JP2007129995A - Method for producing food product by joule heating - Google Patents

Method for producing food product by joule heating Download PDF

Info

Publication number
JP2007129995A
JP2007129995A JP2005328826A JP2005328826A JP2007129995A JP 2007129995 A JP2007129995 A JP 2007129995A JP 2005328826 A JP2005328826 A JP 2005328826A JP 2005328826 A JP2005328826 A JP 2005328826A JP 2007129995 A JP2007129995 A JP 2007129995A
Authority
JP
Japan
Prior art keywords
food
solid
treatment
liquid
heating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005328826A
Other languages
Japanese (ja)
Other versions
JP3845107B1 (en
Inventor
Yoshihiko Noriuchi
慶彦 則内
Tsutomu Shimizu
勤 清水
Masahiko Hasegawa
正彦 長谷川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Wakodo Co Ltd
Original Assignee
Wakodo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Wakodo Co Ltd filed Critical Wakodo Co Ltd
Priority to JP2005328826A priority Critical patent/JP3845107B1/en
Application granted granted Critical
Publication of JP3845107B1 publication Critical patent/JP3845107B1/en
Publication of JP2007129995A publication Critical patent/JP2007129995A/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a treating method for a solid-liquid mixed food product of solid food and liquid food, which is capable of evenly Joule-heating the food, to provide a method for producing the solid-liquid mixed food product using the treating method and Joule heating, and to provide the solid-liquid mixed food product obtained by the method. <P>SOLUTION: This method for producing the solid-liquid mixed food product comprises (a1) a process of freezing solid food, thawing or unthawing the solid food to be mixed with liquid food to obtain a solid-liquid mixed food product, or (a2) a process of mixing and freezing solid food and the liquid food to obtain a solid-liquid mixed food product, and (b) a process of Joule heating the solid-liquid mixed food product. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、ジュール加熱を用いた固体食品と液体食品からなる固液混合食品の製造方法、特に、ジュール加熱のための固液混合食品の処理方法に関する。   The present invention relates to a method for producing a solid-liquid mixed food comprising a solid food and a liquid food using Joule heating, and more particularly to a method for treating a solid-liquid mixed food for Joule heating.

食品のジュール加熱とは、固体及び/又は液体食品に、直接電流を流した時に生じる電気抵抗による発熱(ジュール熱)を利用した、食品の調理及び/又は殺菌もしくは滅菌のための加熱技術である。   Joule heating of food is a heating technique for cooking and / or sterilizing or sterilizing food using heat generated by electric resistance (joule heat) generated when a direct current is applied to solid and / or liquid food. .

従来の熱伝導による外部加熱法(例えばレトルト加熱法)は、充分な殺菌効果を得るために一般の調理加熱と比較して過度な加熱を行なうことが多く、その結果、原料素材本来の風味や色調が損なわれ、製品の味も画一的なものとなってしまう傾向があった。一方、ジュール加熱法は、ジュール熱により食品を内部から加熱するので、加熱時間が比較的短く、食品の風味や色調等の加熱劣化が起こりにくいといった優れた加熱方法として知られていた。   Conventional external heating methods based on heat conduction (for example, retort heating methods) often perform excessive heating in comparison with general cooking heating in order to obtain a sufficient sterilizing effect. There was a tendency for the color tone to be lost and the taste of the product to be uniform. On the other hand, the Joule heating method is known as an excellent heating method in which the food is heated from the inside by Joule heat, so that the heating time is relatively short, and the heat deterioration such as flavor and color tone of the food hardly occurs.

しかし、固体食品と液体食品からなる固液混合食品においては、固体食品の種類ごとに電気抵抗率が異なり、また同じ固体食品でも構造異方性のために部位ごとに電気抵抗率が異なったり、さらに加熱調理による組織構造の変化等によっても電気抵抗率が変化するので、固液混合食品において均一な電気抵抗率が得られず、それが不均一加熱の原因となっていた。そして、このことが、固液混合食品材料においてジュール加熱法が産業上いまだ実施されない大きな原因のひとつとなっていた(非特許文献1〜4)。   However, in solid-liquid mixed foods consisting of solid foods and liquid foods, the electrical resistivity differs for each type of solid food, and even in the same solid food, the electrical resistivity differs for each part due to structural anisotropy, Furthermore, since the electrical resistivity also changes due to changes in the structure of the structure due to cooking, a uniform electrical resistivity cannot be obtained in the solid-liquid mixed food, which causes uneven heating. This has been one of the major reasons why the Joule heating method has not yet been implemented industrially in solid-liquid mixed food materials (Non-Patent Documents 1 to 4).

上記課題を解決するためにいくつかの特許出願がなされている(特許文献1〜8)。その多くは電解質液で固体食品を前処理(加熱や浸漬)することにより食品の電気抵抗率の均一化を目論むものであったり、固体食品と液体食品の電気抵抗率を調整することで、その後のジュール加熱における均一な加熱を目論むものである。しかし、電解質液中での加熱方法、例えば、特許文献6の生の植物性固状食品を40℃以上に加熱して細胞壁を傷つけ細胞液の流出を図り導電率を上昇させる方法では、電気抵抗率の均一化は十分でなかったり、浸漬方法では、塩漬処理に長時間を要し、また固体食品と液体食品の電気抵抗率を調整する方法では、食材毎に処理する必要があったりなど制約が残り、実用上充分に課題が解決されているとは言えなかった。
秋山美展:ジュール加熱技術−その特徴と応用−,ジャパンフードサイエンス,41(6),47−53(2002) 植村邦彦:ジュール加熱の基礎理論,ジャパンフードサイエンス,41(6),55−60(2002) 杉江紀彦:ジュール加熱装置とその応用,ジャパンフードサイエンス,41(7),83−89(2002) 松山良平:ジュール加熱処理システムによる固液混合食品の殺菌,ジャパンフードサイエンス,41(7),95−99(2002) 特開昭60−27349 特開昭60−251851 特表平8−504322 特開平11−276097 特開2003−299446 特公平6−45 特公平7−34720 特許3564642号
In order to solve the above problems, several patent applications have been filed (Patent Documents 1 to 8). Many of them are intended to homogenize the electrical resistivity of the food by pre-processing (heating or dipping) the solid food with the electrolyte solution, or by adjusting the electrical resistivity of the solid food and the liquid food. This is intended for uniform heating in Joule heating. However, in a method of heating in an electrolyte solution, for example, a method of heating a raw vegetable solid food of Patent Document 6 to 40 ° C. or higher to damage the cell wall and increase the conductivity, The rate is not uniform enough, the soaking method takes a long time for the salting process, and the method for adjusting the electrical resistivity of the solid food and the liquid food needs to be processed for each ingredient. Restrictions remained, and it could not be said that the problem was solved sufficiently in practice.
Miki Akiyama: Joule heating technology-its features and applications-, Japan Food Science, 41 (6), 47-53 (2002) Kunihiko Uemura: Basic theory of Joule heating, Japan Food Science, 41 (6), 55-60 (2002) Norihiko Sugie: Joule heating device and its application, Japan Food Science, 41 (7), 83-89 (2002) Ryohei Matsuyama: Sterilization of solid-liquid mixed food by Joule heat treatment system, Japan Food Science, 41 (7), 95-99 (2002) JP-A-60-27349 JP 60-251851 Special table flat 8-504322 JP-A-11-276097 JP 2003-299446 A JP 6-45 JP 7-34720 Japanese Patent No. 3564642

本発明は、固体食品固有の電気伝導率による、固体食品個体差による、固体食品部位ごとの構造不均一性による、または加熱に伴う組織構造の変化等による固体食品の電気抵抗率のバラツキを均一化し、食品の均一なジュール加熱を可能とする固体食品と液体食品からなる固液混合食品の処理方法、該処理方法とジュール加熱を用いた固液混合食品の製造方法およびその製造方法によって得られる固液混合食品を提供するものである。   The present invention provides uniform electrical resistivity variation due to the inherent electrical conductivity of solid foods, due to individual differences in solid foods, due to structural non-uniformity at each part of the solid foods, or due to changes in tissue structure due to heating, etc. Is obtained by a method for treating a solid-liquid mixed food comprising a solid food and a liquid food that enables uniform joule heating of the food, a method for producing the solid-liquid mixed food using the treatment method and Joule heating, and a method for producing the same A solid-liquid mixed food is provided.

(1)本発明は、
(a1)固体食品を冷凍後、該固体食品を解凍又は解凍せずに液体食品と混合して固液混合食品を得る工程、または
(a2)固体食品と液体食品を混合後、これを冷凍して固液混合食品を得る工程、
および(b)該固液混合食品をジュール加熱する工程を含む、固液混合食品の製造方法に関する。
(2)本発明は、(1)の(b)工程により、固液混合食品を殺菌又は滅菌する、請求項1に記載の固液混合食品の製造方法に関する。
(3)本発明は、(1)又は(2)に記載の固液混合食品の製造方法によって得られる固液混合食品に関する。
(1) The present invention
(A1) After freezing the solid food, the solid food is mixed with liquid food without thawing or thawing to obtain a solid-liquid mixed food, or (a2) After mixing the solid food and liquid food, this is frozen To obtain a solid-liquid mixed food,
And (b) a method for producing a solid-liquid mixed food, comprising a step of joule heating the solid-liquid mixed food.
(2) This invention relates to the manufacturing method of the solid-liquid mixed food of Claim 1 which sterilizes or sterilizes a solid-liquid mixed food by the (b) process of (1).
(3) This invention relates to the solid-liquid mixed food obtained by the manufacturing method of the solid-liquid mixed food as described in (1) or (2).

本発明の方法により、固体食品固有の電気伝導率による、固体食品個体差による、固体食品部位ごとの構造不均一性による、または加熱に伴う組織構造の変化等による固体食品の電気抵抗値のバラツキが解消し、固体食品の電気抵抗値の均一化が可能となるので、食品の均一なジュール加熱が可能となる。従って、本発明の方法により、固体食品と液体食品からなる固液混合食品のジュール加熱による製造、調理、殺菌または滅菌が可能となる。   According to the method of the present invention, variation in the electrical resistance value of the solid food due to the electrical conductivity inherent to the solid food, due to individual differences in the solid food, due to structural heterogeneity for each part of the solid food, or due to changes in the tissue structure due to heating, etc. Is eliminated, and the electric resistance value of the solid food can be made uniform, so that the food can be uniformly heated. Therefore, according to the method of the present invention, it is possible to manufacture, cook, sterilize or sterilize a solid-liquid mixed food consisting of solid food and liquid food by Joule heating.

