JP2007129259A - Insulated-gate semiconductor device - Google Patents

Insulated-gate semiconductor device Download PDF

Info

Publication number
JP2007129259A
JP2007129259A JP2007001487A JP2007001487A JP2007129259A JP 2007129259 A JP2007129259 A JP 2007129259A JP 2007001487 A JP2007001487 A JP 2007001487A JP 2007001487 A JP2007001487 A JP 2007001487A JP 2007129259 A JP2007129259 A JP 2007129259A
Authority
JP
Japan
Prior art keywords
layer
conductivity type
trench
insulated gate
electric field
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007001487A
Other languages
Japanese (ja)
Inventor
Yoshitaka Sugawara
良孝 菅原
Katsunori Asano
勝則 浅野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kansai Electric Power Co Inc
Hitachi Ltd
Original Assignee
Kansai Electric Power Co Inc
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kansai Electric Power Co Inc, Hitachi Ltd filed Critical Kansai Electric Power Co Inc
Priority to JP2007001487A priority Critical patent/JP2007129259A/en
Publication of JP2007129259A publication Critical patent/JP2007129259A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Insulated Gate Type Field-Effect Transistor (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To eliminate the difficulty in increasing the withstand voltage of a semiconductor device, the withstand voltage being limited by the dielectric breakdown of an insulator layer 9, the dielectric breakdown being caused by an increase in the field intensity of the insulator layer 9 disposed under a trench-type insulated gate, the field intensity being increased by applying a high voltage between a drain and a source so as to form no channels when a drift layer 2 of n-conductivity type has a large concentration of carriers in the semiconductor device having a trench-type insulated gate structure. <P>SOLUTION: The thickness of the bottom of the insulator layer 9 provided in the trench of the trench-type insulated gate semiconductor device is made considerably larger than that of the side of the insulator layer 9. The field intensity of the insulator layer on the bottom of the trench-type insulated gate is reduced, the insulator layer having a high field intensity in a semiconductor device having a conventional trench-type insulated gate structure. As a result, the withstand voltage of the semiconductor device is increased by about 15 to 30% as compared with the conventional semiconductor device, thereby improving the reliability of the insulator layer. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、スイッチング素子として用いられる絶縁ゲート半導体装置に関するものである。   The present invention relates to an insulated gate semiconductor device used as a switching element.

従来から、高速スイッチング特性に優れ、かつ高入力インピーダンスをもつので入力損失が小さい電力用縦型半導体装置として、MOSFETや絶縁ゲートバイポーラトランジスタ(以下IGBTと記す)が知られている。両トランジスタとも低損失化を図るためにそれぞれの半導体装置に内在する接合型電界効果トランジスタ(以下JFETと記す)の抵抗を削減するために、図11や図12に示すように、凹部29にゲート14を形成するトレンチ型絶縁ゲート構造の半導体装置が製作されている(ISPSD'96 (The 8th International Symposium on Power Semiconductor Devices and ICs) Proceedings,pp.119-122(1996):非特許文献1参照)。
ISPSD'96 (The 8th International Symposium on Power Semiconductor Devices and ICs) Proceedings,pp.119-122(1996)
Conventionally, MOSFETs and insulated gate bipolar transistors (hereinafter referred to as IGBTs) are known as vertical semiconductor devices for electric power having excellent high-speed switching characteristics and high input impedance and low input loss. In order to reduce the loss of both transistors, in order to reduce the resistance of a junction field effect transistor (hereinafter referred to as JFET) inherent in each semiconductor device, as shown in FIG. 11 and FIG. A semiconductor device having a trench-type insulated gate structure forming 14 is manufactured (see ISPSD '96 (The 8th International Symposium on Power Semiconductor Devices and ICs) Proceedings, pp. 119-122 (1996): Non-Patent Document 1). .
ISPSD'96 (The 8th International Symposium on Power Semiconductor Devices and ICs) Proceedings, pp.119-122 (1996)

図11及び図12の従来のトレンチ型絶縁ゲート構造の半導体装置において、 第1の導電型(n)をもつ半導体基板としてのn導電型のドリフト層2のキャリア濃度が大きい場合には、ゲート電位をソース電位(図12ではエミッタ電位)以下にしてチャネルが形成されないようにしている。この場合、ドレイン-ソース間(図12ではコレクタ−エミッタ間)に正極性の高電圧を印加すると、第1の導電型をもつ半導体基板上の一部もしくは全面に設けられ第1の導電型(n)と反対の第2の導電型(p)をもち、n導電型のドリフト層2との間に接合を形成する半導体層としてのp導電型のボディ層4とn導電型のドリフト層2の接合から空乏層が拡がる。ところが、ゲート14の直下ではn導電型のドリフト層2のキャリア濃度が大きく導電率が高いので、その層の抵抗が小さくなる。その結果n導電型のドリフト層2での電圧分担が小さくなり、凹部29の内表面に形成された絶縁物層9の底部に高電圧が加わることになる。このため、トレンチ型絶縁ゲート下部における絶縁物層9内の底部電界強度が高くなり、耐圧はこの絶縁物層9の絶縁破壊により制限され、装置の高耐圧化が困難であった。また、絶縁物層9内の電界強度が高くなると絶縁物層9の劣化につながるため、高信頼度を得ることが困難であった。 11 and 12, when the carrier concentration of the n conductivity type drift layer 2 as the semiconductor substrate having the first conductivity type (n) is high, The potential is made lower than the source potential (emitter potential in FIG. 12) so that a channel is not formed. In this case, when a positive high voltage is applied between the drain and the source (between the collector and the emitter in FIG. 12), the first conductivity type (partially or entirely provided on the semiconductor substrate having the first conductivity type). n) opposite to the second conductivity type having a (p), n - conductivity type n and p conductivity type body layer 4 of a semiconductor layer forming a junction between the drift layer 2 - conductivity type drift A depletion layer extends from the junction of layer 2. However, since the carrier concentration of the n conductivity type drift layer 2 is large and the conductivity is high immediately below the gate 14, the resistance of the layer becomes small. As a result, the voltage sharing in the n conductivity type drift layer 2 is reduced, and a high voltage is applied to the bottom of the insulator layer 9 formed on the inner surface of the recess 29. For this reason, the bottom electric field strength in the insulating layer 9 under the trench-type insulating gate is increased, and the withstand voltage is limited by the dielectric breakdown of the insulating layer 9, making it difficult to increase the withstand voltage of the device. Further, when the electric field strength in the insulator layer 9 is increased, the insulator layer 9 is deteriorated, and it is difficult to obtain high reliability.

本発明は、トレンチ型絶縁ゲート層の下部の電界強度を緩和し、高耐圧及び高信頼度の絶縁ゲート半導体装置を提供することを目的としている。   An object of the present invention is to provide an insulated gate semiconductor device having a high withstand voltage and high reliability by reducing the electric field strength under a trench type insulated gate layer.

本発明では、上記課題を解決するために、トレンチ型絶縁ゲート半導体装置のトレンチ型絶縁ゲートの下部に、半導体基板内に形成された第2の導電型の第1の半導体領域すなわち電界緩和のための半導体領域を設けた。これにより、ドレイン−ソース間(あるいはコレクターエミッタ間)に正極性の電圧を印加した場合、たとえば図1〜図10でドリフト層が第1の導電型であると、第2の導電型のボディ層と第1の導電型のドリフト層に空乏層が拡がる。一方、トレンチ型絶縁ゲート電極の下部では、電界緩和のための半導体領域と第1の導電型ドリフト層との接合から、ドレイン−ソース間(あるいはコレクターエミッタ間)電圧に応じて空乏層が拡がり、印加電圧の大部分が上記電界緩和半導体領域と第1の導電型のドリフト層により分担されるようになる。この結果、ゲートの絶縁物層底部の電圧分担が小さくなりその絶縁物層の電界強度が緩和され、半導体装置の高耐圧化あるいは高信頼化が達成できる。   In the present invention, in order to solve the above-described problem, a first semiconductor region of a second conductivity type formed in a semiconductor substrate, ie, an electric field relaxation, is formed below a trench type insulated gate of a trench type insulated gate semiconductor device. The semiconductor region was provided. Thus, when a positive voltage is applied between the drain and source (or between the collector and emitter), for example, when the drift layer is the first conductivity type in FIGS. 1 to 10, the body layer of the second conductivity type is used. And a depletion layer spreads in the drift layer of the first conductivity type. On the other hand, in the lower part of the trench type insulated gate electrode, a depletion layer expands from the junction between the semiconductor region for electric field relaxation and the first conductivity type drift layer according to the drain-source (or collector-emitter) voltage, Most of the applied voltage is shared by the electric field relaxation semiconductor region and the first conductivity type drift layer. As a result, the voltage sharing at the bottom of the insulating layer of the gate is reduced, the electric field strength of the insulating layer is relaxed, and high breakdown voltage or high reliability of the semiconductor device can be achieved.

本発明で用いるトレンチの語は溝以外に各種の形の孔、凹所を包含する概念である。   The term “trench” used in the present invention is a concept including various shapes of holes and recesses in addition to grooves.

本発明の他のものでは、トレンチ型絶縁ゲートの底部の絶縁物層の厚さを側面の絶縁物層の厚さより大幅に厚くしている。これにより、高耐圧化あるいは高信頼性が達成できる。また、この場合、前記電界緩和のための半導体領域を設ければ、さらに高い耐圧あるいは高信頼性が達成される。   In another embodiment of the present invention, the thickness of the insulating layer at the bottom of the trench-type insulating gate is significantly larger than the thickness of the insulating layer on the side surface. Thereby, high breakdown voltage or high reliability can be achieved. In this case, if a semiconductor region for reducing the electric field is provided, higher breakdown voltage or higher reliability can be achieved.

本発明の絶縁ゲート半導体装置では、トレンチ型絶縁ゲートの底部に第2の導電型をもつ第1の半導体領域を形成したことにより、従来のトレンチ型絶縁ゲート構造の半導体装置では高電界であったトレンチ型絶縁ゲートの底部の絶縁物層の電界強度が緩和された。その結果半導体装置では耐圧を従来のものに比べて15〜30%程度向上できた。上記の電界強度の緩和によりその絶縁物層の信頼性が向上する。   In the insulated gate semiconductor device of the present invention, the first semiconductor region having the second conductivity type is formed at the bottom of the trench insulated gate, so that the conventional trench insulated gate semiconductor device has a high electric field. The electric field strength of the insulator layer at the bottom of the trench type insulated gate was relaxed. As a result, the breakdown voltage of the semiconductor device can be improved by about 15 to 30% compared to the conventional one. The relaxation of the electric field strength improves the reliability of the insulator layer.

本発明の絶縁ゲート半導体装置では、トレンチ型絶縁ゲートの底部に第2の導電型をもつ第1の半導体領域を形成し、トレンチ型絶縁ゲートの底部の絶縁物層の厚さを側面部の厚さより厚くしたことにより、従来のトレンチ型絶縁ゲート構造の半導体装置では高電界であったトレンチ型絶縁ゲートの底部の絶縁物層の電界強度がさらに、緩和された。その結果半導体装置では耐圧を従来のものに比べて45〜65%程度向上できた。上記の電界強度の緩和によりその絶縁物層の信頼性が向上する。   In the insulated gate semiconductor device of the present invention, the first semiconductor region having the second conductivity type is formed at the bottom of the trench type insulated gate, and the thickness of the insulator layer at the bottom of the trench type insulated gate is set to the thickness of the side surface. By increasing the thickness, the electric field strength of the insulator layer at the bottom of the trench type insulated gate, which was a high electric field in the conventional semiconductor device having the trench type insulated gate structure, was further relaxed. As a result, the breakdown voltage of the semiconductor device can be improved by about 45 to 65% compared to the conventional one. The relaxation of the electric field strength improves the reliability of the insulator layer.

また、本発明の絶縁ゲート半導体装置の半導体基板を、より高い導電率をもつ基板の上に同じ導電型でそれより低い導電率の層を設けた構造とすることにより、第2の電極と半導体基板との接触抵抗を小さくすることができる。このより低い導電率の層を形成したことにより半導体装置の耐圧を高くすることができる。   Further, the semiconductor substrate of the insulated gate semiconductor device of the present invention has a structure in which a layer having the same conductivity type and lower conductivity is provided on a substrate having higher conductivity, whereby the second electrode and the semiconductor are provided. The contact resistance with the substrate can be reduced. By forming this lower conductivity layer, the breakdown voltage of the semiconductor device can be increased.

さらに、本発明の絶縁ゲート半導体装置の第2の半導体領域の導電率を、半導体基板内で第2の導電型をもち半導体基板との間に接合を形成する第2の導電型の半導体層と接合を形成している層の導電率よりも高くすることにより、第1の電極と第2の半導体領域との接触抵抗を小さくすることができ、半導体装置のオン抵抗を低減できる。   Furthermore, the conductivity of the second semiconductor region of the insulated gate semiconductor device of the present invention is determined by using the second conductivity type semiconductor layer having the second conductivity type in the semiconductor substrate and forming a junction with the semiconductor substrate. By making it higher than the conductivity of the layer forming the junction, the contact resistance between the first electrode and the second semiconductor region can be reduced, and the on-resistance of the semiconductor device can be reduced.

また、半導体基板の前記接合をもつ面とは反対側の面に第2の導電型の半導体層を設けた絶縁ゲート半導体装置において、トレンチ型ゲート底部に第2の導電型の第1の半導体領域を形成することにより、従来のトレンチ型絶縁ゲート構造の半導体装置では、高電界であったトレンチ型絶縁ゲートの底部の絶縁物層の電界強度が緩和された。その結果半導体装置では耐圧を従来のものに比べて15〜30%程度向上できる。上記の電界強度の緩和により絶縁物層の信頼性が向上する。   Further, in an insulated gate semiconductor device in which a semiconductor layer of the second conductivity type is provided on a surface opposite to the surface having the junction of the semiconductor substrate, the first semiconductor region of the second conductivity type at the bottom of the trench gate. In the conventional semiconductor device having a trench type insulated gate structure, the electric field strength of the insulator layer at the bottom of the trench type insulated gate, which was a high electric field, was relaxed. As a result, the breakdown voltage of the semiconductor device can be improved by about 15 to 30% compared to the conventional one. The relaxation of the electric field strength improves the reliability of the insulator layer.

