JP2007131916A - High-strength cold rolled steel sheet for deep drawing and hot dip plated steel sheet - Google Patents

High-strength cold rolled steel sheet for deep drawing and hot dip plated steel sheet Download PDF

Info

Publication number
JP2007131916A
JP2007131916A JP2005326612A JP2005326612A JP2007131916A JP 2007131916 A JP2007131916 A JP 2007131916A JP 2005326612 A JP2005326612 A JP 2005326612A JP 2005326612 A JP2005326612 A JP 2005326612A JP 2007131916 A JP2007131916 A JP 2007131916A
Authority
JP
Japan
Prior art keywords
steel sheet
strength
steel
less
present
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005326612A
Other languages
Japanese (ja)
Inventor
Shiro Sayanagi
志郎 佐柳
Masayuki Abe
阿部  雅之
Teruaki Isaki
輝明 伊崎
Tatsuya Sakiyama
達也 崎山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2005326612A priority Critical patent/JP2007131916A/en
Publication of JP2007131916A publication Critical patent/JP2007131916A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Heat Treatment Of Sheet Steel (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a high-strength cold rolled steel sheet for deep drawing applied to the fields of automobiles, house appliances or the like, particularly, to provide a high-strength cold rolled steel sheet having excellent deep drawability, weld joint efficiency and secondary processing brittleness resistance required for an automobile fuel tank, and to provide a hot dip plated steel sheet having excellent corrosion resistance. <P>SOLUTION: The high strength cold rolled steel sheet for deep drawing having excellent weld joint efficiency and hot dip plated steel sheet contain, by weight, ≤0.010% C, ≤0.10% Si, 1.0 to 3.0% Mn, ≤0.03% P, 0.01 to 0.040% Ti, 0.01 to 0.045% Nb and 0.0010 to 0.0050% B, and contain, as selective elements from the viewpoint of strength and processability, 0.01 to 1.0% Ni and 0.01 to 1.0% Mo. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は自動車、家電等の分野に適用される深絞り用高強度冷延鋼板、溶融めっき鋼板、並びにそれらの製造方法に関し、特に自動車の燃料タンクに必要とされる深絞り性、溶接継手効率、耐二次加工脆性の優れた高強度冷延鋼板、耐食性が優れた溶融めっき鋼板、並びにそれらの製造方法に関する。   TECHNICAL FIELD The present invention relates to a deep drawing high strength cold-rolled steel sheet, a hot-dip steel sheet, and a manufacturing method thereof applied to the fields of automobiles, home appliances, and the like, and in particular, deep drawability and welded joint efficiency required for a fuel tank of an automobile. The present invention relates to a high-strength cold-rolled steel sheet having excellent secondary work brittleness resistance, a hot-dip plated steel sheet having excellent corrosion resistance, and a method for producing them.

近年、自動車用鋼板においては、車体重量軽減による燃費向上を目的として、高強度化が進んでいる。燃料タンク用鋼板でも同様に、タンクの軽量化、車体デザインの複雑化により、燃料タンクの収納設置場所の関係から、燃料タンクの複雑化が進み、優れた成形性が要求される。このような成形性と高強度の両立の要望を満足させるために、極低炭素鋼にTiやNbのような炭窒化物形成元素を添加したIF(Interstitial Free)鋼に、P、Si、Mn等の固溶強化元素を添加した高強度IF鋼が開発されてきた。   In recent years, steel sheets for automobiles have been increased in strength for the purpose of improving fuel efficiency by reducing vehicle body weight. Similarly, steel plates for fuel tanks are required to have excellent formability due to the complexity of fuel tanks due to the lighter tanks and more complicated vehicle body design due to the location of the fuel tanks. In order to satisfy such demands for both formability and high strength, IF (Interstitial Free) steel, in which carbonitride-forming elements such as Ti and Nb are added to ultra-low carbon steel, P, Si, Mn High-strength IF steel added with solid solution strengthening elements such as has been developed.

しかしながら、IF鋼はCやN等をTiやNbで炭化物として析出固定するために、結晶粒界が非常に清浄になり、成形後に粒界破壊により二次加工脆化が発生しやすくなるという問題点がある。さらに、高強度IF鋼の場合、固溶強化元素で粒内が強化され、相対的な粒界強度の低下が顕著になるため、二次加工脆化が促進されるという問題点がある。   However, since IF steel precipitates and fixes C and N as carbides with Ti and Nb, the crystal grain boundary becomes very clean, and secondary processing embrittlement is likely to occur due to grain boundary fracture after forming. There is a point. Furthermore, in the case of high-strength IF steel, there is a problem that secondary work embrittlement is promoted because the intragranular strength is strengthened by the solid solution strengthening element and the relative grain boundary strength is significantly reduced.

燃料タンクは上面と下面を別々にプレス成形され、これらを溶接で接合して用いられる。しかし、鋼板を高強度化しても、溶接継手強度を鋼板の高強度化に見合う高さまで向上させることができないという問題点がある。また燃料タンクは、重要保安部品であるため、低温地域の冬季における衝突に対しても、耐破壊性を向上させる必要がある。   The fuel tank is used by pressing the upper surface and the lower surface separately and joining them together by welding. However, even if the strength of the steel plate is increased, there is a problem that the strength of the welded joint cannot be improved to a height commensurate with the increase in strength of the steel plate. In addition, since the fuel tank is an important safety part, it is necessary to improve the fracture resistance against a collision in winter in a low temperature region.

これらの問題点のうち、二次加工脆化を回避する目的で、いくつかの方法が提案されている。例えば、特許文献1に示される開示技術では、Ti添加IF鋼をベースに、粒界偏析による耐二次加工脆化の劣化を回避するため、P添加量をできるだけ低減させ、その分、Mn、Siを多量に添加することで、深絞り性および耐二次加工脆性に優れた高張力薄鋼板を製造する技術が提案されている。また、特許文献2に示される開示技術では、極低炭素鋼板を用いて、Ti、Nbに加えてBを添加することで、粒界強度を上昇させ、耐二次加工脆性を高める技術が提案されている。この特許文献2に示される開示技術では、耐二次加工脆性を向上と、オーステナイト粒の再結晶の遅れに伴う熱間圧延時における負荷の増大防止を念頭におき、最適なB添加量を見出している。   Among these problems, several methods have been proposed for the purpose of avoiding secondary work embrittlement. For example, in the disclosed technique disclosed in Patent Document 1, based on Ti-added IF steel, in order to avoid deterioration of secondary work embrittlement resistance due to segregation of grain boundaries, the amount of P addition is reduced as much as possible, and Mn, A technique for manufacturing a high-tensile steel sheet excellent in deep drawability and secondary work brittleness resistance by adding a large amount of Si has been proposed. In addition, the disclosed technique disclosed in Patent Document 2 proposes a technique for increasing grain boundary strength and increasing secondary work brittleness resistance by adding B in addition to Ti and Nb using an ultra-low carbon steel sheet. Has been. In the disclosed technique disclosed in Patent Document 2, the optimum B addition amount is found in consideration of improving the secondary work brittleness resistance and preventing an increase in load during hot rolling due to a delay in recrystallization of austenite grains. ing.

溶接性を改善する目的でもいくつかの提案がなされている。例えば、特許文献3に示される開示技術では、TiあるいはNbを添加した極低炭素鋼板を焼鈍時に浸炭し、表層にマルテンサイトやベイナイト組織を形成し、スポット溶接性の向上を図るものである。特許文献4は極低炭素鋼にCuを添加し、溶接時の熱影響部を広くすることにより、スポット溶接継手強度を高めようとするものである。特許文献5は鋼にMgを添加し、Mg酸化物、Mg硫化物を形成し、ピニング効果により、溶接部、熱影響部の細粒化を図り、ひいては溶接部の成形性を向上させ、材質の劣化防止を図る技術である。
特開平5−59491号公報 特開平6−57373号公報 特開平7−188777号公報 特開平8−291364号公報 特開2001−288534号公報
Several proposals have been made for the purpose of improving weldability. For example, in the disclosed technique disclosed in Patent Document 3, an ultra-low carbon steel sheet to which Ti or Nb is added is carburized during annealing to form a martensite or bainite structure on the surface layer, thereby improving spot weldability. Patent Document 4 intends to increase the strength of a spot welded joint by adding Cu to an extremely low carbon steel and widening a heat-affected zone during welding. Patent Document 5 adds Mg to steel, forms Mg oxide and Mg sulfide, and refines the welded part and heat-affected zone by the pinning effect, thereby improving the formability of the welded part. This is a technology for preventing the deterioration of the material.
JP-A-5-59491 JP-A-6-57373 JP-A-7-188777 JP-A-8-291364 JP 2001-288534 A

しかしながら、上記特許文献1、2の開示技術では、加工性、耐二次加工脆性は良好であるが、溶接継手効率が低いという問題点が残る。特許文献3記載の方法は焼鈍中に浸炭するため、実際の製造設備では通板速度、雰囲気ガス組成、温度が一定でないので、浸炭量が変化し、製造する鋼板の間で材質のバラツキが大きくなる。このため、安定した鋼板の製造が困難である。特許文献4記載の方法はCuを多量に添加するため、Cuによる表面欠陥が多発し、歩留まりが低下してしまうという問題点がある。更に特許文献5記載の方法は、比較的溶接後の冷却速度の遅いアーク溶接等では効果があるが、冷却速度の速いシーム溶接等ではその効果が認められないという欠点がある。 However, in the disclosed techniques of Patent Documents 1 and 2, workability and secondary work brittleness resistance are good, but the problem that weld joint efficiency is low remains. Since the method described in Patent Document 3 is carburized during annealing, the rate of plate feed, atmospheric gas composition, and temperature are not constant in actual production equipment, so the amount of carburization changes and the material variation between the steel plates to be produced is large. Become. For this reason, it is difficult to produce a stable steel sheet. The method described in Patent Document 4 has a problem in that since a large amount of Cu is added, surface defects due to Cu frequently occur and the yield decreases. Furthermore, the method described in Patent Document 5 is effective in arc welding with a relatively slow cooling rate after welding, but has a drawback that the effect is not recognized in seam welding with a high cooling rate.

そこで本発明は、上述した問題点に鑑みて案出されたものであり、380MPa以上、590MPa未満の引張り強度で、自動車用鋼板、とりわけ燃料タンク用途に適用可能なプレス成形性を有し、かつ耐二次加工脆性、溶接継手効率の優れた深絞り用高強度冷延鋼板、溶融めっき鋼板、並びにそれらの製造方法を提案することを目的とする。   Accordingly, the present invention has been devised in view of the above-described problems, has a tensile strength of 3800 MPa or more and less than 590 MPa, has press formability applicable to automotive steel plates, particularly fuel tanks, and The object is to propose a high-strength cold-rolled steel sheet for deep drawing, a hot-dip steel sheet, and a method for producing them, which are excellent in secondary work brittleness resistance and weld joint efficiency.

本発明者等は、従来技術では極めて困難であった、優れたプレス成形性を有し、かつ優れた耐二次加工脆性、溶接継手効率を併せ持つ、高強度冷延鋼板および高強度溶融めっき鋼板を得るために鋭意検討を重ねた。その結果、従来の固溶強化元素であるP、Siをできるだけ添加量を低減し、極低炭素鋼板でも変態強化を積極的に活用することにより、耐二次加工脆性を一段と改善でき、溶接継手効率を高められることを知見した。   The present inventors have achieved high strength cold-rolled steel sheets and high-strength hot-dip galvanized steel sheets that have excellent press formability and excellent secondary work brittleness resistance and weld joint efficiency, which has been extremely difficult with the prior art. In order to obtain As a result, the amount of addition of P and Si, which are conventional solid solution strengthening elements, is reduced as much as possible, and by utilizing transformation strengthening even in ultra-low carbon steel sheets, the secondary work brittleness resistance can be further improved, and welded joints We found that efficiency could be improved.

即ち、本願請求項1に係る深絞り用高強度冷延鋼板は、重量%で、C:0.0005〜0.010%、Si:0.10%以下、Mn:1.0〜3.0%、P:0.03%以下、Ti:0.01〜0.040%、Nb:0.01〜0.045%、B:0.0010〜0.0050%を含有し、残部不可避的不純物からなることを特徴とする。   That is, the deep drawing high-strength cold-rolled steel sheet according to Claim 1 of the present invention is, in weight%, C: 0.0005 to 0.010%, Si: 0.10% or less, Mn: 1.0 to 3.0%, P: 0.03% or less, Ti: It contains 0.01 to 0.040%, Nb: 0.01 to 0.045%, B: 0.0010 to 0.0050%, and is characterized by being composed of the balance inevitable impurities.

本願請求項2に係る深絞り用高強度冷延鋼板は、重量%で、C:0.0005〜0.010%、Si:0.10%以下、Mn:1.0〜3.0%、P:0.03%以下、Ti:0.01〜0.040%、Nb:0.01〜0.045%、B:0.0010〜0.0050%、Ni:0.01〜1.0%、Mo:0.01〜1.0%を含有し、残部不可避的不純物からなることを特徴とする。   The deep drawing high-strength cold-rolled steel sheet according to claim 2 is in weight%, C: 0.0005 to 0.010%, Si: 0.10% or less, Mn: 1.0 to 3.0%, P: 0.03% or less, Ti: 0.01 to It contains 0.040%, Nb: 0.01-0.045%, B: 0.0010-0.0050%, Ni: 0.01-1.0%, Mo: 0.01-1.0%, and the balance consists of inevitable impurities.

本願請求項3に係る溶融めっき鋼板は、重量%で、C:0.0005〜0.010%、Si:0.10%以下、Mn:1.0〜3.0%、P:0.03%以下、Ti:0.01〜0.040%、Nb:0.01〜0.045%、B:0.0010〜0.0050%を含有し、残部不可避的不純物からなることを特徴とする。   The hot dip plated steel sheet according to claim 3 of the present application is C: 0.0005 to 0.010%, Si: 0.10% or less, Mn: 1.0 to 3.0%, P: 0.03% or less, Ti: 0.01 to 0.040%, Nb:% by weight. It is characterized by containing 0.01 to 0.045%, B: 0.0010 to 0.0050%, and the balance being inevitable impurities.

本願請求項4に係る溶融めっき鋼板は、重量%で、C:0.0005〜0.010%、Si:0.10%以下、Mn:1.0〜3.0%、P:0.03%以下、Ti:0.01〜0.040%、Nb:0.01〜0.045%、B:0.0010〜0.0050%、Ni:0.01〜1.0%、Mo:0.01〜1.0%を含有し、残部不可避的不純物からなることを特徴とする。   The hot-dip galvanized steel sheet according to claim 4 is C: 0.0005-0.010%, Si: 0.10% or less, Mn: 1.0-3.0%, P: 0.03% or less, Ti: 0.01-0.040%, Nb: It contains 0.01 to 0.045%, B: 0.0010 to 0.0050%, Ni: 0.01 to 1.0%, Mo: 0.01 to 1.0%, and the balance consists of inevitable impurities.

本願請求項5に係る深絞り用高強度冷延鋼板の製造方法は、請求項1又は2に記載の組成の溶鋼を連続鋳造、熱間圧延、冷間圧延し、860℃以下の温度で再結晶焼鈍することを特徴とする。   The manufacturing method of the deep drawing high-strength cold-rolled steel sheet according to claim 5 of the present application includes continuous casting, hot rolling, and cold rolling of the molten steel having the composition according to claim 1 or 2 at a temperature of 860 ° C. or less. It is characterized by crystal annealing.

本願請求項6に係る溶融めっき鋼板の製造方法は、請求項3又は4に記載の組成の溶鋼を連続鋳造、熱間圧延、冷間圧延し、860℃以下の温度で再結晶焼鈍することを特徴とする。   The manufacturing method of the hot-dip galvanized steel sheet according to claim 6 of the present invention is to continuously cast, hot-roll, and cold-roll the molten steel having the composition according to claim 3 or 4 and to perform recrystallization annealing at a temperature of 860 ° C. or lower. Features.

本発明によれば、従来の高強度鋼板に積極的に添加されていた、固溶強化元素である、P、Si量を低く抑え、Mn、Nb、Ti、Bを特定することにより、従来炭素量の高い鋼のみ活用されていたベイナイト組織を焼鈍後の冷却中に特段に冷却速度を制御することなく、ベイナイト組織を極低炭素鋼で活用することが可能となり、高強度化を達成すると同時に、優れた加工特性を有し、かつ、耐二次加工脆性、溶接継手効率を優れたものにした。この効果は、高強度化による自動車の軽量化による燃費向上、とりわけ、燃料タンクの軽量化、車体デザインの複雑化に対応した燃料タンクの製造が可能となる。また、熱延鋼板では、軟質で、冷延焼鈍後に高強度化が可能なため、製造コストを低減できるというメッリトも有する。これらの効果は工業的には極めて大きい。   According to the present invention, by adding low amounts of P and Si, which are solid solution strengthening elements that have been positively added to conventional high-strength steel sheets, and by specifying Mn, Nb, Ti, and B, conventional carbon It is possible to utilize the bainite structure with ultra-low carbon steel without specially controlling the cooling rate during cooling after annealing the bainite structure that was used only in high-amount steel, and at the same time achieving high strength It has excellent processing characteristics, and has excellent secondary work brittleness resistance and weld joint efficiency. This effect makes it possible to improve fuel efficiency by reducing the weight of automobiles by increasing strength, and in particular, to manufacture fuel tanks that are compatible with lighter fuel tanks and more complicated body designs. Further, the hot-rolled steel sheet is soft and has a merit that the manufacturing cost can be reduced because the strength can be increased after cold-rolling annealing. These effects are extremely large industrially.

以下、本発明を実施するための最良の形態として、プレス成形性を有し、かつ耐二次加工脆性、溶接継手効率の優れた深絞り用高強度冷延鋼板、溶融めっき鋼板、並びにそれらの製造方法につき、詳細に説明をする。以下、組成における質量%は、単に%と記載する。また、継手効率とは、ピール強度が母材強度に対する強度比が50%以上あること、−50℃以下の温度でのピール試験で破面に脆性破面が生じないことである。   Hereinafter, as the best mode for carrying out the present invention, high-strength cold-rolled steel sheet for deep drawing, hot-rolled steel sheet having press formability and excellent secondary work brittleness resistance and weld joint efficiency, and hot-dip plated steel sheets thereof, and those The manufacturing method will be described in detail. Hereinafter, the mass% in the composition is simply described as%. The joint efficiency means that the strength ratio of the peel strength to the base metal strength is 50% or more, and that a brittle fracture surface does not occur on the fracture surface in a peel test at a temperature of −50 ° C. or less.

本発明を適用した深絞り用高強度冷延鋼板、溶融めっき鋼板では、溶接継手効率を向上させるべく、従来の固溶強化元素であるP、Siについてできるだけ添加量を低減し、極低炭素鋼板でも変態強化を積極的に活用することにより、耐二次加工脆性を改善し、溶接継手効率を向上させるコンセプトに基づいて材料設計がなされている。   In high-strength cold-rolled steel sheet and hot-dipped steel sheet for deep drawing to which the present invention is applied, in order to improve the weld joint efficiency, the addition amount of P and Si, which are conventional solid solution strengthening elements, is reduced as much as possible. However, material design is based on the concept of improving secondary work brittleness resistance and improving weld joint efficiency by actively utilizing transformation strengthening.

即ち、本発明を構成する鋼成分は重量%でC:0.0005〜0.010%、Si:0.10%以下、Mn:1.0〜3.0%、P:0.03%以下、Ti:0.01〜0.040%、Nb:0.01〜0.045%、B:0.0010〜0.0050%、を含有し、強度及び加工性の観点から選択元素として、Ni:0.01〜1.0%、Mo:0.01〜1.0%を含有することに特徴がある。   That is, the steel components constituting the present invention are C: 0.0005 to 0.010%, Si: 0.10% or less, Mn: 1.0 to 3.0%, P: 0.03% or less, Ti: 0.01 to 0.040%, Nb: 0.01 by weight. -0.045%, B: 0.0010-0.0050%, and it is characterized by containing Ni: 0.01-1.0% and Mo: 0.01-1.0% as a selection element from a viewpoint of intensity | strength and workability.

次に、本発明を適用した深絞り用高強度冷延鋼板、溶融めっき鋼板の化学成分を限定した理由について説明をする。   Next, the reason why the chemical components of the deep drawing high-strength cold-rolled steel sheet and hot-dip steel sheet to which the present invention is applied will be described.

C:0.0005〜0.010%
Cは、鋼の焼入れ性と強度を制御する最も基本的な元素であり、本発明において極めて重要な元素である。低温変態相を生成させ、高強度化を達成するには非常に有効な元素であるが、0.010%を超えて添加した場合、加工性の低下を招き、かつ溶接継手効率の低下を招くので、Cの濃度は0.010%以下とする。また、極めて高い加工性を要求される場合には0.0050%以下で添加することが好ましい。本発明の方法ではCの濃度が低くなっても低温変態相の生成には影響を及ぼさないが、0.0005%未満では強度確保が困難になる。また、製鋼時の脱炭コストの上昇を招くので0.0005%以上にする必要がある。
C: 0.0005-0.010%
C is the most basic element that controls the hardenability and strength of steel, and is an extremely important element in the present invention. Although it is a very effective element for generating a low-temperature transformation phase and achieving high strength, if added over 0.010%, it causes a decrease in workability and a decrease in weld joint efficiency. The concentration of C is 0.010% or less. Further, when extremely high workability is required, it is preferable to add at 0.0050% or less. In the method of the present invention, even if the C concentration is lowered, the generation of the low temperature transformation phase is not affected, but if it is less than 0.0005%, it is difficult to ensure the strength. Moreover, since decarburization cost rises at the time of steelmaking, it is necessary to make it 0.0005% or more.

Si:0.10%以下
Siは、固溶強化元素としてよく知られており、また脱酸に有効な元素である。しかし、本発明ではSi添加量が多くなる耐二次加工脆性が劣化すると同時に、溶接継手効率を低めるため、0.10%以下に添加量を抑える必要がある。
Si: 0.10% or less Si is well known as a solid solution strengthening element and is an element effective for deoxidation. However, in the present invention, the secondary work embrittlement resistance that increases the Si addition amount deteriorates and at the same time the weld joint efficiency is lowered, so the addition amount needs to be suppressed to 0.10% or less.

Mn:1.0〜3.0%
Mnは、Siと同様に焼入れ性を向上させるとともに固溶強化により素材強度を上昇させる元素であり、耐二次加工脆性の向上を目的とした本発明において重要な元素の一つである。Mnは、Ac1変態温度を低めることで、通常の焼鈍温度でも、焼鈍時にα+γ相となることで、低温変態相を生成させ、高強度化を達成するには非常に有効な元素である。また、焼鈍時にα+γ相となることで、TiC、あるいはNbCとして析出していたCが再固溶しやすくなることにより、耐二次加工脆性を良好にする。このため、1.0%以上の添加量が必要である。一方、Mnの濃度が3.0%を超えると加工性が劣化し、目的の加工性を確保できない。
Mn: 1.0-3.0%
Mn is an element that improves the hardenability and raises the strength of the material by solid solution strengthening, as is the case with Si, and is one of the important elements in the present invention for the purpose of improving secondary work embrittlement resistance. Mn is an extremely effective element for reducing the Ac1 transformation temperature and generating a low-temperature transformation phase by achieving an α + γ phase at the time of annealing even at a normal annealing temperature, thereby achieving high strength. In addition, by forming an α + γ phase at the time of annealing, TiC or C precipitated as NbC is easily re-dissolved, thereby improving secondary work brittleness resistance. For this reason, an addition amount of 1.0% or more is necessary. On the other hand, if the Mn concentration exceeds 3.0%, the workability deteriorates and the desired workability cannot be ensured.

P:0.03%以下
Pは、鋼中に不可避不純物として含有する元素であり、意図的に添加する元素ではない。Pは、加工性の劣化が少なく、固溶強化で高強度化に有効な元素であることがよく知られている。しかし、Pは、粒界に偏析することで、耐二次加工脆性を劣化させると同時に、溶接部に凝固偏析を生じ、溶接継手効率を低下させるため、極力低濃度であることが望ましい。このため、Pの濃度を0.03%以下にする必要がある。Pの下限は特に規定する必要はないが、Pの濃度を0.005%以下に低めるには精錬コストが高くなるので、本発明では主に0.005〜0.02%で実施している。
P: 0.03% or less
P is an element contained as an inevitable impurity in steel and is not an element intentionally added. It is well known that P is an element that has little deterioration in workability and is effective for increasing the strength by solid solution strengthening. However, P is segregated at the grain boundary to deteriorate the secondary work embrittlement resistance, and at the same time, solidification segregation occurs in the welded portion and lowers the weld joint efficiency. For this reason, the concentration of P needs to be 0.03% or less. The lower limit of P does not need to be specified, but since the refining cost increases to lower the P concentration to 0.005% or less, the present invention is mainly performed at 0.005 to 0.02%.

Ti:0.01〜0.040%
Tiは、N、Cとの親和力が強く、凝固時に炭窒化物を形成し、鋼中の固溶N、Cを低減し、加工性を高めることが良く知られている。このため、このTiは、最低限0.01%添加する必要がある。一方、添加量が多くなると、固溶C量が無くなり、粒界強度が低下するため、上限を0.040%とした。
Ti: 0.01-0.040%
It is well known that Ti has a strong affinity with N and C, forms carbonitrides during solidification, reduces solid solution N and C in steel, and improves workability. For this reason, this Ti needs to be added at a minimum of 0.01%. On the other hand, when the addition amount increases, the amount of dissolved C disappears and the grain boundary strength decreases, so the upper limit was made 0.040%.

Nb:0.01〜0.045%
Nbは、組織の微細粒化により靭性を向上させ、またTiと同様にN、Cとの親和力が強く、凝固時に炭窒化物を形成し、鋼中の固溶N、Cを低減し、加工性を高めることが良く知られている。このためには最低限0.01%添加する必要がある。一方、添加量が多くなると、固溶C量が無くなり、粒界強度が低下するため、上限を0.045%に特定した。
Nb: 0.01-0.045%
Nb improves toughness by refining the structure, and has a strong affinity with N and C as well as Ti, forms carbonitrides during solidification, reduces solid solution N and C in steel, and processes It is well known to increase sex. For this purpose, it is necessary to add at least 0.01%. On the other hand, as the amount added increased, the amount of dissolved C disappeared and the grain boundary strength decreased, so the upper limit was specified as 0.045%.

B: 0.0010〜0.0050%
Bは粒界に偏析することにより、粒界強度を高め、耐二次加工脆性を良好にする元素であることが知られている。また、Mn、Niと同時に添加することで、焼鈍時のγ相が、冷却時にフェライト変態を抑制する働きをし、低温変態相の生成を促進し、高強度化に寄与するに必要な元素である。このため、少なくとも0.0010%は必要である。一方、添加量が多くなると、Bを添加することによる効果が飽和するだけでなく、再結晶温度を高め、高温焼鈍を必要となるため、製造コストの上昇を招き、更には加工性を劣化させる。このため、Bの濃度を0.0050%以下にする必要がある。
B: 0.0010-0.0050%
B is known to be an element that segregates at the grain boundaries to increase the grain boundary strength and improve the secondary work brittleness resistance. Also, by adding together with Mn and Ni, the γ phase during annealing acts to suppress ferrite transformation during cooling, promotes the formation of low temperature transformation phase, and is an element necessary for contributing to high strength is there. For this reason, at least 0.0010% is necessary. On the other hand, when the addition amount increases, not only the effect of adding B is saturated, but also the recrystallization temperature is increased and high-temperature annealing is required, leading to an increase in manufacturing cost and further degrading workability. . For this reason, the concentration of B needs to be 0.0050% or less.

Ni:0.01〜1.0%
Niは、Mnと同様に高強度化に有効な元素である。特に焼鈍時に二相域の温度を低め、低温変態相の生成を通じて、高強度化に寄与するため、選択元素として上記の観点から添加できる。これらの効果を発揮させるには、Niを0.01%以上含有させるのがよい。しかし、1.0%を超えての添加は製造コストの上昇を招く。このため、上限を1.0%とした。
Ni: 0.01-1.0%
Ni, like Mn, is an element effective for increasing the strength. In particular, it can be added as a selective element from the above viewpoint because it contributes to increasing the strength by lowering the temperature in the two-phase region during annealing and generating a low-temperature transformation phase. In order to exert these effects, it is preferable to contain 0.01% or more of Ni. However, addition exceeding 1.0% causes an increase in production cost. For this reason, the upper limit was made 1.0%.

Mo:0.01〜1.0%
MoはNi、Mnと同様に高強度化に有効な元素である。特に、焼鈍時の二相域温度からの低温変態相の生成を通じて高強度化に寄与する。これらの効果を発揮させるには、Moを0.01%以上含有させるのがよい。また、加工性を高める効果も有する。選択元素として上記の観点から添加できる。しかし、1.0%を超えての添加は製造コストの上昇を招く。
Mo: 0.01-1.0%
Mo is an element effective for increasing the strength, like Ni and Mn. In particular, it contributes to high strength through the generation of a low-temperature transformation phase from the two-phase temperature during annealing. In order to exert these effects, it is preferable to contain 0.01% or more of Mo. It also has the effect of improving processability. As a selective element, it can be added from the above viewpoint. However, addition exceeding 1.0% causes an increase in production cost.

本発明は、上記成分以外のS、Al、Cr、Cu等の元素を添加しても、本発明の特徴を損なうことは無いので、通常の範囲で添加しても良い。   In the present invention, addition of elements such as S, Al, Cr, and Cu other than the above components does not impair the characteristics of the present invention, so it may be added in a normal range.

上記のような鋼組成の鋼は転炉、あるいは電気炉、必要に応じ真空脱ガス処理して、スラブを造り、熱間圧延に供される。熱延コイルは通常、脱スケール後に冷間圧延し、所定の板厚に調整され、焼鈍に供される。熱延の加熱温度は何度でも本発明の特徴を損なわないので、圧延の操業に支障がない範囲で選べば良く、熱延仕上温度によっても本発明の特徴に変化が無いので、特に規定する必要がないが、操業性等から800〜900℃の範囲で行うことが好ましい。また、冷間圧延率は通常行われている60〜80%程度で行うことが好ましい。   The steel having the above steel composition is subjected to hot rolling by using a converter or an electric furnace, and if necessary, vacuum degassing treatment to form a slab. A hot-rolled coil is usually cold-rolled after descaling, adjusted to a predetermined plate thickness, and subjected to annealing. Since the heating temperature of hot rolling does not impair the characteristics of the present invention as many times as necessary, it should be selected within a range that does not hinder the rolling operation, and the characteristics of the present invention are not changed depending on the hot rolling finishing temperature, so it is particularly specified. Although it is not necessary, it is preferably carried out in the range of 800 to 900 ° C. from the viewpoint of operability. The cold rolling rate is preferably about 60 to 80%, which is usually performed.

次に、860℃以下の温度で再結晶焼鈍する理由について説明をする。   Next, the reason why recrystallization annealing is performed at a temperature of 860 ° C. or lower will be described.

860℃を超える温度で焼鈍すると、フェライト粒径、低温変態相の粒径が大きくなり、耐二次加工脆性が低下すると共に、溶接継手効率が低下する。この理由から、焼鈍温度は860℃以下にする必要がある。好ましい条件は、優れた加工性、耐二次加工脆性、溶接継手効率を得るため、760℃〜830℃の範囲である。焼鈍後の500℃までの平均冷却速度は、2.5℃/秒以上とすることが好ましい。なお、この冷却中において過時効処理を施すようにしてもよい。また、焼鈍の冷却過程で、亜鉛、Al合金、Sn、Sn−Zn合金等の溶融めっきを行っても本発明の特徴を発揮する。   When annealing is performed at a temperature exceeding 860 ° C., the ferrite grain size and the grain size of the low-temperature transformation phase are increased, the secondary work brittleness resistance is lowered, and the weld joint efficiency is lowered. For this reason, the annealing temperature needs to be 860 ° C. or lower. Preferred conditions are in the range of 760 ° C. to 830 ° C. in order to obtain excellent workability, secondary work brittleness resistance and weld joint efficiency. The average cooling rate to 500 ° C. after annealing is preferably 2.5 ° C./second or more. In addition, you may make it perform an overaging process during this cooling. Further, even if hot-dip plating of zinc, Al alloy, Sn, Sn—Zn alloy or the like is performed in the annealing cooling process, the characteristics of the present invention are exhibited.

その後、焼鈍鋼板、めっき鋼板は、必要に応じて調質圧延され、出荷される。また、焼鈍された鋼板は、電気めっきを施しても本発明の特徴を損なわない。   Thereafter, the annealed steel sheet and the plated steel sheet are temper-rolled and shipped as necessary. The annealed steel sheet does not impair the characteristics of the present invention even if it is electroplated.

表1に記載の鋼組成のスラブを1200℃に加熱保持後に、熱延仕上温度が850〜880℃、巻き取り温度が600〜650℃の条件で板厚:3.7mmの熱延鋼板を造り、酸洗後に、表1記載の条件で焼鈍し、1.0%の調質圧延した。この鋼板の引張り特性、深絞り加工の指標であるr値、耐二次加工脆性、溶接継手効率を調査した。
以下、その評価方法について説明する。
After heating and holding a slab having the steel composition shown in Table 1 at 1200 ° C, a hot rolled steel sheet having a thickness of 3.7 mm was made under conditions of a hot rolling finishing temperature of 850 to 880 ° C and a winding temperature of 600 to 650 ° C, After pickling, annealing was performed under the conditions shown in Table 1, and temper rolling was performed at 1.0%. The steel sheet was examined for tensile properties, r value as an index of deep drawing, secondary work brittleness resistance, and welded joint efficiency.
Hereinafter, the evaluation method will be described.

引張り特性は、引張り方向が圧延方向と平行になるようにJIS5号試験片を採取し、引張り試験を行い、引張り強度、伸びを評価した。TSが440MPa以上で伸びが35%以上を合格とした。   As for the tensile properties, JIS No. 5 test pieces were collected so that the tensile direction was parallel to the rolling direction, a tensile test was performed, and tensile strength and elongation were evaluated. TS was 440 MPa or more and the elongation was 35% or more.

r値は、圧延方向に平行、45°、直角にそれぞれJIS5号引張り試験片を採取することにより測定した。r値の評価は、各方向の平均値で行った。この平均値は、圧延方向に平行なr値をr、45°方向のr値をr45、直角方向のr値をr90としたとき、r=(r+2×r45+r90)/4で求めた。r値は1.50以上を合格とした。
耐二次加工脆性は、鋼板を105φにブランキング後に外径50φのポンチで円筒絞りを行い、その絞りカップを30度の円錐台に載せ、種々の温度で、高さ1m位置から5kgの錘を落下させ、カップに割れの発生しない、最低の温度で評価した。溶接継手効率は、鋼板(板厚:1.2mm)を2枚重ねてシーム溶接し、その溶接部の強度及び靭性について評価した。その際、溶接部の強度は、剪断引張り強度と母材の引張り強度との比(剪断引張り強度/母材の引張り強度)により評価した。また、溶接部の靭性は、図1に示す形状の鋼板1a,1bをシーム溶接して試験片を作製し、その溶接部2について、温度を変えてピール試験を行った。そして、破断面をSEM観察し、脆性破面が生じない温度で評価した。これらの結果を表2に示す。
The r value was measured by collecting JIS No. 5 tensile specimens parallel to the rolling direction, 45 °, and perpendicularly. Evaluation of r value was performed by the average value of each direction. This average value, when the r value of r 0, 45 ° direction parallel r values in the rolling direction and r 45, the r value of the direction perpendicular and r 90, r = (r 0 + 2 × r 45 + r 90) / 4. The r value was 1.50 or higher.
Secondary work brittleness is as follows: blanking the steel plate to 105φ, cylindrical punching with a punch with an outer diameter of 50φ, placing the throttle cup on a truncated cone of 30 degrees, 5kg weight from 1m height at various temperatures The cup was dropped and evaluated at the lowest temperature at which no cracks occurred in the cup. The weld joint efficiency was evaluated by evaluating the strength and toughness of the welded portion by seam welding two steel plates (plate thickness: 1.2 mm). At that time, the strength of the welded portion was evaluated by the ratio of the shear tensile strength and the tensile strength of the base material (shear tensile strength / base tensile strength). Further, the toughness of the welded portion was obtained by seam welding the steel plates 1a and 1b having the shape shown in FIG. 1 to produce test pieces, and the welded portion 2 was subjected to a peel test at different temperatures. Then, the fracture surface was observed by SEM and evaluated at a temperature at which no brittle fracture surface occurred. These results are shown in Table 2.

Figure 2007131916
Figure 2007131916

Figure 2007131916
Figure 2007131916

鋼No.1はMn、Ti、Nb、B添加した本発明範囲内の実施例である。この鋼板は良好な加工性を示すと共に、二次加工脆性温度が−60℃と低く、優れた耐二次加工脆性を有する。また、溶接継手強度も高く、継手のピール試験破面に脆性破面が生じる温度が−70℃以下で、優れた継手の靭性を有することが分かる。鋼No.2はNiを0.5%添加した本発明範囲内の実施例である。この鋼板も優れた加工性と、優れた耐二次加工脆性、溶接継手効率を有することが分かる。鋼No.3はMoを0.45%添加した本発明範囲内の実施例である。この鋼板は、深絞り性の指標であるr値が1.8と高く、Mo添加により加工性が向上することが分かる。また、耐二次加工脆性、溶接継手効率共に優れた特性を有することが分かる。   Steel No. 1 is an example within the scope of the present invention in which Mn, Ti, Nb, and B are added. This steel sheet exhibits good workability and has a secondary work brittle temperature as low as −60 ° C. and excellent secondary work brittleness resistance. Moreover, the weld joint strength is also high, and it can be seen that the temperature at which a brittle fracture surface occurs on the peel test fracture surface of the joint is −70 ° C. or less and has excellent joint toughness. Steel No. 2 is an example within the scope of the present invention in which 0.5% of Ni was added. It can be seen that this steel sheet also has excellent workability, excellent secondary work brittleness resistance and weld joint efficiency. Steel No. 3 is an example within the scope of the present invention in which 0.45% of Mo was added. This steel sheet has a high r value of 1.8, which is an index of deep drawability, and it can be seen that workability is improved by adding Mo. Moreover, it turns out that it has the characteristic which was excellent in secondary work brittleness resistance and the welded joint efficiency.

鋼No.4はPの濃度を0.092%とすることにより、本発明範囲から逸脱した比較例である。この鋼板はr値が1.63と良好な値を示すが、耐二次加工脆性が20℃と劣る上に、溶接ピール試験でのピール強度が低く、ピール試験での脆性破面が生じる温度が0℃と高く、継手強度、継手靭性共に劣っており、本発明の目的を達成できない。鋼No.4はTiの濃度を0.001%とすることにより、本発明で定義したTiの下限から逸脱した比較例である。この鋼No.4は、引張り強度が312MPaであり、本発明が目的とする強度範囲:380〜590MPa範囲から外れ、本発明の目的を達成できない。鋼No.6は、Mnの濃度が0.80%と本発明範囲から外れた比較例である。この鋼板も本発明の目的の強度が得られない。鋼No.7はCの濃度が0.0180%と本発明で定義したCの濃度範囲から逸脱した比較例である。この鋼板は耐二次加工脆性温度が−20℃と本発明範囲内の実施例に比べて劣り、溶接継手効率も劣る。鋼No.8はB量が本発明範囲の下限から外れた比較例である。この鋼板の引張り強さが354MPaと本発明の強度目標に達しない。   Steel No. 4 is a comparative example deviating from the scope of the present invention by setting the P concentration to 0.092%. Although this steel sheet has a good r value of 1.63, the secondary work brittleness resistance is inferior at 20 ° C., the peel strength in the weld peel test is low, and the temperature at which the brittle fracture surface in the peel test occurs is 0. The joint strength and joint toughness are both inferior and high, and the object of the present invention cannot be achieved. Steel No. 4 is a comparative example deviating from the lower limit of Ti defined in the present invention by setting the Ti concentration to 0.001%. This steel No. 4 has a tensile strength of 312 MPa, which falls outside the intended strength range of the present invention: 380 to 590 MPa, and cannot achieve the object of the present invention. Steel No. 6 is a comparative example in which the concentration of Mn is 0.80%, which is out of the scope of the present invention. This steel plate also does not provide the intended strength of the present invention. Steel No. 7 is a comparative example in which the C concentration is 0.0180% and deviates from the C concentration range defined in the present invention. This steel plate has a secondary work brittleness resistance of −20 ° C., which is inferior to those of the examples within the scope of the present invention, and the weld joint efficiency is also inferior. Steel No. 8 is a comparative example in which the amount of B deviates from the lower limit of the range of the present invention. The tensile strength of this steel sheet is 354 MPa, which does not reach the strength target of the present invention.

鋼No.9は焼鈍温度が高すぎて2相域焼鈍となり、延性及び溶接継手効率が劣る結果となった。   Steel No. 9 was annealed at a too high temperature, resulting in two-phase annealing, resulting in poor ductility and weld joint efficiency.

酸洗後に、1.2mm厚まで冷間圧延し、表3記載の温度で焼鈍した。この鋼板にワット浴でNiめっきを1g/m施した後、フラックス法でSn-Znめっきを施した。フラックスはZnCl水溶液をロール塗布して使用した。浴組成はSn−7%Znで、浴温は280℃とし、めっき後エアワイピングによりめっき付着量を片面30g/mに調整した。めっき後に1.0%の調質圧延を行い、さらに、Cr3+主体のクロメート処理を施した。
この鋼板の引張り特性、深絞り加工の指標であるr値、耐二次加工脆性、溶接継手効率を調査した。試験方法は実施例1と同じ方法で行った。なを、上記試験以外に、めっき表面を観察し、不めっきの有無を調査した。不めっきが無いものを〇、不めっきが少しでも認められるものを×の評点とした。評価結果を表4に示す。
After pickling, it was cold-rolled to a thickness of 1.2 mm and annealed at the temperatures shown in Table 3. This steel plate was subjected to Ni plating by 1 g / m 2 using a Watt bath and then Sn—Zn plating by a flux method. As the flux, a ZnCl 2 aqueous solution was applied by roll coating. The bath composition was Sn-7% Zn, the bath temperature was 280 ° C., and the plating adhesion was adjusted to 30 g / m 2 on one side by air wiping after plating. After the plating, temper rolling of 1.0% was performed, and further chromium 3+ main chromate treatment was performed.
The steel sheet was examined for tensile properties, r value as an index of deep drawing, secondary work brittleness resistance, and welded joint efficiency. The test method was the same as in Example 1. In addition to the above test, the surface of the plating was observed to investigate the presence or absence of non-plating. A score of ◯ indicates that there is no non-plating, and a score of x indicates that no plating is observed. The evaluation results are shown in Table 4.

Figure 2007131916
Figure 2007131916

Figure 2007131916
Figure 2007131916

鋼No.1AはMn、Ti、Nb、B添加した本発明範囲内の実施例である。この鋼板は良好な加工性を示すと共に、二次加工脆性温度が−60℃と低く、優れた耐二次加工脆性を有する。また、溶接継手強度も高く、継手のピール試験破面に脆性破面が生じる温度が−70℃以下で、優れた継手の靭性を有することが分かる。鋼No.2AはNiを0.5%添加した本発明範囲内の実施例である。この鋼板も優れた加工性と、優れた耐二次加工脆性、溶接継手効率を有することが分かる。鋼No.3AはMoを0.45%添加した実施例である。この鋼は冷延鋼板と同様にめっき鋼板でも優れた加工性と耐二次加工脆性、溶接継手効率を有することが分かる。   Steel No. 1A is an example within the scope of the present invention in which Mn, Ti, Nb, and B are added. This steel sheet exhibits good workability and has a secondary work brittle temperature as low as −60 ° C. and excellent secondary work brittleness resistance. Moreover, the weld joint strength is also high, and it can be seen that the temperature at which a brittle fracture surface occurs on the peel test fracture surface of the joint is −70 ° C. or less and has excellent joint toughness. Steel No. 2A is an example within the scope of the present invention in which 0.5% of Ni was added. It can be seen that this steel sheet also has excellent workability, excellent secondary work brittleness resistance and weld joint efficiency. Steel No. 3A is an example in which 0.45% of Mo was added. It can be seen that this steel has excellent workability, secondary work brittleness resistance and weld joint efficiency as well as a cold-rolled steel sheet.

鋼No.4AはPの濃度が0.092%と、本発明で定義したPの濃度範囲から逸脱した比較例である。この鋼No.4Aはr値が1.73と良好な値を示すが、耐二次加工脆性が20℃と劣る上に、溶接ピール試験でのピール強度が低く、ピール試験での脆性破面が生じる温度が0℃と高く、継手強度、継手靭性共に劣っており、本発明所期の作用効果を得ることができない。鋼No.5Aは、Tiの濃度が0.005%と、本発明で定義したTiの濃度範囲から逸脱した比較例である。この鋼No.5Aは、引張り強度が351MPaで本発明の目的強度範囲:380〜590MPa範囲から逸脱し、本発明所期の作用効果を得ることができない。鋼No.6Aは、Mnの濃度が0.80%と、本発明で定義したMnの濃度範囲から外れた比較例である。この鋼板も本発明の目的とする強度が得られない。鋼No.7AはCの濃度が0.0180%と、本発明で定義したTiの濃度範囲から逸脱した比較例である。この鋼No.7Aは、耐二次加工脆性温度が−20℃と本発明範囲内の実施例に比べて劣り、溶接継手効率も劣る。鋼No.8AはBの濃度が0.0001%と、本発明で定義したBの下限から逸脱した比較例である。この鋼No.8Aの引張り強さは、364MPaと本発明の強度目標に達しない。鋼No.9AはTiの濃度が0.085%と、本発明で定義したTiの上限から逸脱した比較例である。この鋼No.9Aは、耐二次加工脆性温度が−20℃と高く、しかも、溶接継手強度が低く、脆性破面が生じる温度が0℃と溶接部の靭性の劣る。鋼No.10AはSi量が0.60%と、本発明で定義したSiの濃度から逸脱した比較例である。この鋼No.10Aは耐二次加工脆性、溶接継手効率が劣る上に、めっきが形成されていない箇所が多数残存し、めっき性も劣ることが分かる。   Steel No. 4A has a P concentration of 0.092%, which is a comparative example deviating from the P concentration range defined in the present invention. This steel No. 4A shows an excellent r value of 1.73, but the secondary work brittleness resistance is inferior at 20 ° C, and the peel strength in the weld peel test is low, resulting in a brittle fracture surface in the peel test. The temperature is as high as 0 ° C., the joint strength and joint toughness are inferior, and the intended effects of the present invention cannot be obtained. Steel No. 5A is a comparative example with a Ti concentration of 0.005%, which deviates from the Ti concentration range defined in the present invention. This steel No. 5A has a tensile strength of 351 MPa and deviates from the target strength range of the present invention: the range of 380 to 590 MPa, and the intended effects of the present invention cannot be obtained. Steel No. 6A is a comparative example in which the Mn concentration is 0.80%, which is out of the Mn concentration range defined in the present invention. This steel plate also does not have the intended strength of the present invention. Steel No. 7A is a comparative example having a C concentration of 0.0180%, which deviates from the Ti concentration range defined in the present invention. This steel No. 7A has a secondary work brittleness resistance of −20 ° C., which is inferior to the examples within the scope of the present invention, and the weld joint efficiency is also inferior. Steel No. 8A is a comparative example in which the B concentration is 0.0001% and deviates from the lower limit of B defined in the present invention. The tensile strength of this steel No. 8A is 364 MPa, which does not reach the strength target of the present invention. Steel No. 9A has a Ti concentration of 0.085%, which is a comparative example deviating from the upper limit of Ti defined in the present invention. This steel No. 9A has a high secondary work brittleness resistance of −20 ° C., a low weld joint strength, and a brittle fracture surface temperature of 0 ° C., which is inferior in weld toughness. Steel No. 10A has a Si content of 0.60%, which is a comparative example deviating from the Si concentration defined in the present invention. This steel No. 10A is inferior in secondary work brittleness resistance and weld joint efficiency, and in addition, a large number of portions where plating is not formed remain and the plating property is also inferior.

溶接ピール試験片の形状を示す図である。It is a figure which shows the shape of a weld peel test piece.

符号の説明Explanation of symbols

1a,1b 鋼板
2 溶接部
1a, 1b Steel plate 2 Welded part

Claims (6)

重量%で、
C:0.0005〜0.010%、
Si:0.10%以下、
Mn:1.0〜3.0%、
P:0.03%以下、
Ti:0.01〜0.040%、
Nb:0.01〜0.045%、
B:0.0010〜0.0050%を含有し、残部不可避的不純物からなること
を特徴とする深絞り用高強度冷延鋼板。
% By weight
C: 0.0005 to 0.010%,
Si: 0.10% or less,
Mn: 1.0-3.0%
P: 0.03% or less,
Ti: 0.01-0.040%,
Nb: 0.01-0.045%,
B: A high-strength cold-rolled steel sheet for deep drawing characterized by containing 0.0010 to 0.0050% and the balance being inevitable impurities.
重量%で、
C:0.0005〜0.010%、
Si:0.10%以下、
Mn:1.0〜3.0%、
P:0.03%以下、
Ti:0.01〜0.040%、
Nb:0.01〜0.045%、
B:0.0010〜0.0050%、
Ni:0.01〜1.0%、
Mo:0.01〜1.0%を含有し、残部不可避的不純物からなること
を特徴とする深絞り用高強度冷延鋼板。
% By weight
C: 0.0005 to 0.010%,
Si: 0.10% or less,
Mn: 1.0-3.0%
P: 0.03% or less,
Ti: 0.01-0.040%,
Nb: 0.01-0.045%,
B: 0.0010-0.0050%,
Ni: 0.01-1.0%,
Mo: A high-strength cold-rolled steel sheet for deep drawing characterized by containing 0.01 to 1.0% and the balance being inevitable impurities.
重量%で、
C:0.0005〜0.010%、
Si:0.10%以下、
Mn:1.0〜3.0%、
P:0.03%以下、
Ti:0.01〜0.040%、
Nb:0.01〜0.045%、
B:0.0010〜0.0050%を含有し、残部不可避的不純物からなること
を特徴とする溶融めっき鋼板。
% By weight
C: 0.0005 to 0.010%,
Si: 0.10% or less,
Mn: 1.0-3.0%
P: 0.03% or less,
Ti: 0.01-0.040%,
Nb: 0.01-0.045%,
B: A hot-dip galvanized steel sheet containing 0.0010 to 0.0050% and consisting of the balance inevitable impurities.
重量%で、
C:0.0005〜0.010%、
Si:0.10%以下、
Mn:1.0〜3.0%、
P:0.03%以下、
Ti:0.01〜0.040%、
Nb:0.01〜0.045%、
B:0.0010〜0.0050%、
Ni:0.01〜1.0%、
Mo:0.01〜1.0%を含有し、残部不可避的不純物からなること
を特徴とする溶融めっき鋼板。
% By weight
C: 0.0005 to 0.010%,
Si: 0.10% or less,
Mn: 1.0-3.0%
P: 0.03% or less,
Ti: 0.01-0.040%,
Nb: 0.01-0.045%,
B: 0.0010-0.0050%,
Ni: 0.01-1.0%,
Mo: A hot-dip galvanized steel sheet containing 0.01 to 1.0%, the balance being inevitable impurities.
請求項1又は2に記載の組成の溶鋼を連続鋳造、熱間圧延、冷間圧延し、860℃以下の温度で再結晶焼鈍すること
を特徴とする深絞り用高強度冷延鋼板の製造方法。
A method for producing a high-strength cold-rolled steel sheet for deep drawing, characterized in that the molten steel having the composition according to claim 1 or 2 is continuously cast, hot-rolled, cold-rolled and recrystallized at a temperature of 860 ° C or lower. .
請求項3又は4に記載の組成の溶鋼を連続鋳造、熱間圧延、冷間圧延し、860℃以下の温度で再結晶焼鈍すること
を特徴とする溶融めっき鋼板の製造方法。
A method for producing a hot-dip galvanized steel sheet, comprising: continuously casting, hot rolling, cold rolling the molten steel having the composition according to claim 3 or 4 and performing recrystallization annealing at a temperature of 860 ° C or lower.
JP2005326612A 2005-11-10 2005-11-10 High-strength cold rolled steel sheet for deep drawing and hot dip plated steel sheet Pending JP2007131916A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005326612A JP2007131916A (en) 2005-11-10 2005-11-10 High-strength cold rolled steel sheet for deep drawing and hot dip plated steel sheet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005326612A JP2007131916A (en) 2005-11-10 2005-11-10 High-strength cold rolled steel sheet for deep drawing and hot dip plated steel sheet

Publications (1)

Publication Number Publication Date
JP2007131916A true JP2007131916A (en) 2007-05-31

Family

ID=38153810

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005326612A Pending JP2007131916A (en) 2005-11-10 2005-11-10 High-strength cold rolled steel sheet for deep drawing and hot dip plated steel sheet

Country Status (1)

Country Link
JP (1) JP2007131916A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023145025A1 (en) * 2022-01-28 2023-08-03 日本製鉄株式会社 Alloyed hot-dip galvanized steel sheet

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0726320A (en) * 1993-07-08 1995-01-27 Nippon Steel Corp Production of high strength press formed part
JPH0726322A (en) * 1993-07-08 1995-01-27 Nippon Steel Corp Production of high strength press formed part
JPH0726319A (en) * 1993-07-08 1995-01-27 Nippon Steel Corp Production of high strength press formed part
JPH10226843A (en) * 1997-02-19 1998-08-25 Nippon Steel Corp Thin steel sheet small in defect and excellent in press formability and its production

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0726320A (en) * 1993-07-08 1995-01-27 Nippon Steel Corp Production of high strength press formed part
JPH0726322A (en) * 1993-07-08 1995-01-27 Nippon Steel Corp Production of high strength press formed part
JPH0726319A (en) * 1993-07-08 1995-01-27 Nippon Steel Corp Production of high strength press formed part
JPH10226843A (en) * 1997-02-19 1998-08-25 Nippon Steel Corp Thin steel sheet small in defect and excellent in press formability and its production

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023145025A1 (en) * 2022-01-28 2023-08-03 日本製鉄株式会社 Alloyed hot-dip galvanized steel sheet

Similar Documents

Publication Publication Date Title
CN108431273B (en) High-strength hot-dip galvanized steel sheet having excellent surface quality and spot weldability, and method for producing same
JP5079795B2 (en) Hot-dip hot-dip steel sheet for press working with excellent low-temperature toughness and method for producing the same
JP5574061B2 (en) Hot-dip hot-dip steel sheet for press working with excellent low-temperature toughness and corrosion resistance and its manufacturing method
US10961600B2 (en) Steel sheet and plated steel sheet, method for producing steel sheet, and method for producing plated steel sheet
CA2786381C (en) High-strength galvanized steel sheet having excellent formability and spot weldability and method for manufacturing the same
JP6388056B2 (en) Manufacturing method of hot-rolled steel sheet and manufacturing method of cold-rolled full hard steel sheet
KR20140007476A (en) Process for producing high-strength hot-dip galvanized steel sheet with excellent material-quality stability, processability, and deposit appearance
JP2007231369A (en) High-strength cold rolled steel, high-strength hot dip galvanized steel sheet and high-strength galvannealed steel sheet having excellent formability and weldability, method for producing high-strength cold rolled steel sheet, method for producing high-strength hot dip galvanized steel sheet and method for producing high-strength galvannealed steel sheet
JP2005105367A (en) High yield ratio and high strength cold-rolled steel plate and high yield ratio and high strength galvanized steel plate excellent in weldability and ductility, and high yield ratio and high strength alloyed galvanized steel plate and its manufacturing method
JP4676923B2 (en) High strength and high ductility hot dip galvanized steel sheet excellent in corrosion resistance and welding strength and method for producing the same
JP4288146B2 (en) Method for producing burring high-strength steel sheet with excellent softening resistance in weld heat affected zone
JP2006283156A (en) High-strength cold rolled steel sheet having excellent formability and weldability, high-strength hot dip galvanized steel sheet, high-strength alloyed galvannealed steel sheet, production method of high-strength cold rolled steel sheet, production method of high-strength hot dip galvanized steel sheet, and production method of high-strength alloyed galvannealed steel sheet
JP2003193194A (en) High strength steel sheet having excellent weldability and hole expansibility and production method therefor
JP5323552B2 (en) Hardened steel plate with excellent cross tensile strength for spot welded joints
JP2005105361A (en) High yield ratio and high strength hot rolled steel plate and high yield ratio and high strength galvanized steel plate excellent in weldability and ductility, and high yield ratio and high strength alloyed galvanized steel plate and its manufacturing method
JP4580403B2 (en) Hot-dip hot-dip steel sheet for deep drawing and method for producing the same
JP4580402B2 (en) Hot-dip hot-dip steel sheet for press working and manufacturing method thereof
JP4818710B2 (en) Deep drawing high strength cold-rolled steel sheet, deep drawing high strength hot-dip galvanized steel sheet and method for producing the same
JP4580334B2 (en) Deep drawing high strength steel plate and hot dipped steel plate
JP2007131916A (en) High-strength cold rolled steel sheet for deep drawing and hot dip plated steel sheet
KR102468043B1 (en) Ultra high-strength galvanized steel sheet having excellent surface quality and cracking resistance and method for manufacturing thereof
JP4288085B2 (en) Hot-dip galvanized high-strength steel sheet excellent in hole expansibility and method for producing the same
JP5042486B2 (en) Deep drawing high strength steel sheet and hot dipped cold-rolled steel sheet
WO2022202020A1 (en) Steel sheet and welded joint
WO2022202023A1 (en) Steel plate

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20080306

Free format text: JAPANESE INTERMEDIATE CODE: A621

A977 Report on retrieval

Effective date: 20100317

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Effective date: 20100406

Free format text: JAPANESE INTERMEDIATE CODE: A131

A02 Decision of refusal

Effective date: 20100817

Free format text: JAPANESE INTERMEDIATE CODE: A02