さらに、本発明の方法は、熱伝導による外部加熱法(例えば、レトルト加熱法)のように充分な調理又は殺菌もしくは滅菌効果を得るための過度な加熱を必要とせず、ジュール熱により固体食品の内部全体を直接加熱できるので、加熱時間を短くできる。そのため、過度な加熱により食品原料素材本来の風味や色調等の品質が損なわれ画一的な味となってしまい勝ちな外部加熱法(例えば、レトルト加熱法)に替わって、食品原料素材本来の風味や色調等の品質を保持した、多様性に富んだ味の高品質な食品(加熱殺菌又は加熱滅菌食品)の製造が可能となる。   Furthermore, the method of the present invention does not require sufficient cooking or excessive heating to obtain a sterilizing or sterilizing effect unlike an external heating method (for example, a retort heating method) by heat conduction, and the solid food is heated by Joule heat. Since the entire interior can be directly heated, the heating time can be shortened. For this reason, the quality of food ingredients such as flavor and color tone is impaired by excessive heating, resulting in a uniform taste and replacing the prevalent external heating methods (for example, retort heating methods). Production of high-quality foods (heat-sterilized or heat-sterilized foods) having a variety of flavors and maintaining quality such as flavor and color tone becomes possible.

本発明において用いる食品とは、食物を意味し、本発明において用いる食品には、調理後の食品だけでなく、調理前の食品材料、調理途中の食品もしくは食品材料も含む。本発明において用いる食品には、ヒトのための食品だけでなく、家畜動物用の飼料またはペットフードのような動物のための食品も含む。   The food used in the present invention means food, and the food used in the present invention includes not only food after cooking but also food material before cooking, food during cooking, or food material. The food used in the present invention includes not only foods for humans but also foods for animals such as livestock animal feed or pet food.

本発明において用いる固体食品とは、一定の形状と体積を有する食品を言い、例えば、にんじん、だいこん、馬鈴薯、玉葱、セロリ、キャベツ等の野菜類、苺、林檎等の果実類、大豆、グリンピース、いんげん等の豆類、とうもろこし、麦、米等の穀類、もしくはマッシュルーム、しいたけ等の菌類等、ワカメ、昆布、めかぶ等の海藻類等を含む生の植物性食品またはそれらに加熱、乾燥、細断、成型等の加工を施した植物性食品;牛肉、豚肉、鶏肉等の畜肉類もしくは鮪、鰹、鯵、鯖、蛤、あさり、蜆、さざえ等の魚介肉類を含む生の動物性食品またはこれらに加熱、乾燥、細断、成型等の加工を施した動物性食品;あるいはこれら生の及び/又は加工した植物性食品と動物性食品とを混合した食品;の単独又はそれらの組み合わせが挙げられる。ここで、植物性食品とは植物体そのものもしくは植物体から得られる食品を意味し、動物性食品とは動物体そのものもしくは動物体から得られる食品を意味する。
本発明において用いる固体食品は、ジュール加熱において不均一加熱が一般に生じやすい植物性食品が好ましく。また、ジュール加熱における不均一加熱は一般に固体食品の大きさが小さいほど生じ難いので本発明の有利な効果を得るためには、本発明において用いる固体食品の大きさは3mm以上、より好ましくは5mm以上、さらに好ましくは10mm以上の直径や厚さを有するものが好ましい。よって、一般にはジュール加熱における不均一加熱が生じ難い、ミンチした生の畜肉類やすり身にした生の魚介肉類またはそれらに成型等の加工を施したものは本発明の固体食品に含まれない。
The solid food used in the present invention refers to a food having a certain shape and volume, for example, vegetables such as carrots, daikon, potatoes, onions, celery, cabbage, fruits such as strawberries, apples, soybeans, green peas, Beans such as beans, cereals such as corn, wheat, rice, or fungi such as mushrooms, shiitake, etc., raw vegetable foods including seaweed such as seaweed, kelp, mekabu, etc. or heating, drying, shredding, Plant foods that have been processed such as molding; live animal foods including beef, pork, chicken and other livestock meat such as salmon, salmon, salmon, salmon, salmon, clams, salmon, salmon Animal food that has been processed by heating, drying, shredding, molding, or the like; or a mixture of these raw and / or processed vegetable foods and animal foods, or a combination thereof. It is. Here, the vegetable food means the plant itself or a food obtained from the plant, and the animal food means the animal itself or a food obtained from the animal body.
The solid food used in the present invention is preferably a vegetable food that is generally susceptible to non-uniform heating in Joule heating. In addition, since the non-uniform heating in Joule heating is generally less likely to occur as the size of the solid food is smaller, the size of the solid food used in the present invention is 3 mm or more, more preferably 5 mm, in order to obtain the advantageous effects of the present invention. As described above, those having a diameter or thickness of 10 mm or more are more preferable. Therefore, in general, uneven heating in Joule heating is unlikely to occur, and raw seafood made into minced raw livestock meat or those processed by molding or the like are not included in the solid food of the present invention.

本発明において用いる液体食品とは、水を含み流動性を有する食品をいい、例えば、水道水、純水、イオン交換水、ミネラルウォーター等の水、さらに、電解質、調味料、増粘剤を適宜含んでなる水、例えば、食塩水、潮汁、出し汁、又は、水と油脂の混合物もしくは水と油脂の乳化物、例えば、カレーソース、ホワイトソース、ドゥミグラスソース、トマトソース、焼き肉のタレ等のソース類、あるいはコンソメスープ、ポタージュスープ、みそ汁、豚汁等のスープ類が挙げられる。なお、純水それ自体では通電性を有さないが、固体食品のほとんどは通電するのに必要な電解質をもともと含んでいるので、固体食品と混合することで純水も通電性を有することとなる。よって、純水も液体食品に含まれる。   The liquid food used in the present invention refers to food that contains water and has fluidity, for example, water such as tap water, pure water, ion-exchanged water, mineral water, and electrolytes, seasonings, and thickeners as appropriate. Water comprising, for example, saline, tidal juice, stock, or a mixture of water and fat or an emulsion of water and fat, such as curry sauce, white sauce, Dumigrassauce, tomato sauce, grilled meat sauce Or soups such as consomme soup, potage soup, miso soup and pork soup. Although pure water itself does not have electrical conductivity, most of the solid food originally contains an electrolyte necessary for energization, so that pure water also has electrical conductivity when mixed with solid food. Become. Therefore, pure water is also included in the liquid food.

ここで電解質とは、塩化ナトリウム、塩化マグネシウム、塩化カルシウム、塩化カリウム、リン酸ナトリウム、リン酸カリウム、炭酸カリウム、硫酸鉄などが挙げられるが、水中に存在することで水に電気を流すことの出来る物質であればこれらに限定されず、単独または複数で用いてもよい。上述したように固体食品のほとんどには通電するのに必要な電解質をもともと含むので液体食品に電解質を新たに添加しても添加しなくとも良いが、添加する場合の電解質の濃度は、印加した時に電気を流すことの出来る濃度であれば特に限定されない。   Here, electrolytes include sodium chloride, magnesium chloride, calcium chloride, potassium chloride, sodium phosphate, potassium phosphate, potassium carbonate, iron sulfate, etc. It is not limited to these as long as it can be used, and may be used alone or in combination. As mentioned above, most solid foods originally contain the electrolyte necessary to energize, so it may or may not be added to the liquid food, but the concentration of the electrolyte in the case of addition was applied. There is no particular limitation as long as it is a concentration at which electricity can sometimes flow.

本発明において用いる固液混合食品とは、上述の固体食品及び液体食品を含む食品のことであり、その形態としては、例えば以下が挙げられる。すなわち、ソース類又はスープ類等の液体食品を主体とし、これに固体食品を含有してなる形態の固液混合食品、あるいは固体食品を主体として、これに水、ソース類又はスープ類等の液体食品を加えてなる形態の固液混合食品等である。前者の具体例としては、カレー、シチュー、ビーフストロガノフ、ボルシチ、ミネストローネ、みそ汁、中華丼ソース、クラムチャウダー等が挙げられる。また、後者の具体例としては、他の食品に利用するための種々の食品具材、牛丼の具材部分、ハンバーグ、筑前煮、肉じゃが、スパゲティー等が挙げられる。なお、雑炊又は粥等、固体食品と液体食品をおおよそ等量含んでなる形態の食品も、本発明における固液混合食品に含まれる。よって、本発明の固液混合食品は、固液混合食品中における固体食品と液体食品との比率が特に限定される必要はないが、液体食品の量は通電するのに必要な最低限の量を含む。また、本発明の固液混合食品には、完成品としての食品だけでなく、別の食品に利用されるための食品具材も含まれる。   The solid-liquid mixed food used in the present invention is a food containing the above-described solid food and liquid food, and examples of the form include the following. That is, liquid foods such as sauces or soups as a main component, solid-liquid mixed foods in a form containing solid foods therein, or solid foods as main components, and liquids such as water, sauces or soups It is a solid-liquid mixed food in the form of adding food. Specific examples of the former include curry, stew, beef stroganoff, borsch, minestrone, miso soup, Chinese rice sauce, and clam chowder. Specific examples of the latter include various food ingredients for use in other foods, beef bowl ingredients, hamburger, Chikuzenni, meat potato, spaghetti, and the like. In addition, the food of the form which contains approximately equal amounts of solid food and liquid food, such as miscellaneous cooking or rice cake, is also included in the solid-liquid mixed food in the present invention. Therefore, in the solid-liquid mixed food of the present invention, the ratio of the solid food and the liquid food in the solid-liquid mixed food need not be particularly limited, but the amount of the liquid food is the minimum amount necessary for energization. including. In addition, the solid-liquid mixed food of the present invention includes not only food as a finished product but also food ingredients for use in other foods.