また、半導体基板の前記接合をもつ面とは反対側の面に第2の導電型の半導体層を設けた絶縁ゲート半導体装置において、トレンチ型ゲート底部に第2の導電型の第1の半導体領域を形成し、トレンチ型絶縁ゲートの底部の絶縁物層の厚さを側面部の厚さより厚くしたことにより、従来のトレンチ型絶縁ゲート構造の半導体装置では、高電界であったトレンチ型絶縁ゲートの底部の絶縁物層の電界強度が緩和された。その結果半導体装置では耐圧を従来のものに比べて45〜65%程度向上できる。上記の電界強度の緩和により絶縁物層の信頼性が向上する。   Further, in an insulated gate semiconductor device in which a semiconductor layer of the second conductivity type is provided on a surface opposite to the surface having the junction of the semiconductor substrate, the first semiconductor region of the second conductivity type at the bottom of the trench gate. And the thickness of the insulator layer at the bottom of the trench-type insulated gate is made thicker than the thickness of the side surface portion. The electric field strength of the bottom insulator layer was relaxed. As a result, the breakdown voltage of the semiconductor device can be improved by about 45 to 65% compared to the conventional one. The relaxation of the electric field strength improves the reliability of the insulator layer.

さらに、本発明の絶縁ゲート半導体装置の半導体基板内に第2の導電型の第3の半導体領域を選択的に設けることにより、第2の導電型の第1の半導体領域だけを設けた場合よりさらに絶縁ゲート半導体装置のトレンチゲートの底部の絶縁物層側端部の電界強度を緩和することができた。それにより半導体装置の耐圧を従来のものに比べて55〜130%程度向上できた。上記の電界強度の緩和により絶縁物層の信頼性がさらに向上する。   Furthermore, by selectively providing the third semiconductor region of the second conductivity type in the semiconductor substrate of the insulated gate semiconductor device of the present invention, it is possible to provide only the first semiconductor region of the second conductivity type. Furthermore, the electric field strength at the end on the insulator layer side at the bottom of the trench gate of the insulated gate semiconductor device could be reduced. As a result, the breakdown voltage of the semiconductor device can be improved by about 55 to 130% compared to the conventional one. The relaxation of the electric field strength further improves the reliability of the insulator layer.

さらに、第2の電極を第1の電極と同じ方向に設けた横型の半導体装置では、上述の高耐圧化あるいは信頼性の向上が図れるうえに、個々の半導体装置が同じ方向に第2の電極を有するので接続の自由度が増し、高集積化が可能となる。   Further, in the horizontal semiconductor device in which the second electrode is provided in the same direction as the first electrode, the above-described high breakdown voltage or improved reliability can be achieved, and each semiconductor device has the second electrode in the same direction. Therefore, the degree of freedom of connection is increased and high integration is possible.

さらに、第2の導電型の第1の電界緩和半導体領域をトレンチの底部及び底部につながる側部にも形成することにより、トレンチ型絶縁ゲートの底部側端部の電界強度をさらに緩和することができ、耐圧の向上を図ることができる。また、絶縁物層の電界強度緩和により、絶縁物層の信頼性の向上を図ることができる。   Furthermore, by forming the first electric field relaxation semiconductor region of the second conductivity type also on the bottom portion of the trench and the side portion connected to the bottom portion, the electric field strength at the bottom side end portion of the trench type insulated gate can be further relaxed. And withstand voltage can be improved. In addition, the reliability of the insulating layer can be improved by reducing the electric field strength of the insulating layer.

また、絶縁物層の底部の厚さを側面より大幅に厚くすることにより、絶縁物層の底部及び底部と側面との境界部の電界を大幅に緩和することができ、耐圧の向上を図ることができる。また、絶縁物層の電界強度の緩和により、絶縁物層の信頼性の大幅な向上を図ることができる。   In addition, by making the thickness of the bottom of the insulator layer significantly thicker than the side surface, the electric field at the bottom of the insulator layer and the boundary between the bottom and the side surface can be greatly relaxed, and the breakdown voltage can be improved. Can do. In addition, the reliability of the insulator layer can be greatly improved by the relaxation of the electric field strength of the insulator layer.

さらに、第2の導電型の第1の半導体領域を形成することにより、さらなる高耐圧化又は信頼性の向上がはかれる。   Further, by forming the first semiconductor region of the second conductivity type, the breakdown voltage can be further increased or the reliability can be improved.

本発明の絶縁ゲート半導体装置は以下の実施形態をもつものである。すなわち第1の導電型をもつ半導体基板上に、第1の導電型と反対の第2の導電型をもち、前記半導体基板との間に接合を形成する第2の導電型の半導体層を設け、さらに前記半導体層を貫通して前記半導体基板の一部までうがった凹部を設ける。前記凹部の底部において前記半導体基板内に第2の導電型の第1の半導体領域を形成している。さらに前記凹部内表面に絶縁層を形成し、その絶縁層によって前記半導体基板及び前記第2の導電型の半導体層から絶縁したゲートの少なくとも一部を前記凹部内に設ける。さらに前記半導体層の中で前記絶縁層に囲まれた前記ゲートの周囲部の領域において、前記ゲートの周囲部の前記第2の導電型の半導体層の表面から所定の深さまで第1の導電型の第2の半導体領域を形成する。さらに前記第2の導電型の半導体層及び前記第2の半導体領域の上に第1の電極をこれらと導電的に設け、さらに前記半導体基板の他の部分に第2の電極を設けている。   The insulated gate semiconductor device of the present invention has the following embodiments. That is, a second conductivity type semiconductor layer having a second conductivity type opposite to the first conductivity type and forming a junction with the semiconductor substrate is provided on a semiconductor substrate having the first conductivity type. Further, a recess penetrating through the semiconductor layer to a part of the semiconductor substrate is provided. A first semiconductor region of the second conductivity type is formed in the semiconductor substrate at the bottom of the recess. Furthermore, an insulating layer is formed on the inner surface of the recess, and at least a part of the gate insulated from the semiconductor substrate and the semiconductor layer of the second conductivity type by the insulating layer is provided in the recess. Furthermore, in the region around the gate surrounded by the insulating layer in the semiconductor layer, the first conductivity type from the surface of the semiconductor layer of the second conductivity type in the periphery of the gate to a predetermined depth. Forming a second semiconductor region. Further, a first electrode is provided conductively on the second conductive type semiconductor layer and the second semiconductor region, and a second electrode is provided on another portion of the semiconductor substrate.

また、前記半導体基板は、より高い導電率をもつ半導体層の上に同じ導電型でそれより低い導電率の導電体層を設けている。   In the semiconductor substrate, a conductor layer of the same conductivity type and lower conductivity is provided on a semiconductor layer having higher conductivity.

さらに、前記第2の半導体領域は前記半導体基板のうち前記第2の導電型の半導体層と接合を形成している部分よりも導電率が高くなされている。   Further, the second semiconductor region has a higher conductivity than a portion of the semiconductor substrate that forms a junction with the semiconductor layer of the second conductivity type.

さらに、前記基板の前記接合をもつ面とは反対側の面に第2の導電型の層を設けている。   Further, a second conductivity type layer is provided on the surface of the substrate opposite to the surface having the bonding.

さらに、半導体基板内に第3の導電型の第2の半導体領域を前記凹部から隔離して設けている。   Further, a second semiconductor region of the third conductivity type is provided in the semiconductor substrate so as to be isolated from the recess.

さらに、前記基板の前記接合をもつ面とは反対側の面に第2の導電型の層を設け、かつ半導体基板内に第3の導電型の第2の半導体領域を前記凹部から隔離して設けている。   Furthermore, a layer of a second conductivity type is provided on the surface of the substrate opposite to the surface having the junction, and a second semiconductor region of the third conductivity type is isolated from the recess in the semiconductor substrate. Provided.

さらに、第2の電極を半導体基板の上であって前記第1の電極から所定の距離を隔てた位置に設けている。   Further, the second electrode is provided on the semiconductor substrate at a position separated from the first electrode by a predetermined distance.

さらに、半導体基板内に形成される第2の導電型の第1の半導体領域を、前記凹部の底部及び底部につながる側部に設けている。   Furthermore, a first semiconductor region of the second conductivity type formed in the semiconductor substrate is provided on the bottom of the recess and the side connected to the bottom.

本発明の他の絶縁ゲート半導体装置は以下の実施形態をもつものである。すなわち第1の導電型をもつ半導体基板上に、第1の導電型と反対の第2の導電型をもち、前記半導体基板との間に接合を形成する第2の導電型の半導体層を設け、さらに前記半導体層を貫通して前記半導体基板の一部までうがった凹部を設ける。前記凹部内表面に底部の厚さが側面の厚さより厚い絶縁層を形成し、その絶縁層によって前記半導体基板及び前記第2の導電型の半導体層から絶縁したゲートの少なくとも一部を前記凹部内に設ける。さらに前記半導体層の中で前記絶縁層に囲まれた前記ゲートの周囲部の領域において、前記ゲートの周囲部の前記第2の導電型の半導体層の表面から所定の深さまで第1の導電型の第2の半導体領域を形成する。さらに前記第2の導電型の半導体層及び前記第2の半導体領域の上に第1の電極をこれらと導電的に設け、さらに前記半導体基板の他の部分に第2の電極を設けている。   Another insulated gate semiconductor device of the present invention has the following embodiment. That is, a second conductivity type semiconductor layer having a second conductivity type opposite to the first conductivity type and forming a junction with the semiconductor substrate is provided on a semiconductor substrate having the first conductivity type. Further, a recess penetrating through the semiconductor layer to a part of the semiconductor substrate is provided. An insulating layer having a bottom portion thicker than a side surface is formed on the inner surface of the recess, and at least a part of the gate insulated from the semiconductor substrate and the semiconductor layer of the second conductivity type by the insulating layer is formed in the recess. Provided. Furthermore, in the region around the gate surrounded by the insulating layer in the semiconductor layer, the first conductivity type from the surface of the semiconductor layer of the second conductivity type in the periphery of the gate to a predetermined depth. Forming a second semiconductor region. Further, a first electrode is provided conductively on the second conductive type semiconductor layer and the second semiconductor region, and a second electrode is provided on another portion of the semiconductor substrate.

さらに、前記基板の前記接合をもつ面とは反対側の面に第2の導電型の層を設けている。   Further, a second conductivity type layer is provided on the surface of the substrate opposite to the surface having the bonding.

さらに、前記凹部の内表面に形成した絶縁層は、前記凹部の底部絶縁層の厚さが前記凹部の側面の厚さの約5ないし約20倍である。   Further, in the insulating layer formed on the inner surface of the recess, the thickness of the bottom insulating layer of the recess is about 5 to about 20 times the thickness of the side surface of the recess.

さらに、前記凹部の底部に形成した絶縁層の厚さは約0.5ないし約2ミクロンである。本発明において、上記の約5、約20、約0.5、約2などは2割程度の誤差範囲を含むものと解すべきである。   Further, the thickness of the insulating layer formed at the bottom of the recess is about 0.5 to about 2 microns. In the present invention, the above-mentioned about 5, about 20, about 0.5, about 2, etc. should be understood to include an error range of about 20%.

(実施例)
図1ないし図10を参照して、本発明の実施例を説明する。
(Example)
An embodiment of the present invention will be described with reference to FIGS.

<<実施例1>>
図1は、本発明の実施例1である耐圧2500V級nチャネルSiC(炭化珪素)MOSFETの単位セグメントの断面図である。この実施例では、セグメント幅は5μm、奥行きは1mmである。その他の構造諸元は以下のとおりである。n導電型のドリフト層2はn導電型のドレイン層3の上に設け、厚さは約20μmである。n導電型のドレイン層3は厚さ約300μm、p導電型のボディ層4の厚さは4μm、n導電型のソース領域5およびp導電型の電界緩和半導体領域1の接合深さは各0.5μm、凹部すなわちトレンチ69の深さは6μm、トレンチ幅は3μm、トレンチ69内に設けたSiO(酸化珪素)等の絶縁物層9の厚さはトレンチ69底部及びトレンチ69側面で0.1μmである。本実施例では、トレンチ型絶縁ゲート電極14は紙面奥行方面に長いストライプ状である。なおトレンチの平面形状は、例えばこの実施例のように紙面奥行方向に長い長溝状のものの他に、例えば直径3μmの円形孔状や正方形のものなどでもよい。トレンチの配置は、例えば5μmピッチで等間隔に配列する。なお円形のトレンチの場合は縦横に格子状に又は千鳥状に配列すればよい。
<< Example 1 >>
FIG. 1 is a cross-sectional view of a unit segment of a withstand voltage 2500 V class n-channel SiC (silicon carbide) MOSFET that is Embodiment 1 of the present invention. In this embodiment, the segment width is 5 μm and the depth is 1 mm. Other structural specifications are as follows. The n conductivity type drift layer 2 is provided on the n + conductivity type drain layer 3 and has a thickness of about 20 μm. The n + conductivity type drain layer 3 has a thickness of about 300 μm, the p conductivity type body layer 4 has a thickness of 4 μm, and the n + conductivity type source region 5 and the p conductivity type field relaxation semiconductor region 1 have junction depths of 0.5 μm each, the depth of the recess or trench 69 is 6 μm, the width of the trench is 3 μm, and the thickness of the insulating layer 9 such as SiO 2 (silicon oxide) provided in the trench 69 is the bottom of the trench 69 and the side surface of the trench 69. 0.1 μm. In this embodiment, the trench type insulated gate electrode 14 has a long stripe shape in the depth direction of the paper. The planar shape of the trench may be, for example, a circular hole shape having a diameter of 3 μm or a square shape in addition to a long groove shape long in the depth direction of the paper as in this embodiment. For example, the trenches are arranged at equal intervals with a pitch of 5 μm. In the case of circular trenches, they may be arranged in a grid pattern or a zigzag pattern vertically and horizontally.

本実施例の製作方法の具体例は、次のとおりである。最初にドレイン領域として機能する1018から1020atm/cm濃度の、例えば1019atm/cmの濃度のn形SiC(炭化珪素)基板3を用意する。この基板3の一表面上に1015から1016atm/cm濃度、例えば約5×1015atm/cm濃度のSiCのn導電型のドリフト層2を気相成長法等により形成する。次にそのドリフト層2の上に1016atm/cm程度のSiCのp導電型のボディ層4を気相成長法等により形成する。そして、ソース層として、選択的に1018atm/cm程度の濃度のn導電型の領域5を窒素のイオン打ち込み等により形成する(窒素にかえてりん等でも可能。)。 The specific example of the manufacturing method of a present Example is as follows. First, an n + type SiC (silicon carbide) substrate 3 having a concentration of 10 18 to 10 20 atm / cm 3 , for example, a concentration of 10 19 atm / cm 3 , which functions as a drain region, is prepared. An SiC n conductivity type drift layer 2 having a concentration of 10 15 to 10 16 atm / cm 3 , for example, about 5 × 10 15 atm / cm 3, is formed on one surface of the substrate 3 by vapor phase epitaxy or the like. . Next, a SiC p-conductivity type body layer 4 of about 10 16 atm / cm 3 is formed on the drift layer 2 by vapor phase epitaxy or the like. Then, an n + conductivity type region 5 having a concentration of about 10 18 atm / cm 3 is selectively formed as a source layer by nitrogen ion implantation or the like (phosphorus or the like can be used instead of nitrogen).

次に、図1のように基板3、ドリフト層2及びボディ層4からなる広義の基板を異方性エッチングして、p導電型のボディ層4を貫通し底部がn導電型のドリフト層2に達するトレンチ(溝)69を形成する。その底に深さ0.5μm、1017atm/cm程度のp導電型の電界緩和半導体領域1をホウ素(又はアルミニウム等でも可)のイオン打ち込み等により形成する。続いて、トレンチ69の内表面にSiOのゲート絶縁膜9を形成した後、トレンチ69内にりんを高濃度に含んだゲート領域としてのポリシリコンを堆積しトレンチ69を埋め込んでゲート領域14を作る。トレンチ69の寸法の1例は、深さ6μm、幅3μm、長さ1mmである。ここに示した寸法は1例であって、必要に応じて他の寸法も用いる。トレンチ69内のポリシリコンを残し、それ以外の場所(基板表面等)の残りのポリシリコンを除去することにより、トレンチ型絶縁ゲート電極14が形成される。最後に、アルミニウム(他にニッケル等も用いうる)で表面にソース電極11、裏面にドレイン電極10を形成し、絶縁ゲート半導体装置(MOSFET)を完成する。このMOSFETのオン抵抗は、約30mΩ・cmであった。 Next, the substrate 3 as shown in FIG. 1, with a broad substrate made drift layer 2 and the body layer 4 is anisotropically etched bottom through the body layer 4 of the p conductivity type the n - conductivity type drift layer A trench (groove) 69 reaching 2 is formed. A p conductivity type field relaxation semiconductor region 1 having a depth of about 0.5 μm and about 10 17 atm / cm 3 is formed on the bottom by ion implantation of boron (or aluminum or the like). Subsequently, after forming a gate insulating film 9 of SiO 2 on the inner surface of the trench 69, polysilicon as a gate region containing phosphorus at a high concentration is deposited in the trench 69, and the trench 69 is buried to fill the gate region 14. create. One example of the dimensions of the trench 69 is a depth of 6 μm, a width of 3 μm, and a length of 1 mm. The dimensions shown here are examples, and other dimensions are used as necessary. The trench-type insulated gate electrode 14 is formed by leaving the polysilicon in the trench 69 and removing the remaining polysilicon at other locations (such as the substrate surface). Finally, the source electrode 11 is formed on the front surface and the drain electrode 10 is formed on the rear surface with aluminum (other nickel may be used) to complete an insulated gate semiconductor device (MOSFET). The on-resistance of this MOSFET was about 30 mΩ · cm 2 .

本実施例はnチャネルSiC MOSFETであり、この装置ではドレイン電極10の電位がソース電極11の電位より高く、かつゲート電極であるトレンチ型絶縁ゲート電極14の電位がソース電極11の電位よりも高くなるようにゲート電圧を印加する。このゲート電圧がしきい値電圧を超えた場合、トレンチ型絶縁ゲート電極14の側面のp導電型のボディ層4の表面にn導電型のチャネルが形成される。それにより電子がn導電型のソース領域5からそのチャネルを介してn導電型のドリフト層2、さらにn導電型のドレイン層3に流れ込み半導体装置がオンとなる。また、ゲート電極であるトレンチ型絶縁ゲート電極14の電位がソース電極11の電位以下になるようにゲート電圧を印加し、かつドレイン電極10の電位がソース電極11の電位より高くなるように電圧を印加した場合、n導電型のドリフト層2とp導電型のボディ層4の接合24の両側に空乏層が拡がる。この空乏層により電界強度を緩和し、印加電圧に耐える耐電圧性が生じる。 This embodiment is an n-channel SiC MOSFET. In this device, the potential of the drain electrode 10 is higher than the potential of the source electrode 11, and the potential of the trench type insulated gate electrode 14, which is the gate electrode, is higher than the potential of the source electrode 11. A gate voltage is applied so that When this gate voltage exceeds the threshold voltage, an n conductivity type channel is formed on the surface of the p conductivity type body layer 4 on the side surface of the trench type insulated gate electrode 14. As a result, electrons flow from the n + conductivity type source region 5 through the channel into the n conductivity type drift layer 2 and further into the n + conductivity type drain layer 3 to turn on the semiconductor device. Further, a gate voltage is applied so that the potential of the trench-type insulated gate electrode 14 that is a gate electrode is equal to or lower than the potential of the source electrode 11, and the voltage is set so that the potential of the drain electrode 10 is higher than the potential of the source electrode 11. When applied, a depletion layer spreads on both sides of the junction 24 between the n conductivity type drift layer 2 and the p conductivity type body layer 4. With this depletion layer, the electric field strength is relaxed, and withstand voltage withstanding the applied voltage is generated.

本実施例では、上記の接合24の両側に拡がる空乏層以外に、トレンチ型絶縁ゲート電極14の下部のp導電型の電界緩和半導体領域1とn導電型のドリフト層2との接合からもドレイン−ソース間電圧に応じてそれぞれの層に空乏層が拡がり、印加電圧に耐える耐電圧性が生じる。したがって、トレンチ型絶縁ゲート電極14の下部では、印加電圧の大部分が上記電界緩和半導体領域1とn導電型のドリフト層2により分担される。このためにゲート底部における絶縁物層9の電圧分担が小さくなり、その絶縁物層9の電界強度が緩和される。これにより、ゲート絶縁物層9の電界強度が緩和され耐電圧の向上を図ることができるとともに、ゲート絶縁物層9の信頼性が向上する。 In this embodiment, in addition to the depletion layer extending on both sides of the junction 24, the junction between the p-conduction type field relaxation semiconductor region 1 and the n conductivity type drift layer 2 below the trench-type insulated gate electrode 14 is also used. A depletion layer spreads in each layer in accordance with the drain-source voltage, and a withstand voltage that can withstand the applied voltage is generated. Therefore, most of the applied voltage is shared by the electric field relaxation semiconductor region 1 and the n conductivity type drift layer 2 below the trench type insulated gate electrode 14. For this reason, the voltage sharing of the insulator layer 9 at the bottom of the gate is reduced, and the electric field strength of the insulator layer 9 is relaxed. Thereby, the electric field strength of the gate insulator layer 9 can be relaxed and the withstand voltage can be improved, and the reliability of the gate insulator layer 9 is improved.

計算による予測では、図11のような従来のトレンチ型絶縁ゲートMOSFETの場合には、トレンチ型絶縁ゲート電極14とソース電極11を短絡し、ソース電極11を0Vとしドレイン電極10に+2000Vを印加した場合、トレンチ型絶縁ゲート底部のSi0絶縁物層9の電界強度は、Si0の破壊電界強度である6〜10MV/cmに近い値となり、半導体装置の耐圧はSiO絶縁膜の耐圧で決まり2000Vであった。これに対して、本実施例のMOSFETのようにトレンチ型絶縁ゲート14の下部に電界緩和半導体領域1を形成したものでは、トレンチ型絶縁ゲート底部側端部のSi0絶縁物層9の電界強度は、従来のものに比べて15〜30%減少する。その結果、半導体装置の耐圧は2300Vから2600Vに向上した。従来のようにトレンチ型絶縁ゲート14の下部に電界緩和半導体領域1を形成しなかったものでは、ドレイン電極10に印加した電圧はn導電型のドリフト層2とトレンチ型絶縁ゲート14の底部の絶縁物層9により分担され、絶縁物層9の電圧分担が大きくなり、それに応じて電界強度も大きくなり、絶縁物層の耐圧で半導体装置の耐圧も決まっていた。しかし、本実施例のようにトレンチ型絶縁ゲート14の下部に電界緩和半導体領域1を形成すると、電界緩和半導体領域1、n導電型のドリフト層2およびトレンチ型絶縁ゲート底部絶縁物層9により電圧が分担される。特に電界緩和半導体領域1とn導電型のドリフト層2の接合近傍でドレイン−ソース間印加電圧の大部分を分担する。それにより、トレンチ型絶縁ゲート14の底部の絶縁物層9の電圧分担が小さくなり、それに応じてその層9の電界強度も小さくなる。耐圧が高い素子の場合には、トレンチ型絶縁ゲート14の底部の絶縁物層9の電界強度が特に高くなるので、トレンチ型絶縁ゲート14の下部に電界緩和半導体領域1を形成した効果は顕著になる。 In the prediction by calculation, in the case of the conventional trench type insulated gate MOSFET as shown in FIG. 11, the trench type insulated gate electrode 14 and the source electrode 11 are short-circuited, the source electrode 11 is set to 0V, and + 2000V is applied to the drain electrode 10. If the field intensity of the Si0 2 insulator layer 9 of the trench type insulated gate bottom becomes a value close to 6~10MV / cm is breakdown field strength of Si0 2, the breakdown voltage of the semiconductor device is determined by the breakdown voltage of the SiO 2 insulating film It was 2000V. On the other hand, in the case where the electric field relaxation semiconductor region 1 is formed below the trench type insulating gate 14 as in the MOSFET of the present embodiment, the electric field strength of the SiO 2 insulator layer 9 at the end on the bottom side of the trench type insulating gate. Is reduced by 15 to 30% compared to the conventional one. As a result, the breakdown voltage of the semiconductor device was improved from 2300V to 2600V. In the case where the electric field relaxation semiconductor region 1 is not formed below the trench type insulating gate 14 as in the prior art, the voltage applied to the drain electrode 10 is applied to the bottom of the n conductivity type drift layer 2 and the trench type insulating gate 14. The voltage sharing of the insulating layer 9 is increased by the insulating layer 9, and the electric field strength is increased accordingly. The breakdown voltage of the semiconductor device is determined by the breakdown voltage of the insulating layer. However, when the electric field relaxation semiconductor region 1 is formed below the trench type insulating gate 14 as in the present embodiment, the electric field relaxation semiconductor region 1, the n conductivity type drift layer 2 and the trench type insulating gate bottom insulator layer 9 are used. Voltage is shared. In particular, most of the applied voltage between the drain and the source is shared near the junction between the electric field relaxation semiconductor region 1 and the n conductivity type drift layer 2. As a result, the voltage sharing of the insulator layer 9 at the bottom of the trench-type insulated gate 14 is reduced, and the electric field strength of the layer 9 is accordingly reduced. In the case of an element having a high breakdown voltage, the electric field strength of the insulator layer 9 at the bottom of the trench type insulating gate 14 is particularly high, and thus the effect of forming the electric field relaxation semiconductor region 1 below the trench type insulating gate 14 is remarkable. Become.

<<実施例2>>
図2は、本発明の実施例2のnチャネルSiC IGBTのセグメントの断面図である。その構造は実施例1のn導電型のドレイン層3の代わりにp導電型のコレクタ層6を形成したものである。実施例2の構造諸元および製作方法は、実施例1のSiC−n導電型基板の代わりにSiC−p導電型基板を用いる点が異なるだけであり、後の製作工程は実施例1の場合と同様である。なお、p導電型基板の不純物濃度は、1018〜1019atm/cmである。
<< Example 2 >>
FIG. 2 is a cross-sectional view of an n-channel SiC IGBT segment according to the second embodiment of the present invention. The structure is such that a collector layer 6 of p conductivity type is formed instead of the drain layer 3 of n + conductivity type of the first embodiment. The structural specifications and manufacturing method of Example 2 differ only in that SiC-p + conductivity type substrate is used instead of the SiC-n + conductivity type substrate of Example 1, and the subsequent manufacturing process is the same as in Example 1. It is the same as the case of. The impurity concentration of the p + conductivity type substrate is 10 18 to 10 19 atm / cm 3 .

本実施例のnチャネルIGBTの動作において、先ずコレクタ電極12の電位がエミッタ電極13の電位より高く、かつゲート電極であるトレンチ型絶縁ゲート電極14の電位がエミッタ電極13の電位よりも高くなるようにゲート電圧を印加する。このゲート電圧がしきい値電圧を超えると、トレンチ型絶縁ゲート電極14の側面のp導電型のボディ層4の表面にn導電型のチャネルが形成され、n導電型のエミッタ領域7からそのチャネルを介して電子がn導電型のドリフト層2に流れ込む。これによってp導電型のコレクタ層6からはn導電型のドリフト層2に正孔が注入されオンとなる。この時、n導電型のドリフト層2で電導率変調が起こるため、MOSFETでは非常に高かったオン抵抗が、IGBTでは大幅に低くなる。本実施例の場合、200A/cmの電流でオン電圧は1.5Vであり、オン抵抗は7.5mΩ・cmであった。また、ゲート電極であるトレンチ型絶縁ゲート電極14の電位がエミッタ電極13の電位以下になるようにゲート電圧を印加し、かつコレクタ電極12の電位がエミッタ電極13の電位より高くなるように電圧を印加した場合、n導電型のドリフト層2とp導電型のボディ層4の接合24の両側に空乏層が拡がって電界強度を緩和し、印加電圧に耐える耐電圧性が生じる。本実施例では、この空乏層で電圧を分担する以外に、トレンチ型絶縁ゲート電極14の下部でも、コレクタ−エミッタ間電圧に応じて電界緩和半導体領域1とn導電型のドリフト層2との接合からそれぞれの層に空乏層が拡がって耐電圧性が生じる。したがってトレンチ型絶縁ゲート電極14の下部では、印加電圧の大部分が上記電界緩和半導体領域1とn導電型のドリフト層2により分担される。それ故、ゲート絶縁物層9の電圧分担が小さくなり絶縁物層9の電界強度が緩和される。これにより、ゲート絶縁物層9の信頼性が向上する。また、ゲート絶縁物層9の電界強度が緩和され耐圧の向上を図ることが可能である。本実施例の場合においても、前述のMOSFETの場合と同様にトレンチ型絶縁ゲート14の底部側面部の絶縁物層9の電界強度は、電界緩和半導体領域1を形成しない従来の構造のIGBTに比べ、15〜30%程度緩和される。したがって、本実施例においても、ゲート絶縁物層9の電界強度が緩和されたことにより耐圧の向上を図れるとともにゲート絶縁物層9の信頼性が向上する。例えば実施例によれば耐圧が2300Vから2600Vに改善できた。 In the operation of the n-channel IGBT of the present embodiment, first, the potential of the collector electrode 12 is higher than the potential of the emitter electrode 13, and the potential of the trench type insulated gate electrode 14 as the gate electrode is higher than the potential of the emitter electrode 13. A gate voltage is applied to. When the gate voltage exceeds the threshold voltage, an n-conducting channel is formed on the surface of the p-conducting body layer 4 on the side surface of the trench-type insulated gate electrode 14, and the n + -conducting emitter region 7 Electrons flow into the n conductivity type drift layer 2 through the channel. As a result, holes are injected from the p conductivity type collector layer 6 into the n conductivity type drift layer 2 and turned on. At this time, since conductivity modulation occurs in the n conductivity type drift layer 2, the on-resistance, which was very high in the MOSFET, is significantly reduced in the IGBT. In this example, the ON voltage was 1.5 V at a current of 200 A / cm 2 , and the ON resistance was 7.5 mΩ · cm 2 . Further, the gate voltage is applied so that the potential of the trench-type insulated gate electrode 14 as the gate electrode is lower than the potential of the emitter electrode 13, and the voltage is set so that the potential of the collector electrode 12 is higher than the potential of the emitter electrode 13. When it is applied, a depletion layer spreads on both sides of the junction 24 of the n conductivity type drift layer 2 and the p conductivity type body layer 4 to relax the electric field strength, resulting in a withstand voltage that can withstand the applied voltage. In the present embodiment, in addition to the voltage sharing by the depletion layer, the electric field relaxation semiconductor region 1 and the n conductivity type drift layer 2 are also formed below the trench type insulated gate electrode 14 according to the collector-emitter voltage. A depletion layer spreads from the junction to each layer, resulting in a withstand voltage. Therefore, most of the applied voltage is shared by the electric field relaxation semiconductor region 1 and the n conductivity type drift layer 2 below the trench type insulated gate electrode 14. Therefore, the voltage sharing of the gate insulator layer 9 is reduced, and the electric field strength of the insulator layer 9 is relaxed. Thereby, the reliability of the gate insulator layer 9 is improved. In addition, the electric field strength of the gate insulator layer 9 is relaxed, and the breakdown voltage can be improved. Also in the case of the present embodiment, the electric field strength of the insulator layer 9 on the bottom side surface portion of the trench type insulated gate 14 is similar to that of the IGBT having the conventional structure in which the electric field relaxation semiconductor region 1 is not formed as in the case of the MOSFET described above. It is relaxed by about 15 to 30%. Therefore, also in this embodiment, the withstand voltage can be improved and the reliability of the gate insulator layer 9 is improved by reducing the electric field strength of the gate insulator layer 9. For example, according to the embodiment, the breakdown voltage can be improved from 2300V to 2600V.

<<実施例3>>
図3は、本発明の実施例3である耐圧2500V級nチャネルSiC(炭化珪素)MOSFETの単位セグメントの断面図である。この実施例では、セグメント幅は5μm、奥行きは1mmである。その他の構造諸元は以下のとおりである。n導電型のドリフト層2はn導電型のドレイン層3の上に設け、厚さは約20μmである。n導電型のドレイン層3は厚さ約300μm、p導電型のボディ層4の厚さは4μm、n導電型のソース領域5およびp導電型の電界緩和半導体領域1の接合深さは各0.5μm、凹部すなわちトレンチ69の深さは6μm、トレンチ幅は3μm、トレンチ69内に設けたSiO(酸化珪素)等の絶縁物層9の厚さはトレンチ69底部で0.5μmトレンチ69側面で0.1μmである。本実施例では、トレンチ型絶縁ゲート電極14は紙面奥行方面に長いストライプ状である。なおトレンチの平面形状は、例えばこの実施例のように紙面奥行方向に長い長溝状のものの他に、例えば直径3μmの円形孔状や正方形のものなどでもよい。トレンチの配置は、例えば5μmピッチで等間隔に配列する。なお円形のトレンチの場合は縦横に格子状に又は千鳥状に配列すればよい。
<< Example 3 >>
FIG. 3 is a cross-sectional view of a unit segment of a withstand voltage 2500 V class n-channel SiC (silicon carbide) MOSFET that is Embodiment 3 of the present invention. In this embodiment, the segment width is 5 μm and the depth is 1 mm. Other structural specifications are as follows. The n conductivity type drift layer 2 is provided on the n + conductivity type drain layer 3 and has a thickness of about 20 μm. The n + conductivity type drain layer 3 has a thickness of about 300 μm, the p conductivity type body layer 4 has a thickness of 4 μm, and the n + conductivity type source region 5 and the p conductivity type electric field relaxation semiconductor region 1 have junction depths of 0.5 μm each, the depth of the recess or trench 69 is 6 μm, the trench width is 3 μm, and the thickness of the insulating layer 9 such as SiO 2 (silicon oxide) provided in the trench 69 is 0.5 μm at the bottom of the trench 69. It is 0.1 μm on the 69 side surfaces. In this embodiment, the trench type insulated gate electrode 14 has a long stripe shape in the depth direction of the paper. The planar shape of the trench may be, for example, a circular hole shape having a diameter of 3 μm or a square shape in addition to a long groove shape long in the paper depth direction as in this embodiment. For example, the trenches are arranged at equal intervals with a pitch of 5 μm. In the case of circular trenches, they may be arranged vertically or horizontally in a grid pattern or in a staggered pattern.

本実施例の製作方法の具体例は、次のとおりである。最初にドレイン領域として機能する1018から1020atm/cm濃度の、例えば1019atm/cmの濃度のn形SiC(炭化珪素)基板3を用意する。この基板3の一表面上に1015から1016atm/cm濃度、例えば約5×1015atm/cm濃度のSiCのn導電型のドリフト層2を気相成長法等により形成する。次にそのドリフト層2の上に1016atm/cm程度のSiCのp導電型のボディ層4を気相成長法等により形成する。そして、ソース層として、選択的に1018atm/cm程度の濃度のn導電型の領域5を窒素のイオン打ち込み等により形成する(窒素にかえてりん等でも可能。)。 The specific example of the manufacturing method of a present Example is as follows. First, an n + type SiC (silicon carbide) substrate 3 having a concentration of 10 18 to 10 20 atm / cm 3 , for example, a concentration of 10 19 atm / cm 3 , which functions as a drain region, is prepared. An SiC n conductivity type drift layer 2 having a concentration of 10 15 to 10 16 atm / cm 3 , for example, about 5 × 10 15 atm / cm 3, is formed on one surface of the substrate 3 by vapor phase epitaxy or the like. . Next, a SiC p-conductivity type body layer 4 of about 10 16 atm / cm 3 is formed on the drift layer 2 by vapor phase epitaxy or the like. Then, an n + conductivity type region 5 having a concentration of about 10 18 atm / cm 3 is selectively formed as a source layer by nitrogen ion implantation or the like (phosphorus or the like can be used instead of nitrogen).

次に、図3のように基板3、ドリフト層2及びボディ層4からなる広義の基板を異方性エッチングして、p導電型のボディ層4を貫通し底部がn導電型のドリフト層2に達するトレンチ(溝)69を形成する。その底に深さ0.5μm、1017atm/cm程度のp導電型の電界緩和半導体領域1をホウ素(又はアルミニウム等でも可)のイオン打ち込み等により形成する。続いて、トレンチ69の内表面にSiOのゲート絶縁膜9を形成した後、トレンチ69内にりんを高濃度に含んだゲート領域としてのポリシリコンを堆積しトレンチ69を埋め込んでゲート領域14を作る。トレンチ69の寸法の1例は、深さ6μm、幅3μm、長さ1mmである。ここに示した寸法は1例であって、必要に応じて他の寸法も用いる。トレンチ69内のポリシリコンを残し、それ以外の場所(基板表面等)の残りのポリシリコンを除去することにより、トレンチ型絶縁ゲート電極14が形成される。最後に、アルミニウム(他にニッケル等も用いうる)で表面にソース電極11、裏面にドレイン電極10を形成し、絶縁ゲート半導体装置(MOSFET)を完成する。このMOSFETのオン抵抗は、約30mΩ・cmであった。 Next, the substrate 3 as shown in FIG. 3, with a broad substrate made drift layer 2 and the body layer 4 is anisotropically etched bottom through the body layer 4 of the p conductivity type the n - conductivity type drift layer A trench (groove) 69 reaching 2 is formed. A p conductivity type field relaxation semiconductor region 1 having a depth of about 0.5 μm and about 10 17 atm / cm 3 is formed on the bottom by ion implantation of boron (or aluminum or the like). Subsequently, after forming a gate insulating film 9 of SiO 2 on the inner surface of the trench 69, polysilicon as a gate region containing phosphorus at a high concentration is deposited in the trench 69, and the trench 69 is buried to fill the gate region 14. create. One example of the dimensions of the trench 69 is a depth of 6 μm, a width of 3 μm, and a length of 1 mm. The dimensions shown here are examples, and other dimensions are used as necessary. The trench-type insulated gate electrode 14 is formed by leaving the polysilicon in the trench 69 and removing the remaining polysilicon at other locations (such as the substrate surface). Finally, the source electrode 11 is formed on the front surface and the drain electrode 10 is formed on the rear surface with aluminum (other nickel may be used) to complete an insulated gate semiconductor device (MOSFET). The on-resistance of this MOSFET was about 30 mΩ · cm 2 .

本実施例はnチャネルSiC MOSFETであり、この装置ではドレイン電極10の電位がソース電極11の電位より高く、かつゲート電極であるトレンチ型絶縁ゲート電極14の電位がソース電極11の電位よりも高くなるようにゲート電圧を印加する。このゲート電圧がしきい値電圧を超えた場合、トレンチ型絶縁ゲート電極14の側面のp導電型のボディ層4の表面にn導電型のチャネルが形成される。それにより電子がn導電型のソース領域5からそのチャネルを介してn導電型のドリフト層2、さらにn導電型のドレイン層3に流れ込み半導体装置がオンとなる。また、ゲート電極であるトレンチ型絶縁ゲート電極14の電位がソース電極11の電位以下になるようにゲート電圧を印加し、かつドレイン電極10の電位がソース電極11の電位より高くなるように電圧を印加した場合、n導電型のドリフト層2とp導電型のボディ層4の接合24の両側に空乏層が拡がる。この空乏層により電界強度を緩和し、印加電圧に耐える耐電圧性が生じる。 This embodiment is an n-channel SiC MOSFET. In this device, the potential of the drain electrode 10 is higher than the potential of the source electrode 11, and the potential of the trench type insulated gate electrode 14, which is the gate electrode, is higher than the potential of the source electrode 11. A gate voltage is applied so that When this gate voltage exceeds the threshold voltage, an n conductivity type channel is formed on the surface of the p conductivity type body layer 4 on the side surface of the trench type insulated gate electrode 14. As a result, electrons flow from the n + conductivity type source region 5 through the channel into the n conductivity type drift layer 2 and further into the n + conductivity type drain layer 3 to turn on the semiconductor device. Further, a gate voltage is applied so that the potential of the trench-type insulated gate electrode 14 that is a gate electrode is equal to or lower than the potential of the source electrode 11, and the voltage is set so that the potential of the drain electrode 10 is higher than the potential of the source electrode 11. When applied, a depletion layer spreads on both sides of the junction 24 between the n conductivity type drift layer 2 and the p conductivity type body layer 4. With this depletion layer, the electric field strength is relaxed, and withstand voltage withstanding the applied voltage is generated.

本実施例では、上記の接合24の両側に拡がる空乏層以外に、トレンチ型絶縁ゲート電極14の下部のp導電型の電界緩和半導体領域1とn導電型のドリフト層2との接合からもドレイン−ソース間電圧に応じてそれぞれの層に空乏層が拡がり、印加電圧に耐える耐電圧性が生じる。したがって、トレンチ型絶縁ゲート電極14の下部では、印加電圧の大部分が上記電界緩和半導体領域1とn導電型のドリフト層2により分担される。このためにゲート底部における絶縁物層9の電圧分担が小さくなり、その絶縁物層9の電界強度が緩和される。これにより、ゲート絶縁物層9の電界強度が緩和され耐電圧の向上を図ることができるとともに、ゲート絶縁物層9の信頼性が向上する。 In this embodiment, in addition to the depletion layer extending on both sides of the junction 24, the junction between the p-conduction type field relaxation semiconductor region 1 and the n conductivity type drift layer 2 below the trench-type insulated gate electrode 14 is also used. A depletion layer spreads in each layer in accordance with the drain-source voltage, and a withstand voltage that can withstand the applied voltage is generated. Therefore, most of the applied voltage is shared by the electric field relaxation semiconductor region 1 and the n conductivity type drift layer 2 below the trench type insulated gate electrode 14. For this reason, the voltage sharing of the insulator layer 9 at the bottom of the gate is reduced, and the electric field strength of the insulator layer 9 is relaxed. Thereby, the electric field strength of the gate insulator layer 9 can be relaxed and the withstand voltage can be improved, and the reliability of the gate insulator layer 9 is improved.

計算による予測では、図11のような従来のトレンチ型絶縁ゲートMOSFETの場合には、トレンチ型絶縁ゲート電極14とソース電極11を短絡し、ソース電極11を0Vとしドレイン電極10に+2000Vを印加した場合、トレンチ型絶縁ゲート底部のSi0絶縁物層9の電界強度は、Si0の破壊電界強度である6〜10MV/cmに近い値となった。これに対して、本実施例のMOSFETのようにトレンチ型絶縁ゲート14の下部に電界緩和半導体領域1を形成し絶縁物層9の底部の厚みを側面の厚みより厚い0.5μmとした本実施例の場合では、トレンチ型絶縁ゲート底部側端部のSi0絶縁物層9の電界強度は、従来のものに比べて45〜65%減少する。その結果、半導体装置の耐圧は2900Vから3250Vに向上した。従来のようにトレンチ型絶縁ゲート14の下部に電界緩和半導体領域1を形成しなかったものでは、ドレイン電極10に印加した電圧はn導電型のドリフト層2とトレンチ型絶縁ゲート14の底部の絶縁物層9により分担され、絶縁物層9の電圧分担が大きくなり、それに応じて電界強度も大きくなっていた。しかし、本実施例のようにトレンチ型絶縁ゲート14の下部に電界緩和半導体領域1を形成すると、電界緩和半導体領域1、n導電型のドリフト層2およびトレンチ型絶縁ゲート底部絶縁物層9により電圧が分担される。特に電界緩和半導体領域1とn導電型のドリフト層2の接合近傍でドレイン−ソース間印加電圧の大部分を分担する。それにより、トレンチ型絶縁ゲート14の底部の絶縁物層9の電圧分担が小さくなり、それに応じてその層9の電界強度も小さくなる。耐圧が高い素子の場合には、トレンチ型絶縁ゲート14の底部の絶縁物層9の電界強度が特に高くなるので、トレンチ型絶縁ゲート14の下部に電界緩和半導体領域1を形成した効果は顕著になる。 In the prediction by calculation, in the case of the conventional trench type insulated gate MOSFET as shown in FIG. 11, the trench type insulated gate electrode 14 and the source electrode 11 are short-circuited, the source electrode 11 is set to 0V, and + 2000V is applied to the drain electrode 10. If the field intensity of the Si0 2 insulator layer 9 of the trench type insulated gate bottom has a value close to 6~10MV / cm is breakdown field strength of Si0 2. On the other hand, as in the MOSFET of this embodiment, the electric field relaxation semiconductor region 1 is formed below the trench type insulating gate 14, and the thickness of the bottom portion of the insulator layer 9 is 0.5 μm thicker than the thickness of the side surface. in the example, the electric field strength of the Si0 2 insulator layer 9 of the trench type insulated gate bottom end is reduced from 45 to 65% as compared with the prior art. As a result, the breakdown voltage of the semiconductor device was improved from 2900V to 3250V. In the case where the electric field relaxation semiconductor region 1 is not formed below the trench type insulating gate 14 as in the prior art, the voltage applied to the drain electrode 10 is applied to the bottom of the n conductivity type drift layer 2 and the trench type insulating gate 14. The voltage is shared by the insulating layer 9, and the voltage sharing of the insulating layer 9 increases, and the electric field strength increases accordingly. However, when the electric field relaxation semiconductor region 1 is formed below the trench type insulating gate 14 as in the present embodiment, the electric field relaxation semiconductor region 1, the n conductivity type drift layer 2 and the trench type insulating gate bottom insulator layer 9 are used. Voltage is shared. In particular, most of the applied voltage between the drain and the source is shared near the junction between the electric field relaxation semiconductor region 1 and the n conductivity type drift layer 2. As a result, the voltage sharing of the insulator layer 9 at the bottom of the trench-type insulated gate 14 is reduced, and the electric field strength of the layer 9 is accordingly reduced. In the case of an element having a high breakdown voltage, the electric field strength of the insulator layer 9 at the bottom of the trench type insulating gate 14 is particularly high, and thus the effect of forming the electric field relaxation semiconductor region 1 below the trench type insulating gate 14 is remarkable. Become.

<<実施例4>>
図4は、本発明の実施例4のnチャネルSiC IGBTのセグメントの断面図である。その構造は実施例1のn導電型のドレイン層3の代わりにp導電型のコレクタ層6を形成したものである。実施例2の構造諸元および製作方法は、実施例1のSiC−n導電型基板の代わりにSiC−p導電型基板を用いる点が異なるだけであり、後の製作工程は実施例1の場合と同様である。なお、p導電型基板の不純物濃度は、1018〜1019atm/cmである。
<< Example 4 >>
FIG. 4 is a cross-sectional view of an n-channel SiC IGBT segment according to the fourth embodiment of the present invention. The structure is such that a collector layer 6 of p conductivity type is formed instead of the drain layer 3 of n + conductivity type of the first embodiment. The structural specifications and manufacturing method of Example 2 differ only in that SiC-p + conductivity type substrate is used instead of the SiC-n + conductivity type substrate of Example 1, and the subsequent manufacturing process is the same as in Example 1. It is the same as the case of. The impurity concentration of the p + conductivity type substrate is 10 18 to 10 19 atm / cm 3 .

本実施例のnチャネルIGBTの動作において、先ずコレクタ電極12の電位がエミッタ電極13の電位より高く、かつゲート電極であるトレンチ型絶縁ゲート電極14の電位がエミッタ電極13の電位よりも高くなるようにゲート電圧を印加する。このゲート電圧がしきい値電圧を超えると、トレンチ型絶縁ゲート電極14の側面のp導電型のボディ層4の表面にn導電型のチャネルが形成され、n導電型のエミッタ領域7からそのチャネルを介して電子がn導電型のドリフト層2に流れ込む。これによってp導電型のコレクタ層6からはn導電型のドリフト層2に正孔が注入されオンとなる。この時、n導電型のドリフト層2で電導率変調が起こるため、MOSFETでは非常に高かったオン抵抗が、IGBTでは大幅に低くなる。本実施例の場合、200A/cmの電流でオン電圧は1.5Vであり、オン抵抗は7.5mΩ・cmであった。また、ゲート電極であるトレンチ型絶縁ゲート電極14の電位がエミッタ電極13の電位以下になるようにゲート電圧を印加し、かつコレクタ電極12の電位がエミッタ電極13の電位より高くなるように電圧を印加した場合、n導電型のドリフト層2とp導電型のボディ層4の接合24の両側に空乏層が拡がって電界強度を緩和し、印加電圧に耐える耐電圧性が生じる。本実施例では、この空乏層で電圧を分担する以外に、トレンチ型絶縁ゲート電極14の下部でも、コレクタ−エミッタ間電圧に応じて電界緩和半導体領域1とn導電型のドリフト層2との接合からそれぞれの層に空乏層が拡がって耐電圧性が生じる。したがってトレンチ型絶縁ゲート電極14の下部では、印加電圧の大部分が上記電界緩和半導体領域1とn導電型のドリフト層2により分担される。それ故、ゲート絶縁物層9の電圧分担が小さくなり絶縁物層9の電界強度が緩和される。これにより、ゲート絶縁物層9の信頼性が向上する。また、ゲート絶縁物層9の電界強度が緩和され耐圧の向上を図ることが可能である。本実施例の場合においても、前述のMOSFETの場合と同様にトレンチ型絶縁ゲート14の底部側面部の絶縁物層9の電界強度は、電界緩和半導体領域1を形成しない従来の構造のIGBTに比べ、45〜65%程度緩和される。したがって、本実施例においても、ゲート絶縁物層9の電界強度が緩和されたことにより耐圧の向上を図れるとともにゲート絶縁物層9の信頼性が向上する。例えば実施例によれば耐圧が2900Vから3250Vに改善できた。 In the operation of the n-channel IGBT of the present embodiment, first, the potential of the collector electrode 12 is higher than the potential of the emitter electrode 13, and the potential of the trench type insulated gate electrode 14 as the gate electrode is higher than the potential of the emitter electrode 13. A gate voltage is applied to. When the gate voltage exceeds the threshold voltage, an n-conducting channel is formed on the surface of the p-conducting body layer 4 on the side surface of the trench-type insulated gate electrode 14, and the n + -conducting emitter region 7 Electrons flow into the n conductivity type drift layer 2 through the channel. As a result, holes are injected from the p conductivity type collector layer 6 into the n conductivity type drift layer 2 and turned on. At this time, since conductivity modulation occurs in the n conductivity type drift layer 2, the on-resistance, which was very high in the MOSFET, is significantly reduced in the IGBT. In this example, the on-state voltage was 1.5 V at a current of 200 A / cm 2 , and the on-resistance was 7.5 mΩ · cm 2 . Further, the gate voltage is applied so that the potential of the trench-type insulated gate electrode 14 as the gate electrode is lower than the potential of the emitter electrode 13, and the voltage is set so that the potential of the collector electrode 12 is higher than the potential of the emitter electrode 13. When applied, a depletion layer spreads on both sides of the junction 24 of the n conductivity type drift layer 2 and the p conductivity type body layer 4 to relax the electric field strength, resulting in a voltage resistance that can withstand the applied voltage. In the present embodiment, in addition to the voltage sharing by the depletion layer, the electric field relaxation semiconductor region 1 and the n conductivity type drift layer 2 are also formed below the trench type insulated gate electrode 14 according to the collector-emitter voltage. A depletion layer spreads from the junction to each layer, resulting in a withstand voltage. Therefore, most of the applied voltage is shared by the electric field relaxation semiconductor region 1 and the n conductivity type drift layer 2 below the trench type insulated gate electrode 14. Therefore, the voltage sharing of the gate insulator layer 9 is reduced, and the electric field strength of the insulator layer 9 is relaxed. Thereby, the reliability of the gate insulator layer 9 is improved. In addition, the electric field strength of the gate insulator layer 9 is relaxed, and the breakdown voltage can be improved. Also in the case of the present embodiment, the electric field strength of the insulator layer 9 on the bottom side surface portion of the trench type insulated gate 14 is similar to that of the IGBT having the conventional structure in which the electric field relaxation semiconductor region 1 is not formed as in the case of the MOSFET described above. It is relaxed by about 45 to 65%. Therefore, also in this embodiment, the withstand voltage can be improved and the reliability of the gate insulator layer 9 is improved by reducing the electric field strength of the gate insulator layer 9. For example, according to the embodiment, the breakdown voltage can be improved from 2900V to 3250V.

<<実施例5>>
図5は本発明の実施例5のnチャネルSiC MOSFETの単位セグメントの断面図である。実施例5は、実施例3のn導電型チャネルSiC MOSFETに第2の導電型(p)の第3の半導体領域としての第2電界緩和半導体領域8を設けた構造である。この電界緩和半導体領域8は、0.5μm厚であり、表面不純物濃度が1017atm/cm程度の、n導電型のドリフト層2と反対のp導電型を示す領域である。製作方法は、n導電型のドリフト層2を形成するところまでは実施例3のMOSFETと同様である。実施例3の製法との主な違いは、n導電型のドリフト層2の形成後、選択的にホウ素(またはアルミニウム等でも可)をイオン打ち込み等で注入し、第2電界緩和半導体領域8を形成する点である。その後の製作工程は実施例3の場合と全く同様であるから記載を省略する。
<< Example 5 >>
FIG. 5 is a sectional view of a unit segment of the n-channel SiC MOSFET according to the fifth embodiment of the present invention. The fifth embodiment has a structure in which the second electric field relaxation semiconductor region 8 as the third semiconductor region of the second conductivity type (p) is provided in the n-conductivity type channel SiC MOSFET of the third embodiment. This electric field relaxation semiconductor region 8 is a region having a p conductivity type opposite to the n conductivity type drift layer 2 having a thickness of 0.5 μm and a surface impurity concentration of about 10 17 atm / cm 3 . The manufacturing method is the same as that of the MOSFET of Example 3 up to the formation of the n conductivity type drift layer 2. The main difference from the manufacturing method of the third embodiment is that after the n conductivity type drift layer 2 is formed, boron (or aluminum or the like) is selectively implanted by ion implantation or the like, and the second electric field relaxation semiconductor region 8. It is a point that forms. Since the subsequent manufacturing process is exactly the same as in the case of Example 3, the description is omitted.

実施例3のMOSFETでは、トレンチ型絶縁ゲート14の底部の側端部における絶縁物層9の電界強度が大きくなり、耐圧はその部分の電界強度で決まっていた。それに対して、本実施例のように第2電界緩和半導体領域8を形成したものでは、空乏層が第2電界緩和半導体領域8とn導電型のドリフト層2の接合部から拡がり、トレンチ型絶縁ゲート14の下部の電界緩和半導体領域1とn導電型のドリフト層2の接合部から拡がる空乏層と連なる。そしてその空乏層はn導電型のドリフト層2中をドレイン電極10側へ拡がる。その結果、ドレイン−ソース電極間に印加された電圧が、前述の連なった空乏層によっても分担される。このため、絶縁物層9の電圧分担がさらに小さくなり、電界強度がさらに緩和される。本実施例においては、従来のものに比べて約55%〜80%の電界強度が緩和される。したがって、実施例5の半導体装置は従来のものに比べて約55%以上耐圧が向上し、例えば、耐圧は3100Vから3600V程度に改善できる。上記の電界強度の緩和により上記絶縁物層9の信頼性向上がさらに図れる。実験例として、3000Vの電圧印加試験を実施したところ従来のものに比べて2倍以上の寿命が得られた。 In the MOSFET of Example 3, the electric field strength of the insulator layer 9 at the side end portion at the bottom of the trench-type insulated gate 14 was increased, and the withstand voltage was determined by the electric field strength of that portion. On the other hand, in the case where the second electric field relaxation semiconductor region 8 is formed as in the present embodiment, the depletion layer extends from the junction between the second electric field relaxation semiconductor region 8 and the n conductivity type drift layer 2 to form a trench type. It is connected to a depletion layer extending from the junction between the electric field relaxation semiconductor region 1 below the insulating gate 14 and the n conductivity type drift layer 2. The depletion layer extends in the n conductivity type drift layer 2 to the drain electrode 10 side. As a result, the voltage applied between the drain and source electrodes is also shared by the above-described continuous depletion layer. For this reason, the voltage sharing of the insulator layer 9 is further reduced, and the electric field strength is further relaxed. In the present embodiment, the electric field strength of about 55% to 80% is relaxed compared to the conventional one. Therefore, the breakdown voltage of the semiconductor device of Example 5 is improved by about 55% or more compared to the conventional one. For example, the breakdown voltage can be improved from 3100V to about 3600V. The reliability of the insulator layer 9 can be further improved by the relaxation of the electric field strength. As an experimental example, a voltage application test of 3000 V was carried out, and a life that was twice as long as the conventional one was obtained.

<<実施例6>>
図6は本発明の実施例6のnチャネルSiC IGBTのセグメントの断面図である。実施例6はnチャネルSiC IGBTに第2電界緩和半導体領域8を設けた構造を有する。この構造は実施例3のn導電型のドレイン層3の代わりにp導電型のコレクタ層6が形成されたものである。実施例6の構造諸元および製作方法では、実施例5のSiC−n導電型基板の代わりにSiC−p導電型基板を用い、ドレイン層を若干低濃度にするとともに、絶縁物層9の厚さや膜質の改善をはかっている。その他の製作工程は実施例3の場合と同様である。なお、p導電型基板の不純物濃度は、1018〜1019atm/cmである。この実施例の場合も実施例5の場合と同様に、第2電界緩和半導体領域8を形成することによる効果があり、絶縁物層9の電界強度が緩和される。本実施例においては、従来のものに比べて約65%〜130%の電界強度が緩和される。したがって、この半導体装置では約25%以上耐圧向上を図ることができ、耐圧は3300Vから4600V程度に改善できた。上記の電界強度の緩和により上記絶縁物層9の信頼性向上も図れる。
<< Example 6 >>
FIG. 6 is a cross-sectional view of an n-channel SiC IGBT segment according to the sixth embodiment of the present invention. Example 6 has a structure in which a second electric field relaxation semiconductor region 8 is provided in an n-channel SiC IGBT. In this structure, a p + conductivity type collector layer 6 is formed instead of the n + conductivity type drain layer 3 of the third embodiment. In the structural specifications and manufacturing method of Example 6, the SiC-p conductivity type substrate is used instead of the SiC-n conductivity type substrate of Example 5, the drain layer is slightly reduced in concentration, and the thickness of the insulator layer 9 is increased. We are trying to improve the sheath quality. Other manufacturing processes are the same as those in the third embodiment. The impurity concentration of the p + conductivity type substrate is 10 18 to 10 19 atm / cm 3 . In the case of this embodiment, similarly to the case of the embodiment 5, there is an effect by forming the second electric field relaxation semiconductor region 8, and the electric field strength of the insulator layer 9 is relaxed. In the present embodiment, the electric field strength of about 65% to 130% is relaxed compared to the conventional one. Therefore, the breakdown voltage can be improved by about 25% or more in this semiconductor device, and the breakdown voltage can be improved from 3300V to about 4600V. The reliability of the insulator layer 9 can be improved by the relaxation of the electric field strength.

<<実施例7>>
図7は本発明の実施例7のnチャネルSiC MOSFETの単位セグメントの断面図である。実施例7では、ドレイン電極19を実施例1〜4のドレイン層3の面ではなくてボディ層4が設けられるドリフト層2の面に設けている。このような構成のものを横型の絶縁ゲート半導体装置と称している。実施例7では前記各実施例で設けていたp導電型のボディ層4の代わりに、一定の領域をもつたとえばストライプ状のp導電型のボディ領域40を設ける。ドリフト層2の上でボディ領域40から一定距離離れたところにn導電型のドレイン領域33を設ける。そしてドレイン領域33の上にドレイン電極19を設ける。
<< Example 7 >>
FIG. 7 is a cross-sectional view of a unit segment of an n-channel SiC MOSFET according to Example 7 of the present invention. In the seventh embodiment, the drain electrode 19 is provided not on the surface of the drain layer 3 in the first to fourth embodiments but on the surface of the drift layer 2 on which the body layer 4 is provided. Such a structure is called a horizontal insulated gate semiconductor device. In the seventh embodiment, instead of the p conductivity type body layer 4 provided in each of the above embodiments, for example, a striped p conductivity type body region 40 having a certain region is provided. An n + conductivity type drain region 33 is provided on the drift layer 2 at a certain distance from the body region 40. A drain electrode 19 is provided on the drain region 33.

ドレイン電極19は絶縁ゲート電極14から所定の距離を隔てて絶縁ゲート電極14に並行して設けるのが望ましい。ドレイン電極19とボディ領域40との間には1個又はそれ以上のp導電型のターミネーション領域15をボディ領域40に実質的に並行して設けている。ターミネーション領域15は、ボディ領域40の端部の電界集中を緩和するためのものである。上記の各点以外の構造は図1のものと同じである。   The drain electrode 19 is desirably provided in parallel with the insulated gate electrode 14 at a predetermined distance from the insulated gate electrode 14. Between the drain electrode 19 and the body region 40, one or more p-conduction type termination regions 15 are provided substantially in parallel with the body region 40. The termination region 15 is for relaxing the electric field concentration at the end of the body region 40. The structure other than the above points is the same as that of FIG.

横型の絶縁ゲート半導体装置では、ソース端子とドレイン端子が同じ方向に設けられているので、ハイブリッドIC等に組み込んで用いる場合の配線作業が簡単になる。またドレイン電極19が個々の半導体装置に設けられているので接続の自由度が増す。   In the horizontal insulated gate semiconductor device, since the source terminal and the drain terminal are provided in the same direction, wiring work when incorporated in a hybrid IC or the like is simplified. Further, since the drain electrode 19 is provided in each semiconductor device, the degree of freedom of connection is increased.

実施例7に示したドレイン領域及びドレイン電極19の構成は、図5に示す実施例5の構成に対しても同様に適用可能である。   The configuration of the drain region and the drain electrode 19 shown in the seventh embodiment can be similarly applied to the configuration of the fifth embodiment shown in FIG.

また図2の実施例2、図4の実施例4及び図6の実施例6において、コレクタ層6に相当するp導電型のコレクタ領域をボディ層4上の面に設け、そのコレクタ領域にコレクタ電極を設けることにより、図7の構成を実施例2、4及び6の装置にも同様に適用可能である。 Further, in the second embodiment of FIG. 2, the fourth embodiment of FIG. 4 and the sixth embodiment of FIG. 6, a p + conductivity type collector region corresponding to the collector layer 6 is provided on the surface of the body layer 4, and the collector region By providing the collector electrode, the configuration of FIG. 7 can be similarly applied to the apparatuses of Examples 2, 4, and 6.

<<実施例8>>
図8は、本発明の実施例8のnチャネルSiC MOSFETのセグメントの断面図である。実施例8の構造は大略実施例3と同じであるが、電界緩和半導体領域の断面形状と製作工程において実施例3と異なる。実施例8では、トレンチ69を形成した後、電界緩和半導体領域1Aを形成する際、ホウ素等のイオン打ち込み量を実施例3より多くする。これにより、トレンチ底部の両端部においてn導電型のドリフト層2内の横方向のホウ素の拡散がより顕著に進行し、図8に示すように電界緩和半導体領域1Aが深さ方向と同程度まで両側にふくらんだ形状となる。その結果トレンチ型絶縁ゲート14の底部側端部における絶縁物層9の電界強度がより緩和され、より高い耐圧を実現できる。その理由は、電界緩和半導体領域1Aのふくらんだ広い領域で、電圧が分担されるためである。たとえば実施例3の半導体装置の耐圧2900〜3250Vに比べ、図8に示す実施例8の耐圧は3200Vから3500Vと増大し、更に信頼性も向上できた。一方、図8の構造の場合、オン抵抗が若干増大するが実用的には全く問題にならない程度である。なお、本実施例の両脇にふくらんだ形状の電界緩和半導体領域1Aは、実施例1から実施例7にも同様に適用可能である。
<< Example 8 >>
FIG. 8 is a cross-sectional view of a segment of an n-channel SiC MOSFET according to Example 8 of the present invention. The structure of the eighth embodiment is substantially the same as that of the third embodiment, but differs from the third embodiment in the cross-sectional shape of the electric field relaxation semiconductor region and the manufacturing process. In the eighth embodiment, after forming the trench 69, when the electric field relaxation semiconductor region 1A is formed, the ion implantation amount of boron or the like is made larger than that in the third embodiment. Thereby, the diffusion of boron in the lateral direction in the n conductivity type drift layer 2 proceeds more significantly at both ends of the bottom of the trench, and the electric field relaxation semiconductor region 1A is approximately the same as the depth direction as shown in FIG. It becomes the shape which swelled up to both sides. As a result, the electric field strength of the insulator layer 9 at the bottom side end of the trench type insulated gate 14 is further relaxed, and a higher breakdown voltage can be realized. The reason is that the voltage is shared in a wide and wide region of the electric field relaxation semiconductor region 1A. For example, the breakdown voltage of Example 8 shown in FIG. 8 increased from 3200 V to 3500 V compared to the breakdown voltage of 2900 to 3250 V of the semiconductor device of Example 3, and the reliability was further improved. On the other hand, in the case of the structure of FIG. 8, the on-resistance is slightly increased, but is practically not a problem. In addition, the electric field relaxation semiconductor region 1 </ b> A having a shape that swells on both sides of the present embodiment can be similarly applied to the first to seventh embodiments.

前記の実施例7に示したドレイン領域及びドレイン電極19の構成は、図8に示す実施例8の構成に対しても同様に適用可能である。   The configurations of the drain region and the drain electrode 19 shown in the seventh embodiment can be similarly applied to the configuration of the eighth embodiment shown in FIG.

<<実施例9>>
図9は、本発明の実施例9である耐圧2500V級nチャネルSiC(炭化珪素)MOSFETの単位セグメントの断面図である。この実施例はトレンチ69側面の絶縁層9の厚さに対してトレンチ底部のそれを約5ないし約20倍以上にして電圧の分担を改良しようとする。この実施例では、セグメント幅は5μm、奥行きは1mmである。その他の構造諸元は以下のとおりである。n導電型のドリフト層2はn導電型のドレイン層3の上に設け、厚さは約20μmである。n導電型のドレイン層3は厚さ約300μm、p導電型のボディ層4の厚さは4μm、n導電型のソース領域5の接合深さは0.5μm、凹部すなわちトレンチ69の深さは6μm、トレンチ幅は3μm、トレンチ69内に設けたSiO(酸化珪素)等の絶縁物層9の厚さはトレンチ69底部で1μm、トレンチ69側面で0.1μmである。本実施例では、トレンチ型絶縁ゲート電極14は紙面奥行方面に長いストライプ状である。なおトレンチの平面形状は、例えばこの実施例のように紙面奥行方向に長い長溝状のものの他に、例えば直径3μmの円形孔状や正方形のものなどでもよい。トレンチの配置は、例えば5μmピッチで等間隔に配列する。なお円形のトレンチの場合は縦横に格子状に又は千鳥状に配列すればよい。
<< Example 9 >>
FIG. 9 is a cross-sectional view of a unit segment of a withstand voltage 2500 V class n-channel SiC (silicon carbide) MOSFET that is Embodiment 9 of the present invention. This embodiment attempts to improve the voltage sharing by making the trench bottom about 5 to about 20 times larger than the thickness of the insulating layer 9 on the side of the trench 69. In this embodiment, the segment width is 5 μm and the depth is 1 mm. Other structural specifications are as follows. The n conductivity type drift layer 2 is provided on the n + conductivity type drain layer 3 and has a thickness of about 20 μm. The n + conductivity type drain layer 3 has a thickness of about 300 μm, the p conductivity type body layer 4 has a thickness of 4 μm, the n + conductivity type source region 5 has a junction depth of 0.5 μm, and the depth of the recess or trench 69. The thickness is 6 μm, the trench width is 3 μm, and the thickness of the insulating layer 9 such as SiO 2 (silicon oxide) provided in the trench 69 is 1 μm at the bottom of the trench 69 and 0.1 μm at the side of the trench 69. In this embodiment, the trench type insulated gate electrode 14 has a long stripe shape in the depth direction of the paper. The planar shape of the trench may be, for example, a circular hole shape having a diameter of 3 μm or a square shape in addition to a long groove shape long in the depth direction of the paper as in this embodiment. For example, the trenches are arranged at equal intervals with a pitch of 5 μm. In the case of circular trenches, they may be arranged in a grid pattern or a zigzag pattern vertically and horizontally.

本実施例の製作方法の具体例は、次のとおりである。最初にドレイン領域として機能する1018から1020atm/cm濃度の、例えば1019atm/cmの濃度のn形SiC(炭化珪素)基板3を用意する。この基板3の一表面上に1015から1016atm/cm濃度、例えば約5×1015atm/cm濃度のSiCのn導電型のドリフト層2を気相成長法等により形成する。次にそのドリフト層2の上に1016atm/cm程度のSiCのp導電型のボディ層4を気相成長法等により形成する。そして、ソース層として、選択的に1018atm/cm程度の濃度のn導電型の領域5を窒素のイオン打ち込み等により形成する(窒素にかえてりん等でも可能。)。 The specific example of the manufacturing method of a present Example is as follows. First, an n + type SiC (silicon carbide) substrate 3 having a concentration of 10 18 to 10 20 atm / cm 3 , for example, a concentration of 10 19 atm / cm 3 , which functions as a drain region, is prepared. An SiC n conductivity type drift layer 2 having a concentration of 10 15 to 10 16 atm / cm 3 , for example, about 5 × 10 15 atm / cm 3, is formed on one surface of the substrate 3 by vapor phase epitaxy or the like. . Next, a SiC p-conductivity type body layer 4 of about 10 16 atm / cm 3 is formed on the drift layer 2 by vapor phase epitaxy or the like. Then, an n + conductivity type region 5 having a concentration of about 10 18 atm / cm 3 is selectively formed as a source layer by nitrogen ion implantation or the like (phosphorus or the like can be used instead of nitrogen).

次に、図9のように基板3、ドリフト層2及びボディ層4からなる広義の基板を異方性エッチングして、p導電型のボディ層4を貫通し底部がn導電型のドリフト層2に達するトレンチ(溝)69を形成する。続いて、トレンチ69の内表面にSiOのゲート絶縁膜9を形成し、さらに気相成長法により選択的にトレンチ底部のSiOゲート絶縁膜9を厚くし、約1μmとする。そしてトレンチ69内にりんを高濃度に含んだゲート領域としてのポリシリコンを堆積しトレンチ69を埋め込んでゲート領域14を作る。トレンチ69の寸法の1例は、深さ6μm、幅3μm、長さ1mmである。ここに示した寸法は1例であって、必要に応じて他の寸法も用いる。トレンチ69内のポリシリコンを残し、それ以外の場所(基板表面等)の残りのポリシリコンを除去することにより、トレンチ型絶縁ゲート電極14が形成される。最後に、アルミニウム(他にニッケル等も用いうる)で表面にソース電極11、裏面にドレイン電極10を形成し、絶縁ゲート半導体装置(MOSFET)を完成する。このMOSFETのオン抵抗は、約30mΩ・cmであった。 Next, the substrate 3 as shown in FIG. 9, the broad substrate made drift layer 2 and the body layer 4 is anisotropically etched bottom through the body layer 4 of the p conductivity type the n - conductivity type drift layer A trench (groove) 69 reaching 2 is formed. Subsequently, a gate insulating film 9 of SiO 2 is formed on the inner surface of the trench 69, further selectively increasing the thickness of the SiO 2 gate insulating film 9 at the bottom of the trench by vapor phase deposition, and approximately 1 [mu] m. Then, polysilicon as a gate region containing phosphorus in a high concentration is deposited in the trench 69, and the trench 69 is buried to form the gate region. One example of the dimensions of the trench 69 is a depth of 6 μm, a width of 3 μm, and a length of 1 mm. The dimensions shown here are examples, and other dimensions are used as necessary. The trench-type insulated gate electrode 14 is formed by leaving the polysilicon in the trench 69 and removing the remaining polysilicon at other locations (such as the substrate surface). Finally, the source electrode 11 is formed on the front surface and the drain electrode 10 is formed on the rear surface with aluminum (other nickel may be used) to complete an insulated gate semiconductor device (MOSFET). The on-resistance of this MOSFET was about 30 mΩ · cm 2 .

本実施例はnチャネルSiC MOSFETであり、この装置ではドレイン電極10の電位がソース電極11の電位より高く、かつゲート電極であるトレンチ型絶縁ゲート電極14の電位がソース電極11の電位よりも高くなるようにゲート電圧を印加する。このゲート電圧がしきい値電圧を超えた場合、トレンチ型絶縁ゲート電極14の側面のp導電型のボディ層4の表面にn導電型のチャネルが形成される。それにより電子がn導電型のソース領域5からそのチャネルを介してn導電型のドリフト層2、さらにn導電型のドレイン層3に流れ込み半導体装置がオンとなる。また、ゲート電極であるトレンチ型絶縁ゲート電極14の電位がソース電極11の電位以下になるようにゲート電圧を印加し、かつドレイン電極10の電位がソース電極11の電位より高くなるように電圧を印加した場合、n導電型のドリフト層2とp導電型のボディ層4の接合24の両側に空乏層が拡がる。この空乏層により電界強度を緩和し、印加電圧に耐える耐電圧性が生じる。 This embodiment is an n-channel SiC MOSFET. In this device, the potential of the drain electrode 10 is higher than the potential of the source electrode 11, and the potential of the trench type insulated gate electrode 14, which is the gate electrode, is higher than the potential of the source electrode 11. A gate voltage is applied so that When this gate voltage exceeds the threshold voltage, an n conductivity type channel is formed on the surface of the p conductivity type body layer 4 on the side surface of the trench type insulated gate electrode 14. As a result, electrons flow from the n + conductivity type source region 5 through the channel into the n conductivity type drift layer 2 and further into the n + conductivity type drain layer 3 to turn on the semiconductor device. Further, a gate voltage is applied so that the potential of the trench-type insulated gate electrode 14 that is a gate electrode is equal to or lower than the potential of the source electrode 11, and the voltage is set so that the potential of the drain electrode 10 is higher than the potential of the source electrode 11. When applied, a depletion layer spreads on both sides of the junction 24 between the n conductivity type drift layer 2 and the p conductivity type body layer 4. With this depletion layer, the electric field strength is relaxed, and withstand voltage withstanding the applied voltage is generated.

本実施例では、絶縁物層9のトレンチ底部の厚みを1μmとトレンチ側面部の厚みより数倍から10倍程度以上厚くすることにより、絶縁物層9の底部及び底部側面端部の電界が緩和される。これにより、耐電圧の向上を図ることができる。あるいは、ゲート絶縁物層9の信頼性を向上できる。   In this embodiment, the electric field at the bottom of the insulator layer 9 and the bottom side edge is alleviated by increasing the thickness of the bottom of the trench of the insulator layer 9 to 1 μm, which is several times to 10 times thicker than the thickness of the side surface of the trench. Is done. Thereby, the withstand voltage can be improved. Alternatively, the reliability of the gate insulator layer 9 can be improved.

計算による予測では、図11のような従来のトレンチ型絶縁ゲートMOSFETの場合には、トレンチ型絶縁ゲート電極14とソース電極11を短絡し、ソース電極11を0Vとしドレイン電極10に+2000Vを印加した場合、トレンチ型絶縁ゲート底部のSi0絶縁物層9の電界強度は、Si0の破壊電界強度である6〜10MV/cmを超える値となった。これに対して、本実施例のMOSFETのように絶縁物層9の厚みを1μmとしたものでは、トレンチ型絶縁ゲート底部側端部のSi0絶縁物層9の電界強度は、従来のものに比べて90%程度減少する。絶縁物層の信頼性は、電界強度がその破壊電界強度近くになると大幅に低下する。本実施例では絶縁物層9の電界強度が大幅に小さくなったことから、信頼性が大幅に向上した。その結果半導体装置の耐圧は2900Vから3250Vに向上した。さらにnドリフト層を厚くすることにより、さらなる高耐圧化が可能である。ドレイン電極10に印加した電圧はn導電型のドリフト層2とトレンチ型絶縁ゲート14の底部の絶縁物層9により分担され、絶縁物層9の電圧分担が大きくなり、それに応じて電界強度も大きくなっていた。しかし、本実施例のようにトレンチ型絶縁ゲート14の底部の絶縁物の厚さを約1μm以上とすると、n導電型のドリフト層2およびトレンチ型絶縁ゲート底部絶縁物層9により電圧が分担され、特に絶縁物層9の底部でドレイン−ソース間印加電圧の大部分を分担する。しかし、絶縁物層9の厚みを増した分だけその層9の電界強度も小さくなる。耐圧が高い素子の場合には、トレンチ型絶縁ゲート14の底部の絶縁物層9の電界強度が特に高くなるので、絶縁物層9底部の厚みを増す効果は顕著になる。 In the prediction by calculation, in the case of the conventional trench type insulated gate MOSFET as shown in FIG. 11, the trench type insulated gate electrode 14 and the source electrode 11 are short-circuited, the source electrode 11 is set to 0V, and + 2000V is applied to the drain electrode 10. If the field intensity of the Si0 2 insulator layer 9 of the trench type insulated gate bottom has a value of greater than 6~10MV / cm is breakdown field strength of Si0 2. In contrast, those that the thickness of the insulator layer 9 as in the MOSFET of this embodiment was 1 [mu] m, the electric field strength of the Si0 2 insulator layer 9 of the trench type insulated gate bottom end, with the conventional Compared to 90% reduction. The reliability of the insulating layer is greatly reduced when the electric field strength is close to the breakdown electric field strength. In the present example, the electric field strength of the insulator layer 9 was significantly reduced, so that the reliability was greatly improved. As a result, the breakdown voltage of the semiconductor device was improved from 2900V to 3250V. Further, by increasing the thickness of the n drift layer, it is possible to further increase the breakdown voltage. The voltage applied to the drain electrode 10 is shared by the n conductivity type drift layer 2 and the insulating layer 9 at the bottom of the trench type insulating gate 14, and the voltage sharing of the insulating layer 9 is increased, and the electric field strength is accordingly increased. It was getting bigger. However, when the thickness of the insulator at the bottom of the trench type insulated gate 14 is about 1 μm or more as in this embodiment, the voltage is shared by the n conductivity type drift layer 2 and the trench type insulated gate bottom insulator layer 9. In particular, most of the applied drain-source voltage is shared at the bottom of the insulator layer 9. However, as the thickness of the insulator layer 9 is increased, the electric field strength of the layer 9 is also reduced. In the case of an element having a high breakdown voltage, the electric field strength of the insulator layer 9 at the bottom of the trench-type insulated gate 14 is particularly high, so that the effect of increasing the thickness of the bottom of the insulator layer 9 becomes significant.

実施例9において、実施例5における第2電界緩和半導体領域8に相当するものを設けると、実施例5と同様の効果が得られる。   In the ninth embodiment, the same effect as in the fifth embodiment can be obtained by providing a portion corresponding to the second electric field relaxation semiconductor region 8 in the fifth embodiment.

実施例9において、実施例7におけるように、ドレイン電極19を絶縁ゲート電極14から所定の距離を隔てて絶縁ゲート電極14に並行して設けると、実施例7と同様の効果を得ることができる。   In the ninth embodiment, when the drain electrode 19 is provided in parallel to the insulated gate electrode 14 at a predetermined distance from the insulated gate electrode 14 as in the seventh embodiment, the same effect as in the seventh embodiment can be obtained. .

<<実施例10>>
図10は、本発明の実施例10のnチャネルSiC IGBTのセグメントの断面図である。その構造は実施例9のn導電型のドレイン層3の代わりにp導電型のコレクタ層6を形成したものである。実施例10の構造諸元および製作方法は、実施例9のSiC−n導電型基板の代わりにSiC−p導電型基板を用いる点が異なるだけであり、後の製作工程は実施例9の場合と同様である。なお、p導電型基板の不純物濃度は、1018〜1019atm/cmである。
<< Example 10 >>
FIG. 10 is a cross-sectional view of an n-channel SiC IGBT segment according to the tenth embodiment of the present invention. The structure is such that a p conductivity type collector layer 6 is formed instead of the n + conductivity type drain layer 3 of the ninth embodiment. The structural specifications and manufacturing method of Example 10 differ only in that SiC-p + conductivity type substrate is used instead of the SiC-n + conductivity type substrate of Example 9, and the subsequent manufacturing process is the same as in Example 9. It is the same as the case of. The impurity concentration of the p + conductivity type substrate is 10 18 to 10 19 atm / cm 3 .

本実施例のnチャネルIGBTの動作において、先ずコレクタ電極12の電位がエミッタ電極13の電位より高く、かつゲート電極であるトレンチ型絶縁ゲート電極14の電位がエミッタ電極13の電位よりも高くなるようにゲート電圧を印加する。このゲート電圧がしきい値電圧を超えると、トレンチ型絶縁ゲート電極14の側面のp導電型のボディ層4の表面にn導電型のチャネルが形成され、n導電型のエミッタ領域7からそのチャネルを介して電子がn導電型のドリフト層2に流れ込む。これによってp導電型のコレクタ層6からはn導電型のドリフト層2に正孔が注入されオンとなる。この時、n導電型のドリフト層2で電導率変調が起こるため、MOSFETでは非常に高かったオン抵抗が、IGBTでは大幅に低くなる。本実施例の場合、200A/cmの電流でオン電圧は1.5Vであり、オン抵抗は7.5mΩ・cmであった。また、ゲート電極であるトレンチ型絶縁ゲート電極14の電位がエミッタ電極13の電位以下になるようにゲート電圧を印加し、かつコレクタ電極12の電位がエミッタ電極13の電位より高くなるように電圧を印加した場合、n導電型のドリフト層2とp導電型のボディ層4の接合24の両側に空乏層が拡がって電界強度を緩和し、印加電圧に耐える耐電圧性が生じる。 In the operation of the n-channel IGBT of the present embodiment, first, the potential of the collector electrode 12 is higher than the potential of the emitter electrode 13, and the potential of the trench type insulated gate electrode 14 as the gate electrode is higher than the potential of the emitter electrode 13. A gate voltage is applied to. When the gate voltage exceeds the threshold voltage, an n-conducting channel is formed on the surface of the p-conducting body layer 4 on the side surface of the trench-type insulated gate electrode 14, and the n + -conducting emitter region 7 Electrons flow into the n conductivity type drift layer 2 through the channel. As a result, holes are injected from the p conductivity type collector layer 6 into the n conductivity type drift layer 2 and turned on. At this time, since conductivity modulation occurs in the n conductivity type drift layer 2, the on-resistance, which was very high in the MOSFET, is significantly reduced in the IGBT. In this example, the ON voltage was 1.5 V at a current of 200 A / cm 2 , and the ON resistance was 7.5 mΩ · cm 2 . Further, the gate voltage is applied so that the potential of the trench-type insulated gate electrode 14 as the gate electrode is lower than the potential of the emitter electrode 13, and the voltage is set so that the potential of the collector electrode 12 is higher than the potential of the emitter electrode 13. When it is applied, a depletion layer spreads on both sides of the junction 24 of the n conductivity type drift layer 2 and the p conductivity type body layer 4 to relax the electric field strength, resulting in a withstand voltage that can withstand the applied voltage.

本実施例では、トレンチ型絶縁ゲート電極14の下部では、印加電圧の大部分が絶縁物層9の底部により分担されるが、絶縁物層9の底部を厚くすることによりその底部及び底部側面端部の電界強度が緩和される。これにより、ゲート絶縁物層9の信頼性が大幅に向上する。また、ゲート絶縁物層9の電界強度が緩和されるため耐圧の向上を図ることが可能である。本実施例の場合においても、前述のMOSFETの場合と同様にトレンチ型絶縁ゲート14の底部側面部の絶縁物層9の電界強度は、絶縁物層9を大幅に厚くしない従来の構造のIGBTに比べ、90%程度緩和される。したがって、本実施例においても、ゲート絶縁物層9の電界強度が緩和されたことにより耐圧の向上を図れるとともにゲート絶縁物層9の信頼性が大幅に向上する。例えば実施例によれば耐圧が2900Vから3250Vに改善できた。   In the present embodiment, most of the applied voltage is shared by the bottom of the insulator layer 9 below the trench-type insulated gate electrode 14, but by increasing the thickness of the bottom of the insulator layer 9, the bottom and bottom side edges The electric field strength of the part is relaxed. Thereby, the reliability of the gate insulator layer 9 is greatly improved. In addition, since the electric field strength of the gate insulator layer 9 is relaxed, the breakdown voltage can be improved. Also in the case of the present embodiment, as in the case of the MOSFET described above, the electric field strength of the insulator layer 9 on the bottom side surface portion of the trench-type insulated gate 14 is the same as that of an IGBT having a conventional structure in which the insulator layer 9 is not significantly thickened. Compared to about 90%. Therefore, also in this embodiment, the withstand voltage can be improved by reducing the electric field strength of the gate insulator layer 9, and the reliability of the gate insulator layer 9 is greatly improved. For example, according to the embodiment, the breakdown voltage can be improved from 2900V to 3250V.

実施例10において、実施例6における第2電界緩和半導体領域8に相当するものを設けると、実施例6と同様の効果が得られる。   In the tenth embodiment, the same effect as in the sixth embodiment can be obtained by providing one corresponding to the second electric field relaxation semiconductor region 8 in the sixth embodiment.

実施例10において、実施例7におけるように、コレクタ電極12を絶縁ゲート電極14から所定の距離を隔てて絶縁ゲート電極14に並行して設けると、実施例7と同様の効果を得ることができる。   In the tenth embodiment, as in the seventh embodiment, when the collector electrode 12 is provided in parallel to the insulated gate electrode 14 at a predetermined distance from the insulated gate electrode 14, the same effect as in the seventh embodiment can be obtained. .

以上、実施例1ないし10について本発明を説明したが、本発明はこれらの実施例に限定されるものではなく、トレンチ型MOSサイリスタ、トレンチ型静電誘導トランジスタ、サイリスタ及びIEGT(Injection Enhanced Insulated Gate Bipolar Transistor)等にも適用でき、各種の変形や応用ができるものである。また絶縁物層9はSiO以外にTa(酸化タンタル)、Si(窒化珪素)やAlN(窒化アルミニウム)といった他の絶縁物でもよい。さらに、本発明の実施例ではゲートはトレンチを埋め込んだ構造にしてあるが、必ずしもその必要はなく、SiO絶縁物層9を介してトレンチ69の内壁の一部に薄膜状に形成してもかまわない。 The present invention has been described above with respect to the first to tenth embodiments. However, the present invention is not limited to these embodiments, and a trench type MOS thyristor, a trench type static induction transistor, a thyristor, and an IEGT (Injection Enhanced Insulated Gate). Bipolar Transistor) can be applied to various modifications and applications. The insulator layer 9 may be other insulators such as Ta 2 O 5 (tantalum oxide), Si 3 N 4 (silicon nitride), and AlN (aluminum nitride) in addition to SiO 2 . Furthermore, in the embodiment of the present invention, the gate has a structure in which the trench is embedded, but this is not always necessary, and the gate may be formed as a thin film on a part of the inner wall of the trench 69 via the SiO 2 insulator layer 9. It doesn't matter.

本発明の実施例1の絶縁ゲート半導体装置の断面図Sectional drawing of the insulated gate semiconductor device of Example 1 of this invention 本発明の実施例2の絶縁ゲート半導体装置の断面図Sectional drawing of the insulated gate semiconductor device of Example 2 of this invention 本発明の実施例3の絶縁ゲート半導体装置の断面図Sectional drawing of the insulated gate semiconductor device of Example 3 of this invention 本発明の実施例4の絶縁ゲート半導体装置の断面図Sectional drawing of the insulated gate semiconductor device of Example 4 of this invention 本発明の実施例5の絶縁ゲート半導体装置の断面図Sectional drawing of the insulated gate semiconductor device of Example 5 of this invention 本発明の実施例6の絶縁ゲート半導体装置の断面図Sectional drawing of the insulated gate semiconductor device of Example 6 of this invention 本発明の実施例7の絶縁ゲート半導体装置の断面図Sectional drawing of the insulated gate semiconductor device of Example 7 of this invention 本発明の実施例8の絶縁ゲート半導体装置の断面図Sectional drawing of the insulated gate semiconductor device of Example 8 of this invention 本発明の実施例9の絶縁ゲート半導体装置の断面図Sectional drawing of the insulated gate semiconductor device of Example 9 of this invention 本発明の実施例10の絶縁ゲート半導体装置の断面図Sectional drawing of the insulated gate semiconductor device of Example 10 of this invention 従来のMOSFETの絶縁ゲート半導体装置の断面図Sectional view of a conventional MOSFET insulated gate semiconductor device 従来のIGBTの絶縁ゲート半導体装置の断面図Sectional view of conventional IGBT insulated gate semiconductor device

符号の説明Explanation of symbols

1、1A:電界緩和半導体領域
2:n導電型のドリフト層
3:n導電型のドレイン層
4:p導電型のボディ層
5:n導電型のソース領域
6:p導電型のコレクタ層
7:n導電型のエミッタ領域
8:第2電界緩和半導体領域
9:トレンチ型絶縁ゲート絶縁物層
10:ドレイン電極
11:ソース電極
12:コレクタ電極
13:エミッタ電極
14:トレンチ型絶縁ゲート電極
15:ターミネーション領域
19:ドレイン電極
24:n導電型のドリフト層とp導電型のボディ層との接合部
33:ドレイン領域
40:ボディ領域
69:トレンチ
DESCRIPTION OF SYMBOLS 1, 1A: Electric field relaxation semiconductor region 2: n - conductivity type drift layer 3: n + conductivity type drain layer 4: p conductivity type body layer 5: n + conductivity type source region 6: p conductivity type collector Layer 7: n + conductivity type emitter region 8: Second electric field relaxation semiconductor region 9: Trench type insulated gate insulator layer 10: Drain electrode 11: Source electrode 12: Collector electrode 13: Emitter electrode 14: Trench type insulated gate electrode 15: termination region 19: drain electrode 24: n - conductivity type of the drift layer and the p conductivity type body layer and the joining portion 33: drain region 40: the body region 69: trench

Claims (4)

第1の導電型をもつ半導体基板、
前記半導体基板上に設けられ、第1の導電型と反対の第2の導電型をもち、半導体基板との間に接合を形成する第2の導電型の半導体層、
前記の半導体層を貫通して前記半導体基板の一部までうがった少なくとも一つの凹部、
前記凹部の内表面に形成され、前記凹部の底部において、前記凹部の側面より厚さが大きい絶縁層、
前記絶縁層によって前記基板及び前記半導体層と絶縁されて少なくとも一部が前記凹部内に設けられたゲート、
前記半導体層の中で前記絶縁層に囲まれた前記ゲートの周囲部の領域において前記第2の導電型の半導体層の表面から所定の深さまで形成された第1の導電型の第2の半導体領域、
前記第2の導電型の半導体層及び前記第2の半導体領域の上にこれらと導電的に設けた第1の電極、及び
前記半導体基板の他の部分に設けた第2の電極、
を備えたことを特徴とする絶縁ゲート半導体装置。
A semiconductor substrate having a first conductivity type;
A semiconductor layer of a second conductivity type provided on the semiconductor substrate and having a second conductivity type opposite to the first conductivity type and forming a junction with the semiconductor substrate;
At least one recess extending through the semiconductor layer to a part of the semiconductor substrate;
An insulating layer formed on the inner surface of the recess and having a thickness larger than a side surface of the recess at the bottom of the recess;
A gate that is insulated from the substrate and the semiconductor layer by the insulating layer and at least partially provided in the recess;
A first conductivity type second semiconductor formed from the surface of the second conductivity type semiconductor layer to a predetermined depth in a region around the gate surrounded by the insulating layer in the semiconductor layer. region,
A first electrode conductively provided on the second conductive type semiconductor layer and the second semiconductor region; and a second electrode provided on another portion of the semiconductor substrate;
An insulated gate semiconductor device comprising:
前記基板の前記接合をもつ面とは反対側の面に第2の導電型の層を設けたことを特徴とする請求項1記載の絶縁ゲート半導体装置。   2. The insulated gate semiconductor device according to claim 1, wherein a layer of a second conductivity type is provided on a surface of the substrate opposite to the surface having the junction. 前記凹部の内表面に形成した絶縁層は、前記凹部の底部の絶縁層の厚さが前記凹部の側面の厚さの約5ないし約20倍である請求項1又は2記載の絶縁ゲート半導体装置。   The insulated gate semiconductor device according to claim 1 or 2, wherein the insulating layer formed on the inner surface of the recess has a thickness of the insulating layer at the bottom of the recess that is about 5 to about 20 times the thickness of the side surface of the recess. . 前記凹部の底部に形成した絶縁層の厚さは約0.5ないし約2ミクロンであることを特徴とする請求項1又は2記載の絶縁ゲート半導体装置。   3. The insulated gate semiconductor device according to claim 1, wherein the thickness of the insulating layer formed at the bottom of the recess is about 0.5 to about 2 microns.
JP2007001487A 1996-08-01 2007-01-09 Insulated-gate semiconductor device Pending JP2007129259A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007001487A JP2007129259A (en) 1996-08-01 2007-01-09 Insulated-gate semiconductor device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP20399296 1996-08-01
JP2007001487A JP2007129259A (en) 1996-08-01 2007-01-09 Insulated-gate semiconductor device

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP8331321A Division JPH1098188A (en) 1996-08-01 1996-12-11 Insulated gate semiconductor device

Publications (1)

Publication Number Publication Date
JP2007129259A true JP2007129259A (en) 2007-05-24

Family

ID=38151587

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007001487A Pending JP2007129259A (en) 1996-08-01 2007-01-09 Insulated-gate semiconductor device

Country Status (1)

Country Link
JP (1) JP2007129259A (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009075200A1 (en) * 2007-12-10 2009-06-18 Kabushiki Kaisha Toyota Chuo Kenkyusho Semiconductor device and method of manufacturing the device, and method of manufacturing trench gate
WO2014122919A1 (en) * 2013-02-05 2014-08-14 三菱電機株式会社 Insulating gate-type silicon carbide semiconductor device and method for manufacturing same
WO2016009736A1 (en) * 2014-07-18 2016-01-21 トヨタ自動車株式会社 Switching element
JP2017152699A (en) * 2014-12-03 2017-08-31 インフィネオン テクノロジーズ アーゲーInfineon Technologies Ag Semiconductor device including trench electrode
JP2017228570A (en) * 2016-06-20 2017-12-28 株式会社東芝 Semiconductor device, method for manufacturing semiconductor device, inverter circuit, driving device, vehicle, and elevating machine
JP2019003966A (en) * 2017-06-09 2019-01-10 国立研究開発法人産業技術総合研究所 Silicon carbide semiconductor device, and method of manufacturing the same
US10586845B1 (en) 2018-11-16 2020-03-10 Infineon Technologies Ag SiC trench transistor device and methods of manufacturing thereof
US10714609B2 (en) 2014-12-22 2020-07-14 Infineon Technologies Ag Semiconductor device with stripe-shaped trench gate structures, transistor mesas and diode mesas
US10903322B2 (en) 2018-11-16 2021-01-26 Infineon Technologies Ag SiC power semiconductor device with integrated body diode
US10950696B2 (en) 2018-02-22 2021-03-16 Infineon Technologies Ag Silicon carbide semiconductor component
US10985248B2 (en) 2018-11-16 2021-04-20 Infineon Technologies Ag SiC power semiconductor device with integrated Schottky junction
US11011606B2 (en) 2018-10-08 2021-05-18 Infineon Technologies Ag Semiconductor component having a SiC semiconductor body and method for producing a semiconductor component
US11101343B2 (en) 2018-05-07 2021-08-24 Infineon Technologies Ag Silicon carbide field-effect transistor including shielding areas

Cited By (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009075200A1 (en) * 2007-12-10 2009-06-18 Kabushiki Kaisha Toyota Chuo Kenkyusho Semiconductor device and method of manufacturing the device, and method of manufacturing trench gate
JP2020038995A (en) * 2013-02-05 2020-03-12 三菱電機株式会社 Insulation gate type silicon carbide semiconductor device and manufacturing method therefor
WO2014122919A1 (en) * 2013-02-05 2014-08-14 三菱電機株式会社 Insulating gate-type silicon carbide semiconductor device and method for manufacturing same
CN104969357A (en) * 2013-02-05 2015-10-07 三菱电机株式会社 Insulating gate-type silicon carbide semiconductor device and method for manufacturing same
JPWO2014122919A1 (en) * 2013-02-05 2017-01-26 三菱電機株式会社 Insulated gate type silicon carbide semiconductor device and method of manufacturing the same
US9741797B2 (en) 2013-02-05 2017-08-22 Mitsubishi Electric Corporation Insulated gate silicon carbide semiconductor device and method for manufacturing same
JP7241848B2 (en) 2013-02-05 2023-03-17 三菱電機株式会社 Insulated gate type silicon carbide semiconductor device
JP2022010335A (en) * 2013-02-05 2022-01-14 三菱電機株式会社 Insulated gate type silicon carbide semiconductor device
CN109755321A (en) * 2013-02-05 2019-05-14 三菱电机株式会社 Insulated-gate type manufacturing silicon carbide semiconductor device and its manufacturing method
US10510843B2 (en) 2013-02-05 2019-12-17 Mitsubishi Electric Corporation Insulated gate silicon carbide semiconductor device and method for manufacturing same
WO2016009736A1 (en) * 2014-07-18 2016-01-21 トヨタ自動車株式会社 Switching element
JP2016025177A (en) * 2014-07-18 2016-02-08 トヨタ自動車株式会社 Switching element
US10700192B2 (en) 2014-12-03 2020-06-30 Infineon Technologies Ag Semiconductor device having a source electrode contact trench
JP2017152699A (en) * 2014-12-03 2017-08-31 インフィネオン テクノロジーズ アーゲーInfineon Technologies Ag Semiconductor device including trench electrode
US10714609B2 (en) 2014-12-22 2020-07-14 Infineon Technologies Ag Semiconductor device with stripe-shaped trench gate structures, transistor mesas and diode mesas
US10777675B2 (en) 2016-06-20 2020-09-15 Kabushiki Kaisha Toshiba Semiconductor device, method for manufacturing semiconductor device, inverter circuit, driving device, vehicle, and elevator
JP2017228570A (en) * 2016-06-20 2017-12-28 株式会社東芝 Semiconductor device, method for manufacturing semiconductor device, inverter circuit, driving device, vehicle, and elevating machine
JP2019003966A (en) * 2017-06-09 2019-01-10 国立研究開発法人産業技術総合研究所 Silicon carbide semiconductor device, and method of manufacturing the same
US11742391B2 (en) 2018-02-22 2023-08-29 Infineon Technologies Ag Semiconductor component having a diode structure in a SiC semiconductor body
US10950696B2 (en) 2018-02-22 2021-03-16 Infineon Technologies Ag Silicon carbide semiconductor component
US11101343B2 (en) 2018-05-07 2021-08-24 Infineon Technologies Ag Silicon carbide field-effect transistor including shielding areas
US11626477B2 (en) 2018-05-07 2023-04-11 Infineon Technologies Ag Silicon carbide field-effect transistor including shielding areas
US11600701B2 (en) 2018-10-08 2023-03-07 Infineon Technologies Ag Semiconductor component having a SiC semiconductor body
US11011606B2 (en) 2018-10-08 2021-05-18 Infineon Technologies Ag Semiconductor component having a SiC semiconductor body and method for producing a semiconductor component
US11462611B2 (en) 2018-11-16 2022-10-04 Infineon Technologies Ag SiC device with channel regions extending along at least one of the (1-100) plane and the (-1100) plane and methods of manufacturing thereof
US10586845B1 (en) 2018-11-16 2020-03-10 Infineon Technologies Ag SiC trench transistor device and methods of manufacturing thereof
US10985248B2 (en) 2018-11-16 2021-04-20 Infineon Technologies Ag SiC power semiconductor device with integrated Schottky junction
US10903322B2 (en) 2018-11-16 2021-01-26 Infineon Technologies Ag SiC power semiconductor device with integrated body diode
US10896952B2 (en) 2018-11-16 2021-01-19 Infineon Technologies Ag SiC device and methods of manufacturing thereof

Similar Documents

Publication Publication Date Title
JP2007129259A (en) Insulated-gate semiconductor device
US11610884B2 (en) Semiconductor device
JPH1098188A (en) Insulated gate semiconductor device
US6342709B1 (en) Insulated gate semiconductor device
US6303410B1 (en) Methods of forming power semiconductor devices having T-shaped gate electrodes
US8866215B2 (en) Semiconductor component having a transition region
JP2024073632A (en) Semiconductor Device
US9064952B2 (en) Semiconductor device
JP2005510059A (en) Field effect transistor semiconductor device
US9825159B2 (en) Semiconductor device
JP2004134597A (en) Semiconductor element
KR960011939B1 (en) Semiconductor device
CN110914997A (en) Semiconductor device with LOCOS trench
US11355630B2 (en) Trench bottom shielding methods and approaches for trenched semiconductor device structures
WO2021254616A1 (en) Sic mosfet with asymmetric trench oxide and method of manufacture
WO1998026458A1 (en) Insulated gate semiconductor device
US20010040273A1 (en) Semiconductor device
US8067797B2 (en) Variable threshold trench IGBT with offset emitter contacts
US20160351665A1 (en) Semiconductor device
CN104465771B (en) Transistor device with field plate
US7470960B1 (en) High-voltage power semiconductor device with body regions of alternating conductivity and decreasing thickness
KR19990029884A (en) Semiconductor devices
JP2020031167A (en) Semiconductor device and manufacturing method therefor
KR102030464B1 (en) Lateral typed power semiconductor device
KR101701240B1 (en) Semiconductor device

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070206

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070807

A02 Decision of refusal

Effective date: 20080108

Free format text: JAPANESE INTERMEDIATE CODE: A02