JP2007129610A - High luminance compression circuit, high luminance compression processing method, and television camera - Google Patents

High luminance compression circuit, high luminance compression processing method, and television camera Download PDF

Info

Publication number
JP2007129610A
JP2007129610A JP2005321847A JP2005321847A JP2007129610A JP 2007129610 A JP2007129610 A JP 2007129610A JP 2005321847 A JP2005321847 A JP 2005321847A JP 2005321847 A JP2005321847 A JP 2005321847A JP 2007129610 A JP2007129610 A JP 2007129610A
Authority
JP
Japan
Prior art keywords
compression
circuit
signal
primary color
color signals
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005321847A
Other languages
Japanese (ja)
Other versions
JP4572159B2 (en
Inventor
Takashi Oyama
貴 大山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Kokusai Electric Inc
Original Assignee
Hitachi Kokusai Electric Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Kokusai Electric Inc filed Critical Hitachi Kokusai Electric Inc
Priority to JP2005321847A priority Critical patent/JP4572159B2/en
Publication of JP2007129610A publication Critical patent/JP2007129610A/en
Application granted granted Critical
Publication of JP4572159B2 publication Critical patent/JP4572159B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a high luminance compression circuit, a high luminance compression processing method, and a television camera for naturally expressing colors of a high luminance object while preventing a hue from varying before and after a high luminance compression process. <P>SOLUTION: When a signal level (L) of a maximum-level signal among three primary color signals exceeds a predetermined level (K); the maximum-level signal is subject to the compression process, and signal levels (X1, X2) of the residual primary color signals are adjusted. While ratios of finite differences among the three primary color signals (the ratio of D1 and D2 being the finite differences before the compression process, as well as the ratio of D1' and D2' being the finite differences after the compression process) are kept constant, a magnitude of the finite differences (D1' and D2') is changed according to luminance of the object. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、3原色信号に対して高輝度圧縮処理を行う高輝度圧縮回路と高輝度圧縮処理方法、およびその回路または方法を使用するテレビジョンカメラに関する。   The present invention relates to a high-intensity compression circuit and high-intensity compression processing method for performing high-intensity compression processing on three primary color signals, and a television camera using the circuit or method.

テレビジョンカメラに設けられたCCDなどの固体撮像素子から得られる3原色信号のダイナミックレンジは、通常、数百%程度までリニアな特性を有する。しかしながら、カメラから出力される映像信号の信号レベルは最大110%程度に規定されていることから、従来、所定レベルを超える高輝度部分に対して圧縮処理(高輝度圧縮処理)を施すことが行われている。   The dynamic range of three primary color signals obtained from a solid-state imaging device such as a CCD provided in a television camera usually has a linear characteristic up to about several hundred percent. However, since the signal level of the video signal output from the camera is regulated to a maximum of about 110%, conventionally, compression processing (high luminance compression processing) has been performed on high luminance portions exceeding a predetermined level. It has been broken.

ところが、3原色の各信号に対して独立した圧縮処理を行うと、各信号処理に相関が存在しないため、色相が処理の前後で変化してしまうという問題が生じる。そこで、例えば特許文献1に記載されるように、3原色信号の中のいずれかが所定レベルを超えるとき、全ての信号に対して同時に圧縮処理を行うようにした技術が提案されている。
特開平10−257515号公報
However, when independent compression processing is performed on each of the signals of the three primary colors, there is a problem that the hue changes before and after the processing because there is no correlation in each signal processing. Therefore, for example, as described in Patent Document 1, a technique has been proposed in which when any of the three primary color signals exceeds a predetermined level, compression processing is simultaneously performed on all the signals.
JP-A-10-257515

映像信号は被写体の輝度が上がると飽和し、最終的には無色彩の白に収束する。上記した従来技術では、3原色の各信号に対して同時に圧縮処理を施すことにより、色相の変化を抑制することができるが、かかる処理は色の飽和度も保つように作用するため、被写体の輝度が高くなっても色の飽和度が小さくならない。即ち、従来技術では被写体の輝度が高くなっても色成分が残存するため、高輝度被写体の色が白に収束せず、不自然に見える場合があった。   The video signal is saturated when the brightness of the subject increases, and eventually converges to colorless white. In the above-described conventional technology, it is possible to suppress a change in hue by simultaneously performing compression processing on each of the signals of the three primary colors. However, since such processing functions to maintain color saturation, Even when the brightness increases, the color saturation does not decrease. That is, in the prior art, since the color component remains even when the luminance of the subject is increased, the color of the high luminance subject may not be converged to white and may appear unnatural.

従って、本発明の目的は上記した課題を解決し、高輝度圧縮処理の前後で色相に変化が生じるのを防止しつつ、高輝度被写体の色を自然に表現するようにした高輝度圧縮回路、高輝度圧縮処理方法およびテレビジョンカメラを提供することにある。   Therefore, the object of the present invention is to solve the above-mentioned problems, and to prevent the hue from changing before and after the high-intensity compression processing, while naturally expressing the color of the high-intensity subject, The object is to provide a high-intensity compression processing method and a television camera.

上記した課題を解決するため、本発明に係る高輝度圧縮回路にあっては、入力された3原色信号の中から信号レベルが最大である最大レベル信号を抽出する最大レベル信号抽出回路と、前記抽出された最大レベル信号が所定レベルを超えるときに前記最大レベル信号に対して圧縮処理を行う圧縮回路と、前記入力された3原色信号のそれぞれと前記抽出された最大レベル信号との差分を演算する第1の差分演算回路と、前記抽出された最大レベル信号の信号レベルに応じた圧縮係数を演算する圧縮係数演算回路と、前記演算された圧縮係数を用いて前記演算された差分のそれぞれに対して圧縮処理を行う差分圧縮回路と、前記圧縮処理された差分のそれぞれと前記圧縮処理された最大レベル信号との差分を演算し、演算結果を前記高輝度圧縮処理後の3原色信号として出力する第2の差分演算回路とを備えることを特徴とする。   In order to solve the above problems, in the high-intensity compression circuit according to the present invention, a maximum level signal extraction circuit that extracts a maximum level signal having a maximum signal level from the input three primary color signals, A compression circuit that compresses the maximum level signal when the extracted maximum level signal exceeds a predetermined level, and calculates a difference between each of the input three primary color signals and the extracted maximum level signal Each of the calculated difference using the calculated compression coefficient, a compression coefficient calculation circuit that calculates a compression coefficient corresponding to the signal level of the extracted maximum level signal, and A differential compression circuit that performs compression processing on the difference, calculates a difference between each of the compressed difference and the compressed maximum level signal, and compresses the calculation result to the high-intensity compression Characterized in that it comprises a second differential operation circuit for outputting a three primary color signal after sense.

また、本発明に係る高輝度圧縮処理方法にあっては、3原色信号の中で信号レベルが最大である最大レベル信号を抽出し、前記抽出した最大レベル信号が所定レベルを超えるとき、前記最大レベル信号を圧縮すると共に、残余の原色信号の信号レベルを調節し、前記3原色信号間の差分の比率を一定に保ちながら被写体の輝度に応じて前記差分の大きさを変更することを特徴とする。   In the high-intensity compression processing method according to the present invention, the maximum level signal having the maximum signal level is extracted from the three primary color signals, and the maximum level signal is extracted when the extracted maximum level signal exceeds a predetermined level. The level signal is compressed, the signal level of the remaining primary color signals is adjusted, and the magnitude of the difference is changed according to the luminance of the subject while keeping the ratio of the differences among the three primary color signals constant. To do.

また、本発明に係るテレビジョンカメラにあっては、上記した高輝度圧縮回路と、前記高輝度圧縮回路に入力される3原色信号を生成する3原色信号生成手段と、前記高輝度圧縮回路から出力される3原色信号を処理する信号処理回路とを備えることを特徴とする。   In the television camera according to the present invention, the high luminance compression circuit, the three primary color signal generation means for generating the three primary color signals to be input to the high luminance compression circuit, and the high luminance compression circuit. And a signal processing circuit for processing the output three primary color signals.

また、本発明に係るテレビジョンカメラにあっては、撮像光を色分解して得た3原色光を光電変換して3原色信号を生成し、前記生成した3原色信号に信号処理を施して出力するテレビジョンカメラにおいて、前記3原色信号の信号処理に上記した高輝度圧縮処理方法を使用することを特徴とする。   In the television camera according to the present invention, the three primary color signals obtained by color-separating the imaging light are photoelectrically converted to generate the three primary color signals, and the generated three primary color signals are subjected to signal processing. In the television camera for output, the high luminance compression processing method described above is used for signal processing of the three primary color signals.

本発明に係る高輝度圧縮回路、高輝度圧縮処理方法およびテレビジョンカメラにあっては、3原色の各信号の差分の比率を一定に保ちつつ、被写体の輝度が高くなるに従って前記差分を減少させることができる。そのため、高輝度圧縮処理の前後で色相に変化が生じるのを防止することができると共に、被写体の輝度が高くなるに従って色の飽和度を減少させることができるため、高輝度被写体の色を自然に表現することができる。   In the high-intensity compression circuit, high-intensity compression processing method, and television camera according to the present invention, the difference is reduced as the luminance of the subject increases while the ratio of the difference between the signals of the three primary colors is kept constant. be able to. Therefore, it is possible to prevent the hue from changing before and after the high-intensity compression process, and it is possible to reduce the color saturation as the subject brightness increases. Can be expressed.

以下、本発明に係る高輝度圧縮回路、高輝度圧縮処理方法およびテレビジョンカメラを実施するための最良の形態について、図面を参照して説明する。   The best mode for carrying out a high-intensity compression circuit, a high-intensity compression processing method, and a television camera according to the present invention will be described below with reference to the drawings.

図1は、本発明に係るテレビジョンカメラの構成を表すブロック図である。尚、図1では、テレビジョンカメラの構成を映像信号処理に関する回路を中心に示している。   FIG. 1 is a block diagram showing a configuration of a television camera according to the present invention. In FIG. 1, the configuration of the television camera is shown with a focus on a circuit relating to video signal processing.

図1において、符号1はテレビジョンカメラを示し、符号2はテレビジョンカメラ1に取り付けられた撮像レンズを示す。テレビジョンカメラ1は、3原色信号生成手段として色分解プリズム3と3個のCCD4R,4G,4Bとを備える。即ち、この実施の形態に係るテレビジョンカメラ1は3板式カメラである。   In FIG. 1, reference numeral 1 denotes a television camera, and reference numeral 2 denotes an imaging lens attached to the television camera 1. The television camera 1 includes a color separation prism 3 and three CCDs 4R, 4G, and 4B as three primary color signal generation means. That is, the television camera 1 according to this embodiment is a three-plate camera.

撮像レンズ2から入射した被写体(図示せず)の撮像光は、色分解プリズム3でR(赤),G(緑),B(青)の3原色に色分解される。色分解プリズム3で色分解されたR,G,Bの各原色光は、CCD4R,4G,4BによってそれぞれR,G,Bの3原色信号(アナログ信号)に光電変換される。   Imaging light of a subject (not shown) incident from the imaging lens 2 is separated into three primary colors R (red), G (green), and B (blue) by the color separation prism 3. The R, G, and B primary color lights color-separated by the color separation prism 3 are photoelectrically converted into R, G, and B primary color signals (analog signals) by the CCDs 4R, 4G, and 4B, respectively.

CCD4R,4G,4Bから出力された3原色信号は、CDS(相関二重サンプリング)回路5で熱雑音や1/f雑音などが除去された後、プリアンプ回路6で増幅される。プリアンプ回路6から出力された3原色信号は、さらにAGC(自動利得制御)回路7で利得制御されて増幅された後、A/D変換回路8でデジタル信号に変換され、DSP(デジタル信号処理)回路9に入力される。DSP回路9では、入力した3原色信号の輪郭補正、ガンマ補正、高輝度圧縮、エンコードなどの処理が行われる。DSP回路9で上記各処理が施された3原色信号は、D/A変換回路10でアナログ信号に再変換され、図示しないVTRやモニタなどに出力される。このように、テレビジョンカメラ1は、撮像光を色分解して得た3原色光を光電変換して3原色信号を生成し、生成した3原色信号に信号処理を施して映像信号として出力する。   The three primary color signals output from the CCDs 4R, 4G, and 4B are amplified by the preamplifier circuit 6 after thermal noise and 1 / f noise are removed by the CDS (correlated double sampling) circuit 5. The three primary color signals output from the preamplifier circuit 6 are further gain-controlled and amplified by an AGC (automatic gain control) circuit 7, and then converted into a digital signal by an A / D conversion circuit 8, and a DSP (digital signal processing). Input to the circuit 9. The DSP circuit 9 performs processing such as contour correction, gamma correction, high-intensity compression, and encoding of the input three primary color signals. The three primary color signals that have been subjected to the above processes in the DSP circuit 9 are converted back into analog signals in the D / A conversion circuit 10 and output to a VTR, a monitor, etc. (not shown). As described above, the television camera 1 photoelectrically converts the three primary color lights obtained by color-separating the imaging light to generate the three primary color signals, performs signal processing on the generated three primary color signals, and outputs them as video signals. .

図2は、DSP回路9に設けられた高輝度圧縮回路の構成を表すブロック図である。 図示の高輝度圧縮回路11はDSP回路9の一部であり、入力された3原色信号に対して高輝度圧縮処理、具体的には、ニー圧縮処理とホワイトクリップ処理を行う。   FIG. 2 is a block diagram showing the configuration of the high-intensity compression circuit provided in the DSP circuit 9. The illustrated high-intensity compression circuit 11 is a part of the DSP circuit 9, and performs high-intensity compression processing, specifically, knee compression processing and white clip processing on the input three primary color signals.

ここで、図2の説明を続ける前に、高輝度圧縮回路11の動作の概要について説明する。   Here, before continuing the description of FIG. 2, the outline of the operation of the high-intensity compression circuit 11 will be described.

図3は、高輝度圧縮回路11で高輝度圧縮処理が施された3原色信号の信号レベルを表す図である。   FIG. 3 is a diagram illustrating the signal levels of the three primary color signals that have been subjected to the high luminance compression processing by the high luminance compression circuit 11.