本発明において用いる冷凍するとは、例えば、食品を氷結点以下の温度に置くことで食品中の水分を凍らせることを意味する。水分の凍結は、食品中の一部であっても良いが、十分な本発明の効果を得るためには食品、特に固体食品中のほとんどの水分を凍らせることが好ましい。なお、固体食品を冷凍するための時間は、冷凍温度、食品の種類、大きさまたは量などにより任意に変化し得ることは当業者においては周知である。また、凍結方法は、固体食品中の水分を凍らせることができれば、急速凍結法、緩慢凍結法など凍結方法には限定されない。   Freezing used in the present invention means, for example, freezing moisture in food by placing the food at a temperature below the freezing point. The freezing of the water may be a part of the food, but in order to obtain a sufficient effect of the present invention, it is preferable to freeze most of the water in the food, particularly the solid food. It is well known to those skilled in the art that the time for freezing a solid food can be arbitrarily changed depending on the freezing temperature, the type, size or amount of the food. The freezing method is not limited to freezing methods such as quick freezing method and slow freezing method as long as the water in the solid food can be frozen.

なお、冷凍後の固体食品と液体食品を混合して固液混合食品にする場合、冷凍後の固体食品は、冷凍されたままの状態で液体食品と混合しても、完全に解凍された後に混合してもよい。また、冷凍後の固液混合食品をジュール加熱する場合、冷凍後の固液混合食品を冷凍されたままの状態でジュール加熱しても、完全に解凍された後でジュール加熱してもよい。よって、冷凍から次の工程に移る時の固体食品もしくは固液混合食品の状態は特に限定されない。解凍は、固体上、気体中、液体中のいずれで実施してもよく、解凍方法は特に限定されない。さらに解凍の際、解凍を促進するために気体、液体、固体を加温してもよい。また、解凍のための温度は特に限定されない。   In addition, when solid food after freezing and liquid food are mixed to make a solid-liquid mixed food, the solid food after freezing will be completely thawed even if mixed with liquid food in the frozen state. You may mix. In addition, when the frozen solid-liquid mixed food is Joule-heated, the frozen solid-liquid mixed food may be Joule-heated in a frozen state or Joule-heated after being completely thawed. Therefore, the state of the solid food or the solid-liquid mixed food when moving from freezing to the next step is not particularly limited. Thawing may be performed in any of solid, gas, and liquid, and the thawing method is not particularly limited. Further, when thawing, gas, liquid, or solid may be heated to promote thawing. Further, the temperature for thawing is not particularly limited.

本発明で用いる固体食品と液体食品を混合するとは、固体食品と液体食品が一緒に存在する状態にすることを意味する。固体食品と液体食品が一緒に存在する状態は、固体食品と液体食品が一部で一緒に存在する状態あっても全体で一緒に存在する状態あっても良いが、本発明の効果を十分に得るためには全体で一緒に存在する状態であることが好ましい。   The mixing of the solid food and the liquid food used in the present invention means that the solid food and the liquid food are present together. The state in which the solid food and the liquid food are present together may be a state in which the solid food and the liquid food are present together in a part or a state in which the food is present together, but the effect of the present invention is sufficiently obtained. In order to obtain, it is preferable that it exists in the whole together.

本発明で用いる固体食品と液体食品を混合する方法は、固体食品と液体食品が一緒に存在する状態にする方法であれば特に限定されないが、例えば、両者を単に混ぜ合わせる方法や固体食品を液体食品中に浸漬する方法が挙げられる。ここで、固体食品を液体食品中に浸漬するとは、固体食品を液体食品の中に浸すことを意味する。   The method of mixing the solid food and the liquid food used in the present invention is not particularly limited as long as the solid food and the liquid food are in a state where they exist together. For example, the method of simply mixing the two or the liquid food The method of immersing in food is mentioned. Here, immersing the solid food in the liquid food means immersing the solid food in the liquid food.

本発明で用いる固体食品と液体食品との混合比率は特に限定される必要はないが、液体食品の量は通電するためおよび通電中に過度の加熱が生じないようにするために必要最低限の量で存在する必要がある。なお、必要最低限の量は、ジュール加熱を行う通電装置により変化する。また、混合時の温度は食品の品質を損なわない温度であれば特に限定されない。   The mixing ratio of the solid food and the liquid food used in the present invention is not particularly limited, but the amount of the liquid food is the minimum necessary for energizing and preventing excessive heating during energization. Must be present in quantity. Note that the minimum necessary amount varies depending on the energization device that performs Joule heating. Moreover, the temperature at the time of mixing will not be specifically limited if it is the temperature which does not impair the quality of a foodstuff.

本発明で用いる混合が浸漬である場合、固体食品を液体食品中に浸している時間は、特に限定されない。浸漬時の温度も、食品の品質を損なわない温度であれば特に限定されない。
浸漬を、固体食品と液体食品との単なる混合だけでなく液体食品の固体食品内部への浸透目的に行うのであれば、浸透を促進するために、加熱下で浸漬することが好ましい。また、加圧下で実施しても良い。加熱下での浸漬は、固体食品を加熱した液体食品に浸漬しても、浸漬中に外部から加熱しても良い。
When the mixing used in the present invention is immersion, the time during which the solid food is immersed in the liquid food is not particularly limited. The temperature at the time of immersion is not particularly limited as long as it does not impair the quality of the food.
If the immersion is performed not only for mixing the solid food and the liquid food but also for the purpose of penetrating the liquid food into the solid food, it is preferably immersed under heating in order to promote the penetration. Moreover, you may implement under pressure. The immersion under heating may be performed by immersing the solid food in the heated liquid food or by heating from the outside during the immersion.

固体食品を加熱した液体食品に浸漬したり、浸漬中に外部から加熱する場合、加熱温度は、液体食品が固体食品の内部に浸透するのを促進する温度であればよく、一般に、加熱温度は、30〜100℃、好ましくは60〜100℃、より好ましくは100℃である。しかし、加熱温度は、食品の煮崩れや変色も考慮する必要があるので食品ごとに決定される必要がある。加熱時間は、加熱温度、固体食品の種類、大きさもしくは量、液体食品の種類もしくは量、温度又は加圧等より任意に変化することは当業者にとって周知であり、一定の加熱温度において液体食品が固体食品の内部に浸透する時間であればよく、特に限定されない。   When a solid food is immersed in a heated liquid food or heated from the outside during the immersion, the heating temperature may be any temperature that promotes the penetration of the liquid food into the solid food. 30 to 100 ° C, preferably 60 to 100 ° C, more preferably 100 ° C. However, the heating temperature needs to be determined for each food because it is necessary to take into account the boiling and discoloration of the food. It is well known to those skilled in the art that the heating time varies arbitrarily depending on the heating temperature, the type, size or amount of solid food, the type or amount of liquid food, temperature or pressure, and the like. There is no particular limitation as long as it takes time to penetrate the solid food.

浸漬において、固体食品を室温(15〜30℃)以上に加熱した場合、加熱した該固液混合食品を冷凍する場合またはジュール加熱する場合、加熱したままの状態で冷凍してももしくはジュール加熱しても、または室温まで冷却した後に冷凍してももしくはジュール加熱してもよい。よって、加熱した固液混合食品を次の工程に移す時の固液混合食品の温度は特に限定されない。冷却は、固体上、気体中、液体中のいずれで実施してもよく、冷却方法は特に限定されない。さらに冷却処理の際、冷却を促進するために気体、液体、固体を冷却してもよい。冷却のための温度は特に限定されない。   In immersion, when solid food is heated to room temperature (15-30 ° C) or higher, when the heated solid-liquid mixed food is frozen or when Joule heating is performed, it can be frozen in a heated state or Joule heated. Alternatively, it may be frozen after cooling to room temperature or Joule heated. Therefore, the temperature of the solid / liquid mixed food when the heated solid / liquid mixed food is transferred to the next step is not particularly limited. Cooling may be performed in any of solid, gas, and liquid, and the cooling method is not particularly limited. Further, during the cooling process, gas, liquid, and solid may be cooled in order to promote cooling. The temperature for cooling is not particularly limited.

なお、本発明で用いる混合が浸漬でなく単に固体食品と液体食品を混ぜ合わせただけの場合であっても、浸漬の場合と同様に液体食品の固体食品内部への浸透は生じ得る。すなわち、冷凍後の固体食品と液体食品を混ぜ合わせた場合には、ジュール加熱中に液体食品は固体食品内部に浸透し、また固体食品と液体食品を混ぜ合わせて冷凍した場合には、冷凍と解凍過程およびその後のジュール加熱中に液体食品は固体食品内部に浸透する。   In addition, even when the mixing used in the present invention is not just immersion but merely mixing solid food and liquid food, penetration of liquid food into the solid food can occur as in the case of immersion. That is, when solid food and liquid food after freezing are mixed, the liquid food penetrates into the solid food during joule heating, and when frozen by mixing solid food and liquid food, During the thawing process and subsequent Joule heating, the liquid food penetrates into the solid food.

本発明で用いる食品のジュール加熱とは、食品に通電すること、すなわち食品に電気を流すことで生じる電気抵抗による発熱(ジュール熱)を利用して、食品を加熱することを意味し、固液混合食品をジュール加熱するとは、固体食品および液体食品からなる混合食品(固液混合食品)に電気を流すことで加熱することを意味する。
よって、本発明の固液混合食品の製造方法は、上述したように冷凍履歴を有する固体食品を含む固液混合食品にジュール加熱を施すことを特徴とし、固体食品の冷凍処理は、固体食品と液体食品の混合前であっても後であっても良い。なお、冷凍の開始と同時に固体食品と液体食品との混合を開始する操作も、固体食品と液体食品が一緒に存在する状態が固体食品と液体食品の冷凍に先立って生じるので、上記(a2)の固体食品と液体食品を混合後、これを冷凍して固液混合食品を得る工程内に含まれる。ここで、冷凍履歴を有する固体食品とは、過去に冷凍された経験を有する固体食品であることを意味する。なお、本発明におけるジュール加熱によって得られる加熱温度、ジュール加熱の加熱時間は特に限定されない。そのため、本発明のジュール加熱の目的は固液混合食品の単なる加熱であっても、調理目的であっても、殺菌目的であっても、滅菌目的であっても良く、特に限定されない。
The joule heating of the food used in the present invention means heating the food by using heat generated by electric resistance (joule heat) generated by energizing the food, that is, passing electricity to the food. Joule heating of a mixed food means heating by supplying electricity to a mixed food (solid-liquid mixed food) composed of a solid food and a liquid food.
Therefore, the method for producing a solid-liquid mixed food of the present invention is characterized in that Joule heating is applied to a solid-liquid mixed food containing a solid food having a freezing history as described above. It may be before or after mixing the liquid food. Note that the operation of starting the mixing of the solid food and the liquid food simultaneously with the start of the freezing also occurs because the state in which the solid food and the liquid food exist together occurs prior to the freezing of the solid food and the liquid food. The solid food and liquid food are mixed and then frozen to be included in the process of obtaining the solid-liquid mixed food. Here, the solid food having a freezing history means a solid food having experience of being frozen in the past. In addition, the heating temperature obtained by Joule heating in the present invention and the heating time of Joule heating are not particularly limited. Therefore, the purpose of the Joule heating of the present invention is not particularly limited, and may be simply heating of the solid-liquid mixed food, for cooking, for sterilization, or for sterilization.

本発明で用いられる食品のジュール加熱のための通電は、ジュール熱を発生させるものであれば交直流の何れでもよいが、通常は商用周波数の交流が好ましく用いられる。印加電圧および電流値は、食品の導電率および目標温度に応じて定められることは当業者にとっては周知である。ジュール加熱のための装置は、自ら作製しても、市場より入手してもよく、市場より入手可能なジュール加熱のための装置には、加圧チャンバー型ジュール加熱装置((株)フロンテイィアエンジニアリング製)、ジュール式アセプライザー((株)イズミフードマシナリ製)などがあるが、これらに特に限定される必要もない。   The energization for the Joule heating of the food used in the present invention may be any alternating current as long as it generates Joule heat, but usually an alternating current of commercial frequency is preferably used. It is well known to those skilled in the art that the applied voltage and current value are determined according to the electrical conductivity of the food and the target temperature. An apparatus for joule heating may be manufactured by itself or obtained from the market. An apparatus for joule heating available from the market includes a pressurized chamber type joule heating apparatus (Frontier Co., Ltd.). Engineering), Joule type applicator (manufactured by Izumi Food Machinery Co., Ltd.), and the like.

本発明で用いる固液混合食品をジュール加熱により殺菌するとは、固液混合食品をジュール加熱して、「総合食品辞典第六版」(株式会社 同文書院)に記載された、食品中の菌数を目的に応じて問題のない範囲内にまで減少させることを意味する。
本発明で用いる固液混合食品をジュール加熱により滅菌するとは、固液混合食品をジュール加熱して、「総合食品辞典第六版」(株式会社 同文書院)に記載された、食品、器具などに付着している微生物のすべてを死滅させることを意味する。
The solid-liquid mixed food used in the present invention is sterilized by Joule heating. The solid-liquid mixed food is Joule-heated, and the fungus in the food described in "General Food Dictionary 6th Edition" This means that the number is reduced to a problem-free range according to the purpose.
Sterilization of the solid / liquid mixed food used in the present invention by Joule heating means that the solid / liquid mixed food is Joule heated and described in “General Food Dictionary 6th Edition” It means to kill all the microorganisms attached to the.

従来技術の検証
比較例1〜3において、電解質液中での加熱処理(特許文献6および7)が固液混合食品におけるジュール加熱法に及ぼす効果を検証する。
Verification of Prior Art In Comparative Examples 1 to 3, the effect of heat treatment (Patent Documents 6 and 7) in an electrolyte solution on the Joule heating method in a solid-liquid mixed food is verified.

比較例1
〔固体食品の種類によるバラツキの検証〕
実験方法
ジュール加熱装置
加圧チャンバー型ジュール加熱装置((株)フロンティアエンジニアリング製)を用いた。本装置は高周波電源装置(周波数20KHZ固定)と水槽電極式ジュール加熱装置(容器内寸法100mm×100mm×100mm)及び加圧チャンバーにより構成されている。
Comparative Example 1
[Verification of variation by type of solid food]
Experimental method Joule heating device A pressurized chamber type Joule heating device (manufactured by Frontier Engineering Co., Ltd.) was used. This apparatus is composed of a high frequency power supply (frequency fixed at 20 KHZ), a water tank electrode type joule heating device (inside container dimensions: 100 mm × 100 mm × 100 mm) and a pressurized chamber.

サンプルの調整
既知の前処理法として、電解質液中でボイル処理を施す特許文献7(特公平7‐34720)を参考にした。固体食品材料を所定の大きさ(20mmまたは30mm)にカットし、電解質液として1.2%NaCl液中にて10分間ボイル処理した。処理した固体食品材料を冷却後(25℃)、液体食品材料としての0.6%NaCl溶液に一定の割合(固体:液体=1:11、1:6または1:2)で混合し、ジュール加熱のサンプルとした。
Preparation of Sample As a known pretreatment method, Patent Document 7 (Japanese Patent Publication No. 7-34720) in which boil treatment is performed in an electrolyte solution was referred to. The solid food material was cut into a predetermined size (20 mm or 30 mm) and boiled for 10 minutes in 1.2% NaCl solution as an electrolyte solution. After cooling the treated solid food material (25 ° C.), it is mixed with 0.6% NaCl solution as a liquid food material at a certain ratio (solid: liquid = 1: 11, 1: 6 or 1: 2) A heated sample was used.

運転条件
サンプルを装置の取り扱い説明書に従い水槽電極の定位置(容器上端より2mm下の位置)まで充填した後、チャンバー全体を0.25Mpaの圧力で加圧した状態で100V定電圧で通電した。その後の通電コントロールは液部の温度が121.1℃を維持するよう自動制御により行った。
Operating conditions After the sample was filled to the fixed position of the water tank electrode (position 2 mm below the upper end of the container) according to the instruction manual of the apparatus, the whole chamber was energized at a constant voltage of 100 V while being pressurized with a pressure of 0.25 Mpa. Subsequent energization control was performed by automatic control so that the temperature of the liquid portion was maintained at 121.1 ° C.

温度測定
固体部及び液体部の温度経過をみるため、固体部及び液体部それぞれに上記の加圧チャンバー型ジュール加熱装置付属の温度センサーを設置し連続的に温度を測定した。
Temperature measurement In order to observe the temperature course of the solid part and the liquid part, the temperature sensor attached to the pressurized chamber type Joule heating device was installed in each of the solid part and the liquid part, and the temperature was continuously measured.

電気抵抗率(ρ)の測定
針状(直径1.5mm)の白金電極を陽極と陰極の距離が10mmとなるように食品材料に差し込み、80mAの定電流を流し、電極間の電圧を測定することにより抵抗値を求めた。さらに電気抵抗率(ρ)は次式により求めた。
電気抵抗率(ρ)=抵抗値×電極面積/電極間距離
Measurement of electrical resistivity (ρ) A needle-shaped (1.5 mm diameter) platinum electrode is inserted into the food material so that the distance between the anode and the cathode is 10 mm, a constant current of 80 mA is passed, and the voltage between the electrodes is measured. Thus, the resistance value was obtained. Furthermore, the electrical resistivity (ρ) was obtained by the following equation.
Electric resistivity (ρ) = resistance value × electrode area / distance between electrodes

実験結果
にんじん、大根、じゃがいも及び牛肉を1辺20mm及び30mmのダイス状にカットした。1.2%NaCl液中にてボイル処理を行った後、ジュール加熱を行った。固液比は1:11とした。
その結果、固体食品の種類の違いにより、ジュール加熱による温度上昇に有意な差が認められた(図1参照)。
Experimental Results Carrots, radishes, potatoes and beef were cut into dies with sides of 20 mm and 30 mm. A boil treatment was performed in a 1.2% NaCl solution, followed by Joule heating. The solid-liquid ratio was 1:11.
As a result, a significant difference was observed in the temperature rise due to Joule heating due to the difference in the type of solid food (see FIG. 1).

又、固体食品の種類によって、カットサイズによる影響の受け方が異なり、にんじん、大根、牛肉についてはサイズの小さいほうが温度上昇が早かったが、じゃがいもについては大きさの影響は比較的少なかった(図2参照)。   In addition, depending on the type of solid food, the effect of the cut size is different. For carrots, radishes, and beef, the smaller the size, the faster the temperature rise, but for potatoes the effect of size was relatively small (Fig. 2). reference).

さらに、固体食品の種類毎のボイル処理前後の電気抵抗率の変化とジュール加熱上昇温度の関係を表1及び図3、図4に示す。   Furthermore, the relationship between the change in electrical resistivity before and after the boil treatment for each type of solid food and the Joule heating rise temperature is shown in Table 1, FIG. 3, and FIG.

図3より、野菜類については電解質液によるボイル処理により電気抵抗率が低下したが、牛肉の場合には逆に電気抵抗率が増加した。肉類の場合にはボイル処理により肉の組織が収縮し、そのため電気抵抗率が増加したものと思われた。又、野菜類・肉類ともボイル処理前後の電気抵抗率のバラツキは同程度であり、特にバラツキの改善(バラツキが小さくなる)は認められなかった。   From FIG. 3, the electrical resistivity of vegetables was decreased by the boil treatment with the electrolyte solution, but the electrical resistivity was increased in the case of beef. In the case of meat, it was thought that the boil treatment caused the meat tissue to shrink, which increased the electrical resistivity. Moreover, the variation in electrical resistivity before and after the boil treatment was the same for both vegetables and meat, and in particular, no improvement in variation (small variation) was observed.

さらに、図4に示すとおり、ボイル処理後電気抵抗率とジュール加熱による上昇温度の間には野菜類・肉類とも非常に有意な負の相関が認められた。しかし野菜類と牛肉とでは回帰係数が明らかに異なっており、野菜類の方が電気抵抗率の影響を受けやすいことが示唆された。
以上の通り、固体食品の種類によりジュール加熱による昇温特性には大きな違いが認められた。
Furthermore, as shown in FIG. 4, a very significant negative correlation was recognized between vegetables and meats between the electrical resistivity after boil treatment and the elevated temperature due to Joule heating. However, the regression coefficients were clearly different between vegetables and beef, suggesting that vegetables are more susceptible to electrical resistivity.
As described above, a large difference was observed in the temperature rise characteristics by Joule heating depending on the type of solid food.

比較例2
〔個体及び部位の違いによるバラツキの検証〕
さらに詳細にバラツキの検証を行うため、材料として最もバラツキが生じやすいとされているニンジンを用い検討を行った。一本のニンジンの上部分又は中間部分を1辺30mmのダイス状にカットし、部位を区別したニンジンを比較例1の通り電解質液中でボイル処理を行った後、ジュール加熱を行った。固液比は1:6とした。この実験を7回繰り返し、個体の違いによるバラツキ及び部位の違いによるバラツキの程度を検証した。
Comparative Example 2
[Verification of variation due to differences in individuals and parts]
In order to verify the variation in more detail, we examined carrots, which are considered to be the most susceptible to variations. An upper part or an intermediate part of one carrot was cut into a die having a side of 30 mm, and the carrot with the part distinguished was subjected to a boil treatment in an electrolyte solution as in Comparative Example 1, followed by Joule heating. The solid-liquid ratio was 1: 6. This experiment was repeated seven times, and the degree of variation due to the difference between individuals and the difference between the sites was verified.

その結果、ボイル処理後の電気抵抗率及びジュール加熱による温度上昇には、個体間・部位間とも有意な差がみとめられた(表2及び図5参照)。尚、ボイル処理前の生ニンジンの電気抵抗率は上部、中間部間で有意な差はなく、3.3〜3.8程度であった。
又、ボイル処理後の原料の部位の電気抵抗率とジュール加熱処理による温度上昇との関係を検証した結果、両者の間には大きな負の相関が認められた(図6参照)。
以上の通り、ボイル処理前には電気抵抗率が個体間及び部位間でほぼ同等であったものが、ボイル処理後には電気抵抗率が大きくばらついており、それが不均一加熱の原因となることが確認された。
As a result, a significant difference was observed between individuals and sites in the electrical resistivity after boiling treatment and the temperature increase due to Joule heating (see Table 2 and FIG. 5). In addition, the electrical resistivity of the raw carrot before the boil treatment was about 3.3 to 3.8 with no significant difference between the upper part and the middle part.
Moreover, as a result of verifying the relationship between the electrical resistivity of the raw material portion after the boil treatment and the temperature rise due to the Joule heating treatment, a large negative correlation was found between them (see FIG. 6).
As described above, the electrical resistivity before and after the boil treatment was almost the same between individuals and parts, but after the boil treatment, the electrical resistivity greatly varies, which causes uneven heating. Was confirmed.

比較例3
〔原料サイズによるバラツキの検証〕
ニンジンの中間部を用い、1辺10mm、15mm、20mm及び30mmのダイス状にカットした。生ニンジンの電気抵抗率は3.3であった。比較例1の通り電解質液中でボイル処理を行った後、ジュール加熱を行った。固液比は1:2とした。
Comparative Example 3
[Verification of variation by raw material size]
Using the carrot middle part, it was cut into dies with sides of 10 mm, 15 mm, 20 mm and 30 mm. The electrical resistivity of the raw carrot was 3.3. After performing the boil treatment in the electrolyte solution as in Comparative Example 1, Joule heating was performed. The solid-liquid ratio was 1: 2.

その結果、ニンジンのサイズの違いにより、電解質液中でのボイル処理後の電気抵抗率及びジュール加熱による温度上昇に有意な差がみとめられた(表3及び図7、図8、図9参照)。
又、ボイル処理後の原料の電気抵抗率とジュール加熱処理による温度上昇との関係を検証した結果、両者の間には大きな負の相関が認められた(図10参照)。
以上の通り、ボイル処理前には電気抵抗率が3.3でほぼ同等であったものが、ボイル処理後には電気抵抗率が異なっており、ニンジンのカットサイズと電気抵抗率の間には大きな正の相関が認められ、ニンジンのカットサイズがジュール加熱における上昇温度のバラツキに影響を及ぼしていることが確認された。
As a result, due to the difference in carrot size, a significant difference was found in the electrical resistivity after boiling treatment in the electrolyte solution and the temperature rise due to Joule heating (see Table 3, FIG. 7, FIG. 8, FIG. 9). .
Moreover, as a result of verifying the relationship between the electrical resistivity of the raw material after the boil treatment and the temperature rise due to the Joule heating treatment, a large negative correlation was found between them (see FIG. 10).
As described above, the electrical resistivity was 3.3, which was almost equal before the boil treatment, but the electrical resistivity was different after the boil treatment, and there was a large difference between the carrot cut size and the electrical resistivity. A positive correlation was observed, and it was confirmed that the cut size of carrot had an effect on the variation in elevated temperature during Joule heating.

比較例1から3の結果から得られた、従来の加熱処理法による固液混合食品のジュール加熱の問題点
<1>固体食品はそれぞれ固有の電気抵抗率を持つ。
<2>固体食品によっては構造的不均一性があるため、部位により電気抵抗率が異なる。
<3>固体食品によっては加熱に伴って組織構造が変化するため、電気抵抗率も変化する。
<4>固体食品によっては電解質液処理においてサイズの影響を大きく受けるため、固体食品のサイズが電気抵抗率のバラツキの原因となる。
<5>固体食品の電気抵抗率はジュール加熱の昇温特性と大きな負の相関を持つ。そのため、固液混合系のジュール加熱においては、個々の食品材料の昇温特性が異なり、実用上問題となる程度にまで加熱履歴にバラツキが生じる。
従って、従来の加熱処理法では、不均一加熱の原因となる、固体食品固有の電気伝導率による、固体食品個体差による、固体食品部位ごとの構造不均一性による、または加熱に伴う組織構造の変化等による固体食品の電気抵抗率のバラツキが実用上十分に解消されているとは言えない。
Problems of Joule Heating of Solid-Liquid Mixed Food by Conventional Heat Treatment Method Obtained from Results of Comparative Examples 1 to 3 <1> Solid foods each have a specific electrical resistivity.
<2> Depending on the solid food, there is structural non-uniformity, so the electrical resistivity varies depending on the part.
<3> Depending on the solid food, the tissue structure changes with heating, so the electrical resistivity also changes.
<4> Depending on the solid food, the size of the solid food is greatly affected by the size of the electrolyte solution treatment, which causes variations in electrical resistivity.
<5> The electrical resistivity of the solid food has a large negative correlation with the temperature rise characteristic of Joule heating. Therefore, in the Joule heating of the solid-liquid mixed system, the temperature rise characteristics of the individual food materials are different, and the heating history varies to the extent that it becomes a practical problem.
Therefore, in the conventional heat treatment method, due to non-uniform heating, due to the inherent electrical conductivity of the solid food, due to individual differences in the solid food, due to structural heterogeneity at each solid food part, or due to heating of the tissue structure It cannot be said that the variation in the electrical resistivity of solid food due to changes or the like has been sufficiently eliminated in practice.

次に、本発明を以下の実施例に基づいて具体的に説明するが、本発明はこれら実施例に限定されるものではない。   Next, the present invention will be specifically described based on the following examples, but the present invention is not limited to these examples.

[冷凍および煮沸処理が電気抵抗率に及ぼす効果]
ニンジンの部位は特に選別せず、規定の大きさ(20mm、30mm)のダイス状にカットした。カットしたニンジンを冷凍処理グループと未処理グループにランダムに分けた。冷凍処理は−40℃の冷凍庫にて12時間冷却することにより行った。その後、凍結したままのニンジンを比較例1と同様に1.2%NaCl液にて10分間煮沸し、それぞれの電気抵抗率を測定した。結果を表4に示す。バラツキを変動係数として表す。
[Effect of freezing and boiling on electrical resistivity]
The carrot site was not particularly selected, and was cut into dies having a prescribed size (20 mm, 30 mm). Cut carrots were randomly divided into frozen and untreated groups. The freezing process was performed by cooling in a freezer at −40 ° C. for 12 hours. Thereafter, the frozen carrots were boiled in 1.2% NaCl solution for 10 minutes in the same manner as in Comparative Example 1, and the electrical resistivity of each was measured. The results are shown in Table 4. The variation is expressed as a coefficient of variation.

生ニンジンの電気抵抗率と比較して、冷凍処理を施さずに電解質液中でのボイル処理を行ったニンジンのグループについては電気抵抗率は低下するもののサイズの影響を大きく受けることが再度確認された。又、バラツキの大きさを示す指標である変動係数も生ニンジンと比較して改善されていないことも確認された。一方、冷凍処理を施した後に電解質液中でのボイル処理を行ったグループは電気抵抗率がより低く低下し、サイズ及び部位の影響も小さいことが確認された。又、変動係数も生ニンジンと比較して大きく改善されていた。   Compared to the electrical resistivity of raw carrots, it was again confirmed that the carrot group that had been boiled in the electrolyte solution without being subjected to refrigeration was greatly affected by size, although the electrical resistivity decreased. It was. It was also confirmed that the coefficient of variation, which is an index indicating the variation, was not improved as compared with raw carrots. On the other hand, it was confirmed that the group that had been subjected to the boil treatment in the electrolyte solution after the refrigeration treatment had a lower electrical resistivity, and the influence of the size and the site was small. Also, the coefficient of variation was greatly improved compared to raw carrots.

[プロセスの変更が電気抵抗率に及ぼす効果]
次に、ニンジン処理のプロセス中の冷凍処理前後のプロセス条件を変更し、その影響を確認した。電気抵抗率の測定は比較例1と同様である。結果を表5に示す。
[Effect of process change on electrical resistivity]
Next, the process conditions before and after the freezing process in the carrot process were changed and the effect was confirmed. The measurement of electrical resistivity is the same as in Comparative Example 1. The results are shown in Table 5.

処理方法
A;冷凍→直ちに電解質液中でのボイル処理→水冷(1分間)
B;冷凍→室温にて解凍→電解質液中でのボイル処理→水冷(1分間)
C;冷凍→流水中にて解凍→電解質液中でのボイル処理→水冷(1分間)
D;ブランチング処理(90℃、3分間)→冷凍→直ちに電解質液中でのボイル処理→水冷(1分間)
Treatment method A; Freezing → Immediately boil treatment in electrolyte solution → Water cooling (1 minute)
B: Freezing → Thaw at room temperature → Boil treatment in electrolyte solution → Water cooling (1 minute)
C: Freezing → Thawing in running water → Boil treatment in electrolyte solution → Water cooling (1 minute)
D: Branching treatment (90 ° C., 3 minutes) → Freezing → Boil treatment in electrolyte solution → Water cooling (1 minute)

プロセスA、B及びDにおいては大きな冷凍処理の効果が認められた。プロセスCにおいては冷凍処理の効果が認められたものの、効果の程度はプロセスA、B及びD前3者と比較して小さかった。   In processes A, B and D, a large effect of freezing treatment was recognized. In the process C, the effect of the freezing treatment was recognized, but the degree of the effect was small compared to the previous three processes A, B and D.

[冷凍および浸漬処理が電気抵抗率に及ぼす効果]
電解質液中でのボイル処理のかわりに、電解質液処理条件を室温での浸漬処理とし、冷凍処理の効果を検証した。
[Effect of freezing and immersion treatment on electrical resistivity]
Instead of the boil treatment in the electrolyte solution, the electrolyte solution treatment condition was a dipping treatment at room temperature, and the effect of the freezing treatment was verified.

ニンジンの部位は特に選別せず、規定の大きさのダイス状にカットした。カットしたニンジンを冷凍処理グループと未処理グループにランダムに分けた。冷凍処理は−40℃の冷凍庫にて12時間冷却することにより行った。それぞれのグループを1.2%NaCl液に浸漬し、一定時間毎に電気抵抗率を測定し電解質液の浸透性を評価した。なお、表6中のスタート(0時間)とは、1.2%NaCl液に浸漬していない、生のニンジンまたは解凍後のニンジンを意味する。浸漬の温度は25℃前後にて行った。さらに冷凍処理品については2時間浸漬後に、浸漬後のニンジンと液体食品材料としての0.6%NaCl溶液との混合比が1:11または1:6の状態でジュール加熱処理を行い、冷凍処理効果の確認を行った。
電気抵抗率の測定結果を表6及び図11に示す。
The carrot site was not particularly selected and was cut into dies of a prescribed size. Cut carrots were randomly divided into frozen and untreated groups. The freezing process was performed by cooling in a freezer at −40 ° C. for 12 hours. Each group was immersed in a 1.2% NaCl solution, and the electrical resistivity was measured at regular intervals to evaluate the permeability of the electrolyte solution. The start (0 hour) in Table 6 means a raw carrot or a carrot after thawing, which is not immersed in a 1.2% NaCl solution. The immersion temperature was about 25 ° C. Furthermore, for the frozen processed product, after being immersed for 2 hours, Joule heat treatment was performed in a state where the mixing ratio of the carrot after immersion and the 0.6% NaCl solution as the liquid food material was 1:11 or 1: 6, and the freezing treatment was performed. The effect was confirmed.
The measurement results of electrical resistivity are shown in Table 6 and FIG.

以上の結果より、冷凍処理したニンジンは浸漬処理により速やかに電気抵抗率が低下し、且つバラツキも小さくなり、2時間浸漬時点でほぼプラトーに達することが確認された。一方、冷凍処理を施さないニンジンについては8時間浸漬の時点でもほとんど電気抵抗率が低下しなかった。   From the above results, it was confirmed that the carrots subjected to the freezing treatment rapidly decreased in electrical resistivity by the soaking treatment, and the variation became small, and reached a plateau at the time of soaking for 2 hours. On the other hand, the electrical resistivity of the carrots not subjected to the freezing treatment hardly decreased even when immersed for 8 hours.

さらに、冷凍処理ニンジンを2時間浸漬処理した後、ジュール加熱処理を行った。20mmダイス及び30mmダイスについてそれぞれ2検体づつ温度の測定を行ったが、結果はバラツキも小さく、極めて均一な温度上昇及びF値の上昇が確認できた。結果を図12に示す。特に、図12の温度においては、20mmダイスの2検体及び30mmダイスの2検体を示しているがそれぞれ1本の線に重なっている。   Further, the frozen carrot was soaked for 2 hours, and then subjected to Joule heat treatment. The temperature of two specimens was measured for each of the 20 mm die and the 30 mm die, but the results showed little variation, and an extremely uniform temperature increase and F value increase could be confirmed. The results are shown in FIG. In particular, at the temperature of FIG. 12, two specimens of 20 mm dice and two specimens of 30 mm dice are shown, but each overlaps one line.

以上の通り、冷凍処理と浸漬処理の組合せにおいても冷凍処理とボイル処理と組合せの場合と同様に、電気抵抗率の低下および均一な電気抵抗値を得ることができた。この結果より、電気抵抗率について、材料の冷凍処理の効果は歴然としており、実施例1のボイル処理時における冷凍処理と無処理の場合の差よりも本実施例の室温浸漬処理時における冷凍処理の有無においてさらに際立った差が認められた。又その結果、その後のジュール加熱においても極めて均一な加熱が出来ることが確認された。   As described above, in the combination of the freezing process and the dipping process, as in the case of the combination of the freezing process and the boil process, a decrease in electrical resistivity and a uniform electrical resistance value could be obtained. From this result, regarding the electrical resistivity, the effect of the freezing treatment of the material is obvious, and the freezing treatment at the room temperature immersion treatment of this example is more than the difference between the freezing treatment at the time of boiling treatment of Example 1 and the case of no treatment. There was a further marked difference in the presence or absence of. As a result, it was confirmed that extremely uniform heating could be performed in the subsequent Joule heating.

[前処理プロセス中における冷凍処理の順番が電気抵抗率及びジュール加熱に及ぼす効果]
次に、実施例1〜3において、冷凍処理後にボイル処理または浸漬処理を行い、電気抵抗率及びジュール加熱への効果を確認したので、本実施例においては通電前の前処理プロセスの順番を、ボイル処理または浸漬処理を行った後に冷凍処理を行う順番に変えて、電気抵抗率及びジュール加熱への効果を確認した。
[Effect of order of refrigeration during pretreatment process on electrical resistivity and Joule heating]
Next, in Examples 1 to 3, since the boil treatment or the immersion treatment was performed after the freezing treatment, and the effect on the electrical resistivity and Joule heating was confirmed, in this embodiment, the order of the pretreatment process before energization, It changed into the order which performs a freezing process after performing a boil process or an immersion process, and confirmed the effect on an electrical resistivity and a Joule heating.

ニンジンの部位は特に選別せず、20mmの大きさのダイス状にカットした。カットしたニンジンを電解質液処理として1.2%NaCl液にて10分間ボイルし、その後冷凍処理を施した。冷凍処理は−40℃の冷凍庫にて12時間冷却することにより行った。処理したニンジンを解凍後、液体食品材料としての0.6%NaCl溶液に1:11の割合で混合し、ジュール加熱のサンプルとした。又、対照として下記の実験を行なった。
対照1(冷凍→ボイル);冷凍処理後1.2%NaCl液にて10分間ボイル処理したサンプルのジュール加熱
対照2(ボイルのみ);1.2%NaCl液にて10分間ボイル処理したサンプルのジュール加熱
対照3;無処理(生ニンジン)のジュール加熱
The carrot site was not particularly selected and was cut into a 20 mm size die. The cut carrot was boiled with 1.2% NaCl solution for 10 minutes as an electrolytic solution treatment, and then subjected to a freezing treatment. The freezing process was performed by cooling in a freezer at −40 ° C. for 12 hours. The treated carrots were thawed and then mixed with a 0.6% NaCl solution as a liquid food material at a ratio of 1:11 to prepare a Joule-heated sample. The following experiment was performed as a control.
Control 1 (frozen → boiled); Joule heated control 2 (boil only) of sample boiled for 10 minutes with 1.2% NaCl solution after freezing; sample boiled for 10 minutes with 1.2% NaCl solution Joule heating control 3: untreated (raw carrot) joule heating

各実験につき4サンプルづつの測定結果を表7に示す。各処理に伴うバラツキ評価のために、ジュール加熱前の指標として電気抵抗率、温度上昇時の指標として4分間ジュール加熱時点の上昇温度、累積の加熱履歴の指標として6分間加熱時のF値を採用した。F値とは一定温度において一定濃度の微生物を死滅させるのに要する加熱時間(分)であって、通常121.1℃における加熱致死時間のことである。   Table 7 shows the measurement results of four samples for each experiment. In order to evaluate the variation associated with each treatment, the electrical resistivity is used as an index before Joule heating, the temperature rises when Joule heating is performed for 4 minutes as an index during temperature rise, and the F value during 6 minutes heating is used as an index for cumulative heating history. Adopted. The F value is the heating time (minutes) required to kill a certain concentration of microorganisms at a constant temperature, and is usually the heating lethal time at 121.1 ° C.

以上の結果を要約すると次の通りである。
ジュール加熱前に測定した電気抵抗率のバラツキを示す変動係数では、試験品(ボイル処理→冷凍処理、0.08)は対照3(生、0.13)よりも小さいものの、対照1(冷凍処理→ボイル処理、0.04)よりも大きく、対照2(ボイル処理のみ、0.07)と同程度であるという傾向が認められた。
The above results are summarized as follows.
In the coefficient of variation indicating the variation in electrical resistivity measured before Joule heating, the test product (boil treatment → freezing treatment, 0.08) was smaller than control 3 (raw, 0.13), but control 1 (freezing treatment). → Boil treatment, larger than 0.04) and similar to Control 2 (only boil treatment, 0.07).

しかし、ジュール加熱時の温度上昇のバラツキ(変動係数)については、試験品(ボイル処理→冷凍処理、0.04)は対照1(冷凍処理→ボイル処理、0.04)と同程度であり、対照2(ボイル処理のみ、0.07)及び3(生、0.06)よりも僅かに小さいかった。   However, as for the variation (coefficient of variation) in temperature rise during Joule heating, the test product (boil treatment → freezing treatment, 0.04) is comparable to the control 1 (freezing treatment → boil treatment, 0.04), It was slightly less than controls 2 (boil treatment only, 0.07) and 3 (raw, 0.06).

また、ジュール加熱の累積的な指標であるF値のバラツキ(変動係数)については、試験品(ボイル処理→冷凍処理、0.37)は対照1(冷凍処理→ボイル処理、0.24)よりもやや大きいものの、対照2(ボイル処理のみ、0.85)及び3(生、0.73)よりも明らかに小さかった。   As for the F value variation (coefficient of variation), which is a cumulative index of Joule heating, the test product (boil treatment → freezing treatment, 0.37) is from Control 1 (freezing treatment → boil treatment, 0.24). Although slightly larger, it was clearly smaller than controls 2 (boil treatment only, 0.85) and 3 (raw, 0.73).

さらに、試験品(ボイル処理→冷凍処理)と対照2(ボイル処理のみ)との経時的な上昇温度とF値の比較を図13に示す。図13に示したごとく、経時的に観察しても試験品(図13(A);ボイル処理→冷凍処理)は対照2(図13(B);ボイル処理のみ)よりもバラツキが小さいことが確認できた。特に、図13(C)のF値において、試験品(電解質液処理後冷凍処理)の4本の線の方が対照2(電解質液処理のみ)の4本の線よりバラツキの小さいことがわかる。
これより、冷凍処理の順番が、ボイル処理の前であっても後であっても有効であることが確認できた。
Furthermore, FIG. 13 shows a comparison of the temperature rise and F value over time between the test product (boil treatment → freezing treatment) and control 2 (only boil treatment). As shown in FIG. 13, even when observed over time, the test product (FIG. 13 (A); boil treatment → freeze treatment) has less variation than Control 2 (FIG. 13 (B); boil treatment only). It could be confirmed. In particular, in the F value of FIG. 13C, it can be seen that the four lines of the test product (freezing process after the electrolyte solution treatment) are smaller in variation than the four lines of the control 2 (only the electrolyte solution treatment). .
From this, it was confirmed that the order of the freezing treatment was effective before or after the boil treatment.

なお、電解質液処理が、ボイル処理でなく、実施例3(冷凍処理→浸漬処理)に示す浸漬処理の場合であっても、本実験のボイル処理の場合と同様に浸漬処理が冷凍処理の前であっても有効であることは明らかである。但し、浸漬処理を冷凍処理の前とした場合(浸漬処理→冷凍処理)に、実施例3(冷凍処理→浸漬処理)に示す浸漬時間に変更が必要となる場合があることは当業者にとっては明らかなことである。   In addition, even when the electrolyte solution treatment is not the boil treatment but the immersion treatment shown in Example 3 (freezing treatment → dipping treatment), the dipping treatment is performed before the freezing treatment as in the case of the boil treatment in this experiment. Even so, it is clear that it is effective. However, when the immersion treatment is performed before the freezing treatment (immersion treatment → freezing treatment), it may be necessary for those skilled in the art to change the immersion time shown in Example 3 (freezing treatment → immersion treatment). Obviously.

[各種固体食品に対する冷凍処理が電気抵抗率およびジュール加熱に及ぼす効果]
以上のとおり、冷凍処理と電解質溶液によるボイル処理又は浸漬処理を施すことにより固体食品の電気抵抗率の均一化を図ることが可能であるという新知見を得た。そこで各種の固体食品に対する効果の検証を行った。
[Effect of freezing treatment for various solid foods on electrical resistivity and Joule heating]
As described above, a new finding has been obtained that the electrical resistivity of a solid food can be made uniform by performing a freezing treatment and a boil treatment or an immersion treatment with an electrolyte solution. Therefore, the effect on various solid foods was verified.

特に部位を選別せずに、にんじん、大根、じゃがいも及び牛肉を1辺20mm及び30mmのダイス状にカットした。プロセスAにて冷凍処理を行った後ジュール加熱を行い、未処理(冷凍処理なし)のデータと比較した。固液比は1:11 とした。その結果、冷凍処理を施すことにより、電気抵抗率が低くなり、且つ固体食品の種類及びサイズによる電気抵抗率のバラツキは明らかに小さくなることが確認された。(表8参照)。   In particular, carrots, radishes, potatoes and beef were cut into dies with sides of 20 mm and 30 mm without selecting the parts. After the freezing process in process A, Joule heating was performed and compared with the unprocessed (no freezing process) data. The solid-liquid ratio was 1:11. As a result, it was confirmed that by performing the freezing treatment, the electrical resistivity was lowered and the variation in electrical resistivity depending on the type and size of the solid food was obviously reduced. (See Table 8).

すなわち、冷凍処理後、電解質溶液によるボイル処理を施すことにより、その後のジュール加熱工程において、より早い均一な加熱が期待された。実際、ジュール加熱を行った結果、固体食品の種類による温度上昇のバラツキは明らかに小さくなることが確認された(図14参照)。   That is, by performing the boil treatment with the electrolyte solution after the freezing treatment, faster uniform heating was expected in the subsequent Joule heating step. In fact, as a result of Joule heating, it was confirmed that the variation in temperature rise due to the type of solid food was clearly reduced (see FIG. 14).

又、冷凍処理なし(未処理)の実験では、固体食品の種類によって程度の差はあるものの、カットサイズの影響を受けており、サイズの小さいほうが温度上昇が早い傾向が認められた(図15中の未処理)。このサイズによるバラツキに対しても冷凍処理は効果があることが確認された(図15中の冷凍)。温度上昇パターン及びF値のデータを図15に示す。   In the experiment without freezing treatment (untreated), although there was a difference in the degree depending on the type of solid food, it was affected by the cut size, and the smaller the size, the faster the temperature rise was observed (FIG. 15). Inside untreated). It was confirmed that the refrigeration treatment was effective even for variations in size (freezing in FIG. 15). The temperature rise pattern and F value data are shown in FIG.

本発明の方法により、固体食品および液体食品からなる固液混合食品へのジュール加熱法の利用が可能となる。
本発明の方法により、レトルト加熱に替わる、素材本来の風味や色調を維持し、多様性に富んだ味の高品質な食品(加熱殺菌又は加熱滅菌食品)の製造が可能となる。
The method of the present invention makes it possible to use the Joule heating method for a solid-liquid mixed food comprising a solid food and a liquid food.
By the method of the present invention, it is possible to produce a high-quality food (heat-sterilized or heat-sterilized food) having a rich variety of flavors while maintaining the original flavor and color tone instead of retort heating.

固体食品の種類による加熱特性の比較。30mmダイスにカットした固体食品(にんじん、だいこん、ジャガイモ、牛肉)を電解質液中でボイル加熱した後にジュール加熱したときの通電時間と温度上昇との関係を示す。Comparison of heating characteristics by type of solid food. The relationship between the energization time and the temperature rise when a solid food (carrot, daiko, potato, beef) cut into 30 mm dies is boil heated in an electrolyte solution and then Joule heated is shown. 固体食品の種類別によるカットサイズとジュール加熱温度上昇の関係。20mmまたは30mmダイスにカットした固体食品(にんじん、だいこん、ジャガイモ、牛肉)を電解質液中でボイル加熱した後にジュール加熱したときの各固体食品ごとの通電時間と温度上昇との関係を示す。Relationship between cut size and joule heating temperature rise by type of solid food. The relationship between the energization time and the temperature rise for each solid food when a solid food (carrot, daiko, potato, beef) cut into 20 mm or 30 mm dies is boil heated in an electrolyte solution and then Joule heated is shown. 固体食品の種類による電解質液中でのボイル加熱処理前後の電気抵抗率比較。表1に示した20mmまたは30mmダイスにカットした固体食品(にんじん、だいこん、ジャガイモ、牛肉)の加熱処理前の電気抵抗率とそれら固体食品を電解質液中でボイル加熱処理した後の電気抵抗率との関係を示す。Comparison of electrical resistivity before and after boiling heat treatment in electrolyte solution according to the type of solid food. The electrical resistivity before heat treatment of the solid food (carrot, daiko, potato, beef) cut into 20 mm or 30 mm dies shown in Table 1 and the electrical resistivity after boiling the solid food in an electrolyte solution The relationship is shown. 電解質液中でのボイル加熱処理後の電気抵抗率と温度上昇の関係。表1に示した20mmまたは30mmダイスにカットした固体食品(にんじん、だいこん、ジャガイモ、牛肉)の電解質液中でのボイル加熱処理後における電気抵抗率とジュール加熱による温度上昇(℃/4分間通電)との関係を示す。Relationship between electrical resistivity and temperature rise after boiling heat treatment in electrolyte solution. Electric resistivity after boiling heat treatment in electrolyte solution of solid food (carrot, daiko, potato, beef) cut into 20mm or 30mm dice shown in Table 1 and temperature increase due to Joule heating (° C / 4 min energization) Shows the relationship. 個体の違い及び部位の違いによるバラツキ。30mmダイスにカットした、にんじんの上部分または中間部分を電解質液中においてボイル加熱処理した後のジュール加熱における通電時間と温度上昇との関係を個体ごとに示す。Variation due to differences in individuals and parts. The relationship between the energization time and the temperature rise in Joule heating after the upper part or middle part of the carrot cut into 30 mm dies is subjected to the boil heating treatment in the electrolyte solution is shown for each individual. 原材料の部位の電気抵抗率と温度上昇の関係。表2に示す実験回数目ごとの電解質液中でのボイル加熱処理後における電気抵抗率とジュール加熱による温度上昇(℃/4分間通電)との関係を示す。The relationship between the electrical resistivity of the raw material parts and the temperature rise. The relationship between the electrical resistivity after boiling heat processing in the electrolyte solution for every number of experiment shown in Table 2, and the temperature rise (degreeC / 4-minute energization) by Joule heating is shown. ニンジンのサイズの影響。10mm、15mm、20mm、30mmダイスにカットしたにんじんの中間部分を電解質液中においてボイル加熱処理した後のジュール加熱における通電時間と温度上昇との関係を示す。The effect of carrot size. The relationship between the energization time and temperature rise in Joule heating after carrying out the boil heating process in the electrolyte solution for the intermediate part of the carrot cut into 10 mm, 15 mm, 20 mm, and 30 mm dice is shown. ニンジンのサイズと電気抵抗率の関係。表3に示した10mm、15mm、20mm、30mmダイスにカットしたにんじんの中間部分を電解質液中においてボイル加熱処理した後の電気抵抗率とにんじんのカットサイズとの関係を示す。Relationship between carrot size and electrical resistivity. The relationship between the electrical resistivity after carrying out the boil heat processing of the intermediate part of the carrot cut to 10 mm, 15 mm, 20 mm, and 30 mm dice | dies shown in Table 3 in an electrolyte solution, and the cut size of a carrot is shown. ニンジンのサイズと温度上昇の関係。表3に示した10mm、15mm、20mm、30mmダイスにカットしたにんじんの中間部分を電解質液中においてボイル加熱処理した後のジュール加熱における温度上昇(℃/4分間通電)とにんじんのカットサイズとの関係を示す。The relationship between carrot size and temperature rise. The temperature rise in Joule heating after energizing the middle part of the carrots cut into 10 mm, 15 mm, 20 mm, and 30 mm dies shown in Table 3 in the electrolyte solution (energization for 4 minutes) and the cut size of the carrot Show the relationship. 電気抵抗率と温度上昇の関係。表3に示した10mm、15mm、20mm、30mmダイスにカットしたにんじんの中間部分を電解質液中においてボイル加熱処理した後の電気抵抗率とジュール加熱による温度上昇(℃/4分間通電)との関係を示す。Relationship between electrical resistivity and temperature rise. Relationship between electrical resistivity after boiling heat treatment of carrots cut into 10mm, 15mm, 20mm and 30mm dies shown in Table 3 in an electrolyte solution and temperature rise due to Joule heating (° C / 4 min energization) Indicates. 電解質液浸漬時の電気抵抗率の経時変化。表6の電気抵抗率の平均値と浸漬時間との関係を示す。Change over time of electrical resistivity when immersed in electrolyte solution. The relationship between the average value of electrical resistivity of Table 6 and the immersion time is shown. 冷凍処理効果の確認。冷凍処理ニンジンを2時間浸漬処理したサンプルについてジュール加熱処理を行った。20mmダイス及び30mmダイスについてそれぞれ2検体づつ温度の測定を行った。20mmダイスの場合は固液比 1:11、30mmダイスの場合は1:6である。測定した温度(A)及びF値(B)の経時的変化を示す。Confirmation of freezing treatment effect. A sample obtained by immersing the frozen carrot for 2 hours was subjected to Joule heat treatment. Two samples were measured for each of the 20 mm die and the 30 mm die. In the case of a 20 mm die, the solid-liquid ratio is 1:11, and in the case of a 30 mm die, it is 1: 6. The time-dependent change of the measured temperature (A) and F value (B) is shown. 電解質液中でのボイル処理後に冷凍処理を施したニンジン(試験品)と電解質液中でのボイル処理のみのニンジン(対照2)のジュール加熱における温度及びF値の経時的な比較。表7における試験品((A);ボイル処理→冷凍処理)と対照2((B);ボイル処理のみ)の温度及びF値の経時的変化を示す。Comparison of temperature and F value over time of Joule heating of carrot (test product) subjected to freezing treatment after boiling treatment in electrolyte solution and carrot treated only with boiling treatment in electrolyte solution (control 2). The time-dependent changes in the temperature and F value of the test product ((A); boil treatment → freezing treatment) and control 2 ((B); boil treatment only) in Table 7 are shown. 固体食品の種類によるバラツキに対する冷凍処理の効果。30mmダイスにカットした固体食品(にんじん、だいこん、ジャガイモ、牛肉)を電解質液中でボイル加熱処理した後に冷凍処理してジュール加熱した場合または冷凍処理しないでジュール加熱した場合における、通電時間と温度上昇との関係を示す。Effect of freezing treatment on variation due to the type of solid food. Energization time and temperature rise when solid food (carrot, daiko, potato, beef) cut into 30mm dies is boiled and heated in an electrolyte solution and then subjected to freezing and joule heating or without freezing Shows the relationship. 固体食品の種類別またはサイズのバラツキに及ぼす冷凍処理の効果。20mmまたは30mmダイスにカットした固体食品(にんじん、だいこん、ジャガイモ、牛肉)を冷凍処理した後に電解質液中でボイル加熱処理してジュール加熱した場合または冷凍処理しないで電解質液中でボイル加熱処理した後にジュール加熱した場合における、通電時間と温度上昇(A1,B1,C1,D1)との関係または通電時間とF値(A2,B2,C2,D2)との関係を固体食品の種類別ごとに示す。Effect of freezing treatment on the variation in type or size of solid food. When solid food (carrot, daiko, potato, beef) cut into 20 mm or 30 mm dies is frozen and then boiled in an electrolyte solution and joule heated or after boiled and heated in an electrolyte solution without freezing In the case of Joule heating, the relationship between energization time and temperature rise (A1, B1, C1, D1) or the relationship between energization time and F value (A2, B2, C2, D2) is shown for each type of solid food. .

Claims (3)

(a1)固体食品を冷凍後、該固体食品を解凍又は解凍せずに液体食品と混合して固液混合食品を得る工程、または
(a2)固体食品と液体食品を混合後、これを冷凍して固液混合食品を得る工程、
および(b)該固液混合食品をジュール加熱する工程を含む、固液混合食品の製造方法。
(A1) a step of freezing the solid food, and then mixing the liquid with a liquid food without thawing or thawing, or (a2) mixing the solid food with the liquid food and then freezing it To obtain a solid-liquid mixed food,
And (b) a method for producing a solid-liquid mixed food, comprising a step of joule heating the solid-liquid mixed food.
(b)工程により、固液混合食品を殺菌又は滅菌する、請求項1に記載の固液混合食品の製造方法。   The method for producing a solid-liquid mixed food according to claim 1, wherein the solid-liquid mixed food is sterilized or sterilized by the step (b). 請求項1又は請求項2に記載の固液混合食品の製造方法によって得られる固液混合食品。   The solid-liquid mixed food obtained by the manufacturing method of the solid-liquid mixed food of Claim 1 or Claim 2.
JP2005328826A 2005-11-14 2005-11-14 Method for producing food by Joule heating Expired - Fee Related JP3845107B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005328826A JP3845107B1 (en) 2005-11-14 2005-11-14 Method for producing food by Joule heating

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005328826A JP3845107B1 (en) 2005-11-14 2005-11-14 Method for producing food by Joule heating

Publications (2)

Publication Number Publication Date
JP3845107B1 JP3845107B1 (en) 2006-11-15
JP2007129995A true JP2007129995A (en) 2007-05-31

Family

ID=37478006

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005328826A Expired - Fee Related JP3845107B1 (en) 2005-11-14 2005-11-14 Method for producing food by Joule heating

Country Status (1)

Country Link
JP (1) JP3845107B1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101401577B1 (en) * 2012-10-05 2014-06-03 한국식품연구원 Sterilization method of source and sterilized source thereby
US20220183328A1 (en) * 2019-03-15 2022-06-16 Pastificio Rana S.P.A. Method and plant for preparing a food product

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116473431A (en) * 2023-05-16 2023-07-25 珠海格力电器股份有限公司 Cooking control method, device, medium and cooking equipment

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101401577B1 (en) * 2012-10-05 2014-06-03 한국식품연구원 Sterilization method of source and sterilized source thereby
US20220183328A1 (en) * 2019-03-15 2022-06-16 Pastificio Rana S.P.A. Method and plant for preparing a food product

Also Published As

Publication number Publication date
JP3845107B1 (en) 2006-11-15

Similar Documents

Publication Publication Date Title
Zhan et al. Improving the quality and safety of frozen muscle foods by emerging freezing technologies: A review
Bhat et al. The application of pulsed electric field as a sodium reducing strategy for meat products
Gavahian et al. Food texture as affected by ohmic heating: Mechanisms involved, recent findings, benefits, and limitations
Zhao et al. Principles and recent applications of novel non-thermal processing technologies for the fish industry—A review
Suwandy et al. Effect of pulsed electric field on the proteolysis of cold boned beef M. Longissimus lumborum and M. Semimembranosus
Basaran et al. Dielectric properties of chicken and fish muscle treated with microbial transglutaminase
CN101715967A (en) Method for processing duck webs
Smetana et al. Emerging technologies of meat processing
WO2019169804A1 (en) Method for extending refrigerated shelf life and improving reheat quality of precooked red crispy chicken dish
Xu et al. Novel technologies for flavor formation in the processing of meat products: A review
Lyng et al. Ohmic heating of foods
KR20170108773A (en) Method for Maturing &amp; Curing of Meats Using A Ultrasonic Wave
Rincon et al. Effects of endpoint temperature and thickness on quality of whole muscle non-intact steaks cooked in a radio frequency oven
JP3845107B1 (en) Method for producing food by Joule heating
CN1698480A (en) Method for acidifying and preserving food compositions using electrodialyzed compositions
JP6628922B1 (en) Packaged cooked seafood products and method for producing the same
Warner et al. Cooking and novel postmortem treatments to improve meat texture
JP4646317B2 (en) How to improve the taste of food
JP2018117605A (en) Adductor muscle processed product
Arroyo et al. Electroprocessing of meat and meat products
JP2014064542A (en) Manufacturing method of meat-containing retort food
NZ522670A (en) Heat-sterilized seafood product maintaining freshness feeling and frozen product of the same
Pandita et al. Sous Vide: A Proposition to Nutritious and Superior Quality Cooked Food
Tian et al. Insights into application progress of seafood processing technologies and their implications on flavor: a review
Ramane et al. Chemical and sensory parameters of heat-treated vacuum-packaged broiler and hen fillet products

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060815

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060817

R150 Certificate of patent or registration of utility model

Ref document number: 3845107

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090825

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100825

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100825

Year of fee payment: 4

R255 Notification of exclusion from application

Free format text: JAPANESE INTERMEDIATE CODE: R2525

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100825

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110825

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110825

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120825

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120825

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120825

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130825

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130825

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees