固定する。これにより、円筒状回転体1自体から外部への放熱量を減少させることができ、冷却が必要な高周波加熱部5への伝熱量を減少できる。   A ceramic fiber heat insulating sheet 34 (34a to 34d) having a thickness of 9 mm or less is wound around and fixed to the outer periphery of the cylindrical rotating body 1 of FIG. 4 with a heat resistant tape or a heat resistant adhesive. Thereby, the amount of heat radiation from the cylindrical rotating body 1 itself can be reduced, and the amount of heat transferred to the high-frequency heating unit 5 that needs to be cooled can be reduced.
円筒状回転体1の外周壁の温度は、上記保温壁32’に設けた赤外線式非接触センサー(非接触型温度センサー)35aにより測定する。この赤外線式非接触センサー35aは高温環境での使用が難しく、図4の非接触センサー35aは、保温壁32’の外部に設置した例であり、赤外線通過穴35’を通り円筒状回転体1の表面温度を計測する。また、非接触センサー35bは、保温壁32’の内部で仕切板33下側に設置した例である。非接触センサー35a、35bの設置位置は、高周波加熱部5に対して回転方向上流側でも下流側でも温度制御は可能である。非接触センサー35a、35bはレーザー式を用いても良い。   The temperature of the outer peripheral wall of the cylindrical rotating body 1 is measured by an infrared non-contact sensor (non-contact temperature sensor) 35a provided on the heat retaining wall 32 '. This infrared non-contact sensor 35a is difficult to use in a high-temperature environment, and the non-contact sensor 35a in FIG. 4 is an example installed outside the heat insulating wall 32 '. The cylindrical rotating body 1 passes through the infrared passage hole 35'. Measure the surface temperature. Further, the non-contact sensor 35b is an example installed below the partition plate 33 inside the heat insulating wall 32 '. The temperature of the non-contact sensors 35a and 35b can be controlled on the upstream side and the downstream side of the high-frequency heating unit 5 in the rotational direction. The non-contact sensors 35a and 35b may use a laser type.
上記非接触センサー35a又は35bは、複数の高周波加熱部5a、5b、5c毎に3個設け、円筒状回転体1の表面温度を測定するセンサー測定点36(3箇所)には、断熱シート34を切欠くように構成する。即ち、上記断熱シート34は、上記センサー測定点の3箇所の間隙を設けた4枚のシート34a,34b、34d,34eにより構成している。センサー測定点36の位置の間隙に対応する高周波加熱部5の表面位置は、円筒状回転体1からの伝熱量が多く表面の温度上昇を抑制するため断熱用の保護シート34’を円周方向に貼る。   Three non-contact sensors 35a or 35b are provided for each of the plurality of high-frequency heating units 5a, 5b, and 5c, and the heat insulation sheet 34 is provided at sensor measurement points 36 (three places) for measuring the surface temperature of the cylindrical rotating body 1. It is configured so as to cut out. That is, the heat insulating sheet 34 is composed of four sheets 34a, 34b, 34d, and 34e provided with three gaps at the sensor measurement points. The surface position of the high-frequency heating unit 5 corresponding to the gap at the position of the sensor measurement point 36 has a large amount of heat transfer from the cylindrical rotating body 1 so as to suppress the temperature rise of the surface. Affix to.
石膏の場合、供給側の高周波加熱部5a、5bでは、約150℃で二水石膏がβ半水化する熱量が多く石膏の温度上昇が抑えられるので、例えば高周波加熱部5bに対応する位置の非接触センサー35a1台で、高周波加熱部5a、5bの出力制御を行なうことも可能である。   In the case of gypsum, in the high-frequency heating units 5a and 5b on the supply side, the amount of heat that the dihydrate gypsum is β-hemihydrated at about 150 ° C. is large and the temperature rise of the gypsum can be suppressed. It is also possible to control the output of the high-frequency heating units 5a and 5b with one non-contact sensor 35a.
図5に示すように、円筒状回転体1の内面に持上げ部(石膏攪拌用羽根)4を等間隔で複数設ける(図5では12個)。尚、以下の説明において、図5に示すように供給側Aから円筒状回転体1内部を見て、高周波加熱部5に対して右手側を回転方向上流側R1、高周波加熱部5に対して左手側を回転方向下流側R2という。   As shown in FIG. 5, a plurality of lifting portions (gypsum stirring blades) 4 are provided at equal intervals on the inner surface of the cylindrical rotating body 1 (12 in FIG. 5). In the following description, as shown in FIG. 5, the inside of the cylindrical rotating body 1 is viewed from the supply side A, and the right hand side with respect to the high-frequency heating unit 5 is the upstream side R1 in the rotational direction and the high-frequency heating unit 5. The left hand side is referred to as the downstream side R2 in the rotational direction.
この持上げ部4は、一枚の長板を横断面略L型に折曲加工して形成したものであり(図7参照)、該長板を所定位置で一方向(回転方向と同一方向)に折り曲げることにより上記回転体1の内面に全周溶接される接合板部4’と該接合板部4’と鈍角をなす基板部4”を形成し、該基板部4”の端縁をさらに同方向に折り曲げて該基板部4”とは鈍角をなす突出板部4aを形成する。これにより、全体として横断面略L字型に加工形成されるものである。そして、この持上げ部4の上記接合板部4’の端縁4bを上記回転体1内面に全周溶接するものである。かかる持上げ部4の上記回転体1内壁への取り付け角度は、上記突出板部4aを回転方向m側に位置させると共に、上記基板部4”が鉛直線に対して直角となるように位置させた状態で上記接合板部4’の端縁4bを上記回転体1内壁に全周溶接する。よって、取り付け状態において、上記接合板部4’の上記回転体1内壁に対する取り付け角度は、鉛直線に対して角度θ1だけ反回転方向に後退した位置となる。このように角度θ1を設けることは上記持上げ部4内の石膏の持上げ量を増加し得るという効果を奏する。   The lifting portion 4 is formed by bending one long plate into a substantially L-shaped cross section (see FIG. 7), and the long plate is in one direction at the predetermined position (the same direction as the rotation direction). Are joined to the inner surface of the rotating body 1 to form a joining plate portion 4 ′ and a substrate portion 4 ″ that forms an obtuse angle with the joining plate portion 4 ′. By bending in the same direction, a protruding plate portion 4a having an obtuse angle with the substrate portion 4 ″ is formed. As a result, the entire plate is processed and formed into a substantially L-shaped cross section. The edge 4b of the joining plate portion 4 ′ is welded to the inner surface of the rotating body 1. The mounting angle of the lifting portion 4 to the inner wall of the rotating body 1 is such that the protruding plate portion 4a rotates in the direction m. And the substrate portion 4 ″ is positioned so as to be perpendicular to the vertical line. The edge 4b of the joint plate portion 4 'for circumferential welding on the rotating body 1 inner wall. Therefore, in the mounted state, the mounting angle of the bonding plate portion 4 ′ with respect to the inner wall of the rotating body 1 is a position retracted in the counter-rotating direction by an angle θ 1 with respect to the vertical line. Providing the angle θ1 in this way has the effect of increasing the amount of gypsum lifted in the lifting portion 4.
さらに、石膏の持上げ量を増すために、基板部4”の端縁に突出板部4aを延在させる。即ち、基板部4”とは直角より開いた角度θ2を以って突出板部4aを設けて持上げ部4はコップ状(略L字状)の横断面形状にする。尚、上記角度θ2は、基板部4”に直交する鉛直線に対する角度である。上述のように接合板部4’と基板部4”と突出板部4aは、板の曲げ加工で一体で製作しても良く、曲げ部分の曲率半径を大きくしても良い。   Further, in order to increase the lifting amount of gypsum, the protruding plate portion 4a is extended to the edge of the substrate portion 4 ″. That is, the protruding plate portion 4a is formed at an angle θ2 that is open from a right angle with respect to the substrate portion 4 ″. And the lifting part 4 has a cup-shaped (substantially L-shaped) cross-sectional shape. The angle θ2 is an angle with respect to a vertical line orthogonal to the substrate portion 4 ″. As described above, the joining plate portion 4 ′, the substrate portion 4 ″, and the protruding plate portion 4a are integrally manufactured by bending the plate. Alternatively, the radius of curvature of the bent portion may be increased.
円筒状回転体1の下側下流部位置(円筒状回転体1の最下部から回転方向1/8円の範囲)付近での持上げ部4では石膏の積層厚みが大きく、突出板部4aが、上記回転体1内で発生する水蒸気に蓋をしたような状態になるので(図4の位置Kの持上げ部4参照)、回転体1供給側における持上げ部4端部と、同じく回転体1排出側における持上げ部4端部、即ち持上げ部4の両端部より水蒸気が抜ける構造とし(図1矢印d参照)、即ち、上記持上げ部4の両端部と上記円筒状回転体1の左右閉止壁面との間に空間を設けて上記水蒸気が抜ける構造とし、さらに持上げ部4の基板部4”に数mm程度の小穴38を、例えば数10cm間隔で設けて、当該持上げ部4の長手方向長さが長い場合に上記小穴38から水蒸気が抜け易くすることも考えられる。小穴38は、長穴等のスリットでも同様の効果がある。また、図7(c)に示すように、持上げ部4を回転体1の長手方向に複数に分割し、周方向の分割列4c毎に円周方向にずらして全体として千鳥配列に取り付けることも考えられる。   In the lifting portion 4 in the vicinity of the lower downstream portion of the cylindrical rotating body 1 (range from the lowest part of the cylindrical rotating body 1 to the rotational direction 1/8 circle), the laminated thickness of the plaster is large, and the protruding plate portion 4a is Since the water vapor generated in the rotating body 1 is covered (see the lifting portion 4 at the position K in FIG. 4), the end of the lifting portion 4 on the supply side of the rotating body 1 and the discharge of the rotating body 1 are the same. The structure is such that water vapor escapes from the ends of the lifting portion 4 on the side, that is, both ends of the lifting portion 4 (see arrow d in FIG. 1), that is, both end portions of the lifting portion 4 and the left and right closed wall surfaces of the cylindrical rotating body 1 A space is provided between them to allow the water vapor to escape, and further, small holes 38 of about several millimeters are provided in the substrate portion 4 ″ of the lifting portion 4 at intervals of several tens of cm, for example, so that the longitudinal length of the lifting portion 4 is If it is long, water vapor can easily escape from the small hole 38. The small hole 38 has the same effect even in a slit such as a long hole, etc. Further, as shown in FIG. It is also conceivable that each divided row 4c is shifted in the circumferential direction and attached in a zigzag arrangement as a whole.
高周波加熱による二水石膏の加熱脱水の運転方法としては、非接触センサー35a又は35bからの測定温度で出力を制御する温度コントローラ(図示せず)の目標温度を、複数の高周波加熱部5毎に所定温度に設定する。β半水石膏を生産する場合は、石膏と接する円筒状回転体1の表面温度が2型無水石膏が生じない温度以下に設定し、石膏ボードを処理する場合はβ半水石膏の用途によるが紙の炭化が問題な場合は炭化する温度以下に設定する。   As an operation method of heating and dehydrating dihydrate gypsum by high-frequency heating, a target temperature of a temperature controller (not shown) that controls output with a measured temperature from the non-contact sensor 35a or 35b is set for each of the plurality of high-frequency heating units 5. Set to a predetermined temperature. When producing β hemihydrate gypsum, the surface temperature of the cylindrical rotating body 1 in contact with gypsum is set to a temperature that does not produce type 2 anhydrous gypsum, and when treating gypsum board, it depends on the use of β hemihydrate gypsum. If carbonization of paper is a problem, set it below the carbonization temperature.
運転を開始すると回転駆動モータ3を回転させ円筒状回転体1は回転を始め、高周波加熱部5を通電し、円筒状回転体1は誘導加熱される。一定時間後または供給側Aの高周波加熱部5aに対応する測定点36の温度が目標温度に近付くと、供給装置12のスクリューコンベア9をモータ10により駆動し、該コンベア9の回転により円筒状回転体1内に石膏を供給開始する。   When the operation is started, the rotary drive motor 3 is rotated to start the rotation of the cylindrical rotating body 1, the high-frequency heating unit 5 is energized, and the cylindrical rotating body 1 is induction-heated. After a certain time or when the temperature of the measuring point 36 corresponding to the high-frequency heating unit 5a on the supply side A approaches the target temperature, the screw conveyor 9 of the supply device 12 is driven by the motor 10, and the rotation of the conveyor 9 causes the cylinder to rotate. Supply of gypsum into the body 1 is started.
上記円筒状回転体1が矢印m方向に回転すると、石膏は下部の持上げ部4の接合板部4’の内面側により掬われて行き(図5位置k1)、位置k2、k3において上記持上げ部4の内側全域に石膏が入り込んだ状態で、上方に石膏を持ち上げていく。位置k2においては、上記小穴38から水蒸気が排出される。さらに回転していくと、位置k4、k5以降の位置において、徐々に石膏が溢れるように下方に落下し始め、位置k7から位置k10において、回転方向上流側R1に石膏を落とすことで、効率的に石膏を攪拌することができる。   When the cylindrical rotating body 1 rotates in the direction of the arrow m, the plaster is rubbed by the inner surface side of the joining plate portion 4 ′ of the lower lifting portion 4 (position k1 in FIG. 5), and the lifting portions at the positions k2 and k3. In the state where gypsum has entered the entire inner area of 4, the gypsum is lifted upward. Water vapor is discharged from the small hole 38 at the position k2. As it further rotates, it begins to fall downward so that the gypsum gradually overflows at the positions after the positions k4 and k5, and it is efficient by dropping the gypsum from the position k7 to the position k10 on the upstream side R1 in the rotation direction. The gypsum can be stirred.
円筒状回転体1からの加熱脱水石膏の排出量が一定になった時点で、排出側の高周波加熱部5c(高周波加熱部5が3台の場合)が、100%運転していない場合(高周波インバータからの信号等による)は加熱余力があると判断し、二水石膏の供給量を増すためモータ10のインバータ周波数を上げる。但し、排出側の高周波加熱部5cは、供給される二水石膏の含水率による熱負荷の変動に対応するため、最大出力に対して数%程度の余力を持たせて安定した品質の加熱脱水石膏を排出することも考えられる。   When the discharge amount of the heated dehydrated gypsum from the cylindrical rotating body 1 becomes constant, the discharge-side high-frequency heating unit 5c (when there are three high-frequency heating units 5) is not operating 100% (high frequency It is determined that there is a surplus heating power (according to a signal from the inverter or the like), and the inverter frequency of the motor 10 is increased in order to increase the supply amount of dihydrate gypsum. However, the high-frequency heating unit 5c on the discharge side has a stable quality of heat dehydration with a margin of several percent with respect to the maximum output in order to cope with fluctuations in the heat load due to the moisture content of the supplied dihydrate gypsum. It is also possible to discharge gypsum.
二水石膏の含水率(自由水)は供給前に確認し、供給量を設定する事も考えられる。特に、含水率が2%以上の場合は、供給前に自動または手動で確認をし供給量を調整する。石膏の滞留時間は円筒状回転体1の回転数と傾き角度で調整し、β半水石膏を排出する場合は、粒子の粒径ばらつきや安息角にもよるが、例えば滞留時間を8分から40分の範囲で調整する。   The water content (free water) of dihydrate gypsum can be confirmed before supply, and the supply amount can be set. In particular, when the water content is 2% or more, the supply amount is adjusted by checking automatically or manually before supply. The residence time of the gypsum is adjusted by the rotation speed and the inclination angle of the cylindrical rotating body 1, and when discharging the β hemihydrate gypsum, for example, the residence time is 8 minutes to 40 minutes depending on the particle size variation and the repose angle. Adjust within minutes.
排出装置18に水分計を取付け、排出される加熱脱水石膏の少量(20g以下程度)をサンプリングし、ヒータで加熱し無水石膏までの重量変化を測定する方法で、目安として6.2%程度の重量減であればβ半水石膏であり、それ以上の重量減であれば二水石膏が混じっており、それ以下であれば半水石膏の中に無水石膏が混在する状態であり、水分減少がなければほぼ無水石膏の状態であると判断する。   A moisture meter is attached to the discharge device 18, a small amount (about 20g or less) of the heated dehydrated gypsum is sampled, heated with a heater, and the weight change up to the anhydrous gypsum is measured. If the weight is reduced, it is β hemihydrate gypsum.If the weight is reduced further, dihydrate gypsum is mixed. If there is no, it is judged that it is almost anhydrous gypsum.
β半水石膏を生産したい場合には、二水石膏が混在していると加熱脱水が不十分と判断して、高周波加熱部5の出力を最大限にする制御と二水石膏の供給量を減らす制御を行ない、さらに円筒状回転体1の回転数を落とし円筒状回転体1内の石膏の滞留時間を延ばす制御も考えられる。また、3型無水石膏が混在していると、加熱脱水余力があると判断し、二水石膏の供給量を増す制御を行なう。   When it is desired to produce β hemihydrate gypsum, if dihydrate gypsum is mixed, heat dehydration is judged to be insufficient, and control to maximize the output of the high-frequency heating unit 5 and the amount of dihydrate gypsum supplied are set. It is also conceivable that control is performed to reduce the number of revolutions of the cylindrical rotating body 1 and extend the residence time of the gypsum in the cylindrical rotating body 1. Moreover, when 3 type | mold anhydrous gypsum is mixed, it will be judged that there exists heat dehydration surplus and the control which increases the supply amount of dihydrate gypsum is performed.
2型の無水石膏を生産したい場合は、円筒状回転体1から排出される加熱脱水石膏の品温を温度センサーで計測して、石膏の供給量の制御と高周波加熱部5等の温度管理を行なう。   When it is desired to produce type 2 anhydrous gypsum, the temperature of the heated dehydrated gypsum discharged from the cylindrical rotating body 1 is measured with a temperature sensor to control the amount of gypsum supplied and control the temperature of the high-frequency heating unit 5 and the like. Do.
運転の終了時に、供給装置12のスクリュー9の回転を止めると、円筒状回転体1内への二水石膏の供給が止まり、高周波加熱部5の加熱負荷が減少始める。定常運転時の円筒状回転体1内の滞留時間Tに対して、T時間内に供給側の高周波加熱部5aから出力を下げる制御や、T時間内に高周波加熱部5を全部停止し円筒状回転体1の予熱で加熱脱水を続ける制御等が考えられる。   When the rotation of the screw 9 of the supply device 12 is stopped at the end of the operation, the supply of dihydrate gypsum into the cylindrical rotating body 1 stops and the heating load of the high-frequency heating unit 5 starts to decrease. Control for lowering the output from the high-frequency heating unit 5a on the supply side within the time T with respect to the residence time T in the cylindrical rotating body 1 during steady operation, and the high-frequency heating unit 5 are all stopped within the T time to be cylindrical The control etc. which continue heating dehydration by the preheating of the rotary body 1 can be considered.
石膏供給量制御、円筒状回転体1の回転数制御、高周波加熱部5の加熱制御、および装置の稼動始動時と終了時の制御においては、シーケンサやインバータや温度コントローラに学習機能を持たせることも考えられる。   In the gypsum supply amount control, the rotational speed control of the cylindrical rotating body 1, the heating control of the high-frequency heating unit 5, and the control at the start and end of the operation of the apparatus, the sequencer, inverter and temperature controller should have a learning function. Is also possible.
排気ファン15で強制排気または給気口23の給気ファンで強制給気する場合、円筒状回転体1内の温度と、本体排出口17から排出する加熱脱水石膏の品温を測定し、装置の稼動始動時や外気温変化等における熱損失を抑制させるためにファンの風量を減少させる風量制御を行なうことも可能である。   When forced exhaust is performed by the exhaust fan 15 or forced supply is performed by the air supply fan of the air supply port 23, the temperature in the cylindrical rotating body 1 and the product temperature of the heated dehydrated gypsum discharged from the main body discharge port 17 are measured. It is also possible to perform air volume control that reduces the air volume of the fan in order to suppress heat loss at the start of the operation or changes in the outside air temperature.
円筒状回転体1内に固定端から温度センサーTSを、円筒状回転体1の長手方向で中央から排出側の間の持上げ部4に干渉しない位置に取付け(図1参照)、半水石膏を得たい場合は、円筒状回転体1の温度が、取り付け高さにより変化するが170℃以上であれば無水石膏が混在していると判断し、石膏の供給量を増加させる制御または高周波加熱出力を減少させる制御を行ない、円筒状回転体1の温度が130℃以下であれば二水石膏が含まれると判断し、石膏の供給量を減少させる制御または高周波加熱出力を増加させる制御を行なう等、庫内温度による供給量と高周波加熱出力も有効である。   The temperature sensor TS is mounted in the cylindrical rotating body 1 from the fixed end at a position where it does not interfere with the lifting portion 4 between the center and the discharge side in the longitudinal direction of the cylindrical rotating body 1 (see FIG. 1), and hemihydrate gypsum is attached. If it is desired to obtain the temperature, the temperature of the cylindrical rotating body 1 varies depending on the mounting height, but if it is 170 ° C. or higher, it is judged that anhydrous gypsum is mixed, and control to increase the amount of gypsum supplied or high-frequency heating output If the temperature of the cylindrical rotating body 1 is 130 ° C. or less, it is determined that dihydrate gypsum is included, and control for decreasing the amount of gypsum supplied or control for increasing the high-frequency heating output is performed. In addition, the supply amount depending on the internal temperature and the high frequency heating output are also effective.
円筒状回転体1内で生じた水蒸気の排気通路は、外側通路12a、中空パイプ9aの内部、ホース13aおよび図8の排気パイプ24’、24”であるが、通路の適当な位置に、通路内部にエルボ継手とノズルを設けてそれに接続する通路外部に配管を設け、エアーコンプレッサにより加圧された圧縮空気を開閉弁およびチャッキ弁(通路外部から内部の方向にしか流れない方向弁)を介して流れる構造にし、水蒸気の排気中に含まれる石膏の微粒子が通路内に堆積した場合、装置の稼動始動時または終了時にエアーブローして石膏の堆積物を吹き飛ばす。排気通路のエアーブローの方向は、排気の流れ方向でも逆方向でもかまわない。供給装置12内の外側通路12a等は、エアー洗浄の代わりに水洗浄する場合もある。   The exhaust passage for the water vapor generated in the cylindrical rotating body 1 is the outer passage 12a, the inside of the hollow pipe 9a, the hose 13a, and the exhaust pipes 24 'and 24' 'in FIG. An elbow joint and nozzle are provided inside, and piping is provided outside the passage connected to it, and the compressed air pressurized by the air compressor is passed through an on-off valve and check valve (a directional valve that flows only from the outside to the inside). When gypsum particles contained in the exhaust of water vapor accumulate in the passage, air blows off the gypsum deposit at the start or end of operation of the equipment. The outer flow path 12a and the like in the supply device 12 may be washed with water instead of air.
図6に示すように、円筒状回転体1の内部に傾斜板39(図6では3枚)を設けることもできる。この傾斜版39は回転体1の回転方向下流側R2から回転方向上流側R1に下り傾斜を以って固定されている。円筒状回転体1の上部位置の持上げ部4から落下した石膏は、傾斜板39の上面を傾斜に沿って移動し、高周波加熱部5の回転方向上流側R1に落下する。傾斜板39は板状であり、円筒状回転体1の長手方向に配置されて両端部を回転体1の両側面に固定されている。傾斜板39は、図6に示すように複数枚設けることもでき、複数枚の場合、水蒸気通路のため、各傾斜板39間に隙間40を設けて、隙間40から石膏が落下しないように垂直方向に重なりを持つ構成とする。また、傾斜板39はヒータHを内蔵して石膏を加熱することも可能である。さらに、傾斜板39に角パイプを用い、内部に高温ガスを流して石膏を加熱することも可能である。   As shown in FIG. 6, inclined plates 39 (three in FIG. 6) can be provided inside the cylindrical rotating body 1. The inclined plate 39 is fixed with a downward inclination from the rotation direction downstream side R2 of the rotating body 1 to the rotation direction upstream side R1. The gypsum dropped from the lifting portion 4 at the upper position of the cylindrical rotating body 1 moves along the slope on the upper surface of the inclined plate 39 and falls to the upstream side R1 in the rotation direction of the high-frequency heating portion 5. The inclined plate 39 is plate-shaped, and is disposed in the longitudinal direction of the cylindrical rotating body 1, and both ends are fixed to both side surfaces of the rotating body 1. As shown in FIG. 6, a plurality of inclined plates 39 can be provided. In the case of a plurality of inclined plates 39, a gap 40 is provided between the inclined plates 39 for the water vapor passage so that the gypsum does not fall from the gaps 40. A configuration with overlapping directions. Further, the inclined plate 39 can also heat the gypsum with a built-in heater H. Furthermore, it is also possible to heat the gypsum by using a square pipe for the inclined plate 39 and flowing a high-temperature gas therein.
図8は、回転体1から排気される水蒸気を浄化して排気するための他の実施形態である。同図に示すように、円筒状回転体1から発生した水蒸気は、終端固定蓋16の上部または供給側のスクリュー9’の先端部の上面の蒸気通路42から排気管24’、24”を通り、熱交タンク43に流入する。該タンク43内の水はシャワーポンプ44で循環されノズル45から噴霧され排気管24’、24”からの水蒸気と接触する。噴霧水が排気管24’、24”に浸入しないように飛散防止板46を熱交タンク43の入口に取付ける。噴霧水により水に復水しなかった水蒸気および空気は排気通路47を通り排気口48から排気され、排気口48から噴霧水が飛散しないようにパンチングメタル等のたれ壁49を排気通路47に設ける。   FIG. 8 shows another embodiment for purifying and exhausting water vapor exhausted from the rotating body 1. As shown in the figure, the water vapor generated from the cylindrical rotating body 1 passes through the exhaust pipes 24 ′ and 24 ″ from the steam passage 42 at the upper part of the terminal fixing lid 16 or the upper surface of the tip of the screw 9 ′ on the supply side. And flows into the heat exchanger tank 43. Water in the tank 43 is circulated by the shower pump 44, sprayed from the nozzle 45, and comes into contact with water vapor from the exhaust pipes 24 ′ and 24 ″. A scattering prevention plate 46 is attached to the inlet of the heat exchange tank 43 so that the spray water does not enter the exhaust pipes 24 ', 24 ". Water vapor and air that has not been condensed into water by the spray water passes through the exhaust passage 47 and is exhausted. A drain wall 49 of punching metal or the like is provided in the exhaust passage 47 so that the exhaust water is exhausted from the exhaust port 48 and spray water does not scatter from the exhaust port 48.
二水石膏の加熱脱水で発生する石膏の微粒子を含んだ水蒸気の排気であるため、水の噴霧により石膏の微粒子は大部分が水に水溶化し沈殿する。沈殿した石膏はシャワーポンプ44の停止時に、排水弁50から排出するか掬い上げるかして定期的に除去する。   Since it is an exhaust of water vapor containing gypsum fine particles generated by heat dehydration of dihydrate gypsum, most of the gypsum fine particles become water-soluble and precipitate when sprayed with water. The precipitated gypsum is periodically removed by discharging or scooping up the drain valve 50 when the shower pump 44 is stopped.
熱交タンク(熱交換手段)43内には熱交換器51を水没させて取付け、熱交換器51内には水または不凍液の熱媒体を循環ポンプ52で流し、熱交換器51、熱交換器53とスクリュー外筒9”との間、循環ポンプ52、循環タンク54の順序で流れる。熱媒体は、供給装置12の熱交換器53における外側通路12a(排出管)及び内側通路12b(供給管)において石膏とを伝熱面(スクリュー外筒9”等)を介して熱交換して二水石膏を昇温し、熱媒体の温度は低下し、熱交タンク43にて水蒸気が保持している熱で昇温する。熱媒体は、供給ホッパ6’の周囲や内部にパイプ配管して二水石膏を昇温しても良い。また、熱交タンク43内の水を直接循環させることも考えられる。タンク43、54には、給水管55から水道水等を給水でき、ボールタップ56で自動給水可能である。弁57はタンク掃除時等のための開閉弁である。タンク54,43には水があふれないように、オーバーフロー管58,58’を設けている。循環タンク54の上部には通気用の開口部59を設けている。   A heat exchanger 51 is immersed in the heat exchange tank (heat exchanging means) 43, and a heat medium of water or antifreeze is passed through the heat exchanger 51 by a circulation pump 52. The heat exchanger 51, the heat exchanger 53 and the screw outer cylinder 9 ″ flow in the order of the circulation pump 52 and the circulation tank 54. The heat medium flows in the outer passage 12a (discharge pipe) and the inner passage 12b (supply pipe) in the heat exchanger 53 of the supply device 12. ) And heat exchange through the heat transfer surface (screw outer cylinder 9 ″, etc.) to raise the temperature of the dihydrate gypsum, the temperature of the heat medium is lowered, and water vapor is held in the heat exchange tank 43. The temperature rises with the heat. The heat medium may be piped around or inside the supply hopper 6 'to raise the temperature of the dihydrate gypsum. It is also conceivable to circulate the water in the heat exchange tank 43 directly. The tanks 43 and 54 can be supplied with tap water or the like from a water supply pipe 55 and can be automatically supplied with a ball tap 56. The valve 57 is an open / close valve for cleaning the tank. The tanks 54 and 43 are provided with overflow pipes 58 and 58 'so that water does not overflow. An opening 59 for ventilation is provided in the upper part of the circulation tank 54.
熱媒体による熱交タンク43での水蒸気からの熱回収量が、熱交換器53での放熱量より多い場合に、排気口48からの水蒸気量を減らすために冷却ファン60で熱交タンク43を空冷することも考えられる。運転開始時に熱交タンク43の水をヒータ47’で昇温することも考えられる。尚、回転体1の終端近傍の上記排気パイプ24’、回転体1の始端近傍の蒸気通路42、外側通路12a等により排気手段が構成されている。   When the amount of heat recovered from the water vapor in the heat exchange tank 43 by the heat medium is larger than the amount of heat released from the heat exchanger 53, the heat exchange tank 43 is set by the cooling fan 60 in order to reduce the amount of water vapor from the exhaust port 48. Air cooling is also conceivable. It is also conceivable that the temperature of the water in the heat exchange tank 43 is raised by the heater 47 'at the start of operation. The exhaust pipe 24 'in the vicinity of the end of the rotating body 1, the steam passage 42 in the vicinity of the starting end of the rotating body 1, the outer passage 12a, and the like constitute exhaust means.
図9はバーナー加熱を併用する実施形態であり、上記円筒状回転体1の端面側固定端の外側にバーナ燃焼部を取付けて、固定端から円筒状回転体1内にバーナ放熱筒を固定し取付け、バーナによる熱風をバーナ放熱筒に流して石膏を間接加熱し、供給装置において燃焼ガスを石膏と熱交換して排気し、バーナ加熱を円筒状回転体の供給側の石膏の加熱に用いるものである。同図に示すように、回転する円筒状回転体1の石膏供給側に、始端固定蓋61を水蒸気が漏れないためのシール62を介して固定し、始端固定蓋61には供給装置63を固定し、回転スクリューコンベヤ9によりホッパー6”から二水石膏を円筒状回転体1内に供給する。化石燃料を燃料とするバーナ(バーナ燃焼部)64で熱風を発生し、熱風は熱風管往65を通り熱風ヘッダー66で折り返し、多管等の熱風管戻67を通り熱風戻ヘッダー68に流れ、熱風排気口69から排気する。ここで、バーナ熱風往管65、熱風ヘッダー66、熱風管戻67等によりバーナ放熱筒が形成されている。   FIG. 9 shows an embodiment in which burner heating is used together. A burner combustion part is attached to the outside of the fixed end on the end face side of the cylindrical rotating body 1, and a burner radiation cylinder is fixed in the cylindrical rotating body 1 from the fixed end. Mounting, hot air from the burner flows through the burner radiant cylinder to indirectly heat the gypsum, and the combustion gas is exhausted by exchanging heat with gypsum in the supply device, and the burner heating is used to heat the gypsum on the supply side of the cylindrical rotating body It is. As shown in the figure, a starting end fixing lid 61 is fixed to a gypsum supply side of a rotating cylindrical rotating body 1 through a seal 62 for preventing water vapor from leaking, and a supply device 63 is fixed to the starting end fixing lid 61. Then, dihydrate gypsum is supplied into the cylindrical rotating body 1 from the hopper 6 ″ by the rotary screw conveyor 9. Hot air is generated in the burner (burner combustion section) 64 using fossil fuel as fuel, and the hot air is sent to the hot air pipe 65. The hot air header 66 passes through the hot air pipe return 67 such as a multi-pipe and flows into the hot air return header 68 and is exhausted from the hot air exhaust port 69. Here, the burner hot air outlet pipe 65, the hot air header 66, and the hot air pipe return 67 are discharged. Etc. to form a burner radiating cylinder.
熱風の通路は回転せず固定であり、熱風戻ヘッダー68と熱風管往65は始端固定蓋61に気密性を保ち固定する。   The hot air passage is fixed without rotating, and the hot air return header 68 and the hot air duct 65 are fixed to the start end fixing lid 61 while maintaining airtightness.
熱風排気口69から排気された燃焼ガスは、熱交入口70から排ガス熱交換器71を通り供給装置63内の石膏と熱交換した後、排気口72から排気することも可能である。   The combustion gas exhausted from the hot air exhaust port 69 can be exhausted from the exhaust port 72 after exchanging heat with the gypsum in the supply device 63 from the heat exchange port 70 through the exhaust gas heat exchanger 71.
バーナ64で発生した熱風は、熱風ヘッダー66で折り返さずに、終端固定蓋16から排気する構成にしても良い。このように構成すると、バーナ加熱の高温熱風を供給側の石膏の加熱に用い、温度低下(β半水石膏の場合150℃以上)した熱風を排出側から排気することで、バーナ加熱を円筒状回転体の排出側より供給側の石膏の加熱に用いることと同様の効果がある。   The hot air generated by the burner 64 may be exhausted from the terminal fixing lid 16 without being folded by the hot air header 66. If comprised in this way, the high temperature hot air of a burner heating will be used for the heating of the gypsum of a supply side, and a burner heating will be cylindrical by exhausting the hot air which carried out temperature fall (in the case of (beta) semi-water gypsum 150 degreeC or more) from a discharge side There is an effect similar to that used for heating the gypsum on the supply side from the discharge side of the rotating body.
図10は、終端固定盤16の上部より排気管24aを通り石膏粉塵を含んだ水蒸気を集塵部73に導入し、ろ布74で石膏粉塵を捕集し、水蒸気のみをファン75によりスクリュー式供給部における熱交換器53のスクリュー外筒(外側通路12a)に導入し、排気口12a’から排気される構成としている。この場合も上記水蒸気は石膏と伝熱面(スクリュー外筒(外側通路12a))を介して熱交換し、二水石膏を昇温する。圧縮空気タンク77内の圧縮空気を数十秒間隔でパルス的(1秒以下)に電磁弁78を開けて圧縮空気配管79を通り、ノズル80からろ布74内に噴射し、ろ布74の外側に捕集した石膏粉塵を集塵部73の底部に振るい落とす。集塵部73の底に溜まった石膏粉塵は粉塵排出口81から定期的に取り出すか、スクリュー等により連続的に取り出す。   In FIG. 10, water vapor containing gypsum dust is introduced into the dust collecting portion 73 through the exhaust pipe 24 a from the upper part of the terminal fixing plate 16, gypsum dust is collected by the filter cloth 74, and only the water vapor is screwed by the fan 75. It introduce | transduces into the screw outer cylinder (outer channel | path 12a) of the heat exchanger 53 in a supply part, and is set as the structure exhausted from exhaust port 12a '. Also in this case, the water vapor exchanges heat with the gypsum through the heat transfer surface (screw outer cylinder (outer passage 12a)) to raise the temperature of the dihydrate gypsum. The compressed air in the compressed air tank 77 is pulsated at intervals of several tens of seconds (less than 1 second), opens the electromagnetic valve 78, passes through the compressed air piping 79, and is injected into the filter cloth 74 from the nozzle 80. The gypsum dust collected on the outside is shaken off at the bottom of the dust collecting portion 73. The gypsum dust accumulated at the bottom of the dust collecting unit 73 is periodically taken out from the dust discharge port 81 or continuously taken out with a screw or the like.
図8から図10に示す加熱装置では図1の排出装置18、排出スクリューコンベア19、給気口23、モータ20等から構成される熱交換機構を設けることができる。また、上記回転体1の終端近傍の排気管24a、上記回転体1の始端近傍の外側通路12a等により排気手段が構成されている。   8 to 10 can be provided with a heat exchange mechanism including the discharge device 18, the discharge screw conveyor 19, the air supply port 23, the motor 20 and the like shown in FIG. Further, an exhaust means is constituted by the exhaust pipe 24a near the end of the rotating body 1, the outer passage 12a near the starting end of the rotating body 1, and the like.
上述のように、本発明によると、円筒状回転体1の下側に取付けた複数台の高周波加熱部5により、二水石膏を効率的に加熱して温度制御により二水石膏が混ざらないβ半水石膏または無水石膏を得ることができる。   As described above, according to the present invention, the dihydrate gypsum is efficiently mixed by the plurality of high-frequency heating units 5 attached to the lower side of the cylindrical rotating body 1 and the dihydrate gypsum is not mixed by temperature control. Hemihydrate gypsum or anhydrous gypsum can be obtained.
また、石膏の加熱脱水により発生する水蒸気と排出する加熱脱水石膏からの排熱利用、および放熱量の削減を行なうことで省エネ化を図ることができる。   Further, it is possible to save energy by using water vapor generated by heat dehydration of gypsum and using exhaust heat from the heat dehydrated gypsum discharged and reducing the amount of heat radiation.
また、装置構成も簡単な石膏の加熱装置を提供することができる。   In addition, a gypsum heating device having a simple device configuration can be provided.
また、円筒状回転体1の外側からの高周波加熱と、円筒状回転体1の内側からのバーナ燃焼熱による加熱を併用し、温度制御がし易く始動時の温度立上りが速い高周波加熱の特徴と燃料費が安いバーナ加熱の特徴を兼ね備えた熱効率の高い加熱装置を実現し得る。   In addition, the high-frequency heating from the outside of the cylindrical rotating body 1 and the heating by the burner combustion heat from the inside of the cylindrical rotating body 1 are used in combination, and the characteristics of the high-frequency heating that allows easy temperature control and quick rise in temperature at start-up It is possible to realize a heating apparatus with high thermal efficiency that combines the features of burner heating with low fuel costs.
また、回転体1下部の高周波加熱部と回転ドラム外側上部とを仕切板により分離することで、回転体1上部と下部の空気の対流による放熱量を減少させることと、回転体1自体から外部への放熱量を減少させることができる。   Further, by separating the high-frequency heating unit at the lower part of the rotating body 1 and the outer upper part of the rotating drum by a partition plate, the amount of heat released by the convection of the air at the upper and lower parts of the rotating body 1 can be reduced, and The amount of heat released to can be reduced.
また、二水石膏は約150℃で結晶水が外れて半水化するので、複数台の高周波加熱部を円筒状回転体の長手方向に配置することにより、長手方向の単位長さ当りの加熱量の出力制御を行うことができる。   In addition, since dihydrate gypsum is semi-hydrated by removing crystal water at about 150 ° C., heating per unit length in the longitudinal direction can be achieved by arranging a plurality of high-frequency heating units in the longitudinal direction of the cylindrical rotating body. Quantity output control can be performed.
本発明に係る廃石膏の加熱装置の側面断面図である。It is side surface sectional drawing of the heating apparatus of the waste gypsum based on this invention. 同上装置の円筒状回転体の横断面図である。It is a cross-sectional view of the cylindrical rotating body of the same apparatus. (a)は同上装置の高周波加熱部の断面図、(b)は同上高周波加熱部の斜視図である。(A) is sectional drawing of the high frequency heating part of an apparatus same as the above, (b) is a perspective view of a high frequency heating part same as the above. (a)は同上装置の円筒状回転体の側面図、(b)は同上装置の回転体の横断面図である。(A) is a side view of the cylindrical rotating body of the same apparatus, (b) is a cross-sectional view of the rotating body of the same apparatus. 同上装置の円筒状回転体の横断面図である。It is a cross-sectional view of the cylindrical rotating body of the same apparatus. 同上装置の円筒状回転体の他の実施形態の横断面図である。It is a cross-sectional view of other embodiment of the cylindrical rotary body of an apparatus same as the above. (a)は同上装置の持上げ部の正面図、(b)は同上持上げ部の側面図、(c)は持上げ部を分割し千鳥配列した円筒状回転体の断面図である。(A) is a front view of the lifting part of the same apparatus, (b) is a side view of the lifting part, (c) is a sectional view of a cylindrical rotating body in which the lifting parts are divided and staggered. 同上装置の他の実施形態を示す側面断面図である。It is side surface sectional drawing which shows other embodiment of an apparatus same as the above. 同上装置の他の実施形態を示す側面断面図である。It is side surface sectional drawing which shows other embodiment of an apparatus same as the above. 同上装置の他の実施形態を示す側面断面図である。It is side surface sectional drawing which shows other embodiment of an apparatus same as the above.
符号の説明Explanation of symbols
1 円筒状回転体
4 持上げ部
4’ 接合板部
4” 基板部
4a 突出板部
5 高周波加熱部
5a〜5c 高周波加熱部
6 供給ホッパー
9 スクリューコンベア
12 供給装置
12a 外側通路
12b 内側通路
15 給気ファン
17 排出口
18 排出装置
19 スクリューコンベア
31 保温用筐体
33 仕切板
34a〜34d セラミックファイバ製断熱シート
35a,35b 赤外線式非接触温度センサー
39 傾斜板
64 バーナ
73 集塵部
DESCRIPTION OF SYMBOLS 1 Cylindrical rotary body 4 Lifting part 4 'Joining board part 4 "Board | substrate part 4a Projection board part 5 High frequency heating part 5a-5c High frequency heating part 6 Supply hopper 9 Screw conveyor 12 Supply apparatus 12a Outer channel | path 12b Inner channel | path 15 Supply air fan 17 Discharge port 18 Discharge device 19 Screw conveyor 31 Heat insulation casing 33 Partition plates 34a to 34d Thermal insulation sheets 35a and 35b made of ceramic fiber Infrared type non-contact temperature sensor 39 Inclined plate 64 Burner 73 Dust collector

Claims (12)

  1. 破砕された廃石膏を加熱する廃石膏の加熱装置において、
    供給ホッパーから供給された上記廃石膏を搬送するスクリュー式供給部と、
    該スクリュー式供給部から上記廃石膏の供給を受けるものであって傾斜して設置された状態で駆動手段により回転駆動される円筒状回転体と、
    該円筒状回転体の外側において該回転体外周面に近接して設置された高周波加熱部と、
    円筒状回転体の終端からβ半水石膏又は無水石膏を排出する排出部と、
    上記円筒状回転体内に発生する水蒸気を排気する排気手段とを備えた廃石膏の加熱装置であって、
    上記高周波加熱部は、上記回転体の下側外周面に対向する位置に複数に分割して設け、
    上記円筒状回転体の内壁面に、横断面略L字形状の石膏攪拌用羽根を複数設け、回転体の回転に伴って上記攪拌羽根により回転体上側に持ち上げられた石膏を回転体内下部の回転方向上流側に落下し得るように構成したものであることを特徴とする廃石膏の加熱装置。
    In the waste gypsum heating device that heats crushed waste gypsum,
    A screw-type supply unit for conveying the waste gypsum supplied from the supply hopper;
    A cylindrical rotating body that receives the supply of the waste gypsum from the screw-type supply unit and is rotationally driven by a driving means in a state of being installed at an inclination,
    A high-frequency heating unit installed in the vicinity of the outer peripheral surface of the rotating body outside the cylindrical rotating body;
    A discharge part for discharging β hemihydrate gypsum or anhydrous gypsum from the end of the cylindrical rotating body;
    A heating device for waste gypsum comprising exhaust means for exhausting water vapor generated in the cylindrical rotating body,
    The high-frequency heating unit is divided into a plurality of positions at a position facing the lower outer peripheral surface of the rotating body,
    A plurality of gypsum stirring blades having a substantially L-shaped cross section are provided on the inner wall surface of the cylindrical rotating body, and the gypsum lifted above the rotating body by the stirring blades as the rotating body rotates is rotated at the lower part of the rotating body. A device for heating waste gypsum, characterized in that it can fall to the upstream side in the direction.
  2. 上記スクリュー式供給部は、上記供給ホッパーからの廃石膏を上記円筒状回転体内に搬送するスクリューを備えた供給管と、上記回転体内で発生した水蒸気を上記石膏の搬送方向とは逆方向に排出する排出管と具備するものであり、さらに上記供給管と上記排出管とが伝熱面を介して熱交換し得るように構成したものであることを特徴とする請求項1記載の廃石膏の加熱装置。   The screw-type supply unit discharges the waste gypsum from the supply hopper into the cylindrical rotating body, and discharges water vapor generated in the rotating body in a direction opposite to the gypsum conveying direction. The waste gypsum according to claim 1, wherein the waste pipe is configured to be capable of heat exchange between the supply pipe and the discharge pipe via a heat transfer surface. Heating device.
  3. 上記排気手段から排気された水蒸気の熱を利用して熱媒体を加熱する熱交換手段を設け、上記スクリュー式供給部は、上記供給ホッパーからの廃石膏を上記円筒状回転体内に搬送するスクリューを備えた供給管と、上記熱媒体を上記石膏の搬送方向とは逆方向に排出する排出管と具備するものであり、さらに上記供給管と上記排出管とが伝熱面を介して熱交換し得るように構成したものであることを特徴とする請求項1記載の廃石膏の加熱装置。   Heat exchange means for heating the heat medium using the heat of water vapor exhausted from the exhaust means is provided, and the screw-type supply unit includes a screw for conveying waste gypsum from the supply hopper into the cylindrical rotating body. Provided with a supply pipe and a discharge pipe for discharging the heat medium in a direction opposite to the transport direction of the gypsum, and further, the supply pipe and the discharge pipe exchange heat through a heat transfer surface. The apparatus for heating waste gypsum according to claim 1, wherein the heating apparatus is configured to be obtained.
  4. 上記排気手段から排気された水蒸気中の石膏粉塵を捕集する集塵部を設け、上記スクリュー式供給部は、上記供給ホッパーからの廃石膏を上記円筒状回転体内に搬送するスクリューを備えた供給管と、上記集塵部を通過した水蒸気を上記石膏の搬送方向とは逆方向に排出する排出管と具備するものであり、さらに上記供給管と上記排出管とが伝熱面を介して熱交換し得るように構成したものであることを特徴とする請求項1記載の廃石膏の加熱装置。   A dust collecting part for collecting gypsum dust in water vapor exhausted from the exhaust means is provided, and the screw type supply part is provided with a screw for conveying waste gypsum from the supply hopper into the cylindrical rotating body. A discharge pipe that discharges water vapor that has passed through the dust collecting section in a direction opposite to the direction of transfer of the gypsum, and the supply pipe and the discharge pipe are heated via a heat transfer surface. 2. The waste gypsum heating device according to claim 1, wherein the heating device is configured to be exchangeable.
  5. 外気を円筒状回転体に給気するファンを設けると共に、
    円筒状回転体における加熱脱水後の石膏の排出部に、加熱脱水後の石膏を上記給気で冷却すると共に給気を上記加熱脱水後の石膏により加熱する熱交換機構を設けたものであることを特徴とする請求項1又は4の何れかに記載の廃石膏の加熱装置。
    While providing a fan for supplying outside air to the cylindrical rotating body,
    A heat exchanging mechanism for cooling the gypsum after heat dehydration with the above air supply and heating the air supply with the gypsum after heat dehydration is provided at the discharge part of the gypsum after heat dehydration in the cylindrical rotating body. The apparatus for heating waste gypsum according to claim 1, wherein:
  6. 上記円筒状回転体の回転方向上流側又は回転方向下流側の外周面位置の温度を測定し得る非接触型温度センサーを上記各高周波加熱部に対応して各々設け、
    上記温度センサーで計測した回転体外周面温度に基づいて、上記高周波加熱部の出力と上記スクリュー式供給部による石膏供給量とを制御し得るように構成したものであることを特徴とする請求項1〜5の何れかに記載の廃石膏の加熱装置。
    A non-contact type temperature sensor that can measure the temperature of the outer peripheral surface position on the upstream side in the rotational direction or the downstream side in the rotational direction of the cylindrical rotating body is provided for each of the high-frequency heating units,
    The configuration is such that the output of the high-frequency heating unit and the gypsum supply amount by the screw-type supply unit can be controlled based on the outer peripheral surface temperature of the rotating body measured by the temperature sensor. The waste gypsum heating device according to any one of 1 to 5.
  7. 上記石膏攪拌用羽根は、横断面略L型を形成する接合板部と基板部とから構成し、さらに上記基板部の端縁に該基板部に対して接合板部の方向に所定角度を以って突設された突出板部を有しており、
    上記石膏攪拌用羽根の両端部と上記円筒状回転体の左右閉止壁面との間に空間を設けたものであることを特徴とする請求項1〜6の何れかに記載の廃石膏の加熱装置。
    The plaster agitating blade is composed of a joining plate portion and a substrate portion that form a substantially L-shaped cross section, and has a predetermined angle in the direction of the joining plate portion with respect to the substrate portion at the edge of the substrate portion. And has a protruding plate part protruding from
    The waste gypsum heating device according to any one of claims 1 to 6, wherein a space is provided between both end portions of the gypsum stirring blade and the left and right closed wall surfaces of the cylindrical rotating body. .
  8. 上記円筒状回転体及び上記高周波加熱部を保温用筐体により覆う構成とし、
    上記保温用筐体内部における上記高周波加熱部の上部近傍に仕切板を設け、上記保温用筐体の内部空間を高周波加熱部の設置空間と、上記円筒状回転体側の空間とに分割したものであることを特徴とする請求項1〜7の何れかに記載の廃石膏の加熱装置。
    The cylindrical rotating body and the high-frequency heating unit are configured to be covered with a heat insulating casing,
    A partition plate is provided near the upper portion of the high-frequency heating unit inside the heat insulation housing, and the internal space of the heat insulation housing is divided into an installation space for the high-frequency heating unit and a space on the cylindrical rotating body side. The heating apparatus for waste gypsum according to claim 1, wherein the heating apparatus is a waste gypsum.
  9. 上記円筒状回転体の外側に厚さ9mm以下のセラミックファイバ製断熱シートを、耐熱テープ又は耐熱接着材で巻き着け固定し、上記シートにおける上記回転体外周の非接触型温度センサーの測定点を含む部分を切欠いたものであることを特徴とする請求項1〜8の何れかに記載の廃石膏の加熱装置。   A ceramic fiber heat insulating sheet having a thickness of 9 mm or less is wrapped around and fixed to the outside of the cylindrical rotating body with a heat-resistant tape or a heat-resistant adhesive, and includes measurement points of a non-contact temperature sensor on the outer periphery of the rotating body in the sheet. The apparatus for heating waste gypsum according to any one of claims 1 to 8, wherein a portion is cut out.
  10. 複数台の高周波加熱部の各高周波加熱コイルの上記円筒状回転体の軸方向の長さを、円筒状回転体の供給側のコイルより排出側のコイルの方が長くなるように構成したものであることを特徴とする請求項1〜9の何れかに記載の廃石膏の加熱装置。   The axial length of the cylindrical rotating body of each high-frequency heating coil of the plurality of high-frequency heating units is configured such that the discharge side coil is longer than the supply side coil of the cylindrical rotating body. The heating apparatus for waste gypsum according to claim 1, wherein the heating apparatus is a waste gypsum.
  11. 円筒状回転体の内部に傾斜板を設け、上記石膏攪拌用羽根から落下した石膏を傾斜板上面を移動させ高周波加熱部の設置位置より回転方向上流側に落下させる構造を有することを特徴とする請求項1〜10の何れかに記載の廃石膏の加熱装置。   An inclined plate is provided inside the cylindrical rotating body, and the gypsum dropped from the gypsum stirring blade is moved on the upper surface of the inclined plate and dropped to the upstream side in the rotation direction from the installation position of the high-frequency heating unit. The waste gypsum heating apparatus according to any one of claims 1 to 10.
  12. 上記円筒状回転体の端面側固定端の外側にバーナ燃焼部を取付けて、固定端から円筒状回転体内にバーナ放熱筒を固定し取付け、バーナによる熱風をバーナ放熱筒に流して石膏を間接加熱し、供給装置において燃焼ガスを石膏と熱交換して排気し、バーナ加熱を円筒状回転体の供給側の石膏の加熱に用いることを特徴とする請求項1記載の廃石膏の加熱装置。

    A burner combustion part is attached outside the fixed end of the cylindrical rotating body, and a burner radiator is fixed and attached to the cylindrical rotor from the fixed end, and hot air from the burner is passed through the burner radiator to indirectly heat the gypsum. 2. The waste gypsum heating apparatus according to claim 1, wherein combustion gas is exchanged with gypsum in the supply apparatus and exhausted, and burner heating is used to heat the gypsum on the supply side of the cylindrical rotating body.

JP2005324061A 2005-11-08 2005-11-08 Waste gypsum heating device Active JP4870974B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005324061A JP4870974B2 (en) 2005-11-08 2005-11-08 Waste gypsum heating device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005324061A JP4870974B2 (en) 2005-11-08 2005-11-08 Waste gypsum heating device

Publications (2)

Publication Number Publication Date
JP2007132552A true JP2007132552A (en) 2007-05-31
JP4870974B2 JP4870974B2 (en) 2012-02-08

Family

ID=38154364

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005324061A Active JP4870974B2 (en) 2005-11-08 2005-11-08 Waste gypsum heating device

Country Status (1)

Country Link
JP (1) JP4870974B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011177663A (en) * 2010-03-02 2011-09-15 Ihi Corp Pyrolyzed carbide discharging and cooling system
WO2013018871A1 (en) * 2011-08-02 2013-02-07 特定非営利活動法人プロサップ Heating furnace and heating device
JP2013167423A (en) * 2012-02-16 2013-08-29 Kyudenko Corp Heat treatment device of dihydrate gypsum, and method for producing mixed gypsum
JP2014083510A (en) * 2012-10-25 2014-05-12 Fujio Hori Container rotating device
WO2018155505A1 (en) * 2017-02-22 2018-08-30 環境・エネルギーR&D合同会社 Pipe lifter for rotary kiln

Citations (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4834218A (en) * 1971-09-06 1973-05-17
JPS57115670A (en) * 1980-11-17 1982-07-19 Alco Standard Corp Rotary heat treatment furnace
JPS59176573A (en) * 1983-03-25 1984-10-05 Aichi Electric Mfg Drier
JPS6138386A (en) * 1984-07-31 1986-02-24 Kawasaki Heavy Ind Ltd Raw-material preheater having granulating function
JPS61164994A (en) * 1985-01-07 1986-07-25 Omron Tateisi Electronics Co Lubrication treatment system
JPS62151942A (en) * 1985-12-25 1987-07-06 Nec Corp Task changing-over system
JPS63194747A (en) * 1987-02-05 1988-08-11 Matsushita Seiko Kk Raw garbage treatment
JPH06142633A (en) * 1992-11-12 1994-05-24 Yoshino Sekko Kk Method for recovering plaster from waste material of plasterboard
JPH07179955A (en) * 1993-12-24 1995-07-18 Kubota Corp Device for melting and separating scrap
JPH07293842A (en) * 1994-04-27 1995-11-10 Kyowa Sangyo Kk Cut turf incinerating and top-dressing burning device
JPH08110164A (en) * 1994-10-12 1996-04-30 Mitsubishi Heavy Ind Ltd Rotary kiln
JPH09105583A (en) * 1995-10-05 1997-04-22 Murata Mfg Co Ltd Inductive heating type heat treatment device
JPH10122752A (en) * 1996-10-16 1998-05-15 Chisaki:Kk Lateral rotary heater for raw material or the like
JPH11226542A (en) * 1998-02-19 1999-08-24 Fuji Electric Co Ltd Waste treatment apparatus
JP2000055562A (en) * 1998-08-03 2000-02-25 Sugiyama Juko Kk Induction heating type rotary kiln
JP2000356470A (en) * 1999-06-15 2000-12-26 Meidensha Corp Apparatus for heat treating material to be treated
JP2001327845A (en) * 2000-05-24 2001-11-27 Nishimura Tekkosho:Kk Mixer for rotary-drum incinerator/rotary-drum drying furnace or the like and its media
JP2004292251A (en) * 2003-03-27 2004-10-21 Chubu Electric Power Co Inc Production method and apparatus for anhydrous and hemihydrate gypsum
JP2004340448A (en) * 2003-05-14 2004-12-02 Takasago Ind Co Ltd External heat type rotary kiln and its operating method
JP2005037042A (en) * 2003-07-15 2005-02-10 Meidensha Corp Heat processing device
JP2005104759A (en) * 2003-09-29 2005-04-21 Ryoichi Nishishige Treating method of waste gypsum board
JP2005207627A (en) * 2004-01-20 2005-08-04 Taihei Kogyo Co Ltd Flying ash treatment device

Patent Citations (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4834218A (en) * 1971-09-06 1973-05-17
JPS57115670A (en) * 1980-11-17 1982-07-19 Alco Standard Corp Rotary heat treatment furnace
JPS59176573A (en) * 1983-03-25 1984-10-05 Aichi Electric Mfg Drier
JPS6138386A (en) * 1984-07-31 1986-02-24 Kawasaki Heavy Ind Ltd Raw-material preheater having granulating function
JPS61164994A (en) * 1985-01-07 1986-07-25 Omron Tateisi Electronics Co Lubrication treatment system
JPS62151942A (en) * 1985-12-25 1987-07-06 Nec Corp Task changing-over system
JPS63194747A (en) * 1987-02-05 1988-08-11 Matsushita Seiko Kk Raw garbage treatment
JPH06142633A (en) * 1992-11-12 1994-05-24 Yoshino Sekko Kk Method for recovering plaster from waste material of plasterboard
JPH07179955A (en) * 1993-12-24 1995-07-18 Kubota Corp Device for melting and separating scrap
JPH07293842A (en) * 1994-04-27 1995-11-10 Kyowa Sangyo Kk Cut turf incinerating and top-dressing burning device
JPH08110164A (en) * 1994-10-12 1996-04-30 Mitsubishi Heavy Ind Ltd Rotary kiln
JPH09105583A (en) * 1995-10-05 1997-04-22 Murata Mfg Co Ltd Inductive heating type heat treatment device
JPH10122752A (en) * 1996-10-16 1998-05-15 Chisaki:Kk Lateral rotary heater for raw material or the like
JPH11226542A (en) * 1998-02-19 1999-08-24 Fuji Electric Co Ltd Waste treatment apparatus
JP2000055562A (en) * 1998-08-03 2000-02-25 Sugiyama Juko Kk Induction heating type rotary kiln
JP2000356470A (en) * 1999-06-15 2000-12-26 Meidensha Corp Apparatus for heat treating material to be treated
JP2001327845A (en) * 2000-05-24 2001-11-27 Nishimura Tekkosho:Kk Mixer for rotary-drum incinerator/rotary-drum drying furnace or the like and its media
JP2004292251A (en) * 2003-03-27 2004-10-21 Chubu Electric Power Co Inc Production method and apparatus for anhydrous and hemihydrate gypsum
JP2004340448A (en) * 2003-05-14 2004-12-02 Takasago Ind Co Ltd External heat type rotary kiln and its operating method
JP2005037042A (en) * 2003-07-15 2005-02-10 Meidensha Corp Heat processing device
JP2005104759A (en) * 2003-09-29 2005-04-21 Ryoichi Nishishige Treating method of waste gypsum board
JP2005207627A (en) * 2004-01-20 2005-08-04 Taihei Kogyo Co Ltd Flying ash treatment device

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011177663A (en) * 2010-03-02 2011-09-15 Ihi Corp Pyrolyzed carbide discharging and cooling system
WO2013018871A1 (en) * 2011-08-02 2013-02-07 特定非営利活動法人プロサップ Heating furnace and heating device
WO2013018199A1 (en) * 2011-08-02 2013-02-07 特定非営利活動法人プロサップ Heating furnace and heating device
CN103890517A (en) * 2011-08-02 2014-06-25 山城一三 Heating furnace and heating device
CN103890517B (en) * 2011-08-02 2016-03-16 山城一三 Heating furnace and heater
JP2013167423A (en) * 2012-02-16 2013-08-29 Kyudenko Corp Heat treatment device of dihydrate gypsum, and method for producing mixed gypsum
JP2014083510A (en) * 2012-10-25 2014-05-12 Fujio Hori Container rotating device
WO2018155505A1 (en) * 2017-02-22 2018-08-30 環境・エネルギーR&D合同会社 Pipe lifter for rotary kiln

Also Published As

Publication number Publication date
JP4870974B2 (en) 2012-02-08

Similar Documents

Publication Publication Date Title
JP4870974B2 (en) Waste gypsum heating device
JP5896073B1 (en) Drying processing equipment
CN2932256Y (en) Microwave continuously drying production line
CN104180649B (en) A kind of microwave dynamic high temperature continuous calcining equipment
CN203928703U (en) A kind of microwave dynamic high temperature continuous calcining equipment
CN105222582B (en) A kind of microwave, electric Hybrid Heating high-temperature service
CN205590615U (en) Integrated form carbonization system
JP4669337B2 (en) Asphalt plant
CN209991692U (en) Rotary drum type organic-inorganic compound fertilizer drying device
CN104833186A (en) Electromagnetic induction screw conveying drying machine
JP2009138089A (en) Multistage screw carbonization device
CN103574626B (en) The defeated slag system of coal-burning boiler air-cooled dry type
CN205332751U (en) Continuity cylinder vacuum drying machine
JP2008267738A (en) Low-speed moving stirring heat transfer-type drying method and its device
CN104791808B (en) Closed cooling circulation system used for waste incineration device
CN208282585U (en) Drying unit is used in a kind of processing of wood fibre
CN209121170U (en) A kind of tealeaves efficient energy-saving green removing device
CN101066846B (en) Technological process of using fume afterheat of cement kiln in preheating and humidifying raw material
CN102679695A (en) External heating two-layer drying kiln
CN207622550U (en) A kind of metallurgical furnace kiln waste heat recycle device
CN205482191U (en) Continuity hot blast drier
CN211552383U (en) A drying equipment for perlite raw sand
CN103046438B (en) Vacuum forming refractory fibre board assembly line and using method thereof
CN209431869U (en) A kind of kiln operating system
CN211041890U (en) Cooling device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080606

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110126

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110201

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110402

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111025

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111118

R150 Certificate of patent or registration of utility model

Ref document number: 4870974

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141125

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350