以下の説明で使用する記号の意味を下記に示す。
K:ニーポイント(任意に設定)
W:ホワイトクリップレベル(任意に設定)
C:飽和度収束レベル(任意に設定)
L:3原色信号の中の最大レベル信号の信号レベル
X1,X2:L以外の原色信号の信号レベル
D1:L=KであるときのL−X1(即ち、K−X1)
D2:L=KであるときのL−X2(即ち、K−X2)
L´:ニー圧縮およびホワイトクリップ処理後のL
X1´,X2´: ニー圧縮およびホワイトクリップ処理後のX1,X2
D1´:L´−X1´
D2´:L´−X2´
The meanings of symbols used in the following description are shown below.
K: Knee point (arbitrary setting)
W: White clip level (arbitrary setting)
C: Saturation convergence level (arbitrary setting)
L: signal level X1, X2 of the maximum level signal among the three primary color signals: signal level D1: primary color signal other than L: L-X1 when L = K (ie, K-X1)
D2: L-X2 when L = K (ie, K-X2)
L ′: L after knee compression and white clip processing
X1 ′, X2 ′: X1, X2 after knee compression and white clip processing
D1 ': L'-X1'
D2 ': L'-X2'

図3に示すように、高輝度圧縮回路11に入力された3原色信号の中で信号レベルが最大である最大レベル信号は、ニーポイントK(所定レベル)を超えるとニー圧縮され、さらにニーポイントKよりも高いホワイトクリップレベルW(第2の所定レベル)を超えるとホワイトクリップ処理が施される。   As shown in FIG. 3, the maximum level signal having the maximum signal level among the three primary color signals input to the high-intensity compression circuit 11 is knee-compressed when the knee point K (predetermined level) is exceeded. When the white clip level W (second predetermined level) higher than K is exceeded, white clip processing is performed.

このとき、最大レベル信号を除く残余の原色信号についてもなんらかの処理を施さないと、各信号間の差分の比率が変化し、色相が変化してしまう。また、色相の変化を防止するために単に差分の比率を一定に保ったのでは、被写体の輝度が上がっても色の飽和度が保たれ、色成分が残存するため、高輝度被写体の色が白に収束せず不自然に見える場合があった。   At this time, if any processing is not performed on the remaining primary color signals excluding the maximum level signal, the difference ratio between the signals changes, and the hue changes. Moreover, if the ratio of the difference is simply kept constant to prevent the hue from changing, the saturation of the color is maintained even if the brightness of the subject is increased, and the color component remains, so that the color of the high brightness subject is changed. In some cases, it did not converge to white and looked unnatural.

そこで、本発明に係る高輝度圧縮回路11にあっては、最大レベル信号がニーポイントKを超えるとき、最大レベル信号を圧縮すると共に、残余の原色信号の信号レベルX1,X2を調節し、3原色信号間の差分の比率を一定に保ちながら、被写体の輝度に応じて前記差分の大きさを変更する、具体的には、被写体の輝度が高いときほど前記差分を減少させるようにした。   Therefore, in the high-intensity compression circuit 11 according to the present invention, when the maximum level signal exceeds the knee point K, the maximum level signal is compressed and the signal levels X1 and X2 of the remaining primary color signals are adjusted. While the ratio of the differences between the primary color signals is kept constant, the magnitude of the difference is changed according to the luminance of the subject. Specifically, the difference is decreased as the luminance of the subject is higher.

上記の手法について詳説すると、被写体の輝度が高くなるに従って色を白に収束させるためには、高輝度圧縮処理が行われるL>Kの領域において、D1´,D2´を徐々に減少させる必要がある。つまり、各信号間の差分は、L=KであるときのD1とD2が最大値となる。D1´とD2´は、そのD1とD2を図4に示すように圧縮することで生成できるが、それにはLの大きさに比例した圧縮係数が必要となる。   The above method will be described in detail. In order to converge the color to white as the luminance of the subject increases, it is necessary to gradually decrease D1 ′ and D2 ′ in the region of L> K where high luminance compression processing is performed. is there. That is, the difference between the signals has a maximum value at D1 and D2 when L = K. D1 ′ and D2 ′ can be generated by compressing D1 and D2 as shown in FIG. 4, but this requires a compression coefficient proportional to the size of L.

そこで、圧縮係数の演算に使用するパラメータとして飽和度収束レベルCを設定し、下記の式1に従って圧縮係数Tを演算するようにした。
T=(C−L)/(C−K) ・・・式1
ただし、L>CであるときはT=0とする。
Therefore, the saturation convergence level C is set as a parameter used for calculating the compression coefficient, and the compression coefficient T is calculated according to the following equation 1.
T = (C−L) / (C−K) Equation 1
However, T = 0 when L> C.

飽和度収束レベルCは、具体的には、3原色信号のレベルが増大して最終的に全ての信号が飽和するときの最大レベル信号の信号レベルである。即ち、3原色信号が飽和度収束レベルCに達すると、色の飽和度は0になる。   The saturation convergence level C is specifically the signal level of the maximum level signal when the levels of the three primary color signals are increased and all the signals are finally saturated. That is, when the three primary color signals reach the saturation convergence level C, the color saturation becomes zero.

式1から明らかなように、圧縮係数TはLの関数であり、Lの変化に対してリニアに変化する。D1´とD2´は、それぞれ下記の式2と式3で表すことができる。
D1´=D1×T
=D1×(C−L)/(C−K) ・・・式2
D2´=D2×T
=D2×(C−L)/(C−K) ・・・式3
As is apparent from Equation 1, the compression coefficient T is a function of L and changes linearly with respect to changes in L. D1 ′ and D2 ′ can be expressed by the following formulas 2 and 3, respectively.
D1 ′ = D1 × T
= D1 × (CL) / (C−K) Equation 2
D2 ′ = D2 × T
= D2 × (CL) / (C−K) Equation 3

D1とD2の値は被写体に応じて変化するが、図3から理解できるように、D1とD2に関して以下の式が成立する。
D1:(L−X1)=K:L ・・・式4
即ち、
D1=K(L−X1)/L ・・・式5
上記した式2から、
D1´={K(L−X1)/L}×{(C−L)/(C−K)} ・・・式6
同様に、
D2:(L−X2)=K:L ・・・式7
即ち、
D2=K(L−X2)/L ・・・式8
上記した式3から、
D2´={K(L−X2)/L}×{(C−L)/(C−K)} ・・・式9
The values of D1 and D2 vary depending on the subject, but as can be understood from FIG. 3, the following equations are established for D1 and D2.
D1: (L−X1) = K: L Formula 4
That is,
D1 = K (L−X1) / L Equation 5
From Equation 2 above,
D1 ′ = {K (L−X1) / L} × {(C−L) / (C−K)} Expression 6
Similarly,
D2: (L−X2) = K: L Expression 7
That is,
D2 = K (L−X2) / L Expression 8
From Equation 3 above,
D2 ′ = {K (L−X2) / L} × {(C−L) / (C−K)} Equation 9

式6で求めたD1´と式9で求めたD2´の比率は、D1とD2のそれと等比になることから、X1´とX2´をそれぞれ下記の式10と式11から算出することで、高輝度圧縮処理の前後で色相が変化しない3原色信号を得ることができる。
X1´=L´−D1´ ・・・式10
X2´=L´−D2´ ・・・式11
Since the ratio of D1 ′ obtained by Equation 6 and D2 ′ obtained by Equation 9 is equal to that of D1 and D2, X1 ′ and X2 ′ are calculated from Equation 10 and Equation 11 below, respectively. Thus, it is possible to obtain three primary color signals whose hue does not change before and after the high luminance compression process.
X1 ′ = L′−D1 ′ Expression 10
X2 ′ = L′−D2 ′ Expression 11

以上を前提に、図2に示す高輝度圧縮回路11の構成について説明する。   Based on the above, the configuration of the high-intensity compression circuit 11 shown in FIG. 2 will be described.

図示の如く、高輝度圧縮回路11は最大レベル信号抽出回路12と、ニー圧縮回路13と、ホワイトクリップ回路14と、差分演算回路(第1の差分演算回路)15R,15G,15Bと、圧縮係数演算回路16と、差分圧縮回路17R,17G,17Bと、差分演算回路(第2の差分演算回路)18R,18G,18Bとを備える。差分演算回路15R,15G,15B、差分圧縮回路17R,17G,17B、および差分演算回路18R,18G,18Bは、3原色の各信号に対してそれぞれ設けられる。   As shown, the high-intensity compression circuit 11 includes a maximum level signal extraction circuit 12, a knee compression circuit 13, a white clip circuit 14, difference calculation circuits (first difference calculation circuits) 15R, 15G, and 15B, and compression coefficients. An arithmetic circuit 16, differential compression circuits 17R, 17G, and 17B, and differential arithmetic circuits (second differential arithmetic circuits) 18R, 18G, and 18B are provided. The difference calculation circuits 15R, 15G, and 15B, the difference compression circuits 17R, 17G, and 17B, and the difference calculation circuits 18R, 18G, and 18B are provided for the signals of the three primary colors, respectively.

最大レベル信号抽出回路12には、輪郭補正やガンマ補正が施された3原色信号Rin,Gin,Binが入力される。最大レベル信号抽出回路12は、入力された3原色信号Rin,Gin,Binの中で信号レベルが最大である最大レベル信号を抽出する。   The maximum level signal extraction circuit 12 receives three primary color signals Rin, Gin, and Bin that have undergone contour correction and gamma correction. The maximum level signal extraction circuit 12 extracts the maximum level signal having the maximum signal level from the input three primary color signals Rin, Gin, and Bin.

抽出された最大レベル信号は、ニー圧縮回路13に入力される。ニー圧縮回路13は、最大レベル信号の信号レベルLがニーポイントKを超えるとき、最大レベル信号に対して圧縮処理(ニー圧縮)を行う。ニー圧縮回路13から出力された最大レベル信号Lkはホワイトクリップ回路14に入力され、そこでホワイトクリップレベルW(定格信号の例えば110%)を超える部分がクリップ処理される。   The extracted maximum level signal is input to the knee compression circuit 13. When the signal level L of the maximum level signal exceeds the knee point K, the knee compression circuit 13 performs compression processing (knee compression) on the maximum level signal. The maximum level signal Lk output from the knee compression circuit 13 is input to the white clip circuit 14, where a portion exceeding the white clip level W (eg, 110% of the rated signal) is clipped.

差分演算回路15R,15G,15Bには、それぞれ3原色信号Rin,Gin,Binが入力されると共に、最大レベル信号抽出回路12で抽出された最大レベル信号が入力される。また、図示は省略するが、差分演算回路15R,15G,15BにはニーポイントKが入力される。差分演算回路15R,15G,15Bは、入力された3原色信号と最大レベル信号との差分、具体的には、上記した式5や式8に従い、L=Kであるときの、3原色信号と最大レベル信号の差分を演算する。即ち、差分演算回路15R,15G,15Bは、最大レベル信号の信号レベルLから入力された3原色信号の信号レベルを減算し、よって得た値にニーポイントKを乗算し、よって得た値をさらにLで除すことにより、L=Kであるときの、3原色信号と最大レベル信号の差分を演算する。   The three primary color signals Rin, Gin, and Bin are input to the difference calculation circuits 15R, 15G, and 15B, respectively, and the maximum level signal extracted by the maximum level signal extraction circuit 12 is input. Although not shown, the knee point K is input to the difference calculation circuits 15R, 15G, and 15B. The difference calculation circuits 15R, 15G, and 15B calculate the difference between the input three primary color signals and the maximum level signal, specifically, the three primary color signals when L = K according to the above-described Expressions 5 and 8. Calculate the difference between the maximum level signals. That is, the difference calculation circuits 15R, 15G, and 15B subtract the signal level of the three primary color signals input from the signal level L of the maximum level signal, multiply the obtained value by the knee point K, and obtain the obtained value. Further, by dividing by L, the difference between the three primary color signals and the maximum level signal when L = K is calculated.

以下では、Rinの信号レベルが上記したLに相当し(即ち、Rinが最大レベル信号であり)、Gin,Binの信号レベルがそれぞれX1,X2に相当する場合を例に挙げて説明する。   In the following, an example will be described in which the signal level of Rin corresponds to L described above (that is, Rin is the maximum level signal), and the signal levels of Gin and Bin correspond to X1 and X2, respectively.

差分演算回路15Rには、3原色信号のうちRin(即ち、最大レベル信号)が入力されるため、その演算結果は0となる。一方、差分演算回路15G,15Bには、信号レベルがX1,X2に相当するGin,Binが入力されるため、それらの演算結果はそれぞれ上記したD1とD2に相当する値となる。   Since the difference calculation circuit 15R receives Rin (that is, the maximum level signal) of the three primary color signals, the calculation result is zero. On the other hand, since Gin and Bin whose signal levels correspond to X1 and X2 are input to the difference calculation circuits 15G and 15B, the calculation results are values corresponding to the above-described D1 and D2, respectively.

最大レベル信号抽出回路12で抽出された最大レベル信号は、さらに圧縮係数演算回路16にも入力される。圧縮係数演算回路16は、最大レベル信号の信号レベルLに応じた圧縮係数Tを演算する。   The maximum level signal extracted by the maximum level signal extraction circuit 12 is also input to the compression coefficient calculation circuit 16. The compression coefficient calculation circuit 16 calculates a compression coefficient T corresponding to the signal level L of the maximum level signal.

図5は、圧縮係数演算回路16の構成を表すブロック図である。図5に示すように、圧縮係数演算回路16は、差分演算回路16a,16bと、除算器16cとを備える。   FIG. 5 is a block diagram showing the configuration of the compression coefficient calculation circuit 16. As shown in FIG. 5, the compression coefficient calculation circuit 16 includes difference calculation circuits 16a and 16b and a divider 16c.

差分演算回路16aは、最大レベル信号が入力されると共に、飽和度収束レベル記憶部20から飽和度収束レベルCが入力され、飽和度収束レベルCと最大レベル信号の信号レベルLの差分(C−L)を演算する。また、差分演算回路16bは、飽和度収束レベル記憶部20から飽和度収束レベルCが入力されると共に、ニーポイント記憶部21からニーポイントKが入力され、飽和度収束レベルCとニーポイントKの差分(C−K)を演算する。   The difference calculation circuit 16a receives the maximum level signal and the saturation convergence level C from the saturation convergence level storage unit 20, and the difference (C−) between the saturation convergence level C and the signal level L of the maximum level signal. L) is calculated. Further, the difference calculation circuit 16b receives the saturation convergence level C from the saturation convergence level storage unit 20 and the knee point K from the knee point storage unit 21, and determines the saturation convergence level C and the knee point K. The difference (C−K) is calculated.

差分演算回路16a,16bの演算結果は除算器16cに入力される。除算器16cは、上記した式1に従って圧縮係数Tを演算する。即ち、除算器16cは、差分演算回路16aの演算結果(C−L)を差分演算回路16bの演算結果(C−K)で除し、よって得た商を圧縮係数Tとして出力する。従って圧縮係数TはLの関数となり、Lの変化に対してリニアに変化する、具体的には、Lが大きくなるほどTの値が小さくなる。より具体的には、LがCに近づくほどTの値が小さくなり、LがCに一致したときにTは0となる。   The calculation results of the difference calculation circuits 16a and 16b are input to the divider 16c. The divider 16c calculates the compression coefficient T according to the above equation 1. That is, the divider 16c divides the calculation result (CL) of the difference calculation circuit 16a by the calculation result (CK) of the difference calculation circuit 16b, and outputs the obtained quotient as the compression coefficient T. Accordingly, the compression coefficient T is a function of L and changes linearly with respect to the change of L. Specifically, the value of T decreases as L increases. More specifically, the value of T decreases as L approaches C, and T becomes 0 when L matches C.

図2の説明に戻ると、差分圧縮回路17R,17G,17Bには、それぞれ差分演算回路15R,15G,15Bの演算結果が入力されると共に、圧縮係数演算回路16で演算された圧縮係数Tが入力される。差分圧縮回路17R,17G,17Bは、圧縮係数Tを用い、差分演算回路15R,15G,15Bの演算結果に対して圧縮処理を行う、具体的には、上記した式2や式3に示したように、差分演算回路15R,15G,15Bの演算結果に圧縮係数Tを乗算する。   Returning to the description of FIG. 2, the difference compression circuits 17R, 17G, and 17B receive the calculation results of the difference calculation circuits 15R, 15G, and 15B, respectively, and the compression coefficient T calculated by the compression coefficient calculation circuit 16 Entered. The differential compression circuits 17R, 17G, and 17B use the compression coefficient T to perform compression processing on the calculation results of the differential calculation circuits 15R, 15G, and 15B. Specifically, the above-described Expressions 2 and 3 are used. In this manner, the calculation results of the difference calculation circuits 15R, 15G, and 15B are multiplied by the compression coefficient T.

前述したように、差分演算回路15Rの出力は0であることから、差分圧縮回路17Rの出力も0になる。一方、差分演算回路15G,15Bの出力はそれぞれD1とD2に相当する値であることから、差分圧縮回路17G,17Bの出力はそれぞれ上記したD1´とD2´に相当する値となる。既述のように、圧縮係数TはLが大きくなるほど小さい値となることから、D1´とD2´もLが大きくなるほど小さい値となり、LがCに一致したときに0となる。   As described above, since the output of the difference calculation circuit 15R is 0, the output of the difference compression circuit 17R is also 0. On the other hand, since the outputs of the difference calculation circuits 15G and 15B are values corresponding to D1 and D2, respectively, the outputs of the difference compression circuits 17G and 17B are values corresponding to the aforementioned D1 ′ and D2 ′, respectively. As described above, since the compression coefficient T decreases as L increases, D1 ′ and D2 ′ also decrease as L increases, and becomes 0 when L matches C.

差分圧縮回路17R,17G,17Bの演算結果は、それぞれ差分演算回路18R,18G,18Bに入力される。また、差分演算回路18R,18G,18Bには、ホワイトクリップ回路14の出力も入力される。差分演算回路18R,18G,18Bは、上記した式10や式11に従い、ニー圧縮およびホワイトクリップ処理が施された最大レベル信号の信号レベルL´から差分圧縮回路17R,17G,17Bの演算結果を減算し、それらの差分を求める。差分演算回路18R,18G,18Bの演算結果は、それぞれ高輝度圧縮処理後の3原色信号Rout,Gout,Boutとして、高輝度圧縮回路11から出力される。高輝度圧縮回路11から出力された3原色信号Rout,Gout,Boutは、DSP9内のエンコーダ(図示せず)やD/A変換回路10などの信号処理回路に入力され、VTRやモニタに出力するための処理がさらに施される。   The calculation results of the difference compression circuits 17R, 17G, and 17B are input to the difference calculation circuits 18R, 18G, and 18B, respectively. Further, the output of the white clip circuit 14 is also input to the difference calculation circuits 18R, 18G, and 18B. The difference calculation circuits 18R, 18G, and 18B obtain the calculation results of the difference compression circuits 17R, 17G, and 17B from the signal level L ′ of the maximum level signal that has been subjected to knee compression and white clip processing in accordance with Expressions 10 and 11 described above. Subtract and find the difference between them. The calculation results of the difference calculation circuits 18R, 18G, and 18B are output from the high luminance compression circuit 11 as the three primary color signals Rout, Gout, and Bout after the high luminance compression processing, respectively. The three primary color signals Rout, Gout, Bout output from the high-intensity compression circuit 11 are input to a signal processing circuit such as an encoder (not shown) in the DSP 9 or the D / A conversion circuit 10 and output to a VTR or a monitor. Further processing is performed.

差分圧縮回路17Rの出力は0であることから、差分演算回路18Rの演算結果、即ちRoutの信号レベルは、L´となる。一方、差分演算回路18GにはD1´に相当する値が入力されるため、Goutの信号レベルは上記したX1´に相当する値となる。また、差分演算回路18BにはD2´に相当する値が入力されるため、Boutの信号レベルは上記したX2´に相当する値となる。上述したように、D1´とD2´(即ち、3原色信号Rout,Gout,Bout間の差分)は、Lが飽和度収束レベルCに近づくほど小さくなり、LがCに一致したときに0となることから、高輝度圧縮回路11から出力される映像信号は被写体の輝度が高くなるに従って色の飽和度が減少し、最終的には白に収束することになる。   Since the output of the differential compression circuit 17R is 0, the calculation result of the differential calculation circuit 18R, that is, the signal level of Rout is L ′. On the other hand, since a value corresponding to D1 ′ is input to the difference calculation circuit 18G, the signal level of Gout becomes a value corresponding to the above-described X1 ′. Further, since a value corresponding to D2 ′ is input to the difference calculation circuit 18B, the signal level of Bout is a value corresponding to the above-described X2 ′. As described above, D1 ′ and D2 ′ (that is, the difference between the three primary color signals Rout, Gout, and Bout) become smaller as L approaches the saturation convergence level C, and becomes 0 when L matches C. Therefore, the video signal output from the high-intensity compression circuit 11 decreases in color saturation as the luminance of the subject increases, and eventually converges to white.

また、高輝度圧縮処理後の3原色信号Rout,Gout,Bout間の差分であるD1´とD2´の比率は、処理前の3原色信号Rin,Gin,Bin間の差分であるD1とD2の比率に一致するため、高輝度圧縮処理の前後で色相に変化が生じることがない。   The ratio of D1 ′ and D2 ′, which are the differences between the three primary color signals Rout, Gout, and Bout after the high-intensity compression processing, is the difference between D1 and D2 that are the differences between the three primary color signals Rin, Gin, and Bin before the processing. Since the ratio matches, the hue does not change before and after the high luminance compression process.

尚、図2においてホワイトクリップ回路14を備えない場合は、ホワイトクリップ回路14の出力の代わりにニー圧縮回路13の出力を差分演算回路18R,18G,18Bに入力し、ニー圧縮処理が施された最大レベル信号の信号レベルLkから差分圧縮回路17R,17G,17Bの演算結果を減算し、それらの差分を求めればよい。その場合、上記した例でいえば、高輝度圧縮処理後の3原色信号Rout,Gout,Boutの信号レベルはそれぞれLk,X1´,X2´となる。   If the white clip circuit 14 is not provided in FIG. 2, the output of the knee compression circuit 13 is input to the difference calculation circuits 18R, 18G, and 18B instead of the output of the white clip circuit 14, and the knee compression processing is performed. The calculation result of the differential compression circuits 17R, 17G, and 17B may be subtracted from the signal level Lk of the maximum level signal, and the difference between them may be obtained. In that case, in the above example, the signal levels of the three primary color signals Rout, Gout, and Bout after the high-intensity compression processing are Lk, X1 ′, and X2 ′, respectively.

以上のように、本発明に係る高輝度圧縮回路11にあっては、入力された3原色信号Rin,Gin,Binの中から信号レベルが最大である最大レベル信号を抽出する最大レベル信号抽出回路12と、抽出された最大レベル信号がニーポイントKを超えるときに前記最大レベル信号に対してニー圧縮処理を行うニー圧縮回路13と、前記入力された3原色信号のそれぞれと前記抽出された最大レベル信号との差分(より詳しくは、前記抽出された最大レベル信号がニーポイントKであるときの、前記入力された3原色信号のそれぞれと前記所定レベルとの差分)D1,D2を演算する差分演算回路15R,15G,15Bと、前記抽出された最大レベル信号の信号レベルLに応じた圧縮係数Tを演算する圧縮係数演算回路16と、前記演算された圧縮係数Tを用いて前記演算された差分D1,D2のそれぞれに対して圧縮処理を行う差分圧縮回路17R,17G,17Bと、前記圧縮処理された差分D1´,D2´のそれぞれと前記圧縮処理された最大レベル信号との差分Lk,X1´,X2´を演算し、演算結果を前記高輝度圧縮処理後の3原色信号Rout,Gout,Boutとして出力する差分演算回路18R,18G,18Bとを備えるように構成したので、3原色信号間の差分の比率を一定に保ちつつ、被写体の輝度が高くなるに従って前記差分を減少させることができる。そのため、高輝度圧縮処理の前後で色相に変化が生じるのを防止することができると共に、被写体の輝度が高くなるに従って色の飽和度が減少するため、高輝度被写体の色を自然に表現することができる。   As described above, in the high luminance compression circuit 11 according to the present invention, the maximum level signal extraction circuit that extracts the maximum level signal having the maximum signal level from the input three primary color signals Rin, Gin, Bin. 12, a knee compression circuit 13 that performs knee compression on the maximum level signal when the extracted maximum level signal exceeds the knee point K, each of the input three primary color signals, and the extracted maximum Difference between level signals (more specifically, the difference between each of the input three primary color signals and the predetermined level when the extracted maximum level signal is the knee point K) D1 and D2 An arithmetic circuit 15R, 15G, 15B, a compression coefficient arithmetic circuit 16 for calculating a compression coefficient T according to the signal level L of the extracted maximum level signal, and the calculated pressure The differential compression circuits 17R, 17G, and 17B that perform compression processing on each of the calculated differences D1 and D2 by using the coefficient T, and the compression processing of each of the compressed differences D1 ′ and D2 ′. Difference calculation circuits 18R, 18G, and 18B that calculate the differences Lk, X1 ′, and X2 ′ from the maximum level signal and output the calculation results as the three primary color signals Rout, Gout, and Bout after the high-intensity compression processing. With this configuration, the difference can be reduced as the luminance of the subject increases while the ratio of the difference between the three primary color signals is kept constant. Therefore, the hue can be prevented from changing before and after the high-intensity compression process, and the saturation of the color decreases as the subject brightness increases, so that the color of the high-intensity subject can be expressed naturally. Can do.

また、前記圧縮係数演算回路16は、(C−L)/(C−K)で表される演算結果を前記圧縮係数Tとするように構成したので、被写体の輝度が高くなるに従って色の飽和度をより自然に減少させることができるため、高輝度被写体の色をより一層自然に表現することができる。   Further, since the compression coefficient calculation circuit 16 is configured so that the calculation result expressed by (CL) / (CK) is the compression coefficient T, color saturation is achieved as the luminance of the subject increases. Since the degree can be reduced more naturally, the color of the high-luminance subject can be expressed more naturally.

また、前記圧縮処理された最大レベル信号が前記ニーポイントKよりも高いホワイトクリップレベルWを超えるときに前記圧縮処理された最大レベル信号をクリップ処理するホワイトクリップ回路14を備えると共に、前記差分演算回路18R,18G,18Bは、前記圧縮処理された差分D1´,D2´のそれぞれと前記クリップ処理された最大レベル信号との差分L´,X1´,X2´を演算し、演算結果を前記高輝度圧縮処理後の3原色信号Rout,Gout,Boutとして出力するように構成したので、圧縮処理後の最大レベル信号に対してさらにクリップ処理を施した場合であっても、上記と同様の効果を得ることができる。   And a white clip circuit 14 for clipping the compressed maximum level signal when the compressed maximum level signal exceeds a white clip level W higher than the knee point K. 18R, 18G, and 18B calculate differences L ′, X1 ′, and X2 ′ between each of the compressed differences D1 ′ and D2 ′ and the clipped maximum level signal, and the calculation result is the high luminance. Since the three primary color signals Rout, Gout, and Bout after compression processing are output, the same effect as described above can be obtained even when the maximum level signal after compression processing is further clipped. be able to.

また、本発明に係る高輝度圧縮処理方法にあっては、3原色信号Rin,Gin,Binの中の最大レベル信号の信号レベルLがニーポイントKを超えるとき、最大レベル信号に対してニー圧縮処理を行うと共に、残余の原色信号の信号レベルX1,X2を調節し、3原色信号間の差分の比率(圧縮処理前の差分であるD1とD2の比率、および圧縮処理後の差分であるD1´とD2´の比率)を一定に保ちながら被写体の輝度に応じて前記差分(D1´とD2´)の大きさを変更する、より詳しくは、前記被写体の輝度が高いときほど減少させるように構成したので、高輝度圧縮処理の前後で色相に変化が生じるのを防止することができると共に、被写体の輝度が高くなるに従って色の飽和度が減少するため、高輝度被写体の色を自然に表現することができる。   In the high-intensity compression processing method according to the present invention, when the signal level L of the maximum level signal in the three primary color signals Rin, Gin, Bin exceeds the knee point K, knee compression is performed on the maximum level signal. In addition to performing processing, the signal levels X1 and X2 of the remaining primary color signals are adjusted, and the difference ratio between the three primary color signals (the ratio between D1 and D2, which is the difference before the compression process, and D1 which is the difference after the compression process). The ratio (D1 ′ and D2 ′) is changed according to the luminance of the subject while keeping the ratio of ′ and D2 ′ constant. More specifically, the difference is increased as the luminance of the subject is higher. Because it is configured, it can prevent hue changes before and after high-intensity compression processing, and the saturation of the color decreases as the subject brightness increases, so the color of the high-intensity subject is naturally expressed To do It can be.

また、本発明に係るテレビジョンカメラ1にあっては、上記した高輝度圧縮回路11および高輝度圧縮処理方法を使用するようにしたので、上記したのと同じ効果を得ることができる。   Further, in the television camera 1 according to the present invention, since the high luminance compression circuit 11 and the high luminance compression processing method described above are used, the same effect as described above can be obtained.

尚、本発明の実施の形態において、Rinの信号レベルがLに相当し、Gin,Binの信号レベルがそれぞれX1,X2に相当するものとして説明したが、各信号レベルの大小関係はそれに限定されるものではない。   In the embodiment of the present invention, the signal level of Rin corresponds to L, and the signal levels of Gin and Bin correspond to X1 and X2, respectively. However, the magnitude relationship between the signal levels is limited to that. It is not something.

また、図1に示したテレビジョンカメラ1の構成は例示であり、高輝度圧縮回路11を除く各構成はカメラの用途や仕様に応じて適宜変更しても良い。   Further, the configuration of the television camera 1 shown in FIG. 1 is an exemplification, and each configuration excluding the high-intensity compression circuit 11 may be appropriately changed according to the use and specification of the camera.

本発明に係るテレビジョンカメラの構成を表すブロック図である。It is a block diagram showing the structure of the television camera which concerns on this invention. 図1に示すDSP回路に設けられた高輝度圧縮回路の構成を表すブロック図である。FIG. 2 is a block diagram illustrating a configuration of a high-intensity compression circuit provided in the DSP circuit illustrated in FIG. 1. 図2に示す高輝度圧縮回路で高輝度圧縮処理が施された3原色信号の信号レベルを表す図である。FIG. 3 is a diagram illustrating signal levels of three primary color signals subjected to high luminance compression processing by the high luminance compression circuit shown in FIG. 2. 図2に示す高輝度圧縮回路に入力された3原色信号間の差分を表す図である。It is a figure showing the difference between the three primary color signals input into the high-intensity compression circuit shown in FIG. 図2に示す圧縮係数演算回路の構成を表すブロック図である。FIG. 3 is a block diagram illustrating a configuration of a compression coefficient calculation circuit illustrated in FIG. 2.

符号の説明Explanation of symbols

1:テレビジョンカメラ、 3:色分解プリズム(3原色信号生成手段)、 4R,4G,4B:CCD(3原色信号生成手段)、 10:D/A変換回路(信号処理回路)、 11:高輝度圧縮回路、 12:最大レベル信号抽出回路、 13:ニー圧縮回路(圧縮回路)、 14:ホワイトクリップ回路(クリップ回路)、 15R,15G,15B:差分演算回路(第1の差分演算回路)、 16:圧縮係数演算回路、 17R,17G,17B:差分圧縮回路、 18R,18G,18B:差分演算回路(第2の差分演算回路)   1: television camera, 3: color separation prism (three primary color signal generation means), 4R, 4G, 4B: CCD (three primary color signal generation means), 10: D / A conversion circuit (signal processing circuit), 11: high Luminance compression circuit, 12: maximum level signal extraction circuit, 13: knee compression circuit (compression circuit), 14: white clip circuit (clip circuit), 15R, 15G, 15B: difference calculation circuit (first difference calculation circuit), 16: compression coefficient arithmetic circuit, 17R, 17G, 17B: differential compression circuit, 18R, 18G, 18B: differential arithmetic circuit (second differential arithmetic circuit)

Claims (8)

入力された3原色信号に対して高輝度圧縮処理を行う高輝度圧縮回路において、
前記入力された3原色信号の中から信号レベルが最大である最大レベル信号を抽出する最大レベル信号抽出回路と、
前記抽出された最大レベル信号が所定レベルを超えるときに前記最大レベル信号に対して圧縮処理を行う圧縮回路と、
前記入力された3原色信号のそれぞれと前記抽出された最大レベル信号との差分を演算する第1の差分演算回路と、
前記抽出された最大レベル信号の信号レベルに応じた圧縮係数を演算する圧縮係数演算回路と、
前記演算された圧縮係数を用いて前記演算された差分のそれぞれに対して圧縮処理を行う差分圧縮回路と、
前記圧縮処理された差分のそれぞれと前記圧縮処理された最大レベル信号との差分を演算し、演算結果を前記高輝度圧縮処理後の3原色信号として出力する第2の差分演算回路と、
を備えることを特徴とする高輝度圧縮回路。
In a high-intensity compression circuit that performs high-intensity compression processing on the input three primary color signals,
A maximum level signal extraction circuit for extracting a maximum level signal having a maximum signal level from the inputted three primary color signals;
A compression circuit that compresses the maximum level signal when the extracted maximum level signal exceeds a predetermined level;
A first difference calculation circuit for calculating a difference between each of the input three primary color signals and the extracted maximum level signal;
A compression coefficient calculation circuit for calculating a compression coefficient according to the signal level of the extracted maximum level signal;
A differential compression circuit that performs compression processing on each of the computed differences using the computed compression coefficient;
A second difference calculation circuit that calculates a difference between each of the compressed difference and the compressed maximum level signal, and outputs a calculation result as the three primary color signals after the high-intensity compression process;
A high-intensity compression circuit comprising:
入力された3原色信号に対して高輝度圧縮処理を行う高輝度圧縮回路において、
前記入力された3原色信号の中から信号レベルが最大である最大レベル信号を抽出する最大レベル信号抽出回路と、
前記抽出された最大レベル信号が所定レベルを超えるときに前記最大レベル信号に対して圧縮処理を行う圧縮回路と、
前記抽出された最大レベル信号が前記所定レベルであるときの、前記入力された入力された3原色信号のそれぞれと前記所定レベルとの差分を演算する第1の差分演算回路と、
前記抽出された最大レベル信号の信号レベルに応じて圧縮係数を演算する圧縮係数演算回路と、
前記演算された圧縮係数を用いて前記演算された差分のそれぞれに対して圧縮処理を行う差分圧縮回路と、
前記圧縮処理された差分のそれぞれと前記圧縮処理された最大レベル信号との差分を演算し、演算結果を前記高輝度圧縮処理後の3原色信号として出力する第2の差分演算回路と、
を備えることを特徴とする高輝度圧縮回路。
In a high-intensity compression circuit that performs high-intensity compression processing on the input three primary color signals,
A maximum level signal extraction circuit for extracting a maximum level signal having a maximum signal level from the inputted three primary color signals;
A compression circuit that compresses the maximum level signal when the extracted maximum level signal exceeds a predetermined level;
A first difference calculation circuit for calculating a difference between each of the inputted three primary color signals and the predetermined level when the extracted maximum level signal is the predetermined level;
A compression coefficient calculation circuit for calculating a compression coefficient in accordance with the signal level of the extracted maximum level signal;
A differential compression circuit that performs compression processing on each of the computed differences using the computed compression coefficient;
A second difference calculation circuit that calculates a difference between each of the compressed difference and the compressed maximum level signal, and outputs a calculation result as the three primary color signals after the high-intensity compression process;
A high-intensity compression circuit comprising:
請求項2に記載の高輝度圧縮回路において、
前記所定レベルをK、前記抽出された最大レベル信号の信号レベルをL、前記入力された3原色信号の全てが飽和するときの前記最大レベル信号の信号レベルをCとしたとき、前記圧縮係数演算回路は、(C−L)/(C−K)で表される演算結果を前記圧縮係数とすることを特徴とする高輝度圧縮回路。
The high-intensity compression circuit according to claim 2,
When the predetermined level is K, the signal level of the extracted maximum level signal is L, and the signal level of the maximum level signal when all of the input three primary color signals are saturated is C, the compression coefficient calculation The circuit is a high-intensity compression circuit characterized in that an operation result represented by (CL) / (CK) is used as the compression coefficient.
請求項1から3のいずれかに記載の高輝度圧縮回路において、
前記圧縮処理された最大レベル信号が前記所定レベルよりも高い第2の所定レベルを超えるときに前記圧縮処理された最大レベル信号をクリップ処理するクリップ回路、
を備えると共に、前記第2の差分演算回路は、前記圧縮処理された差分のそれぞれと前記クリップ処理された最大レベル信号との差分を演算し、演算結果を前記高輝度圧縮処理後の3原色信号として出力することを特徴とする高輝度圧縮回路。
In the high-intensity compression circuit in any one of Claim 1 to 3,
A clipping circuit that clips the compressed maximum level signal when the compressed maximum level signal exceeds a second predetermined level higher than the predetermined level;
And the second difference calculation circuit calculates a difference between each of the compressed difference and the clipped maximum level signal, and outputs a calculation result of the three primary color signals after the high luminance compression process. Output as a high-intensity compression circuit.
3原色信号に対して高輝度圧縮処理を行う高輝度圧縮処理方法において、前記3原色信号の中で信号レベルが最大である最大レベル信号を抽出し、前記抽出した最大レベル信号が所定レベルを超えるとき、前記最大レベル信号を圧縮すると共に、残余の原色信号の信号レベルを調節し、前記3原色信号間の差分の比率を一定に保ちながら被写体の輝度に応じて前記差分の大きさを変更することを特徴とする高輝度圧縮処理方法。   In a high-intensity compression processing method for performing high-intensity compression processing on three primary color signals, a maximum level signal having a maximum signal level is extracted from the three primary color signals, and the extracted maximum level signal exceeds a predetermined level. When the maximum level signal is compressed, the signal level of the remaining primary color signals is adjusted, and the magnitude of the difference is changed according to the luminance of the subject while keeping the ratio of the differences among the three primary color signals constant. A high-intensity compression processing method. 請求項5に記載の高輝度圧縮処理方法において、
前記差分は、前記被写体の輝度が高いときほど減少させられることを特徴とする高輝度圧縮処理方法。
In the high-intensity compression processing method according to claim 5,
The high-intensity compression processing method, wherein the difference is reduced as the luminance of the subject is higher.
請求項1から4のいずれかに記載の高輝度圧縮回路と、
前記高輝度圧縮回路に入力される3原色信号を生成する3原色信号生成手段と、
前記高輝度圧縮回路から出力される3原色信号を処理する信号処理回路と、
を備えることを特徴とするテレビジョンカメラ。
A high-intensity compression circuit according to any one of claims 1 to 4,
Three primary color signal generation means for generating three primary color signals input to the high luminance compression circuit;
A signal processing circuit for processing the three primary color signals output from the high-intensity compression circuit;
A television camera comprising:
撮像光を色分解して得た3原色光を光電変換して3原色信号を生成し、前記生成した3原色信号に信号処理を施して出力するテレビジョンカメラにおいて、
前記3原色信号の信号処理に請求項5または6に記載の高輝度圧縮処理方法を使用することを特徴とするテレビジョンカメラ。
In a television camera that photoelectrically converts three primary color lights obtained by color-separating imaging light to generate a three primary color signal, performs signal processing on the generated three primary color signals, and outputs the signal.
7. A television camera using the high-intensity compression processing method according to claim 5 or 6 for signal processing of the three primary color signals.
JP2005321847A 2005-11-07 2005-11-07 High luminance compression circuit, high luminance compression processing method, and television camera Expired - Fee Related JP4572159B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005321847A JP4572159B2 (en) 2005-11-07 2005-11-07 High luminance compression circuit, high luminance compression processing method, and television camera

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005321847A JP4572159B2 (en) 2005-11-07 2005-11-07 High luminance compression circuit, high luminance compression processing method, and television camera

Publications (2)

Publication Number Publication Date
JP2007129610A true JP2007129610A (en) 2007-05-24
JP4572159B2 JP4572159B2 (en) 2010-10-27

Family

ID=38151879

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005321847A Expired - Fee Related JP4572159B2 (en) 2005-11-07 2005-11-07 High luminance compression circuit, high luminance compression processing method, and television camera

Country Status (1)

Country Link
JP (1) JP4572159B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10944948B2 (en) 2015-04-08 2021-03-09 Sony Corporation Imaging apparatus, imaging system, and imaging method

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07177530A (en) * 1993-10-01 1995-07-14 Philips Electron Nv Adaptive video signal compression circuit
JPH0888863A (en) * 1994-09-19 1996-04-02 Sony Corp High luminance compression device
JPH09331539A (en) * 1996-04-12 1997-12-22 Sony Corp Video camera equipment, video signal processor, level compression method and gradation conversion method for color video signal
JPH10257515A (en) * 1997-03-07 1998-09-25 Hitachi Denshi Ltd Television camera apparatus
WO1998051089A1 (en) * 1997-05-07 1998-11-12 Sony Corporation Image signal processor, color video camera, and method of processing image signals
JP2000115796A (en) * 1998-10-08 2000-04-21 Sony Corp Video signal processing unit, color video camera and processing method for video signal
WO2000040037A1 (en) * 1998-12-26 2000-07-06 Sony Corporation Video signal processing device and its method
JP2001148864A (en) * 1999-11-22 2001-05-29 Matsushita Electric Ind Co Ltd High luminance compression circuit

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07177530A (en) * 1993-10-01 1995-07-14 Philips Electron Nv Adaptive video signal compression circuit
JPH0888863A (en) * 1994-09-19 1996-04-02 Sony Corp High luminance compression device
JPH09331539A (en) * 1996-04-12 1997-12-22 Sony Corp Video camera equipment, video signal processor, level compression method and gradation conversion method for color video signal
JPH10257515A (en) * 1997-03-07 1998-09-25 Hitachi Denshi Ltd Television camera apparatus
WO1998051089A1 (en) * 1997-05-07 1998-11-12 Sony Corporation Image signal processor, color video camera, and method of processing image signals
JP2000115796A (en) * 1998-10-08 2000-04-21 Sony Corp Video signal processing unit, color video camera and processing method for video signal
WO2000040037A1 (en) * 1998-12-26 2000-07-06 Sony Corporation Video signal processing device and its method
JP2001148864A (en) * 1999-11-22 2001-05-29 Matsushita Electric Ind Co Ltd High luminance compression circuit

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10944948B2 (en) 2015-04-08 2021-03-09 Sony Corporation Imaging apparatus, imaging system, and imaging method

Also Published As

Publication number Publication date
JP4572159B2 (en) 2010-10-27

Similar Documents

Publication Publication Date Title
JP4003399B2 (en) Image processing apparatus and method, and recording medium
US8208038B2 (en) Image signal processing device and image signal processing method
RU2491760C2 (en) Image processing device, image processing method and programme
RU2504108C2 (en) Image processing apparatus, image processing method and recording medium
JP3709566B2 (en) Video signal processing apparatus, color video camera, and video signal processing method
JP2008124928A (en) Auto white balance system
US8659684B2 (en) Image processing apparatus, program, method and image capturing system
JP3596387B2 (en) High brightness compression circuit
JP2006140791A (en) Digital camera and signal processing method therefor and signal processor
WO2004071077A1 (en) Image processing device, image processing program and program-recorded recording medium
JP4572159B2 (en) High luminance compression circuit, high luminance compression processing method, and television camera
JP2007194971A (en) Image processor and image processing method
JP2006303559A (en) Electronic camera
US10419735B2 (en) Image processing apparatus for tone conversion, image processing method for tone conversion, and storage medium
JP4888037B2 (en) Signal processing method, signal processing circuit, and imaging apparatus
JP4240261B2 (en) Image processing apparatus and method, and recording medium
JP4767525B2 (en) Imaging system and imaging processing program
KR19990077723A (en) Color-suppression circuit
JP2000354250A (en) Image pickup device
WO2015064234A1 (en) Circuit for eliminating noise from video signal and method for eliminating noise from video signal
JP2009081526A (en) Imaging apparatus
JPH10257515A (en) Television camera apparatus
JP2006211095A (en) High luminance compression circuit
CN100521799C (en) Colour noise suppressing system
US10440343B2 (en) Image processing apparatus, image processing method, and storage medium for performing tone conversion

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080331

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100426

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100518

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100713

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100803

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100816

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130820

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4572159

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140820

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees