JP2007130953A - Sealed type kneader, and kneading method for rubber material - Google Patents

Sealed type kneader, and kneading method for rubber material Download PDF

Info

Publication number
JP2007130953A
JP2007130953A JP2005328354A JP2005328354A JP2007130953A JP 2007130953 A JP2007130953 A JP 2007130953A JP 2005328354 A JP2005328354 A JP 2005328354A JP 2005328354 A JP2005328354 A JP 2005328354A JP 2007130953 A JP2007130953 A JP 2007130953A
Authority
JP
Japan
Prior art keywords
heat medium
rotor
flow path
rotor blade
sectional area
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005328354A
Other languages
Japanese (ja)
Inventor
Makoto Irie
誠 入江
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
MORIYAMA KK
Moriyama Co Ltd
Original Assignee
MORIYAMA KK
Moriyama Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by MORIYAMA KK, Moriyama Co Ltd filed Critical MORIYAMA KK
Priority to JP2005328354A priority Critical patent/JP2007130953A/en
Publication of JP2007130953A publication Critical patent/JP2007130953A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B7/00Mixing; Kneading
    • B29B7/02Mixing; Kneading non-continuous, with mechanical mixing or kneading devices, i.e. batch type
    • B29B7/06Mixing; Kneading non-continuous, with mechanical mixing or kneading devices, i.e. batch type with movable mixing or kneading devices
    • B29B7/10Mixing; Kneading non-continuous, with mechanical mixing or kneading devices, i.e. batch type with movable mixing or kneading devices rotary
    • B29B7/18Mixing; Kneading non-continuous, with mechanical mixing or kneading devices, i.e. batch type with movable mixing or kneading devices rotary with more than one shaft
    • B29B7/183Mixing; Kneading non-continuous, with mechanical mixing or kneading devices, i.e. batch type with movable mixing or kneading devices rotary with more than one shaft having a casing closely surrounding the rotors, e.g. of Banbury type
    • B29B7/186Rotors therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B7/00Mixing; Kneading
    • B29B7/80Component parts, details or accessories; Auxiliary operations
    • B29B7/82Heating or cooling
    • B29B7/826Apparatus therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B7/00Mixing; Kneading
    • B29B7/02Mixing; Kneading non-continuous, with mechanical mixing or kneading devices, i.e. batch type
    • B29B7/06Mixing; Kneading non-continuous, with mechanical mixing or kneading devices, i.e. batch type with movable mixing or kneading devices
    • B29B7/10Mixing; Kneading non-continuous, with mechanical mixing or kneading devices, i.e. batch type with movable mixing or kneading devices rotary
    • B29B7/18Mixing; Kneading non-continuous, with mechanical mixing or kneading devices, i.e. batch type with movable mixing or kneading devices rotary with more than one shaft
    • B29B7/183Mixing; Kneading non-continuous, with mechanical mixing or kneading devices, i.e. batch type with movable mixing or kneading devices rotary with more than one shaft having a casing closely surrounding the rotors, e.g. of Banbury type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B7/00Mixing; Kneading
    • B29B7/02Mixing; Kneading non-continuous, with mechanical mixing or kneading devices, i.e. batch type
    • B29B7/22Component parts, details or accessories; Auxiliary operations
    • B29B7/28Component parts, details or accessories; Auxiliary operations for measuring, controlling or regulating, e.g. viscosity control
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B7/00Mixing; Kneading
    • B29B7/74Mixing; Kneading using other mixers or combinations of mixers, e.g. of dissimilar mixers ; Plant
    • B29B7/7476Systems, i.e. flow charts or diagrams; Plants
    • B29B7/7495Systems, i.e. flow charts or diagrams; Plants for mixing rubber

Abstract

<P>PROBLEM TO BE SOLVED: To provide a sealed type kneader which can increase the cooling (or heating) efficiency by preventing a heat medium from taking a short path within a passage for the heat medium of a rotor blade, and at the same time, by raising the flowing velocity of the heat medium which circulates through the passage. <P>SOLUTION: The ratio R<SB>R</SB>/R<SB>C</SB>of the radius R<SB>R</SB>of a rotor shaft 31 and the internal surface radius R<SB>C</SB>of a chamber 1 is 0.65 or higher (in the case of the operation, the ratio is approximately 0.7). The ratio H<SB>W</SB>/R<SB>C</SB>of the height H<SB>W</SB>in the diametrical direction of the rotor blade 32 and the internal surface radius R<SB>C</SB>of the chamber 1 is 0.35 or lower (in the case of the operation, the ratio is approximately 0.3). The passage 42 for the heat medium of the rotor blade 32 is constituted of one piece of the passage which has an approximately similar shape as the outer shape of the rotor blade 32. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、ゴム、プラスチック等の高粘度の材料の混練を行うための密閉式混練機及びゴム材料の混練方法に関し、特に、ロータのロータ軸及びロータ翼に熱媒体の流路を形成した密閉式混練機及びゴム材料の混練方法に関するものである。
ここで、「熱媒体」とは、冷却媒体のほか、加熱媒体を含み、媒体の状態も液体のほか、蒸気等の気体を含むものである。
The present invention relates to a hermetic kneader for kneading high viscosity materials such as rubber and plastic and a kneading method for rubber material, and in particular, hermetically forming a heat medium flow path on a rotor shaft and rotor blades of a rotor. The present invention relates to a kneading machine and a rubber material kneading method.
Here, the “heat medium” includes a heating medium in addition to a cooling medium, and the medium also includes a gas such as a vapor in addition to a liquid.

従来、ゴム、プラスチック等の高粘度の材料の混練を行うための密閉式混練機として、図6に示すように、混練材料を収納するチャンバー1と、このチャンバー1の上部を閉鎖する加圧蓋2と、チャンバー1内に回転可能に取り付けられたロータ翼32を有する一対のロータ3とを備え、このロータ3のロータ軸31及びロータ翼32に冷却媒体の流路41、42をそれぞれ形成した密閉式混練機が実用化されている(例えば、特許文献1参照)。
この密閉式混練機は、ロータ3のロータ軸31及びロータ翼32に冷却媒体の流路41、42をそれぞれ形成しているため、ロータ3のロータ軸31の表面が能率よく冷却されて混練材料の温度上昇が低く抑えられ、混練終了後に材料がロータ3に粘着することがなく、混練済の材料を容易に取り出すことができるという利点を有するものであった。
しかしながら、この密閉式混練機は、ロータ軸半径Rとチャンバー内面半径Rの比R/R及びロータ翼32の径方向の高さHとチャンバー内面半径Rの比H/Rが共に0.5程度であり、ロータ軸31と比較してロータ翼32が大きなものとなる(1つのロータ翼の断面積Aとロータ軸の断面積Aの比A/Aが0.5〜0.7程度にもなる)ため(ここで、チャンバー内面半径R、ロータ軸半径R、ロータ翼32の径方向の高さH、ロータ軸の断面積A、ロータ翼の断面積Aの意味については、図1及び図2参照)、ロータ翼32の冷却媒体の流路42の断面積もこれに合わせて大きくなり、流路42内で冷却媒体がショートパスすることにより冷却効果に不均一が生じたり、流路42を流通する冷却媒体の流速が低下することにより、材料を混練する際に最も発熱が起こりやすいロータ翼32の外表面近傍域で、ロータ翼32による冷却効果が得にくいため、混練効率が上がらず、高粘度の材料や発熱が起こりやすい材料の場合には、混練が十分に行えなかったり、混練終了後に材料がロータ3に粘着することによって混練済の材料を容易に取り出すことができなくなるという問題があった。
Conventionally, as a closed kneading machine for kneading high-viscosity materials such as rubber and plastic, as shown in FIG. 6, a chamber 1 for storing the kneaded material and a pressure lid for closing the upper portion of the chamber 1 2 and a pair of rotors 3 having rotor blades 32 rotatably mounted in the chamber 1, cooling medium flow paths 41 and 42 are formed in the rotor shaft 31 and the rotor blades 32 of the rotor 3, respectively. A closed kneader has been put into practical use (for example, see Patent Document 1).
In this hermetic kneader, the coolant shafts 41 and 42 are formed in the rotor shaft 31 and the rotor blades 32 of the rotor 3, respectively, so that the surface of the rotor shaft 31 of the rotor 3 is efficiently cooled and the kneaded material The temperature rise was kept low, the material did not stick to the rotor 3 after the kneading was completed, and the kneaded material could be easily taken out.
However, this internal mixer, the rotor shaft radius R R and the chamber inner surface radius R C of the ratio R R / R C and the height in the radial direction of the rotor blade 32 H W and the chamber inner surface radius R C of the ratio H W / R C are both about 0.5, the ratio a W / a of the cross-sectional area a R of the rotor shaft 31 the rotor blade 32 as compared becomes large (the one rotor blade of the cross-sectional area a W and the rotor shaft R is also about 0.5 to 0.7) for (where the chamber inner surface radius R C, the rotor shaft radius R R, the radial height H W of the rotor blades 32, the cross-sectional area a R of the rotor shaft the meaning of the cross-sectional area a W of the rotor blade, see FIGS. 1 and 2), the cross-sectional area of the cooling medium flow passage 42 of the rotor blade 32 also increases in accordance with this, the cooling medium in the flow channel 42 The short path causes non-uniformity in the cooling effect, and the flow path 42 By reducing the flow rate of the circulating cooling medium, the cooling effect by the rotor blade 32 is difficult to obtain in the vicinity of the outer surface of the rotor blade 32 where heat generation is most likely to occur when the material is kneaded, so the kneading efficiency does not increase, In the case of a highly viscous material or a material that easily generates heat, there is a problem that kneading cannot be performed sufficiently or the kneaded material cannot be easily taken out due to the material sticking to the rotor 3 after the kneading is completed. there were.

一方、図7に示すように、回転シャフト51、71と、回転シャフト51、71の外周に設けられたロータ本体52、72とを有する混練用ロータにおいて、ロータ本体52、72は、外表面に翼部55、75を形成し、かつ、外表面における少なくとも翼部55、75の形成部位に溝56、76を形成した内部部材53、73と、内部部材53、73の外表面に倣うようにこの外表面を覆う外部部材54、74とを備え、溝56、76と外部部材54、74とによって冷却媒体を流通させる通路空間を形成することにより、冷却媒体がショートパスすることを防止し、冷却効率を向上して混練に要する時間を短縮できるようにしたものが提案されている(例えば、特許文献2参照)。
しかしながら、この混練用ロータは、内部部材53、73と、外部部材54、74という2つの部材を必要とすることから、構造が複雑となり、装置の製造コストが上昇するという問題があった。
特公平7−301号公報 特開2005−144716号公報
On the other hand, as shown in FIG. 7, in the kneading rotor having the rotary shafts 51 and 71 and the rotor main bodies 52 and 72 provided on the outer periphery of the rotary shafts 51 and 71, the rotor main bodies 52 and 72 are formed on the outer surface. The inner members 53 and 73 in which the wing portions 55 and 75 are formed and the grooves 56 and 76 are formed at least in the formation portion of the wing portions 55 and 75 on the outer surface, and the outer surfaces of the inner members 53 and 73 are copied. The outer members 54 and 74 covering the outer surface are provided, and a passage space through which the cooling medium flows is formed by the grooves 56 and 76 and the outer members 54 and 74, thereby preventing the cooling medium from short-passing, There has been proposed one that can improve the cooling efficiency and reduce the time required for kneading (see, for example, Patent Document 2).
However, since this kneading rotor requires two members, the inner members 53 and 73 and the outer members 54 and 74, there is a problem that the structure becomes complicated and the manufacturing cost of the apparatus increases.
Japanese Patent Publication No. 7-301 JP 2005-144716 A

本発明は、上記従来の密閉式混練機の有する問題点に鑑み、ロータ翼の熱媒体の流路内で熱媒体がショートパスしないようにするとともに、流路を流通する熱媒体の流速を上昇させることにより、冷却(又は加熱)効率を向上することができるようにした密閉式混練機を提供することを目的とする。   In view of the problems of the above conventional closed kneader, the present invention prevents the heat medium from short-circuiting in the flow path of the heat medium of the rotor blade and increases the flow rate of the heat medium flowing through the flow path. An object of the present invention is to provide a closed kneader capable of improving cooling (or heating) efficiency.

上記目的を達成するため、本発明の密閉式混練機は、混練材料を収納するチャンバーと、該チャンバーの上部を閉鎖する加圧蓋と、チャンバー内に取り付けられたロータ翼を有する一対のロータとを備え、該ロータのロータ軸及びロータ翼に熱媒体の流路を形成した密閉式混練機において、ロータ軸半径Rとチャンバー内面半径Rの比R/Rが0.65以上、ロータ翼の径方向の高さHとチャンバー内面半径Rの比H/Rが0.35以下であり、前記ロータ翼の熱媒体の流路をロータ翼の外形状と略相似形状をなす1本の流路で構成したことを特徴とする。 In order to achieve the above object, a closed kneader according to the present invention includes a chamber for storing a kneaded material, a pressure lid for closing the upper portion of the chamber, and a pair of rotors having rotor blades attached in the chamber. And a ratio R R / RC of the rotor shaft radius R R and the chamber inner surface radius R C is 0.65 or more in a closed kneader in which a heat medium flow path is formed on the rotor shaft and rotor blades of the rotor, The ratio H W / RC of the radial height H W of the rotor blade to the chamber inner surface radius RC is 0.35 or less, and the flow path of the heat medium of the rotor blade is substantially similar to the outer shape of the rotor blade It is characterized by comprising one flow path forming the following.

この場合において、ロータ翼の断面積Aとロータ軸の断面積Aの比A/Aが0.02〜0.12、ロータ翼に形成した熱媒体の流路の断面積AF2とロータ翼の断面積Aとの比AF2/Aが0.1〜0.5となるようにすることができる。 In this case, the ratio A W / A R of the cross-sectional area A R of the cross-sectional area of the rotor blade A W and the rotor shaft is 0.02-0.12, the cross-sectional area of the flow path of the heat medium formed in the rotor blade A F2 The ratio A F2 / A W of the rotor blade cross-sectional area A W can be set to 0.1 to 0.5.

また、ロータ翼に形成した熱媒体の流路を直列に接続し、ロータ軸に導入されたすべての熱媒体が、前記直列に接続されたロータ翼に形成した熱媒体の流路を流通するようにすることができる。   Also, the heat medium flow paths formed on the rotor blades are connected in series so that all the heat medium introduced into the rotor shaft flows through the heat medium flow paths formed on the rotor blades connected in series. Can be.

また、ロータ軸に形成した熱媒体の流路を周方向に複数に分割し、該流路を直列に接続することができる。   Moreover, the flow path of the heat medium formed on the rotor shaft can be divided into a plurality in the circumferential direction, and the flow paths can be connected in series.

また、ロータ翼に形成した熱媒体の流路の断面積AF2とロータ軸に形成した熱媒体の1つの流路の断面積AF1との比AF2/AF1が0.2〜2.0となるようにすることができる。 The ratio A F2 / A F1 between the cross-sectional area A F2 of the flow path of the heat medium formed on the rotor blade and the cross-sectional area A F1 of one flow path of the heat medium formed on the rotor shaft is 0.2-2. It can be set to zero.

さらに、上記密閉式混練機を使用し、ゴムとフィラーの混練を行うことができる。   Furthermore, rubber and filler can be kneaded using the above-mentioned closed kneader.

本発明の密閉式混練機によれば、混練材料を収納するチャンバーと、該チャンバーの上部を閉鎖する加圧蓋と、チャンバー内に取り付けられたロータ翼を有する一対のロータとを備え、該ロータのロータ軸及びロータ翼に熱媒体の流路を形成した密閉式混練機において、ロータ軸半径Rとチャンバー内面半径Rの比R/Rが0.65以上、ロータ翼の径方向の高さHとチャンバー内面半径Rの比H/Rが0.35以下であり、前記ロータ翼の熱媒体の流路をロータ翼の外形状と略相似形状をなす1本の流路で構成するようにしているので、ロータ軸と比較してロータ翼の断面積が小さくなるため、ロータ翼の肉厚を増大させることなく、ロータ翼の熱媒体の流路の断面積を小さくでき、ロータ翼の熱媒体の流路内で熱媒体がショートパスしないようにするとともに、流路を流通する熱媒体の流速を上昇させることができる。これにより、冷却(又は加熱)効率を向上することができ、特に、材料を混練する際に最も発熱が起こりやすいロータ翼の外表面近傍域で、ロータ翼による冷却効果が得やすくなるため、混練効率が向上し、高粘度の材料や発熱が起こりやすい材料の場合でも、混練を十分に行うことができ、また、混練終了後に材料がロータに粘着することがなく、混練済の材料を容易かつ確実に取り出すことができる。 According to the closed kneading machine of the present invention, the rotor includes a chamber for storing the kneaded material, a pressure lid for closing the upper portion of the chamber, and a pair of rotors having rotor blades attached in the chamber. In a hermetic kneader in which a heat medium flow path is formed on the rotor shaft and rotor blades, the ratio R R / RC of the rotor shaft radius R R and the chamber inner surface radius R C is 0.65 or more, and the radial direction of the rotor blades the ratio H W / R C of the height H W and the chamber inner surface radius R C is 0.35 or less, one of the flow paths of the heat medium of the rotor blades forming the outer shape substantially similar shape of the rotor blade Since the cross-sectional area of the rotor blade is smaller than that of the rotor shaft, the cross-sectional area of the flow path of the heat medium of the rotor blade is increased without increasing the thickness of the rotor blade. The heat can be reduced in the heat medium flow path of the rotor blade. While preventing the medium from short-circuiting, the flow velocity of the heat medium flowing through the flow path can be increased. As a result, the cooling (or heating) efficiency can be improved, and in particular, the cooling effect by the rotor blades can be easily obtained in the vicinity of the outer surface of the rotor blades where heat generation is most likely to occur when the materials are kneaded. Even in the case of a highly viscous material or a material that is likely to generate heat, the efficiency can be improved and kneading can be sufficiently performed. Can be taken out reliably.

また、ロータ翼の断面積Aとロータ軸の断面積Aの比A/Aが0.02〜0.12、ロータ翼に形成した熱媒体の流路の断面積AF2とロータ翼の断面積Aとの比AF2/Aが0.1〜0.5となるようにすることにより、ロータ翼の熱媒体の流路を流通する熱媒体の流速を一層上昇させるとともに、流路内で熱媒体の流速に不均一が生じないようにすることができる。 The ratio A W / A R of the cross-sectional area A R of the cross-sectional area A W and the rotor shaft of the rotor blades is 0.02-0.12, the cross-sectional area A F2 of the flow path of the heat medium formed in the rotor blade rotor By making the ratio A F2 / A W to the blade cross-sectional area A W be 0.1 to 0.5, the flow rate of the heat medium flowing through the flow path of the heat medium of the rotor blade is further increased. It is possible to prevent nonuniformity in the flow rate of the heat medium in the flow path.

また、ロータ翼に形成した熱媒体の流路を直列に接続し、ロータ軸に導入されたすべての熱媒体が、前記直列に接続されたロータ翼に形成した熱媒体の流路を流通するようにすることにより、ロータ翼の熱媒体の流路を流通する熱媒体の流速を一層上昇させることができる。   Also, the heat medium flow paths formed on the rotor blades are connected in series so that all the heat medium introduced into the rotor shaft flows through the heat medium flow paths formed on the rotor blades connected in series. By doing so, the flow velocity of the heat medium flowing through the flow path of the heat medium of the rotor blades can be further increased.

また、ロータ軸に形成した熱媒体の流路を周方向に複数に分割し、該流路を直列に接続するようにすることにより、流路内で熱媒体の流速に不均一が生じないようにすることができ、材料の冷却(又は加熱)を一層均一に行うことができる。   In addition, the flow path of the heat medium formed on the rotor shaft is divided into a plurality of circumferential directions, and the flow paths are connected in series so that the flow rate of the heat medium does not become uneven in the flow path. The material can be cooled (or heated) more uniformly.

また、ロータ翼に形成した熱媒体の流路の断面積AF2とロータ軸に形成した熱媒体の1つの流路の断面積AF1との比AF2/AF1が0.2〜2.0となるようにすることにより、ロータ軸に形成した熱媒体の流路とロータ翼に形成した熱媒体の流路を流通する熱媒体の流速を管理することによって、材料の冷却(又は加熱)状態を容易かつ高精度に制御することができる。 The ratio A F2 / A F1 between the cross-sectional area A F2 of the flow path of the heat medium formed on the rotor blade and the cross-sectional area A F1 of one flow path of the heat medium formed on the rotor shaft is 0.2-2. By controlling the flow rate of the heat medium flowing through the flow path of the heat medium formed on the rotor shaft and the flow path of the heat medium formed on the rotor blade, the material is cooled (or heated). The state can be controlled easily and with high accuracy.

さらに、上記密閉式混練機を使用し、ゴムとフィラーの混練を行うことにより、高粘度で発熱が起こりやすいゴムとフィラーの混練を十分に行うことができ、これにより、分散性が向上した高品質のゴム材料を得ることができる。   Furthermore, by using the above-mentioned closed kneader and kneading the rubber and filler, it is possible to sufficiently knead the rubber and filler that are highly viscous and easily generate heat, thereby improving dispersibility. Quality rubber material can be obtained.

以下、本発明の密閉式混練機の実施の形態を、図面に基づいて説明する。   Hereinafter, embodiments of the closed kneader of the present invention will be described with reference to the drawings.

図1〜図3に、本発明の密閉式混練機の一実施例を示す。
この密閉式混練機は、ゴム、プラスチック等の高粘度の材料の混練を行うためのもので、図1に示すように、混練材料を収納するチャンバー1と、このチャンバー1の上部を閉鎖する加圧蓋2と、チャンバー1内に回転可能に取り付けられたロータ翼32を有する一対のロータ3とを備え、このロータ3のロータ軸31及びロータ翼32に熱媒体の流路41、42をそれぞれ形成するようにしている。
ここで、「熱媒体」には、冷却媒体のほか、加熱媒体を含み、媒体の状態も液体のほか、蒸気等の気体を含むが、本実施例においては、冷却媒体を用いる場合について説明する。
1 to 3 show an embodiment of a closed kneader of the present invention.
This closed kneading machine is for kneading high viscosity materials such as rubber and plastic. As shown in FIG. 1, a chamber 1 for storing the kneaded material and an additive for closing the upper portion of the chamber 1 are used. A pressure lid 2 and a pair of rotors 3 having rotor blades 32 rotatably mounted in the chamber 1 are provided, and heat medium channels 41 and 42 are respectively provided on the rotor shaft 31 and the rotor blades 32 of the rotor 3. Try to form.
Here, the “heat medium” includes a heating medium in addition to a cooling medium, and the medium state includes a gas such as a vapor in addition to a liquid. In this embodiment, a case where a cooling medium is used will be described. .

そして、この密閉式混練機においては、ロータ軸31の半径Rとチャンバー1の内面半径Rの比R/Rが0.65以上(本実施例においては、約0.7)、ロータ翼32の径方向の高さHとチャンバー1の内面半径Rの比H/Rが0.35以下(本実施例においては、約0.3)であり、ロータ翼32の熱媒体の流路42を、ロータ軸31の外周面とロータ翼32とによって区画するとともにロータ翼32の外形状と略相似形状、具体的には、本実施例においては、断面略三角形状をなす1本の流路で構成するようにしている。 Then, in this internal mixer, the radius R R and the ratio R R / R C of the inner surface radius R C of the chamber 1 is 0.65 or more rotor shaft 31 (in this embodiment, about 0.7), (in this example, about 0.3) the ratio H W / R C is 0.35 or less of the inner surface radius R C of the radial height H W and the chamber 1 of the rotor blade 32 a, a rotor blade 32 The heat medium flow path 42 is partitioned by the outer peripheral surface of the rotor shaft 31 and the rotor blades 32, and has a substantially similar shape to the outer shape of the rotor blades 32. Specifically, in this embodiment, the cross section is substantially triangular. A single flow path is formed.

この密閉式混練機は、ロータ軸31と比較してロータ翼32の断面積が小さくなるため、ロータ翼32の肉厚を増大させることなく、ロータ翼32の熱媒体の流路42の断面積を小さくでき、ロータ翼32の熱媒体の流路42内で熱媒体がショートパスしないようにするとともに、流路42を流通する熱媒体の流速を上昇させることができる。   In this hermetic kneader, the cross-sectional area of the rotor blade 32 is smaller than that of the rotor shaft 31, so that the cross-sectional area of the flow path 42 of the heat medium of the rotor blade 32 is increased without increasing the thickness of the rotor blade 32. The heat medium can be prevented from short-passing in the heat medium flow path 42 of the rotor blade 32, and the flow speed of the heat medium flowing through the flow path 42 can be increased.

この場合において、図2に示すように、ロータ翼32の断面積Aとロータ軸31の断面積Aの比A/Aが0.02〜0.12、好ましくは、0.04〜0.10(本実施例においては、約0.06)、ロータ翼32に形成した熱媒体の流路42の断面積AF2とロータ翼32の断面積Aとの比AF2/Aが0.1〜0.5、好ましくは、0.2〜0.4(本実施例においては、約0.2)となるようにすることが好ましい。
これにより、ロータ翼32の熱媒体の流路42を流通する熱媒体の流速を一層上昇させるとともに、流路42内で熱媒体の流速に不均一が生じないようにすることができる。
In this case, as shown in FIG. 2, the ratio A W / A R of the cross-sectional area A R of the cross-sectional area A W and the rotor shaft 31 of the rotor blade 32 is 0.02 to 0.12, preferably, 0.04 .About.0.10 (about 0.06 in the present embodiment), the ratio A F2 / A of the cross-sectional area A F2 of the flow path 42 of the heat medium formed on the rotor blade 32 and the cross-sectional area A W of the rotor blade 32 It is preferable that W is 0.1 to 0.5, preferably 0.2 to 0.4 (about 0.2 in this embodiment).
As a result, the flow rate of the heat medium flowing through the flow path 42 of the heat medium of the rotor blades 32 can be further increased, and the flow rate of the heat medium can be prevented from becoming uneven in the flow path 42.

ところで、本実施例においては、図1(a)及び図1(c1)に示すように、ロータ翼32の熱媒体の流路42を、ロータ軸31の外周面とロータ翼32とによって区画して形成するようにしたが、熱媒体の流路42の形成方法はこれに限定されず、例えば、図1(c2)に示すように、ロータ翼32単独で区画した空間を熱媒体の流路42とするようにしたり、図1(c3)に示すように、ロータ翼32と閉鎖板32aとによって区画した空間を熱媒体の流路42とすることもできる。   By the way, in the present embodiment, as shown in FIGS. 1A and 1C 1, the heat medium flow path 42 of the rotor blade 32 is partitioned by the outer peripheral surface of the rotor shaft 31 and the rotor blade 32. However, the method for forming the flow path 42 of the heat medium is not limited to this. For example, as shown in FIG. 1 (c2), a space defined by the rotor blades 32 alone is a flow path of the heat medium. 42, or as shown in FIG. 1 (c3), a space defined by the rotor blades 32 and the closing plate 32a can be used as the flow path 42 of the heat medium.

また、本実施例においては、図3に示すように(ただし、図3は各流路を模式的に示したもので、実際には、ロータ軸31に形成した熱媒体の流路41は、図1に示すように、ロータ軸31の軸表面の近傍域に熱媒体の流路41を形成するようにしている。)、1個のロータ3を見たとき、そのロータ軸31に備えた2個のロータ翼32に形成した熱媒体の流路42を、ロータ軸31に形成した熱媒体の流路41を介して直列に接続し、1個のロータ3のロータ軸31に導入されたすべての熱媒体が、直列に接続されたロータ翼32に形成した熱媒体の流路42を順次流通するようにすることにより、ロータ翼32の熱媒体の流量を確保し、流路42を流通する熱媒体の流速を一層上昇させることができる。
なお、ロータ軸31に備えるロータ翼32の個数は、本実施例の2個に限定されず、1個又は3個以上とすることもできる。
Further, in this embodiment, as shown in FIG. 3 (however, FIG. 3 schematically shows each flow path, and actually, the flow path 41 of the heat medium formed on the rotor shaft 31 is: 1, a heat medium passage 41 is formed in the vicinity of the shaft surface of the rotor shaft 31.) When one rotor 3 is viewed, the rotor shaft 31 is provided. The flow path 42 of the heat medium formed on the two rotor blades 32 is connected in series via the flow path 41 of the heat medium formed on the rotor shaft 31 and introduced into the rotor shaft 31 of one rotor 3. The flow rate of the heat medium of the rotor blades 32 is ensured by flowing all the heat medium sequentially through the flow path 42 of the heat medium formed in the rotor blades 32 connected in series. It is possible to further increase the flow rate of the heating medium.
The number of rotor blades 32 provided on the rotor shaft 31 is not limited to two in the present embodiment, and may be one or three or more.

ところで、ロータ軸31に形成した熱媒体の流路41は、図1に示すように、1つの流路で構成することもできるが、当該熱媒体の流路41を周方向に複数に分割して形成し、分割して形成した各流路41を直列に接続するようにすることもできる。
これにより、熱媒体の流路41内で熱媒体の流速に不均一が生じないようにすることができ、材料の冷却を一層均一に行うことができる。
By the way, the flow path 41 of the heat medium formed in the rotor shaft 31 can be constituted by one flow path as shown in FIG. 1, but the flow path 41 of the heat medium is divided into a plurality in the circumferential direction. It is also possible to connect the flow paths 41 formed in a divided manner in series.
As a result, the flow rate of the heat medium in the heat medium channel 41 can be prevented from becoming uneven, and the material can be cooled more uniformly.

さらに、また、ロータ翼32に形成した熱媒体の流路42の断面積AF2とロータ軸31に分割して形成した熱媒体の1つの流路41の断面積AF1との比AF2/AF1が0.2〜2.0、好ましくは、0.3〜1.2、より好ましくは、0.4〜0.8となるようにすることもできる。
これにより、ロータ軸31に形成した熱媒体の流路41とロータ翼32に形成した熱媒体の流路41を流通する熱媒体の流速を管理することによって、材料の冷却状態を容易かつ高精度に制御することができる。
Furthermore, the ratio A F2 / A of the cross-sectional area A F2 of the flow path 42 of the heat medium formed on the rotor blade 32 and the cross-sectional area A F1 of one flow path 41 of the heat medium formed by dividing the rotor shaft 31 A F1 may be 0.2 to 2.0, preferably 0.3 to 1.2, and more preferably 0.4 to 0.8.
Thereby, by controlling the flow rate of the heat medium flowing through the heat medium flow path 41 formed in the rotor shaft 31 and the heat medium flow path 41 formed in the rotor blade 32, the cooling state of the material can be easily and highly accurately controlled. Can be controlled.

図4に、図1〜図3に記載した本発明の実施例の密閉式混練機(WD55)と、図5に記載した密閉式混練機(D75)(図6に記載した密閉式混練機と同様、ロータ軸半径Rとチャンバー内面半径Rの比R/R及びロータ翼32の径方向の高さHとチャンバー内面半径Rの比H/Rが共に0.5程度、1つのロータ翼の断面積Aとロータ軸の断面積Aの比A/Aが0.5〜0.7程度に設定した密閉式混練機)とを使用し、ゴム(SBR(スチレンブタジエンゴム))と補強用フィラーとしてのカーボンブラックの混練を行った結果を示す。
このロータの積算回転数と体積抵抗率の関係を示すグラフから明らかなように、本発明の実施例の密閉式混練機(WD55)は、密閉式混練機(D75)と比較して、同じ積算回転数の場合の体積抵抗率が大きく、本発明の実施例の密閉式混練機(WD55)を使用することによって、高粘度で発熱が起こりやすいゴムとフィラーの混練を十分に行うことができること、そして、これにより、分散性が向上した高品質のゴム材料を得ることができることが確認できた。
ここで、ゴムと混練するフィラーとしては、カーボンブラックのほか、シリカ等のフィラーを挙げることができる。
4, the closed kneader (WD55) of the embodiment of the present invention described in FIGS. 1 to 3 and the closed kneader (D75) described in FIG. 5 (the closed kneader illustrated in FIG. 6 and Similarly, the ratio H W / R C of the rotor shaft radius R R and the chamber inner surface radius R C of the ratio R R / R C and radial height H W and the chamber inner surface radius R C of the rotor blades 32 are both 0.5 extent, one internal mixer ratio a W / a R of the cross-sectional area a R of the cross-sectional area a W and the rotor shaft of the rotor blades is set to about 0.5 to 0.7) and using a rubber ( The result of kneading SBR (styrene butadiene rubber)) and carbon black as a reinforcing filler is shown.
As is clear from the graph showing the relationship between the accumulated rotational speed of the rotor and the volume resistivity, the closed kneader (WD55) of the embodiment of the present invention has the same accumulated value as compared with the closed kneader (D75). The volume resistivity in the case of the rotational speed is large, and by using the closed kneader (WD55) of the embodiment of the present invention, it is possible to sufficiently knead the rubber and filler that are likely to generate heat with high viscosity, As a result, it was confirmed that a high-quality rubber material with improved dispersibility can be obtained.
Here, examples of fillers kneaded with rubber include fillers such as silica in addition to carbon black.

以上、本発明の密閉式混練機について、その実施例に基づいて説明したが、本発明は上記実施例に記載した構成に限定されるものではなく、その趣旨を逸脱しない範囲において適宜その構成を変更することができるものである。
また、上記実施例においては、「熱媒体」として、冷却媒体を用いる場合について説明したが、「熱媒体」には、加熱媒体を用いることもでき(これにより、均一に加熱しながら材料の混練を行うことができる。)、また、媒体の状態も液体のほか、蒸気等の気体を用いることができる。
As described above, the closed-type kneader of the present invention has been described based on the examples thereof, but the present invention is not limited to the structures described in the above-described examples, and the structure is appropriately set within the scope not departing from the gist thereof. It can be changed.
In the above-described embodiments, the case where a cooling medium is used as the “heating medium” has been described. However, a heating medium can be used as the “heating medium”. In addition to the liquid, the medium can be a gas such as a vapor.

本発明の密閉式混練機は、ロータ翼の熱媒体の流路を流通する熱媒体の流速を上昇させるとともに、流路内で熱媒体の流速に不均一が生じないようにすることにより、冷却(又は加熱)効率を向上することができることから、高粘度で発熱が起こりやすい材料の混練の用途に好適に用いることができるほか、冷却又は加熱を行いながらゴム、プラスチック等の材料を混練する用途に広く用いることができる。   The hermetic kneading machine of the present invention increases the flow rate of the heat medium flowing through the flow path of the heat medium of the rotor blade, and prevents the heat flow rate of the heat medium from becoming uneven in the flow path. (Or heating) The efficiency can be improved, so it can be suitably used for kneading materials with high viscosity and easily generating heat, and also for kneading materials such as rubber and plastic while cooling or heating. Can be widely used.

本発明の密閉式混練機の一実施例を示し、(a)は正面断面図、(b)はロータの説明図、(c1)〜(c3)はロータ翼に形成した熱媒体の流路の例を示す説明図である。1 shows an embodiment of a closed kneader of the present invention, (a) is a front sectional view, (b) is an explanatory view of a rotor, and (c1) to (c3) are flow paths of a heat medium formed on a rotor blade. It is explanatory drawing which shows an example. 同ロータ軸の断面積、ロータ翼の断面積及びロータ翼に形成した熱媒体の流路の断面積を示す説明図である。It is explanatory drawing which shows the cross-sectional area of the rotor shaft, the cross-sectional area of a rotor blade | wing, and the cross-sectional area of the flow path of the heat medium formed in the rotor blade | wing. 同ロータの熱媒体の流通経路を示す説明図である。It is explanatory drawing which shows the distribution route of the heat medium of the rotor. ロータの積算回転数と体積抵抗率の関係を示すグラフである。It is a graph which shows the relationship between the rotation speed of a rotor, and volume resistivity. 比較例の密閉式混練機を示し、(a)は正面断面図、(b)はロータの説明図である。The closed kneading machine of a comparative example is shown, (a) is front sectional drawing, (b) is explanatory drawing of a rotor. 従来の密閉式混練機の説明図である。It is explanatory drawing of the conventional closed kneading machine. 従来の混練用ロータの説明図である。It is explanatory drawing of the rotor for conventional kneading | mixing.

符号の説明Explanation of symbols

1 チャンバー
2 加圧蓋
3 ロータ
31 ロータ軸
32 ロータ翼
41 熱媒体の流路
42 熱媒体の流路
DESCRIPTION OF SYMBOLS 1 Chamber 2 Pressure lid 3 Rotor 31 Rotor shaft 32 Rotor blade 41 Heat medium flow path 42 Heat medium flow path

Claims (6)

混練材料を収納するチャンバーと、該チャンバーの上部を閉鎖する加圧蓋と、チャンバー内に取り付けられたロータ翼を有する一対のロータとを備え、該ロータのロータ軸及びロータ翼に熱媒体の流路を形成した密閉式混練機において、ロータ軸半径(R)とチャンバー内面半径(R)の比(R/R)が0.65以上、ロータ翼の径方向の高さ(H)とチャンバー内面半径(R)の比(H/R)が0.35以下であり、前記ロータ翼の熱媒体の流路をロータ翼の外形状と略相似形状をなす1本の流路で構成したことを特徴とする密閉式混練機。 A chamber for storing the kneaded material; a pressure lid for closing the upper portion of the chamber; and a pair of rotors having rotor blades attached in the chamber; and a flow of a heat medium on the rotor shaft and the rotor blades of the rotor. In a closed kneader having a path, the ratio of the rotor shaft radius (R R ) to the chamber inner surface radius (R C ) (R R / R C ) is 0.65 or more, and the radial height of the rotor blade (H W 1 ) and a chamber inner surface radius (R C ) ratio (H W / R C ) of 0.35 or less, and the flow path of the heat medium of the rotor blade is substantially similar to the outer shape of the rotor blade A closed kneader characterized by comprising a flow path of ロータ翼の断面積(A)とロータ軸の断面積(A)の比(A/A)が0.02〜0.12、ロータ翼に形成した熱媒体の流路の断面積(AF2)とロータ翼の断面積(A)との比(AF2/A)が0.1〜0.5であることを特徴とする請求項1記載の密閉式混練機。 The ratio (A W / A R ) of the cross-sectional area (A W ) of the rotor blades to the cross-sectional area (A R ) of the rotor shaft is 0.02 to 0.12, and the cross-sectional area of the flow path of the heat medium formed on the rotor blades The closed kneading machine according to claim 1, wherein a ratio (A F2 / A W ) between (A F2 ) and the cross-sectional area (A W ) of the rotor blade is 0.1 to 0.5. ロータ軸に形成した熱媒体の流路とロータ翼に形成した熱媒体の流路とを直列に接続し、ロータ軸に導入されたすべての熱媒体が、前記直列に接続されたロータ翼に形成した熱媒体の流路を流通するようにしたことを特徴とする請求項1又は2記載の密閉式混練機。   The flow path of the heat medium formed on the rotor shaft and the flow path of the heat medium formed on the rotor blade are connected in series, and all the heat medium introduced to the rotor shaft is formed on the rotor blade connected in series. The hermetic kneading machine according to claim 1 or 2, characterized in that it circulates through the flow path of the heat medium. ロータ軸に形成した熱媒体の流路を周方向に複数に分割し、該流路を直列に接続したことを特徴とする請求項1、2又は3記載の密閉式混練機。   The hermetic kneader according to claim 1, 2, or 3, wherein the flow path of the heat medium formed on the rotor shaft is divided into a plurality of circumferential directions and the flow paths are connected in series. ロータ翼に形成した熱媒体の流路の断面積(AF2)とロータ軸に形成した熱媒体の1つの流路の断面積(AF1)との比(AF2/AF1)が0.2〜2.0であることを特徴とする請求項1、2、3又は4記載の密閉式混練機。 The ratio (A F2 / A F1 ) of the cross-sectional area (A F2 ) of the flow path of the heat medium formed on the rotor blade to the cross-sectional area (A F1 ) of one flow path of the heat medium formed on the rotor shaft is 0. The hermetic kneader according to claim 1, 2, 3 or 4, which is 2 to 2.0. 請求項1、2、3、4又は5記載の密閉式混練機を使用し、ゴムとフィラーの混練を行うことを特徴とするゴム材料の混練方法。   A rubber material kneading method, wherein the rubber and filler are kneaded using the closed kneader according to claim 1, 2, 3, 4 or 5.
JP2005328354A 2005-11-14 2005-11-14 Sealed type kneader, and kneading method for rubber material Pending JP2007130953A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005328354A JP2007130953A (en) 2005-11-14 2005-11-14 Sealed type kneader, and kneading method for rubber material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005328354A JP2007130953A (en) 2005-11-14 2005-11-14 Sealed type kneader, and kneading method for rubber material

Publications (1)

Publication Number Publication Date
JP2007130953A true JP2007130953A (en) 2007-05-31

Family

ID=38153000

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005328354A Pending JP2007130953A (en) 2005-11-14 2005-11-14 Sealed type kneader, and kneading method for rubber material

Country Status (1)

Country Link
JP (1) JP2007130953A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017006782A1 (en) * 2015-07-06 2017-01-12 日本スピンドル製造株式会社 Sealed kneading machine

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02269011A (en) * 1989-04-11 1990-11-02 Masao Moriyama Kneading machine
JPH07301B2 (en) * 1992-03-18 1995-01-11 株式会社森山製作所 Kneading machine
JPH0733611U (en) * 1993-11-29 1995-06-20 エヌオーケー株式会社 Sealed kneader
JP2002120221A (en) * 2000-10-17 2002-04-23 Nok Corp Enclosed kneader
JP2004108654A (en) * 2002-09-18 2004-04-08 Kobe Steel Ltd Heat exchange mechanism and rotor provided with it

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02269011A (en) * 1989-04-11 1990-11-02 Masao Moriyama Kneading machine
JPH07301B2 (en) * 1992-03-18 1995-01-11 株式会社森山製作所 Kneading machine
JPH0733611U (en) * 1993-11-29 1995-06-20 エヌオーケー株式会社 Sealed kneader
JP2002120221A (en) * 2000-10-17 2002-04-23 Nok Corp Enclosed kneader
JP2004108654A (en) * 2002-09-18 2004-04-08 Kobe Steel Ltd Heat exchange mechanism and rotor provided with it

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017006782A1 (en) * 2015-07-06 2017-01-12 日本スピンドル製造株式会社 Sealed kneading machine
JP2017013469A (en) * 2015-07-06 2017-01-19 日本スピンドル製造株式会社 Sealed type kneader
CN107735235A (en) * 2015-07-06 2018-02-23 日本斯频德制造株式会社 Closed mixing machine
EP3321053A4 (en) * 2015-07-06 2018-11-14 Nihon Spindle Manufacturing Co., Ltd. Sealed kneading machine

Similar Documents

Publication Publication Date Title
JP4317872B2 (en) Continuous kneading apparatus and kneading system using the same
JP4256330B2 (en) Closed kneading machine and kneading rotor used therefor
JP2000153520A5 (en)
JPH1148239A (en) Enclosed kneading apparatus
US6913379B2 (en) Closed kneader
JP6258949B2 (en) Temperature controlled thermokinetic mixer
JP2007130953A (en) Sealed type kneader, and kneading method for rubber material
JPH0232812A (en) Sealed type mixer with improved type impeller
JP7112067B2 (en) Disc type mixing head with water cooling structure
KR20040080368A (en) Hermetically closed kneader
JP2015162936A (en) Totally-enclosed motor
WO2013115371A1 (en) Kneading rotor and kneader
WO2013111724A1 (en) Rotor for kneading, kneading machine, and method for manufacturing rotor for kneading
JP4072820B2 (en) Pin type kneading continuous extrusion equipment cooling device
JP2005059528A (en) Rotor for kneading
JP2018030286A (en) Method and device for kneading rubber material
JPH11291327A (en) Twin-screw kneading extruder
JPS584568B2 (en) kneading machine
JP5304627B2 (en) Bead mill
KR100791914B1 (en) Closed kneader
JP2011025500A (en) Method of kneading rubber composition
JP6933047B2 (en) Kneading method and equipment for rubber materials
JPH11147219A (en) Closed viscoelastic fluid kneader
JPH09220718A (en) Closed kneader
JP2007130952A (en) Sealed type kneader

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070823

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100115

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100120

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100519