JP2007129183A - Cooling member - Google Patents

Cooling member Download PDF

Info

Publication number
JP2007129183A
JP2007129183A JP2006122875A JP2006122875A JP2007129183A JP 2007129183 A JP2007129183 A JP 2007129183A JP 2006122875 A JP2006122875 A JP 2006122875A JP 2006122875 A JP2006122875 A JP 2006122875A JP 2007129183 A JP2007129183 A JP 2007129183A
Authority
JP
Japan
Prior art keywords
porous body
cooling member
sample
member according
cooled
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006122875A
Other languages
Japanese (ja)
Inventor
Hiroshi Hiiragidaira
啓 柊平
Hirohiko Nakada
博彦 仲田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP2006122875A priority Critical patent/JP2007129183A/en
Publication of JP2007129183A publication Critical patent/JP2007129183A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00

Landscapes

  • Cooling Or The Like Of Electrical Apparatus (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a new cooling mechanism which is closely attached without forming a gap acting as a heat resistance on a body to be cooled, can immediately radiate the heat transmitted from the body to be cooled to a cooling medium, and has a high exhaust heat efficiency. <P>SOLUTION: The cooling member 1 for cooling the body to be cooled 2 in contact therewith is composed of a porous body 3 whose at least side of surface contacting with the body to be cooled 2 has open holes, and the porous body 3 is elastically deformed to contact with the body to be cooled 2 without forming a gap, and a gas, such as an air, is passed into the open holes of the porous body 3 as a cooling medium to radiate it. Preferably, the porous body 3 of the cooling member 1 has a micro structure that many columns of diameter not more than 100 μm and of aspect ratio not less than 5 are located on a base material at a slant. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、テレビ、プロジェクタ、パソコンなどの電子機器の発熱箇所を冷却するための冷却部材に関するものである。   The present invention relates to a cooling member for cooling a heat generating portion of an electronic device such as a television, a projector, or a personal computer.

テレビ(TV)で画面に映像を投影する手法として、従来からブラウン管を用いた電子銃方式が一般的であった。しかし、この方式のテレビは1台の電子銃を用いてブラウン管上に走査するため、画面を大型化すると外周に対する角度がきつくなり、画面が歪むことから大型化には限界があった。この画面の歪みを防ぐためには、画面を湾曲させて電子銃からブラウン管までの距離を一定に保つ方法があるが、特に大型テレビにおいては平面画面の方が見やすいうえ、最近では小型テレビでさえ平面画面の人気が高いため、湾曲画面が大画面のテレビで採用されることはない。また、ブラウン管テレビは、画面の大型化に伴い厚みが非常に増大してしまうため、一般家庭のリビングに設置する大画面のテレビとしては相応しくない。   Conventionally, an electron gun method using a cathode ray tube has been generally used as a method for projecting an image on a screen of a television (TV). However, this type of television uses a single electron gun to scan on a cathode ray tube, so when the screen is enlarged, the angle with respect to the outer periphery becomes tight and the screen is distorted, so there is a limit to the enlargement. In order to prevent this distortion of the screen, there is a method to keep the distance from the electron gun to the cathode ray tube constant by curving the screen, but the flat screen is easier to see especially on large TVs, and recently even small TVs are flat. Due to the popularity of screens, curved screens are not used in large screen televisions. In addition, a cathode ray tube television is very suitable for a large-screen television set in a living room of a general household because the thickness of the cathode-ray tube television increases greatly as the screen becomes larger.

そのため、テレビの大画面化、薄型化を達成できる方式として、リアプロジェクション(リアプロ)テレビ、液晶テレビ、プラズマテレビ(PDP:Plasma Display Panel)等が脚光を浴び、従来のブラウン管テレビに置き換わりつつある。また、ホームシアタ用として、大画面スクリーンにプロジェクタを用いて画像を投影する方式も普及しつつある。しかも、画面やスクリーンは迫力を得るために大型化が進行しながら、画面やスクリーン以外の装置は室内スペースを占有しないように薄型化、軽量化が求められる。また、大画面になった分、光が広がって画面が暗くなると鑑賞し難いため、高輝度化に対する要求も高い。   For this reason, rear projection (rear pro) televisions, liquid crystal televisions, plasma televisions (PDPs), etc. have been spotlighted as methods that can achieve a larger screen and thinner televisions, and are being replaced by conventional CRT televisions. In addition, a method for projecting an image using a projector on a large screen is becoming popular for home theater. Moreover, while screens and screens are getting larger in order to gain power, devices other than screens and screens are required to be thinner and lighter so as not to occupy indoor space. In addition, since it is difficult to appreciate when the light spreads and the screen becomes dark because of the large screen, there is a high demand for higher brightness.

上記のリアプロテレビも背面からプロジェクタを用いて画面へ投射する方式だが、反射鏡を1枚あるいは複数枚用いることにより、薄型の筐体内でプロジェクタと画面間の距離を稼ぐことができるため薄型化が可能である。リアプロも従来はCRT方式で背面からスクリーンに投影していたが、薄型化、軽量化、高画質化のために、最近ではMD(Micro Display)方式に切り替わりつつある。MD方式には、光学デバイスとして透過型の液晶方式(HTPS:High Temperature Poli−Silicon)を用いたものと、反射型のDLP(Digital Light Processing)方式及びLCOS(Liquid Crystal on Silicon)方式とがある。   The above-mentioned rear pro TV is a method of projecting from the back to the screen using a projector, but by using one or more reflectors, the distance between the projector and the screen can be increased in a thin housing, so that the thickness is reduced. Is possible. The rear pro has also been projected on the screen from the back by the CRT method in the past, but recently it has been switched to the MD (Micro Display) method in order to reduce the thickness, weight and image quality. The MD system includes a transmission type liquid crystal system (HTPS) as an optical device, a reflection type DLP (Digital Light Processing) system, and an LCOS (Liquid Crystal on Silicon) system. .

液晶方式やPDP方式は、スクリーン自体に、画素数に応じた数の小型シャッターとしての液晶素子や、小型のプラズマ電極を画面上に並べて形成するため、投影用の距離を必要とせず薄型のまま大型化が容易である。そのため、リアプロテレビを含めて、上記液晶テレビ、プラズマテレビが大画面テレビの本命として急速に広がりつつある。その一方、このような画面の大型化に伴い、素子や画面からの発熱量や発熱密度が大きくなっている。また、同じ出力で大画面を映し出すと単位面積当たりの光量が不足してしまうため、一般に大画面ほど消費電力は上がり、それに伴う発熱量も増大する。その結果、効率的に熱を系外に排出しないと、素子やその周辺機器が熱劣化してしまうため、排熱を効率よく行う必要性が高まってきている。   In the liquid crystal method and the PDP method, liquid crystal elements as small shutters corresponding to the number of pixels and small plasma electrodes are formed side by side on the screen, so they do not require a projection distance and remain thin. Easy to enlarge. Therefore, the above-mentioned liquid crystal televisions and plasma televisions, including rear professional televisions, are rapidly spreading as the favorite of large-screen televisions. On the other hand, along with the increase in the size of the screen, the amount of heat generated from the elements and the screen and the heat generation density are increased. In addition, when a large screen is projected with the same output, the amount of light per unit area is insufficient, so that generally the power consumption increases as the screen increases, and the amount of generated heat increases accordingly. As a result, if the heat is not efficiently discharged outside the system, the element and its peripheral devices are thermally deteriorated, and thus the necessity for efficiently exhausting heat is increasing.

また、パソコンについても、画像等の大容量の情報を高速で処理するために、その中心となるMPUはますます高速処理が求められ、年々クロック数が増大している。しかし、それに伴ってMPUの発熱量が非常に大きくなってきており、あまりの発熱量の多さに排熱技術が追いついていない。そのため、MPU素子が自身の発熱で誤動作を起こしてしまうため、クロック数増大の開発を一時ストップせざるを得ない状況も生まれつつあり、より効率的な排熱技術に対する必要性が高まっている。   Also, with respect to personal computers, in order to process large volumes of information such as images at high speed, the MPU that is the center of the PCs is required to perform higher speed processing, and the number of clocks is increasing year by year. However, the heat generation amount of the MPU has become very large along with this, and the exhaust heat technology has not caught up with the excessive heat generation amount. Therefore, since the MPU element malfunctions due to its own heat generation, there is a situation in which development for increasing the number of clocks has to be temporarily stopped, and the need for a more efficient exhaust heat technology is increasing.

尚、最近の冷却技術として、特開2004−319942号公報には、放熱部に金属発泡体を用いたヒートシンクが開示されている。しかし、金属発泡体は内部に無数の空孔を持つため、その使用方法を誤れば、放熱特性が得られるどころか、内部の気孔により断熱性能が高い発泡スチロールなどのように断熱層の働きをする恐れがある。また、特開2005−032881号公報には、低気孔率部と高気孔率部を有する多孔質放熱体が開示されている。しかしながら、この多孔質体は、例として多孔質焼結体やセラミックス繊維が列挙されているように変形しないため、放熱部に直接隙間なく接触させることが難しい。   As a recent cooling technique, Japanese Patent Application Laid-Open No. 2004-319942 discloses a heat sink using a metal foam for a heat radiating portion. However, since metal foam has countless pores inside, if it is used incorrectly, heat dissipation characteristics can be obtained, as well as foaming polystyrene with high thermal insulation performance due to internal pores. There is. Japanese Patent Laying-Open No. 2005-032881 discloses a porous heat radiator having a low porosity portion and a high porosity portion. However, since this porous body does not deform as exemplified by porous sintered bodies and ceramic fibers, it is difficult to directly contact the heat radiating portion without any gap.

特開2004−319942号公報JP 2004-319942 A 特開2005−032881号公報JP 2005-032881 A

最近のテレビの排熱技術として、液晶テレビやプラズマテレビでは、例えば、Alシートを画面背面に貼り、熱をAlシート背面に逃がしてから、ファンでエアをAlシート背面に送って大気に放熱し、筐体の隙間から外部に熱を逃がす方式を採っている。また、リアプロテレビやプロジェクタの反射方式では、光学チップの背面にAlフィン付きのAlヒートシンクを押し付け、ファンでエアを送り込んで空冷し、同じように筐体の隙間から外部に熱を逃がしている。   As a recent TV exhaust heat technology, for example, in an LCD TV or plasma TV, an Al sheet is pasted on the back of the screen, heat is released to the back of the Al sheet, and then air is sent to the back of the Al sheet with a fan to dissipate it into the atmosphere. The system that releases heat to the outside through the gap of the housing is adopted. In the reflection system of rear professional televisions and projectors, an Al heat sink with an Al fin is pressed against the back surface of the optical chip, air is sent by a fan to cool the air, and heat is similarly released from the gaps of the housing to the outside.

リアプロテレビやプロジェクタでは、大画面化に伴い総熱量も多いうえ、10〜20mm角程度の小型素子(Micro Display)に光を集約して画像化し、それを大画面のスクリーンに投影するため、素子に集中する熱密度は非常に大きい。そのため、特に熱を効率よく排出する必要があるが、透過型のHTPS方式では、液晶チップは光が透過するため、上記のごとく冷却モジュール面を押し付けて冷却することはできない。そこで、液晶チップの外周フレームをAlやMgのような高熱伝導金属で構成して熱を伝え、これをファンで空冷し、更に加えて外周フレームにフィンを付けて空冷効果を上げる等の手法が採られている。   In rear-pro televisions and projectors, as the screen becomes larger, the total amount of heat increases, and light is concentrated on a small element (Micro Display) of about 10 to 20 mm square to form an image, which is then projected onto a large screen. The heat density concentrated on is very large. Therefore, it is particularly necessary to efficiently discharge the heat. However, in the transmissive HTPS system, the liquid crystal chip transmits light, and thus cannot be cooled by pressing the cooling module surface as described above. Therefore, the outer peripheral frame of the liquid crystal chip is composed of a high heat conductive metal such as Al or Mg, and heat is transmitted, this is air-cooled with a fan, and furthermore, a fin is attached to the outer peripheral frame to increase the air cooling effect. It is taken.

また、DLP方式では、特に熱が大きく掛かるシアタ用の大画面用プロジェクタにおいて、DLPチップ背面を水冷することも行われている。しかし、電気装置内に水を回すことは、水漏れによるショートや電気部品の劣化等の危険を常にはらんだ状態で稼動することになるため、出来るだけ空冷方式が望ましい。しかも、素子の部分で水冷しても、通常その液体を使い捨てにすることは稀であり、循環させて使用するため、別の場所で熱は熱交換器を通じて大気放出せざるをえず、効率的な空冷構造は不可欠である。   In the DLP method, the back surface of the DLP chip is also water-cooled in a projector for a large screen for theater that is particularly heated. However, since turning water into the electric device operates in a state in which dangers such as a short circuit due to water leakage and deterioration of electric parts are always present, an air cooling method is desirable as much as possible. Moreover, even if the element is water-cooled, the liquid is rarely made disposable, and since it is used after being circulated, heat must be released to the atmosphere through a heat exchanger at a different location. A typical air cooling structure is indispensable.

しかしながら、上記したヒートシンクやフィンにより熱を素子等から奪ってファンで空冷する方法では、大画面化に伴って増大する発熱を十分に冷却するには限界があった。即ち、素子等からヒートシンクに伝わった熱は、ヒートシンク背面に伝わる前に周辺部材に広がって温度が低下してしまうため、そのヒートシンク背面をファンで冷却しても低い冷却効率しか得られなかった。しかも、ファンによる空冷は、筐体内に熱を撒き散らしてしまうため、他の部品に影響を及ぼしやすいという問題があった。更に、筐体の隙間から出てくる熱風は、装置の傍にいる人に熱風を吹きかけ、また室内の温度を上げてしまうため、不快な面が多々あった。また、ファンの風切り音は、静かなリビングで映像を楽しむ際の最大の不快要因でもあった。   However, the method of removing heat from the elements and the like with the heat sink and fins and cooling with air using a fan has a limit in sufficiently cooling the heat generated as the screen size increases. That is, since the heat transmitted from the element or the like to the heat sink spreads to the peripheral members before being transmitted to the back surface of the heat sink, the temperature is lowered. Therefore, even if the back surface of the heat sink is cooled by a fan, only low cooling efficiency can be obtained. In addition, the air cooling by the fan scatters heat in the housing, and thus has a problem of easily affecting other components. Furthermore, the hot air coming out of the gap between the casings blows hot air on the person near the device and raises the temperature in the room, and thus has many unpleasant aspects. In addition, the wind noise of the fans was the biggest cause of discomfort when enjoying images in a quiet living room.

また、素子を搭載するセラミックスの基板やパッケージ等には必ず焼結時の反りが存在し、例えば0.1〜0.15mm程度反っているため、ヒートシンク等を押し付けると隙間ができ、この隙間に残った空気は非常に大きな熱抵抗になる。そこで、基板やパッケージ等とヒートシンクとの間に、厚さ1〜2mmの柔軟性のある熱伝導性のシートやコンパウンド樹脂を挟み込み、隙間をなくして取り付ける方法が採られていた。熱伝導性のシートやコンパウンドは出来るだけ熱伝導率の高いものが選ばれるが、それでも数W/m・Kから10W/m・K程度であり、せっかく237W/m・Kという高熱伝導率のアルミニウムや403w/m・Kの銅をヒートシンクに用いても、その界面層の低熱伝導性が律速になって効率的な熱の排出が行えなかった。   In addition, since the ceramic substrate or package on which the element is mounted always has a warp during sintering and warps, for example, by about 0.1 to 0.15 mm, a gap is created by pressing a heat sink or the like. The remaining air has a very large thermal resistance. Therefore, a method has been adopted in which a flexible heat conductive sheet or compound resin having a thickness of 1 to 2 mm is sandwiched between a substrate, a package, or the like and a heat sink, and attached without a gap. Thermally conductive sheets and compounds are selected that have as high a thermal conductivity as possible, but they are still in the range of several W / m · K to 10 W / m · K, with a high thermal conductivity of 237 W / m · K. Even when 403 w / m · K of copper was used as the heat sink, the low thermal conductivity of the interface layer was rate-determining, and it was not possible to efficiently discharge heat.

デスクトップパソコンやノート型パソコンにおいても、MPUの冷却技術は、リアプロテレビやプロジェクタの素子冷却技術とほぼ同じ空冷技術が採用されている。即ち、MPU背面に設けた熱伝導シートや熱伝導樹脂を介してAlヒートシンクに熱を伝え、背面からファンで大気を送って放熱している。しかし、冷却効率が低い問題や、ファンの音や筐体からの排熱が不快要因となる問題は同様であるうえ、MPUの発熱量増大に伴って放熱が追いつかなくなってきている現状である。   Also in desktop personal computers and notebook personal computers, the MPU cooling technology employs almost the same air cooling technology as the element cooling technology of rear professional televisions and projectors. That is, heat is transmitted to the Al heat sink via a heat conductive sheet or a heat conductive resin provided on the back of the MPU, and air is radiated by sending air from the back with a fan. However, the problem of low cooling efficiency and the problem that the sound of the fan and the exhaust heat from the housing become uncomfortable factors are the same, and the heat radiation cannot catch up with the increase in the heat generation amount of the MPU.

本発明は、このような従来の事情に鑑み、セラミックス等の被冷却体に熱抵抗となる隙間を生じさせることなく密着して取り付けることができ、且つ被冷却体から伝わった熱を直ちに冷媒へ放熱させることができ、従って従来のヒートシンクやファン等の冷却手段に比べて熱の排出効率が高く、しかも熱風を周囲に撒き散らすことがない新たな冷却機構を提供することを目的とする。   In view of such a conventional situation, the present invention can attach closely to a cooled body such as ceramics without generating a gap that becomes a thermal resistance, and immediately transfers the heat transmitted from the cooled body to the refrigerant. An object of the present invention is to provide a new cooling mechanism that can dissipate heat and therefore has higher heat discharge efficiency than conventional cooling means such as a heat sink and a fan and that does not scatter hot air around.

被冷却体には完全に抑えきれない反り、うねり、面粗さ等があり、そのため冷却部材との接触面に隙間が発生し、その隙間は熱伝導率がほぼゼロになってしまうため、熱伝導を大きく妨げる要因となる。例えば、剛性の高い部品同士を面接触させる場合、平面度を上げ且つ面粗度をいくら小さくしても、微視的に見て完全にフラットな面はできない。その結果、最も突き出た3点で接触して他の部分は浮いてしまうため、部品同士の間に生じた隙間は熱伝導に寄与せず、冷却能力は低くならざるを得なかった。   The object to be cooled has warps, undulations, surface roughness, etc. that cannot be completely suppressed.Therefore, a gap is generated on the contact surface with the cooling member, and the thermal conductivity of the gap becomes almost zero. This is a factor that greatly hinders conduction. For example, when parts having high rigidity are brought into surface contact with each other, even if the flatness is increased and the surface roughness is reduced, a completely flat surface cannot be obtained microscopically. As a result, the most protruding three points contacted and the other part floated, so the gap formed between the parts did not contribute to heat conduction and the cooling capacity had to be lowered.

そこで従来はやむなく、空間を埋める効果の高い高分子や有機系のシートやグリースを用いて、部品同士の隙間を埋めていた。しかし、これらの高分子や有機系のシートやグリースは熱伝導率が非常に低く、高熱伝導率タイプでもせいぜい5W/m・K程度しかない。従って、隙間が埋められて熱伝導率ゼロの部分はなくなるが、これらの高分子や有機系のシートやグリースからなる熱伝導率の低い層が部品間に介在することになるため、その層が大きな熱抵抗となり、冷却能力向上の妨げになっていた。   Therefore, conventionally, inevitably, gaps between parts have been filled with a polymer or organic sheet or grease that has a high effect of filling the space. However, these polymers and organic sheets and greases have a very low thermal conductivity, and even at a high thermal conductivity type, they are only about 5 W / m · K. Therefore, the gap is filled and there is no portion with zero thermal conductivity, but a layer with low thermal conductivity made of these polymer, organic sheet or grease is interposed between the parts, so the layer is A large thermal resistance hinders the improvement of the cooling capacity.

上記問題を解決するため、本発明は、被冷却体に接触して冷却する冷却部材であって、少なくとも被冷却体との接触面側が開気孔を有する多孔質体からなり、該多孔質体が弾性変形及び/又は塑性変形して被冷却体と接触すると共に、多孔質体の開気孔内に冷媒を流すことを特徴とする冷却部材を提供するものである。   In order to solve the above problems, the present invention is a cooling member that contacts and cools a cooled body, and at least a contact surface side with the cooled body includes a porous body having open pores. An object of the present invention is to provide a cooling member characterized by being elastically deformed and / or plastically deformed to come into contact with an object to be cooled and to allow a coolant to flow into open pores of a porous body.

上記本発明による冷却部材においては、前記被冷却体と多孔質体の接触状態での対向面積に対して、多孔質体が被冷却体と開気孔部分を除いて接触している部分が占める接触面積が0.01%以上であることが好ましい。また、上記本発明による冷却部材において、前記多孔質体の空隙率は50%以上であることが好ましく、前記多孔質体の厚みは200μm以上であることが好ましい。前記多孔質体内に複数の凹凸形状を形成することにより、冷媒の流れを乱して放熱を促進するため好ましい。更に、前記多孔質体が厚みに対して10倍以内の深さの凹凸形状を有することにより、放熱を促進する効果が大きくなるため好ましい。あるいは、前記多孔質体の内部の隙間に、多孔質体の厚み以内の板状体を形成することが好ましい。   In the cooling member according to the present invention, the contact area occupied by the porous body except the open pore portion is in contact with the opposed area in the contact state of the cooled body and the porous body. The area is preferably 0.01% or more. In the cooling member according to the present invention, the porosity of the porous body is preferably 50% or more, and the thickness of the porous body is preferably 200 μm or more. It is preferable to form a plurality of concave and convex shapes in the porous body to disturb the flow of the refrigerant and promote heat dissipation. Furthermore, it is preferable that the porous body has an uneven shape with a depth of 10 times or less with respect to the thickness, since the effect of promoting heat dissipation is increased. Or it is preferable to form the plate-shaped body within the thickness of a porous body in the clearance gap inside the said porous body.

前記多孔質体は被冷却体と隙間なく接触するため弾性変形能及び/又は塑性変形能を有し、その弾性変形量及び/又は塑性変形量が100μm以上であることが好ましい。しかし、特に被冷却体のそり量が小さい場合には、それに応じて弾性変形能及び/又は塑性変形能は小さくてもかまわず、被冷却体の反り量よりも大きければ良い。また、前記多孔質体は熱伝導率が100W/m・K以上の材料で構成されていることが好ましい。更に、前記多孔質体はヤング率が150GPa以下の材料で構成されていることが好ましい。   Since the porous body is in contact with the body to be cooled without a gap, it has elastic deformation ability and / or plastic deformation ability, and the elastic deformation amount and / or plastic deformation amount is preferably 100 μm or more. However, particularly when the amount of warpage of the cooled object is small, the elastic deformability and / or the plastic deformability may be small correspondingly, as long as it is larger than the warped amount of the cooled object. The porous body is preferably made of a material having a thermal conductivity of 100 W / m · K or more. Further, the porous body is preferably made of a material having a Young's modulus of 150 GPa or less.

上記本発明による冷却部材においては、例えば被冷却体の反りが大きい場合などに、前記多孔質体と被冷却体の接触面間に、それぞれの表面粗さに起因する凹凸の隙間を埋める50μm以下の薄い介在層を設けることができる。   In the cooling member according to the present invention, for example, when the warped body has a large warp, the gap between the contact surfaces of the porous body and the body to be cooled is filled with 50 μm or less due to the surface roughness. A thin intervening layer can be provided.

上記本発明による冷却部材において、前記多孔質体としては、冷却部材の基材上に多数の柱状体を配置したマイクロ構造を有するものがある。この場合、前記柱状体の径が500μm以下であり、アスペクト比が5以上であることが好ましい。前記柱状体の側面に複数の枝状体を形成すると、放熱の表面積が増加すると共に、大気等の冷媒の流れを乱して熱交換効率が向上し、放熱量が増加するため好ましい。   In the cooling member according to the present invention, the porous body has a micro structure in which a large number of columnar bodies are arranged on a base material of the cooling member. In this case, the columnar body preferably has a diameter of 500 μm or less and an aspect ratio of 5 or more. It is preferable to form a plurality of branch bodies on the side surfaces of the columnar body because the surface area of heat radiation increases, the flow of refrigerant such as the atmosphere is disturbed, heat exchange efficiency is improved, and the amount of heat radiation is increased.

また、前記柱状体の全体あるいは一部が曲線を含む構造になっていることにより、柱状体の側面で発熱体に接触して接触面積が向上し、柱状体全体で応力を受けてクッション性を発揮できるため、応力が一部に集中して折れてしまうことを回避できるため好ましい。尚、多孔質体の片側だけ曲線を含む構造にしても良いが、両側が曲線を含む構造にすると、クッション性が向上して接触熱抵抗が低下するため好ましい。また、前記柱状体の全体あるいは一部が、曲線を複数含む形状、らせん形状あるいはS字形状の構造になっていることにより、クッション性を高くすることが可能となるため好ましい。   Further, since the whole or a part of the columnar body includes a curve, the side surface of the columnar body comes into contact with the heating element to improve the contact area, and the entire columnar body receives a stress to provide cushioning properties. Since it can exhibit, it can avoid that stress concentrates on one part and it breaks, and it is preferable. A structure including a curve only on one side of the porous body may be used, but a structure including a curve on both sides is preferable because cushioning properties are improved and contact thermal resistance is reduced. Further, it is preferable that the whole or a part of the columnar body has a shape including a plurality of curves, a spiral shape, or an S-shaped structure, so that cushioning properties can be enhanced.

上記本発明による冷却部材において、前記多孔質体としては、金属多孔体構造又は金属ハニカム構造を有するものがある。また、前記多孔質体が金属線あるいはカーボン繊維を絡み合わせた構造になっていても良く、この場合は均一な冷却特性制御が難しくなるが、安価に多孔質体構造が得られるため好ましい。前記多孔質体が表面を金属化処理した樹脂であることにより、樹脂の多孔質体構造を例えば射出成形で安価に量産でき、熱伝導は金属化処理膜で担うことができるため好ましい。樹脂も金属等を分散して高熱伝導化した樹脂であれば、熱伝導効果が高くなるため好ましい。   In the cooling member according to the present invention, the porous body has a metal porous structure or a metal honeycomb structure. The porous body may have a structure in which metal wires or carbon fibers are entangled. In this case, it is difficult to control uniform cooling characteristics, but it is preferable because a porous body structure can be obtained at low cost. The porous body is preferably a resin whose surface is metallized, so that the porous body structure of the resin can be mass-produced at low cost by, for example, injection molding, and heat conduction can be carried by the metallized film. The resin is preferably a resin in which a metal or the like is dispersed so as to have a high thermal conductivity because the thermal conductivity effect is enhanced.

上記本発明による冷却部材においては、前記被冷却体と多孔質体との接触状態での対向面積に対して、多孔質体の開気孔表面が冷媒と接触する冷媒接触面積が5倍以上であることが好ましい。また、前記冷媒を送り込む又は吸出すことにより、冷媒を多孔質体の開気孔内に流通させることが望ましい。前記被冷却体との接触面の反対側である多孔質体の背面側に冷媒を流して冷却することが好ましく、また前記被冷却体との接触面の反対側である多孔質体の背面側及び多孔質体の両方に冷媒を流して冷却することにより、両方の放熱面が活用できるため更に好ましい。前記被冷却体との接触面と反対側の冷却部材背面の1点あるいは複数設けた貫通孔から冷媒を送り込むあるいは吸出すことにより、多孔質体の開気孔内に流通させることが好ましい。前記冷媒が空気であると、デバイス周辺の空気を使用できコスト的に好ましい。   In the cooling member according to the present invention, the refrigerant contact area in which the surface of the open pores of the porous body is in contact with the refrigerant is at least five times the opposed area in the contact state between the cooled object and the porous body. It is preferable. Further, it is desirable that the refrigerant is circulated in the open pores of the porous body by feeding or sucking out the refrigerant. It is preferable to cool by flowing a refrigerant on the back side of the porous body that is the opposite side of the contact surface with the body to be cooled, and the back side of the porous body that is the opposite side of the contact surface with the body to be cooled Further, it is more preferable that both the heat radiating surfaces can be utilized by cooling by flowing a refrigerant through both the porous body and the porous body. It is preferable to circulate the refrigerant into the open pores of the porous body by feeding or sucking out the refrigerant from one or a plurality of through holes provided on the back surface of the cooling member opposite to the contact surface with the body to be cooled. If the refrigerant is air, the air around the device can be used, which is preferable in terms of cost.

また、前記多孔質体の表面の輻射率が0.5以上あると、輻射による冷却も併用できるため好ましい。多孔質体の表面の輻射率は高いほうが好ましいが、高熱伝導率の銅やアルミニウムのような金属は一般に輻射率が低いため、放熱は専ら熱伝導と対流によって起こるが、表面の輻射率が高いと輻射との相乗効果で放熱効率が向上する。輻射は表面の材質だけで規定されるので、内部を高熱伝導率の金属にして、その表面に高輻射の材料を被覆すれば良い。被覆する材料は、輻射率の観点から、輻射率0.5以上のカーボン、セラミックス等の材料が好ましい。被覆する方法は、蒸着、スパッタリング、溶射、スラリーの塗布と熱反応による析出など、上記材料の一般的な被覆法を用いることができる。   Further, it is preferable that the surface of the porous body has an emissivity of 0.5 or more because cooling by radiation can be used together. Higher emissivity on the surface of the porous body is preferable, but metals such as copper and aluminum with high thermal conductivity generally have low emissivity, so heat dissipation occurs exclusively by heat conduction and convection, but the surface emissivity is high The heat radiation efficiency is improved by the synergistic effect of radiation and radiation. Since radiation is defined only by the material of the surface, the inside may be made of a metal with high thermal conductivity and the surface may be covered with a high radiation material. The material to be coated is preferably a material such as carbon or ceramic having a radiation rate of 0.5 or more from the viewpoint of the radiation rate. As a method for coating, general coating methods for the above materials, such as vapor deposition, sputtering, thermal spraying, slurry application and thermal reaction deposition, can be used.

本発明の多孔質体は403W/m・KのCu又は236W/m・KのAlような高熱伝導率の材料で構成でき、従来のせいぜい5W/m・K程度の熱伝導率しかない熱伝導シートに比べて熱抵抗を小さくできるため、従来の熱伝導シートの代わりに多孔質体を用い且つ気体を送って冷却することにより、高い冷却効果を有することが可能である。また、冷却部材背面の放熱フィンを多孔質体構造にして、全体として薄型の冷却デバイスとすることも可能である。   The porous body of the present invention can be composed of a material having a high thermal conductivity such as Cu of 403 W / m · K or Al of 236 W / m · K, and has a thermal conductivity of only about 5 W / m · K at the conventional level. Since the thermal resistance can be reduced as compared with the sheet, it is possible to have a high cooling effect by using a porous body instead of the conventional heat conductive sheet and cooling by sending a gas. Moreover, it is also possible to make the radiating fin on the back surface of the cooling member have a porous structure, so that the cooling device is thin as a whole.

また、被冷却体に対して多孔質体を押付ける応力は、多孔質体1本当たり1g以上掛けるのが好ましい。1g未満では多孔質体が十分に被冷却体に押付けられず、クッション性や表面の変形による接触が不十分となってしまうためである。押付け量の最大値は、被冷却体が破損する総応力の80%以内にする必要があり、それを越えると被冷却体が破損する確率が高くなってしまうためである。更に、金属製の多孔質体の耐酸化性や耐腐食性が低い場合、その表面に耐酸化性や耐腐食性の高い膜を形成して耐久性を向上させ、製品の信頼性を高めることが可能である。   Moreover, it is preferable that the stress which presses a porous body with respect to a to-be-cooled body applies 1 g or more per porous body. If it is less than 1 g, the porous body is not sufficiently pressed against the object to be cooled, and the contact due to cushioning and surface deformation becomes insufficient. This is because the maximum value of the pressing amount needs to be within 80% of the total stress at which the object to be cooled breaks, and if it exceeds that, the probability that the object to be cooled will break increases. Furthermore, if the metal porous body has low oxidation resistance and corrosion resistance, a film with high oxidation resistance and corrosion resistance is formed on the surface to improve durability and increase product reliability. Is possible.

本発明によれば、発熱素子やそれを搭載する基板等の被冷却体に反り等があっても、冷却部材の弾性変形能及び/又は塑性変形能を有する多孔質体が隙間なく密着することができるので、接触界面に熱抵抗となる気泡が残ることがなく、しかも接触界面に熱伝導率の低い材料を挟み込んでいないため、被冷却体の熱を効率的に多孔質体へ伝えることができる。そして、この多孔質体の開気孔内に冷媒を流すことにより、多孔質体に伝わった熱を直ちに開気孔表面で冷媒へ放熱させることができるため、非常に高い排熱効率を得ることができる。   According to the present invention, the porous body having the elastic deformability and / or plastic deformability of the cooling member adheres without gaps even when the cooling element such as the heating element or the substrate on which the heating element is warped. As a result, there is no bubble that becomes thermal resistance at the contact interface, and no material with low thermal conductivity is sandwiched between the contact interfaces, so that the heat of the object to be cooled can be efficiently transferred to the porous body. it can. And since a heat | fever transmitted to the porous body can be directly radiated to a refrigerant | coolant by the surface of an open pore by flowing a refrigerant | coolant in the open pore of this porous body, very high heat exhaustion efficiency can be obtained.

従って、本発明の冷却部材を被冷却体であるテレビ、プロジェクタ、パソコンなどの電子機器に使用することによって、従来のヒートシンクやファン等の冷却手段に比べて、被冷却体の熱を極めて効率よく放熱して冷却することができ、最近の発熱量の増大に対応することができるうえ、熱風を周囲に撒き散らすこともないので快適に用いることができる。   Therefore, by using the cooling member of the present invention for electronic devices such as televisions, projectors, and personal computers that are the objects to be cooled, the heat of the objects to be cooled is extremely efficiently compared to conventional cooling means such as heat sinks and fans. It can dissipate and cool, can cope with the recent increase in the amount of heat generation, and can be used comfortably because hot air is not scattered around.

例えば、図1に示すように、本発明による冷却部材1は、被冷却体2との接触面側に設けた多孔質体3と、被冷却体2との接触面と反対側(背面側)に位置する基材4とで構成されている。この場合、被冷却体2との接触面全体が多孔質体3であることが好ましく、更には冷却部材1全体が多孔質体であってもよい。また、多孔質体は弾性変形能及び/又は塑性変形能を有し、そのスプリング性能によって被冷却体と隙間なく接触することができるため、接触界面に熱抵抗となる気泡が残らず、被冷却体の熱を冷却部材に効率的に伝えることができる。しかも、多孔質体は開気孔を有するため、その開気孔内に冷媒を流すことにより、被冷却体から多孔質体に伝わった熱を直ちに開気孔表面で冷媒へ放熱させることができる。   For example, as shown in FIG. 1, the cooling member 1 according to the present invention includes a porous body 3 provided on the contact surface side with the body to be cooled 2, and a side opposite to the contact surface with the body to be cooled 2 (back side). It is comprised with the base material 4 located in this. In this case, it is preferable that the entire contact surface with the object to be cooled 2 is the porous body 3, and further, the entire cooling member 1 may be the porous body. In addition, since the porous body has elastic deformability and / or plastic deformability and can contact with the object to be cooled without any gaps due to its spring performance, there is no bubble remaining as a thermal resistance at the contact interface, and the object to be cooled is cooled. The heat of the body can be efficiently transmitted to the cooling member. In addition, since the porous body has open pores, the heat transferred from the object to be cooled to the porous body can be immediately radiated to the refrigerant on the surface of the open pores by flowing the coolant through the open pores.

被冷却体からより多くの熱量を冷却部材に効率的に伝えるためには、被冷却体と多孔質体とが接触状態で対向している部分の面積(対向面積という)に対して、多孔質体が被冷却体と開気孔部分を除いて接触している部分が占める面積(接触面積という)を0.01%以上とすることが望ましい。尚、冷媒を流すための開気孔は、少なくとも多孔質体の外周面に開孔していればよく、多孔質体と被冷却体との接触面には必ずしも開孔している必要はないから、上記接触面積が上記対向面積と同じ(100%)であってもよい。   In order to efficiently transfer more heat from the body to be cooled to the cooling member, it is porous relative to the area of the part where the body to be cooled and the porous body face each other in a contact state (referred to as opposed area). It is desirable that the area (referred to as a contact area) occupied by a portion where the body is in contact with the object to be cooled except for the open pores is 0.01% or more. It should be noted that the open pores for allowing the coolant to flow are only required to be open at least on the outer peripheral surface of the porous body, and are not necessarily open on the contact surface between the porous body and the cooled object. The contact area may be the same (100%) as the facing area.

多孔質体は、十分な冷媒流通量を確保するために、空隙率が50%以上であることが好ましく、厚みが200μm以上あることが好ましい。しかし、多孔質体の空隙率が99%を超えると強度が低下し、また厚みが10mmを超えると冷媒を流通させるための圧力が高くなるため好ましくない。また、多孔質体の厚みに対して、10倍以内の深さの凹凸形状を形成することにより、大気等の冷媒の流れを乱して放熱が促進されるため好ましい。更に、多孔質体の隙間に多孔質体の厚み以内の板状体を形成することでも、大気等の冷媒の流れを乱して放熱が促進されるため好ましい。   The porous body preferably has a porosity of 50% or more and a thickness of 200 μm or more in order to ensure a sufficient refrigerant flow rate. However, when the porosity of the porous body exceeds 99%, the strength decreases, and when the thickness exceeds 10 mm, the pressure for circulating the refrigerant increases, which is not preferable. Further, it is preferable to form an uneven shape with a depth of 10 times or less with respect to the thickness of the porous body, because the flow of refrigerant such as the air is disturbed and heat dissipation is promoted. Furthermore, it is also preferable to form a plate-like body having a thickness within the thickness of the porous body in the gap between the porous bodies because the heat flow is promoted by disturbing the flow of the refrigerant such as the atmosphere.

多孔質体の隙間に形成する板状体は、その表面粗さRaを0.01μm以上とすることにより、冷媒との間で固体/気体間の摩擦により冷媒に乱れが生じて放熱が促進されやすくなるため好ましく、Raが0.1μm以上であるとその効果は非常に大きくなるため更に好ましい。また、上記板状体の表面粗さRmaxを0.1μm以上とすることによって、冷媒との間で固体/気体間の摩擦により冷媒に乱れが生じて放熱が促進されやすくなるため好ましく、更に0.5μm以上であるとその効果は非常に大きくなる。尚、多孔質の径が細いため、表面粗さの測定は触針式の粗さ計では難しいが、表面粗さやうねりを測定できる三次元SEM(3D−SEM)を使用すれば、非接触にて高倍率で高精度に表面粗さを測定することができる。   The plate-like body formed in the gap between the porous bodies has a surface roughness Ra of 0.01 μm or more, so that the refrigerant is disturbed by the solid / gas friction with the refrigerant, and heat dissipation is promoted. It is preferable because it becomes easy, and Ra is more preferably 0.1 μm or more because the effect becomes very large. Further, by setting the surface roughness Rmax of the plate-like body to 0.1 μm or more, it is preferable because the refrigerant is disturbed by the solid / gas friction with the refrigerant and heat dissipation is easily promoted. The effect becomes very large when it is 0.5 μm or more. In addition, since the porous diameter is thin, measurement of surface roughness is difficult with a stylus type roughness meter, but if a three-dimensional SEM (3D-SEM) capable of measuring surface roughness and waviness is used, it is non-contact. Thus, the surface roughness can be measured with high magnification and high accuracy.

多孔質体の弾性変形量及び/又は塑性変形量については、100μm以上あれば一般的なアルミナパッケージの通常の反り量100μmに対応できるため好ましく、150μm以上あれば最大の反り量と言われる150μmにも対応できるため更に好ましい。多孔質体を被冷却体に押し付ける量は、被冷却体の反り量より大きければ良く、好ましくは最大反り量よりも50μm以上多く押し付ければ十分である。例えば、最大100μmの反りやうねりを有する被冷却体に対しては、150μm以上押し付ければ全面に亘って多孔質体が接触することができる。また、多孔質体の被冷却体への押し付けは、できるだけ強く押し付けた方が多孔質体の先端が弾性変形あるいは塑性変形して実質接触面積が増大し、接触熱抵抗が小さくなるため好ましいが、押付け圧力が大きくなりすぎると被冷却体や多孔質体が破損してしまうため、破損の起こる90%以下の範囲で押し付けるのが好ましい。   The amount of elastic deformation and / or plastic deformation of the porous body is preferably 100 μm or more because it can correspond to the normal warp amount of 100 μm of a general alumina package, and 150 μm or more is preferably 150 μm, which is the maximum warp amount. Is more preferable because it can also be used. The amount of pressing the porous body against the object to be cooled may be larger than the amount of warpage of the object to be cooled, and it is sufficient to press the porous body more than the maximum warpage amount by 50 μm or more. For example, the object to be cooled having a warp or swell of 100 μm at the maximum can be brought into contact with the porous body over the entire surface by being pressed by 150 μm or more. In addition, it is preferable to press the porous body against the object to be cooled as strongly as possible because the tip of the porous body is elastically deformed or plastically deformed to increase the substantial contact area and reduce the contact thermal resistance. If the pressing pressure becomes too large, the object to be cooled and the porous body will be damaged. Therefore, it is preferable to press within a range of 90% or less where the damage occurs.

また、多孔質体がヤング率150GPa以下の材料で構成されることにより、弾性変形能及び/又は塑性変形能によるスプリング性能が向上し、多孔質体を被冷却体に隙間なく接触させることが可能となるため好ましい。更に、多孔質体は熱伝導率が100W/m・K以上の材料から構成されることにより、冷却が効率的に行えるため好ましい。このような高い熱伝導率を有する多孔質体の材料としては、熱伝導率が403W/m・Kの銅、同じく236W/m・Kのアルミニウムを主成分とする材料が好ましい。他に金(Au)や銀(Ag)も高い熱伝導率と変形能を有するため材料特性的には好ましいが、コスト的にかなり高価になるため、工業的見地から好ましくない。尚、多孔質体の構成材料の純度は90%以上であることが好ましい。10%以上の不純物を含むと、その材料が本来有する熱伝導率が急激に低下し、且つ発熱体に押し付けた際の実質の接触面積を広げるための延展性も低下するため、接触熱抵抗が増加してしまうためである。   In addition, since the porous body is made of a material having a Young's modulus of 150 GPa or less, the spring performance by the elastic deformability and / or plastic deformability is improved, and the porous body can be brought into contact with the object to be cooled without any gap. This is preferable. Furthermore, the porous body is preferable because it is made of a material having a thermal conductivity of 100 W / m · K or more, so that the cooling can be efficiently performed. As a material for the porous body having such a high thermal conductivity, a material mainly composed of copper having a thermal conductivity of 403 W / m · K and aluminum having a thermal conductivity of 236 W / m · K is preferable. In addition, gold (Au) and silver (Ag) are preferable in terms of material characteristics because they have high thermal conductivity and deformability, but are not preferable from an industrial standpoint because they are considerably expensive in cost. The purity of the constituent material of the porous body is preferably 90% or more. If it contains impurities of 10% or more, the thermal conductivity inherent to the material is drastically reduced, and the extensibility for expanding the substantial contact area when pressed against the heating element is also reduced, so that the contact thermal resistance is reduced. This is because it increases.

多孔質体の表面粗さRaを0.01μm以上とすることにより、冷媒との間で固体/気体間の摩擦により冷媒に乱れが生じて放熱が促進されやすくなるため好ましく、更に0.1μm以上であるとその効果は非常に大きくなる。また、多孔質体の表面粗さRmaxについても、0.1μm以上であることにより、冷媒との間で固体/気体間の摩擦により冷媒に乱れが生じて放熱が促進されやすくなるため好ましく、更に0.5μm以上であるとその効果は非常に大きくなる。しかし、多孔質体の強度が350MPaより高いと、クッション性や、発熱体に押し付けた際の実質の接触面積を広げるための延展性が低下し、接触熱抵抗が増加してしまうため好ましくない。また、多孔質体の接触部の表面粗さRaが10μm以上になると、被冷却体と多孔質体の接触面積が小さくなって、熱抵抗が大きくなってしまうため好ましくなく、できればRaを1μm以下に抑えるのが好ましい。   By setting the surface roughness Ra of the porous body to 0.01 μm or more, it is preferable because the refrigerant is disturbed by the solid / gas friction with the refrigerant and heat dissipation is facilitated, and more preferably 0.1 μm or more. If it is, the effect will become very large. Further, the surface roughness Rmax of the porous body is also preferably 0.1 μm or more, because the refrigerant is disturbed by the solid / gas friction with the refrigerant and heat dissipation is easily promoted. When the thickness is 0.5 μm or more, the effect becomes very large. However, if the strength of the porous body is higher than 350 MPa, the cushioning property and the extensibility for expanding the substantial contact area when pressed against the heating element are lowered, and the contact thermal resistance is increased. Further, when the surface roughness Ra of the contact portion of the porous body is 10 μm or more, the contact area between the object to be cooled and the porous body becomes small and the thermal resistance becomes large, which is not preferable. If possible, Ra should be 1 μm or less. It is preferable to keep it at a minimum.

本発明による冷却部材においては、被冷却体と多孔質体との接触状態での対向面積に対して、多孔質体の開気孔表面が冷媒と接触する面積(冷媒接触面積という)が5倍以上であることが好ましい。従来の冷却構造、例えば被冷却体に取り付けたAlフィンにファンで風を送る空冷方式では、被冷却体とフィンとの対向面積に対してフィンの面積を5倍以上に広げても、フィンの表面の隅々までファンで風を行き渡らせることができないため、実質的な冷却効率は向上しなかった。しかし、本発明の冷却部材のように、多孔質体の開気孔で構成された空間内に冷媒を流す構造にすることによって、冷媒が接触する表面積を広げることができ、冷却効率を向上させることができる。   In the cooling member according to the present invention, the area (referred to as the refrigerant contact area) where the open pore surface of the porous body is in contact with the refrigerant is more than 5 times the opposed area in the contact state between the object to be cooled and the porous body. It is preferable that In a conventional cooling structure, for example, an air cooling system in which air is sent to an Al fin attached to a cooled object by a fan, the fin area can be increased even if the area of the fin is increased five times or more than the opposed area of the cooled object and the fin. Since it was not possible to spread the wind to every corner of the surface with a fan, the actual cooling efficiency did not improve. However, by using a structure in which the coolant flows in the space formed by the open pores of the porous body like the cooling member of the present invention, the surface area in contact with the coolant can be increased, and the cooling efficiency is improved. Can do.

冷媒を送り込む又は吸出すことにより、多孔質体の開気孔内に流通させることが好ましい。この場合、被冷却体との接触面の反対側である多孔質体の背面側から冷媒を流して冷却するか、あるいは被冷却体との接触面の反対側である多孔質体の背面側及び多孔質体内の両方に冷媒を流して冷却することができる。このように、多孔質体の背面側と多孔質体内の両方に冷媒を流して冷却すれば、放熱する面積を増加させることが可能であるため冷却効率が向上する。例えば、多孔質体の背面から空気を流すことにより、特に大きな付加設備を設けることなく冷却効率が向上するため好ましい。また、冷却効率を上げるために、被冷却体に接している多孔質体にポンプやコンプレッサ等で空気を送り込み、多孔質体の背面側にはファンで空気を送り込むことを行っても良い。   It is preferable to circulate in the open pores of the porous body by sending or sucking out the refrigerant. In this case, cooling is performed by flowing a refrigerant from the back side of the porous body that is the opposite side of the contact surface with the cooled body, or the back side of the porous body that is the opposite side of the contact surface with the cooled body and It is possible to cool by flowing a refrigerant through both of the porous bodies. In this way, if the coolant is allowed to flow through both the back side of the porous body and the inside of the porous body for cooling, the heat radiation area can be increased, so that the cooling efficiency is improved. For example, it is preferable to flow air from the back surface of the porous body because the cooling efficiency is improved without providing a particularly large additional facility. In order to increase the cooling efficiency, air may be sent to the porous body in contact with the object to be cooled by a pump or a compressor, and air may be sent to the back side of the porous body by a fan.

冷媒として空気などの気体を用いる場合、例えば気体をポンプで1kgf/cm以下に減圧引きにすることにより、多孔質体や冷却部材表面の不動体膜を破壊して空冷時の熱伝導阻害層を除去できるため、効率的な冷却が可能となる。また、多孔質体内部を減圧にできるため、被冷却体と冷却部材との密着度を高めることができ、熱接触が向上して熱伝達が促進される。また、気体をコンプレッサで加圧することによっても、単位体積当たりの熱を受け取る気体分子が増加するため、冷却効率が向上する。いずれの場合においても、多孔質体の開気孔内を流れる気体の流速が0.05m/秒以上であれば、冷媒である気体への放熱効率が高くなるため好ましい。 When a gas such as air is used as the refrigerant, for example, by depressurizing the gas to 1 kgf / cm 2 or less with a pump, the non-moving body film on the surface of the porous body or the cooling member is broken to prevent heat conduction during air cooling. Therefore, efficient cooling is possible. Moreover, since the inside of a porous body can be pressure-reduced, the close_contact | adherence degree of a to-be-cooled body and a cooling member can be raised, a thermal contact improves and heat transfer is accelerated | stimulated. In addition, when the gas is pressurized with a compressor, the number of gas molecules that receive heat per unit volume increases, so that the cooling efficiency is improved. In any case, it is preferable that the flow rate of the gas flowing in the open pores of the porous body is 0.05 m / second or more because the heat dissipation efficiency to the gas as the refrigerant is increased.

特に冷媒の気体として空気を用いる場合には、被冷却体との接触面と反対側の冷却部材背面に設けた貫通孔から減圧引きすることが好ましい。被冷却体と冷却部材基材の間で多孔質体外周面の一端から一端へ空気を流しても冷却効果は得られるが、開放されている多孔質体外周面を気密シールする必要があるため、多孔質体の弾性変形と整合させることが難しい。そのため、好ましくは冷却部材背面の中央1点あるいは複数点に貫通孔を設け、その貫通孔から背面側へ減圧に引くことにより、開放されている多孔質体外周面から空気を吸引して、多孔質体の開気孔内を均一に流し、貫通孔から排出することができる。   In particular, when air is used as the refrigerant gas, it is preferable to reduce the pressure from a through hole provided on the back surface of the cooling member opposite to the contact surface with the object to be cooled. Even if air is allowed to flow from one end of the outer peripheral surface of the porous body to one end between the body to be cooled and the cooling member base material, the cooling effect can be obtained, but it is necessary to hermetically seal the open outer peripheral surface of the porous body It is difficult to match the elastic deformation of the porous body. For this reason, preferably, a through hole is provided at one or more central points on the back surface of the cooling member, and air is sucked from the outer peripheral surface of the open porous body by pulling the pressure from the through hole to the back surface side. The inside of the open pores of the material can be uniformly flowed and discharged from the through holes.

多孔質体に流す冷媒は、気体でも液体でも良い。液体は冷却効果が高いという利点を有するが、電気部品では液漏れが発生した際の被害が大きい。また、冷媒の液体を使い捨てにすると液体コストや給液及び排液の装置コストが高くなるため、通常は液体を循環して使用するが、その場合でも液体で奪った熱を結局は別の場所で大気中に放出しなければならない。従って、本発明においても、冷媒として気体を用いることが好ましい。具体的には、窒素ガスやアルゴンガスを用いることができるが、特に空気を用いることが外部に漏れた場合に作業者が窒息を起こす危険性もないため好ましい。   The refrigerant flowing through the porous body may be gas or liquid. Liquid has the advantage of a high cooling effect, but electrical components are greatly damaged when a liquid leak occurs. In addition, if the liquid of the refrigerant is made disposable, the liquid cost and the liquid supply and drainage equipment costs increase, so normally the liquid is circulated and used. Must be released into the atmosphere. Therefore, also in the present invention, it is preferable to use a gas as the refrigerant. Specifically, nitrogen gas or argon gas can be used, but it is particularly preferable to use air because there is no risk of suffocation by the operator when it leaks to the outside.

ただし、多孔質体内の圧力損失が大きくなり、真空引きや加圧の際に空気等の冷媒の圧力が下がる箇所が生ずると、熱を受け取る分子数密度が減少することになるため冷却効率が低下してしまう。そのため、多孔質体内部の圧力損失が大きくならない冷媒の流れを作ることにより、冷却効率を上げることができる。例えば、中央1点で背面からポンプ引きすると、中央の出口付近の圧力が最も低くなり、中央部の冷却効率は低下するが、その周囲に圧力を分散するための補助穴を開けることにより、圧力損失が低下して冷却効率は向上する。更に、多孔質体に空気の導入部とポンプ引き部を交互に形成する等の対応を行うことにより、圧力損失が一層低下して冷却効率が向上するため好ましい。   However, if the pressure loss in the porous body increases, and there are places where the pressure of the refrigerant such as air drops during evacuation or pressurization, the density of the number of molecules that receive heat will decrease, resulting in a decrease in cooling efficiency. Resulting in. Therefore, the cooling efficiency can be increased by creating a refrigerant flow in which the pressure loss inside the porous body does not increase. For example, when pumping from the back at one central point, the pressure near the central outlet is the lowest and the cooling efficiency in the central portion is reduced, but by making auxiliary holes to disperse the pressure around the pressure, Loss is reduced and cooling efficiency is improved. Furthermore, it is preferable to take measures such as alternately forming the air introduction part and the pumping part in the porous body because the pressure loss is further reduced and the cooling efficiency is improved.

また、被冷却体の表面には、面粗度に応じて微小な凹凸、例えば通常は0.2〜0.8μm程度の凹凸が存在する。この状態の被冷却体表面に冷却部材の多孔質体を押し付けると、両者の接触界面に微小気孔が残留して熱抵抗になる。そこで、この多孔質体と被冷却体の表面粗さに起因する凹凸の隙間を埋めるように、両者の接触界面に熱伝導性のグリースや樹脂などで介在層を形成するが、その介在層の厚さを50μm以下とすることによって、介在層の熱伝導率の低さが熱抵抗とならず、むしろ熱伝導を大きく改善できることを見出した。介在層の厚さが50μmを超えると、介在層の熱伝導率の低さから熱抵抗として働くようになるため好ましくない。   Also, the surface of the object to be cooled has minute irregularities, for example, irregularities of about 0.2 to 0.8 μm, depending on the surface roughness. When the porous body of the cooling member is pressed against the surface of the body to be cooled in this state, micropores remain at the contact interface between the two, resulting in thermal resistance. Therefore, an intervening layer is formed with thermally conductive grease or resin at the contact interface between the porous body and the object to be cooled so as to fill the uneven gap caused by the surface roughness of the object to be cooled. It has been found that by setting the thickness to 50 μm or less, the low thermal conductivity of the intervening layer does not become a thermal resistance, but rather can greatly improve the thermal conduction. If the thickness of the intervening layer exceeds 50 μm, it is not preferable because it acts as a thermal resistance due to the low thermal conductivity of the intervening layer.

本発明の冷却部材における多孔質体の構造には特に制限はなく、例えば、金属多孔体構造や金属ハニカム構造など、被冷却体と隙間なく接触するためのスプリング機能と冷媒を流して冷却するための開気孔を有するものであれば良い。特に好ましい多孔質体としては、例えば図2に示すように、冷却部材の基材4上に多数の柱状体3aを配置したマイクロ構造を有するものがある。また、図3に示す多孔質体は、図2の柱状体3aの先端部につば部3bを設けて、被冷却体との接触面積を増やしたものである。尚、このマイクロ構造の多孔質体では、各柱状体3aの間の空間が開気孔となる。   There is no particular limitation on the structure of the porous body in the cooling member of the present invention. For example, a metal porous body structure or a metal honeycomb structure such as a spring function for contacting the object to be cooled without gaps and a coolant flow for cooling. Any material having open pores may be used. As a particularly preferable porous body, for example, as shown in FIG. 2, there is one having a microstructure in which a large number of columnar bodies 3a are arranged on a base member 4 of a cooling member. Moreover, the porous body shown in FIG. 3 is provided with a collar portion 3b at the tip of the columnar body 3a in FIG. 2 to increase the contact area with the object to be cooled. In this microporous body, the spaces between the columnar bodies 3a are open pores.

これらの柱状体は、図2〜3に示すように、斜めに傾斜した状態で、基材表面のXY方向に規則的に配列していることが好ましい。また、各柱状体の径は500μm以下であることが好ましく、各柱状体のアスペクト比は5以上であることが好ましい。柱状体の径を500μm以下とすることにより、被冷却体から伝わった熱が柱状体表面に達しやすく、冷媒に対する放熱効果が高くなる。また、柱状体のアスペクト比を5以上とすることにより、多孔質体の弾性変形がスムーズに起こるようになり、被冷却体との密着度が向上して冷却効率が高くなる。   As shown in FIGS. 2 to 3, these columnar bodies are preferably arranged regularly in the XY direction on the surface of the substrate in an obliquely inclined state. The diameter of each columnar body is preferably 500 μm or less, and the aspect ratio of each columnar body is preferably 5 or more. By setting the diameter of the columnar body to 500 μm or less, the heat transmitted from the object to be cooled easily reaches the surface of the columnar body, and the heat dissipation effect for the refrigerant is enhanced. Further, by setting the aspect ratio of the columnar body to 5 or more, the elastic deformation of the porous body occurs smoothly, the degree of adhesion with the body to be cooled is improved, and the cooling efficiency is increased.

上記した多数の柱状体からなるマイクロ構造の多孔質体は、LIGA(Lithograph Galvanoformung Abformug)法、MEMS、ナノインプリントにより形成することができる。例えば、LIGA法によれば、基材となる金属板上にレジストを塗布乾燥した後、柱状体の断面に相当するパターンのマスクを載せ、例えば斜め45°の方向からX線を照射する。現像液で洗浄してX線のあたった箇所のレジストを除去し、レジストが除去された空間に電気めっきで金属を柱状に埋めた後、残っているレジストを酸素プラズマで除去することによって、斜めに傾斜した多数の柱状体からなるマイクロ構造の多孔質体(図2)が得られる。また、この多数の柱状体の先端に銀ロウ等を挟んで金属箔を載せ、加熱処理して接合した後、レーザで金属箔を升目状に切り離すことによって、柱状体の先端につば部を設けたマイクロ構造の多孔質体(図3)を得ることができる。   The above-mentioned porous body having a microstructure composed of a large number of columnar bodies can be formed by a LIGA (Lithograph Galvanforming Abformug) method, MEMS, or nanoimprint. For example, according to the LIGA method, after applying and drying a resist on a metal plate serving as a base material, a mask having a pattern corresponding to the cross section of the columnar body is placed, and, for example, X-rays are irradiated from an oblique 45 ° direction. The resist is washed with a developer to remove the resist exposed to X-rays, the metal is filled in a columnar shape by electroplating in the space where the resist has been removed, and then the remaining resist is removed with oxygen plasma. A porous body having a microstructure (FIG. 2) composed of a large number of columnar bodies inclined in the direction is obtained. In addition, a metal foil is placed on the tips of these columnar bodies with silver brazing sandwiched between them, heat treated and joined, and then the metal foil is cut into a grid shape with a laser to provide a collar at the ends of the columnar bodies. A porous body having a microstructure (FIG. 3) can be obtained.

また、本発明の多孔質体としては、上記した銅やアルミニウム等の金属からなる多孔質体のほかに、金属多孔体構造や金属ハニカム構造であっても良い。あるいは、表面を金属化処理した樹脂、例えば多孔質フッ素樹脂を用いることもできる。多孔質フッ素樹脂は弾性変形能及び/又は塑性変形能を有し、スプリング機能により被冷却体と隙間なく接触できる。また、多孔質フッ素樹脂は熱伝導率が低いが、銅めっき等で表面を金属化処理することにより、熱伝導特性を向上させることが可能である。尚、フッ素樹脂としては、四フッ化エチレン樹脂(PTFE)、六フッ化エチレン共重合体(FEP)、パーフルオロアルコキシエチレン共重合体(PFA)等が、コスト及び特性安定性の観点から好ましい。   Further, the porous body of the present invention may have a metal porous body structure or a metal honeycomb structure in addition to the above-described porous body made of a metal such as copper or aluminum. Alternatively, a resin whose surface is metallized, such as a porous fluororesin, can be used. The porous fluororesin has elastic deformability and / or plastic deformability, and can contact the object to be cooled without a gap by a spring function. In addition, although the porous fluororesin has a low thermal conductivity, it is possible to improve thermal conductivity characteristics by metallizing the surface with copper plating or the like. In addition, as a fluororesin, tetrafluoroethylene resin (PTFE), hexafluoroethylene copolymer (FEP), perfluoroalkoxyethylene copolymer (PFA), etc. are preferable from a viewpoint of cost and characteristic stability.

上記した本発明による冷却部材を用いることによって、素子や基板、パッケージ等の被冷却体から効率的に排熱することができ、温度上昇による素子の誤動作や劣化を防ぐことができる。従って、最近の大画面化により発熱量の増大しているテレビやプロジェクタ、あるいはMPUの高速化による発熱量の増大に放熱が追いつかなくかっているパソコンを初めとして、多くの電子機器に好適に使用することができる。   By using the above-described cooling member according to the present invention, it is possible to efficiently exhaust heat from an object to be cooled such as an element, a substrate, and a package, and it is possible to prevent malfunction and deterioration of the element due to temperature rise. Therefore, it is suitable for use in many electronic devices, such as TVs and projectors that have increased in heat generation due to the recent increase in screen size, and personal computers that cannot keep up with the increase in heat generation due to the increased speed of MPU. be able to.

[実施例1]
図4に示すように、DLP素子の代用として縦15×横15×厚さ1mmのAlNヒータ5を用い、このAlNヒータ5を純度92%の縦40×横40×厚さ2.5mmのAl基板6にAgグリ−ス(熱伝導率:9W/m・K)を用いて接着した。このAl基板6の裏面中央の冷却領域は縦20×横20mmであり、且つ凹状に0.1mm反っていた。このAl基板6の裏面中央の冷却領域に、Cuの多孔質体3をCuの基材4上に形成した冷却部材1を配置し、更にその裏面を中央に縦20×横20×厚さ1mmの出っ張りを有するCu基板7で挟み込み、SUSねじで全体を締め込んだ。
[Example 1]
As shown in FIG. 4, an AlN heater 5 having a length of 15 × width of 15 × thickness of 1 mm was used as a substitute for the DLP element, and this AlN heater 5 was made of Al with a purity of 92% length of 40 × width of 40 × thickness of 2.5 mm. The 2 O 3 substrate 6 was bonded using Ag grease (thermal conductivity: 9 W / m · K). The cooling area at the center of the back surface of the Al 2 O 3 substrate 6 was 20 × 20 mm wide and warped 0.1 mm in a concave shape. The cooling member 1 in which the porous body 3 of Cu is formed on the Cu base 4 is disposed in the cooling region at the center of the back surface of the Al 2 O 3 substrate 6, and the back surface is centered on the back 20 × vertical 20 × width 20 ×. It was sandwiched between Cu substrates 7 having a protrusion with a thickness of 1 mm, and the whole was tightened with SUS screws.

上記冷却部材1の多孔質体3は、LIGA法により形成した。即ち、縦20×横20×厚さ2mmのCu板の表面にレジストを塗布乾燥し、マスクを載せて斜め30°の方向からX線を照射した後、現像液で洗浄してX線のあたった箇所のレジストを深さ0.25mmまで除去し、レジストが除去された空間に電気めっきでCuを柱状に埋め、残っているレジストを酸素プラズマで除去することにより作製した。このようにして作製した試料1の多孔質体は、図2に示すように、斜めに30°に傾斜した断面25×25μmの多数の柱状体3aが25μmずつ間を空けて規則的に剣山状に配列したマイクロ構造を有し、被冷却体であるAl基板6との対向面積に対して接触面積(剣山状に配列した各柱状体の先端部の合計面積に相当する)は25%であった。 The porous body 3 of the cooling member 1 was formed by the LIGA method. That is, a resist is applied and dried on the surface of a Cu plate having a length of 20 × 20 × 2 mm in thickness, and a mask is placed on the surface, irradiated with X-rays from an oblique direction of 30 °, washed with a developer, and exposed to X-rays. The resist was removed to a depth of 0.25 mm, Cu was filled in a columnar shape by electroplating in the space from which the resist was removed, and the remaining resist was removed by oxygen plasma. As shown in FIG. 2, the porous body of Sample 1 produced in this way has a number of columnar bodies 3a having a cross section of 25.times.25 .mu.m obliquely inclined at 30.degree. The contact area (corresponding to the total area of the tip portions of the columnar bodies arranged in a sword mountain shape) is 25 with respect to the area facing the Al 2 O 3 substrate 6 that is the object to be cooled. %Met.

この試料1の冷却系を300×300×600mmの筐体内に入れ、風の影響を受けない状態において、室温を空調で25℃に制御し、AlNヒータへの供給電力を7Wに設定して、冷却実験を行った。その際、図4に示すように、Cuの基材4とCu基板7の中央に直径2mmの貫通孔8を設け、多孔質体3の背面側からステンレス配管を通じて筐体外に引き出し、ポンプ9を用いて1kgf/cmで減圧に引いた。空気は多孔質体3の外周面から吸引されて中央部に流れ込み、貫通孔8を通って筐体外に排出される。その際、空気は3リットル/分の流量で流れた。 In a state where the cooling system of Sample 1 is placed in a 300 × 300 × 600 mm case and is not affected by wind, the room temperature is controlled to 25 ° C. by air conditioning, and the power supplied to the AlN heater is set to 7 W. A cooling experiment was conducted. At that time, as shown in FIG. 4, a through hole 8 having a diameter of 2 mm is provided in the center of the Cu base 4 and the Cu substrate 7, and the pump 9 is pulled out of the casing through the stainless steel pipe from the back side of the porous body 3. Used to draw a vacuum at 1 kgf / cm 2 . Air is sucked from the outer peripheral surface of the porous body 3 and flows into the central portion, and is discharged out of the casing through the through hole 8. At that time, air flowed at a flow rate of 3 liters / minute.

また、上記試料1の多孔質体に代え、図3に示すように、柱状体3aの先端に銀ロウを挟んで厚さ0.1mmのCu箔を載せ、加熱処理して接合した後、レーザでCu箔を升目状に切り離すことによって、柱状体3aの先端につば部3bを設けたマイクロ構造の試料2〜4の多孔質体を作製した。ただし、多孔質体の被冷却体との対向面積に対する接触面積の割合は、上記試料1が25%であるのに対し、試料2は12%、試料3は9%、試料4は2%、試料5は0.1%、試料6は0.01%、及び試料7は0.005%であった。   Further, in place of the porous body of the sample 1, as shown in FIG. 3, a Cu foil having a thickness of 0.1 mm is placed on the tip of a columnar body 3a with a silver solder sandwiched between them, heat-treated, and then bonded. Then, by cutting the Cu foil into a grid, porous samples 2 to 4 having a micro structure in which the collar portion 3b was provided at the tip of the columnar body 3a were produced. However, the ratio of the contact area to the opposed area of the porous body to the object to be cooled is 25% for the sample 1, whereas the sample 2 is 12%, the sample 3 is 9%, the sample 4 is 2%, Sample 5 was 0.1%, sample 6 was 0.01%, and sample 7 was 0.005%.

上記の試料1〜4について、上記と同様の冷却実験を行ったところ、AlNヒータにRTD素子を埋込んで測定した温度は、試料1で35℃、試料2で38℃、試料3で41℃、試料4で43℃、試料5で44℃、試料6で45℃、及び試料7で47℃であった。   When the same cooling experiment as above was performed on the above samples 1 to 4, the temperatures measured by embedding the RTD element in the AlN heater were 35 ° C. for sample 1, 38 ° C. for sample 2, and 41 ° C. for sample 3. Sample 4 was 43 ° C., Sample 5 was 44 ° C., Sample 6 was 45 ° C., and Sample 7 was 47 ° C.

[比較例1]
図5に示すように、上記実施例1と同じAlNヒータ5とAl基板6の接着体を用い、このAl基板6の裏面中央の冷却領域に縦20×横20×厚さ1.5mmの熱伝導シート(熱伝導率:30W/m・K)10を配置し、更にその裏面を中央に縦20×横20×厚さ1mmの出っ張りを有するAlフィン11の出張部12で挟み込み、SUSねじで全体を締め込んだ。Alフィン11は、Alフィン11に直接取り付けたファン13で空冷した。
[Comparative Example 1]
As shown in FIG. 5, the same adhesive body of the AlN heater 5 and the Al 2 O 3 substrate 6 as in the first embodiment is used, and the cooling region at the center of the back surface of the Al 2 O 3 substrate 6 is 20 × 20 × width. A 1.5 mm heat conduction sheet (thermal conductivity: 30 W / m · K) 10 is disposed, and the back side of the Al fin 11 has a projecting portion 12 having a length 20 × width 20 × thickness 1 mm in the center on the back surface. The whole was clamped with SUS screws. The Al fin 11 was air-cooled by a fan 13 directly attached to the Al fin 11.

この比較例の冷却系を、上記実施例1と同様に、筐体内に入れ、風の影響を受けない状態において、室温を空調で25℃に制御し、更に筐体上部に取り付けたファンで室内に排熱しながら、AlNヒータへの供給電力を7Wに設定して、冷却実験を行った。その結果、AlNヒータにRTD素子を埋込んで測定した温度は50℃であった。   The cooling system of this comparative example is placed in the housing in the same manner as in the first embodiment, and the room temperature is controlled to 25 ° C. by air conditioning in a state where it is not affected by the wind. Cooling experiment was conducted by setting the power supplied to the AlN heater to 7 W while exhausting heat. As a result, the temperature measured by embedding the RTD element in the AlN heater was 50 ° C.

[実施例2]
上記実施例1の試料1における多孔質体の空隙率は75%であるが、多孔質体を構成する柱状体のピッチを変えることにより、空隙率の異なる試料8〜10の多孔質体を作製した。各試料の空隙率は、試料8が52%、試料9が45%、及び試料10が20%であった。
[Example 2]
Although the porosity of the porous body in sample 1 of Example 1 is 75%, the porous bodies of samples 8 to 10 having different porosity are produced by changing the pitch of the columnar bodies constituting the porous body. did. The porosity of each sample was 52% for sample 8, 45% for sample 9, and 20% for sample 10.

これらの各試料について、上記実施例1と同じ方法で冷却実験を行った結果、AlNヒータにRTD素子を埋込んで測定した温度は、試料1が35℃であるのに対し、試料8は37℃、試料9は42℃、及び試料10は44℃であった。   As a result of performing a cooling experiment on each of these samples by the same method as in Example 1, the temperature measured by embedding an RTD element in an AlN heater was 35 ° C. for sample 1 whereas 37 for sample 8 was 37 ° C. C., Sample 9 was 42.degree. C., and Sample 10 was 44.degree.

[実施例3]
上記実施例1の試料1における多孔質体の厚みは250μmあるが、多孔質体の厚みを変えた試料11〜13を作製した。各試料の多孔質体の厚みは、試料11が400μm、試料12が150μm、及び試料13が80μmであった。
[Example 3]
Although the thickness of the porous body in Sample 1 of Example 1 was 250 μm, Samples 11 to 13 were produced in which the thickness of the porous body was changed. The thickness of the porous body of each sample was 400 μm for sample 11, 150 μm for sample 12, and 80 μm for sample 13.

これらの試料11〜13について、上記実施例1と同じ方法で冷却実験を行った結果、AlNヒータにRTD素子を埋込んで測定した温度は、試料1が35℃であるのに対し、試料11は32℃、試料12は44℃、及び試料13は46℃であった。   As a result of performing a cooling experiment on these samples 11 to 13 in the same manner as in Example 1, the temperature measured by embedding an RTD element in an AlN heater was 35 ° C. for sample 1 whereas sample 11 was measured. Was 32 ° C, Sample 12 was 44 ° C, and Sample 13 was 46 ° C.

[実施例4]
上記実施例1の試料1における多孔質体の弾性変形量は120μmであるが、酸素含有量の異なるCu板を用いて柱状体を形成することにより、多孔質体の弾性変形量の異なる試料14〜16を作製した。各試料の多孔質体の弾性変形量は、試料14が200μm、試料15が80μm、及び試料16が20μmであった。
[Example 4]
The elastic deformation amount of the porous body in the sample 1 of Example 1 is 120 μm, but the sample 14 having a different elastic deformation amount of the porous body is formed by forming a columnar body using Cu plates having different oxygen contents. ~ 16 were made. The amount of elastic deformation of the porous body of each sample was 200 μm for sample 14, 80 μm for sample 15, and 20 μm for sample 16.

これらの試料14〜16について、上記実施例1と同じ方法で冷却実験を行った結果、AlNヒータにRTD素子を埋込んで測定した温度は、試料1が35℃であるのに対し、試料14は33℃、試料15は42℃、及び試料16は46℃であった。   As a result of performing a cooling experiment on these samples 14 to 16 in the same manner as in Example 1, the temperature measured by embedding an RTD element in an AlN heater was 35 ° C. for sample 1 whereas sample 14 was measured. Was 33 ° C, Sample 15 was 42 ° C, and Sample 16 was 46 ° C.

[実施例5]
上記実施例1の試料1において多孔質体を構成する柱状体のアスペクト比は10であるが、柱状体の径を変えることによりアスペクト比の異なる試料17〜19を作製した。各試料のアスペクト比は、試料17が20、試料18が6、及び試料19が4であった。ただし、柱状体の傾斜角度を変えることにより、全ての試料で多孔質体の厚みは150μmに統一した。
[Example 5]
In the sample 1 of Example 1, the columnar body constituting the porous body had an aspect ratio of 10, but samples 17 to 19 having different aspect ratios were produced by changing the diameter of the columnar body. The aspect ratio of each sample was 20 for sample 17, 6 for sample 18, and 4 for sample 19. However, the thickness of the porous body was unified to 150 μm in all samples by changing the tilt angle of the columnar body.

これらの試料17〜19について、上記実施例1と同じ方法で冷却実験を行った結果、AlNヒータにRTD素子を埋込んで測定した温度は、試料1が35℃であるのに対し、試料17は31℃、試料18は39℃、及び試料19は44℃であった。   As a result of performing a cooling experiment on these samples 17 to 19 in the same manner as in Example 1, the temperature measured by embedding an RTD element in an AlN heater was 35 ° C. for sample 1 whereas sample 17 was measured. Was 31 ° C., Sample 18 was 39 ° C., and Sample 19 was 44 ° C.

[実施例6]
上記実施例1の試料1において多孔質体を構成する柱状体の径は25μmであるが、柱状体の径が異なる試料20〜22を作製した。各試料の柱状体の径は、試料20が90μm、試料21が120μm、及び試料22が150μmであった。ただし、柱状体の傾斜角度を変えることにより、全ての試料で多孔質体の厚みは150μmに統一した。
[Example 6]
In Sample 1 of Example 1, the diameter of the columnar body constituting the porous body was 25 μm, but Samples 20 to 22 having different columnar body diameters were prepared. The diameter of the columnar body of each sample was 90 μm for sample 20, 120 μm for sample 21, and 150 μm for sample 22. However, the thickness of the porous body was unified to 150 μm in all samples by changing the tilt angle of the columnar body.

これらの試料20〜22について、上記実施例1と同じ方法で冷却実験を行った結果、AlNヒータにRTD素子を埋込んで測定した温度は、試料1が35℃であるのに対し、試料20は38℃、試料21は41℃、及び試料22は43℃であった。   As a result of performing a cooling experiment on these samples 20 to 22 in the same manner as in Example 1, the temperature measured by embedding an RTD element in an AlN heater was 35 ° C. for sample 1 whereas sample 20 was measured. Was 38 ° C., Sample 21 was 41 ° C., and Sample 22 was 43 ° C.

[実施例7]
上記実施例1の試料1では、多孔質体と被冷却体の対向面積に対して、多孔質体が冷媒の空気と接触する冷媒接触面積の比は11であるが、多孔質体を構成する柱状体の間隔を変えることにより、上記対向面積に対する冷媒接触面積の比が異なる試料23〜25を作製した。各試料の対向面積に対する冷媒接触面積の比は、試料23が20、試料24が7、及び試料25が4であった。
[Example 7]
In the sample 1 of Example 1, the ratio of the refrigerant contact area where the porous body contacts the refrigerant air with respect to the opposed area of the porous body and the cooled object is 11, but the porous body is configured. Samples 23 to 25 having different ratios of the refrigerant contact area to the facing area were produced by changing the interval between the columnar bodies. The ratio of the refrigerant contact area to the facing area of each sample was 20 for sample 23, 7 for sample 24, and 4 for sample 25.

これらの試料23〜25について、上記実施例1と同じ方法で冷却実験を行った結果、AlNヒータにRTD素子を埋込んで測定した温度は、試料1が35℃であるのに対し、試料23は32℃、試料24は39℃、及び試料25は44℃であった。   As a result of performing a cooling experiment on these samples 23 to 25 in the same manner as in Example 1, the temperature measured by embedding an RTD element in an AlN heater was 35 ° C. for sample 1 whereas that for sample 23 was Was 32 ° C, Sample 24 was 39 ° C, and Sample 25 was 44 ° C.

[実施例8]
上記実施例1の試料1では、多孔質体背面の中央1点に設けた貫通孔から吸引して多孔質体内に空気を流す構造になっているが、試料26では中央1点に加え1辺7mmの正方形の4隅に設けた直径1mmの貫通孔の合計5点から空気を吸引する構造にした。また、試料27では、多孔質体背面に貫通孔を設けずに、多孔質体の外周面にO−リングを取り付けて気密を保持し、多孔質体の外周面の1辺側から対向する1辺側へ空気を吸引する構造とした。
[Example 8]
In the sample 1 of the first embodiment, the structure is structured such that air is sucked from the through hole provided at the central point on the back surface of the porous body to flow air into the porous body. Air was sucked from a total of five points of 1 mm diameter through holes provided at four corners of a 7 mm square. Further, in the sample 27, without providing a through hole on the back surface of the porous body, an O-ring is attached to the outer peripheral surface of the porous body to maintain airtightness, and 1 facing from one side of the outer peripheral surface of the porous body 1 The structure sucks air to the side.

これらの試料26〜27について、上記実施例1と同じ方法で冷却実験を行った結果、AlNヒータにRTD素子を埋込んで測定した温度は、試料1が35℃であるのに対し、試料26は31℃、及び試料27は39℃であった。   As a result of conducting a cooling experiment on these samples 26 to 27 in the same manner as in Example 1, the temperature measured by embedding an RTD element in an AlN heater was 35 ° C. for sample 1 whereas sample 26 was measured. Was 31 ° C. and Sample 27 was 39 ° C.

[実施例9]
上記実施例1の試料1では、多孔質体背面の中央1点に設けた貫通孔から1kgf/cmで吸引して多孔質体内に空気を流す構造になっているが、試料28では多孔質体背面の中央1点に設けた貫通孔からコンプレッサにより2kgf/cmで空気を送り込み、また試料29では多孔質体背面の中央1点に設けた貫通孔から窒素ガスボンベにより2kgf/cmでNガスを送り込んだ。
[Example 9]
Sample 1 of Example 1 has a structure in which air is sucked at 1 kgf / cm 2 from the through hole provided at one central point on the back of the porous body and air is allowed to flow through the porous body. by the compressor through the through hole provided in the center-point of the body rear feeding air at 2 kgf / cm 2, and by the nitrogen gas cylinder from the through hole provided in the center-point of the rear sample 29 in the porous body 2 kgf / cm 2 N Two gases were sent.

これらの試料28〜29について、上記実施例1と同じ方法で冷却実験を行った結果、AlNヒータにRTD素子を埋込んで測定した温度は、試料1が35℃であるのに対し、試料28は36℃、及び試料29は36℃であった。   As a result of performing a cooling experiment on these samples 28 to 29 in the same manner as in Example 1, the temperature measured by embedding an RTD element in an AlN heater was 35 ° C. for sample 1 whereas that for sample 28 was Was 36 ° C. and Sample 29 was 36 ° C.

[実施例10]
上記実施例1の試料1においては多孔質体の開気孔内を空気が3リットル/分の流量(多孔質体入口の流速に換算すると0.31m/秒)で流れるが、流量計で確認しながらバルブで流量を調節することにより空気の流量を変化させ、試料30では5リットル/分(流速0.52m/秒)、試料31では1.5リットル/分(流速0.16m/秒)、及び試料32では0.7リットル/分(流速0.07m/秒)とした。
[Example 10]
In sample 1 of Example 1 above, air flows through the open pores of the porous body at a flow rate of 3 liters / minute (0.31 m / second when converted to the flow velocity at the porous body inlet). However, the flow rate of air is changed by adjusting the flow rate with a valve. Sample 30 has a flow rate of 5 liters / minute (flow rate 0.52 m / second), sample 31 has a flow rate of 1.5 liters / minute (flow rate 0.16 m / second), For Sample 32, the rate was 0.7 liter / min (flow rate: 0.07 m / sec).

これらの試料30〜32について、上記実施例1と同じ方法で冷却実験を行った結果、AlNヒータにRTD素子を埋込んで測定した温度は、試料1が35℃であるのに対し、試料30は31℃、試料31は39℃、及び試料32は46℃であった。   As a result of performing a cooling experiment on these samples 30 to 32 in the same manner as in Example 1, the temperature measured by embedding an RTD element in an AlN heater was 35 ° C. for sample 1 whereas sample 30 was measured. Was 31 ° C., Sample 31 was 39 ° C., and Sample 32 was 46 ° C.

[実施例11]
上記実施例1の試料1ではCuの多孔質体を用いたが、試料33ではAl、試料34ではNi、試料35ではSUSの多孔質体を用いた。ただし、いずれの試料の多孔質体も、試料1と同じ多数の柱状体が剣山状に配列したマイクロ構造の多孔質体とした。
[Example 11]
In the sample 1 of Example 1, a Cu porous body was used, but in the sample 33, Al was used, in the sample 34 Ni was used, and in the sample 35, a SUS porous body was used. However, the porous body of each sample was a porous body having a micro structure in which the same number of columnar bodies as in Sample 1 were arranged in a sword mountain shape.

これらの試料33〜35について、上記実施例1と同じ方法で冷却実験を行った結果、AlNヒータにRTD素子を埋込んで測定した温度は、試料1が35℃であるのに対し、試料33は38℃、試料34は47℃、及び試料35は48℃であった。   As a result of performing a cooling experiment on these samples 33 to 35 by the same method as in Example 1, the temperature measured by embedding an RTD element in an AlN heater was 35 ° C. for sample 1 whereas sample 33 was measured. Was 38 ° C, Sample 34 was 47 ° C, and Sample 35 was 48 ° C.

[実施例12]
上記実施例1の試料1と同じ冷却系を用いたが、多孔質体とAl基板との接触界面にAg含有グリース(熱伝導率:7.5W/m・K)を介在させて表面凹凸に起因する気孔を埋め、その介在層の厚さの異なる試料36〜39を作製した。各試料の介在層の厚さは、試料36で2μm、試料37で10μm、試料38で45μm、及び試料39で60μmとした。
[Example 12]
The same cooling system as Sample 1 of Example 1 was used, but with an Ag-containing grease (thermal conductivity: 7.5 W / m · K) interposed at the contact interface between the porous body and the Al 2 O 3 substrate. The pores resulting from the surface irregularities were filled, and samples 36 to 39 having different intervening layer thicknesses were produced. The thickness of the intervening layer of each sample was 2 μm for sample 36, 10 μm for sample 37, 45 μm for sample 38, and 60 μm for sample 39.

これらの試料36〜39について、上記実施例1と同じ方法で冷却実験を行った結果、AlNヒータにRTD素子を埋込んで測定した温度は、試料1が35℃であるのに対し、試料36は30℃、試料37は32℃、試料38は33℃、及び試料39は45℃であった。   As a result of performing a cooling experiment on these samples 36 to 39 in the same manner as in Example 1, the temperature measured by embedding an RTD element in an AlN heater was 35 ° C. for sample 1 whereas that for sample 36 was Was 30 ° C., Sample 37 was 32 ° C., Sample 38 was 33 ° C., and Sample 39 was 45 ° C.

[実施例13]
上記実施例1の試料1ではCuからなる多数の柱状体が剣山状に配列した多孔質体を用いたが、試料40では厚さ5μmのCuめっきを施した多数のNiの柱状体が剣山状に配列した多孔質体を用いた。また、試料41では気孔径が100〜300μmのCu多孔体、試料42では厚さ5μmのCuめっきを施した気孔径が100〜300μmのNi多孔体、試料43では厚さ1μmのCuめっきを施した多孔質四フッ化エチレン(PTFE)、及び試料44では厚さ3.0mmでハニカム径0.5mmのCuハニカム構造体を、それぞれ多孔質体として用いた。
[Example 13]
In the sample 1 of Example 1, a porous body in which a large number of columnar bodies made of Cu are arranged in a sword mountain shape is used. The porous bodies arranged in the above were used. Sample 41 has a Cu porous body with a pore size of 100 to 300 μm, sample 42 has a Cu plating with a thickness of 5 μm, and Ni has a pore diameter of 100 to 300 μm. Sample 43 has a Cu plating with a thickness of 1 μm. The porous tetrafluoroethylene (PTFE) and a Cu honeycomb structure having a thickness of 3.0 mm and a honeycomb diameter of 0.5 mm were used as the porous bodies, respectively.

これらの試料40〜44について、上記実施例1と同じ方法で冷却実験を行った結果、AlNヒータにRTD素子を埋込んで測定した温度は、試料1が35℃であるのに対し、試料40は43℃、試料41は32℃、試料42は42℃、試料43は39℃、及び試料44は37℃であった。   As a result of conducting a cooling experiment on these samples 40 to 44 by the same method as in Example 1, the temperature measured by embedding an RTD element in an AlN heater was 35 ° C. for sample 1 whereas that for sample 40 was Was 43 ° C, Sample 41 was 32 ° C, Sample 42 was 42 ° C, Sample 43 was 39 ° C, and Sample 44 was 37 ° C.

[実施例14]
20×6mmで厚さ0.1mmのCu箔をエッチングして、Cu箔の一辺に断面100×100×長さ1000μmの柱状体が350μm間隔で並んだCu箔を得た。この一辺に多数の柱状体を有するCu箔と、柱状体を有しない20×5mmで厚さ0.1mmのCu箔を交互に重ね合わせてねじ締めした後、放電加工により中央に直径2mmの貫通孔を開けて、試料45の多孔質体を作製した。この多孔質体について上記実施例1と同じ方法で冷却実験を行い、背面から空気を引いて流量5リットル/分で多孔質体内に空気を流したところ、AlNヒータにRTD素子を埋込んで測定した温度は34℃になった。
[Example 14]
The Cu foil having a thickness of 20 mm × 6 mm and a thickness of 0.1 mm was etched to obtain a Cu foil in which columnar bodies having a cross section of 100 × 100 × length of 1000 μm were arranged at 350 μm intervals on one side of the Cu foil. A Cu foil having a large number of columnar bodies on one side and a 20 × 5 mm and 0.1 mm thick Cu foil having no columnar bodies are alternately stacked and screwed, and then penetrated with a diameter of 2 mm in the center by electric discharge machining. A hole was made to prepare a porous body of Sample 45. A cooling experiment was carried out on the porous body in the same manner as in Example 1 above, and air was drawn from the back and air was flowed into the porous body at a flow rate of 5 liters / minute, and an RTD element was embedded in the AlN heater and measured. The resulting temperature was 34 ° C.

また、20×21mmで厚さ0.1mmのCu箔をエッチングして、Cu箔の一辺に断面100×100×長さ1000μmの柱状体が350μm間隔で並んだCu箔を得た。この一辺に多数の柱状体を有するCu箔と、20×20mmで厚さ0.1mmのCu箔で、図6に示すように一辺を凹凸形状に形成したCu箔を、交互に重ね合わせて溶接した後、放電加工により中央に直径2mmの貫通孔を開けて、試料46〜48の多孔質体を作製した。ただし、上記凹凸の曲率半径Rは、試料46で1mm、試料47で9mm、試料48で10mmとした。   Further, a Cu foil having a size of 20 mm × 21 mm and a thickness of 0.1 mm was etched to obtain a Cu foil in which columnar bodies having a cross section of 100 × 100 × length of 1000 μm were arranged at 350 μm intervals on one side of the Cu foil. A Cu foil having a large number of columnar bodies on one side and a Cu foil having a side of an irregular shape as shown in FIG. After that, a through hole having a diameter of 2 mm was formed in the center by electric discharge machining to produce porous bodies of samples 46 to 48. However, the curvature radius R of the unevenness was 1 mm for the sample 46, 9 mm for the sample 47, and 10 mm for the sample 48.

これらの各試料について、上記実施例1と同じ方法で冷却実験を行い、背面から空気を引いて流量5リットル/分で多孔質体内に空気を流したところ、AlNヒータにRTD素子を埋込んで測定した温度は、試料46で29℃、試料47で30℃、試料48で35℃であった。   For each of these samples, a cooling experiment was performed in the same manner as in Example 1 above. When air was drawn from the back and air was allowed to flow through the porous body at a flow rate of 5 liters / minute, an RTD element was embedded in the AlN heater. The measured temperatures were 29 ° C. for sample 46, 30 ° C. for sample 47, and 35 ° C. for sample 48.

[実施例15]
20×20×5mmのCu板の中央に直径2mmの貫通孔を開けた後、Cu板にワイヤー放電加工して、断面100×100μmで30°の傾斜角度を有し、350μm間隔で並んだ柱状体を有する試料49の多孔質体を形成した。また、一列に並んだ直径2mmの貫通孔を3個開けた後、Cu板にワイヤー放電加工して、断面100×100μmで30°の傾斜角度を有し、350μm間隔で並んだ柱状体を有する試料50の多孔質体を形成した。
[Example 15]
After forming a through hole with a diameter of 2 mm in the center of a 20 × 20 × 5 mm Cu plate, wire discharge machining was performed on the Cu plate, and the cross section was 100 × 100 μm with a 30 ° inclination angle and arranged at 350 μm intervals. A porous body of sample 49 having a body was formed. In addition, three through-holes with a diameter of 2 mm arranged in a line are opened, and then a wire discharge process is performed on the Cu plate to have a columnar body that has a cross section of 100 × 100 μm, an inclination angle of 30 °, and is arranged at intervals of 350 μm. A porous body of sample 50 was formed.

これらの各試料について、上記実施例1と同じ方法で冷却実験を行ったところ、AlNヒータにRTD素子を埋込んで測定した温度は、試料49は34℃、試料50は33℃であった。   When these samples were subjected to a cooling experiment by the same method as in Example 1, the temperatures measured by embedding an RTD element in an AlN heater were 34 ° C. for sample 49 and 33 ° C. for sample 50.

また、上記試料50の多孔質体の内部、即ち貫通孔を除いた柱状体の間に、0.1×20×0.7mmの板状体を4枚挿入した。各試料の板状体の表面面粗さRaを変え、試料51では0.08μm、試料52では0.1μm、試料53では0.5μmとした。   In addition, four 0.1 × 20 × 0.7 mm plate-like bodies were inserted in the porous body of the sample 50, that is, between the columnar bodies excluding the through holes. The surface roughness Ra of the plate-like body of each sample was changed to 0.08 μm for the sample 51, 0.1 μm for the sample 52, and 0.5 μm for the sample 53.

これらの各試料について、上記実施例1と同じ方法で冷却実験を行ったところ、AlNヒータにRTD素子を埋込んで測定した温度は、試料51は31℃、試料52は30℃、試料53は29℃であった。   For each of these samples, a cooling experiment was performed in the same manner as in Example 1. As a result, the temperatures measured by embedding the RTD element in the AlN heater were 31 ° C. for sample 51, 30 ° C. for sample 52, and 53 ° for sample 53. It was 29 ° C.

[実施例16]
上記実施例15の多孔質体に用いたCuは純度99.96%のものである。この実施例16では、製法及び形状は実施例15の試料49と同じであるが、試料54では純度92.5%、試料55では純度88%のCuを用いて多孔質体を作製した。
[Example 16]
Cu used for the porous body of Example 15 has a purity of 99.96%. In Example 16, the manufacturing method and shape were the same as those of Sample 49 of Example 15, but a porous body was prepared using Cu with a purity of 92.5% for Sample 54 and 88% for Sample 55.

上記の各試料について、上記実施例1と同じ方法で冷却実験を行ったところ、AlNヒータにRTD素子を埋込んで測定した温度は、上記試料49は34℃であったのに対し、試料54は37℃、試料55は40℃であった。   When each of the above samples was subjected to a cooling experiment by the same method as in Example 1, the temperature measured by embedding an RTD element in an AlN heater was 34 ° C., whereas that of Sample 54 was 34 ° C. Was 37 ° C. and Sample 55 was 40 ° C.

[実施例17]
上記実施例15の多孔質体に用いたCuは引張強度280MPaのものである。この実施例17では、製法及び形状は実施例15の試料49と同じであるが、引張強度が試料56では340MPa、試料57では380MPa、試料58では420MPaのCuを用いて、多孔質体を作製した。
[Example 17]
Cu used for the porous body of Example 15 has a tensile strength of 280 MPa. In this example 17, the manufacturing method and shape are the same as those of the sample 49 of the example 15, but a porous body is prepared using Cu having a tensile strength of 340 MPa for the sample 56, 380 MPa for the sample 57, and 420 MPa for the sample 58. did.

上記の各試料について、上記実施例1と同じ方法で冷却実験を行ったところ、AlNヒータにRTD素子を埋込んで測定した温度は、試料49は34℃であったのに対し、試料56は36℃、試料57は40℃、試料58は41℃であった。   For each of the above samples, a cooling experiment was performed in the same manner as in Example 1. As a result, the temperature measured by embedding the RTD element in the AlN heater was 34 ° C. for Sample 49, whereas Sample 56 was 36 ° C., Sample 57 was 40 ° C., and Sample 58 was 41 ° C.

[実施例18]
上記実施例15の試料49の多孔質体では、柱状体の表面粗さRaが0.1μmのものを用いた。この実施例18では、製法及び形状は実施例15の試料49と同じであるが、表面エッチング条件を変えることによって、表面粗さを試料59ではRaで0.08μm、試料60ではRaで0.5μm、試料61ではRaで1.0μmに仕上げた。
[Example 18]
As the porous body of the sample 49 of Example 15, a columnar body having a surface roughness Ra of 0.1 μm was used. In this example 18, the manufacturing method and the shape are the same as those of the sample 49 of the example 15. However, by changing the surface etching conditions, the surface roughness of the sample 59 is 0.08 μm in Ra, and the sample 60 is 0.5 in Ra. The sample 61 was finished to 5 μm and Ra of 1.0 μm.

上記の各試料について、上記実施例1と同じ方法で冷却実験を行ったところ、AlNヒータにRTD素子を埋込んで測定した温度は、試料49は34℃であったのに対し、試料59は36℃、試料60は40℃、試料61は41℃であった。   For each of the above samples, a cooling experiment was performed in the same manner as in Example 1. As a result, the temperature measured by embedding an RTD element in an AlN heater was 34 ° C. for sample 49, whereas that for sample 59 was 36 ° C., Sample 60 was 40 ° C., and Sample 61 was 41 ° C.

[実施例19]
上記実施例14の試料45の多孔質体では、柱状体を形成したCu箔における柱状体の表面粗さRaは0.1μmであった。この実施例19では、製法及び形状は実施例14の試料45と同じであるが、柱状体を形成するためのエッチングの際に、柱状体の側面に0.05×0.1mmの枝状体を左右にそれぞれ4本ずつ追加した形状にエッチングすると共に、エッチング条件を変えて枝状体を含む柱状体の表面粗さを、試料62ではRaで0.08μm、試料63ではRaで0.1μm、試料64ではRaが0.5μmとした。
[Example 19]
In the porous body of Sample 45 of Example 14, the surface roughness Ra of the columnar body in the Cu foil on which the columnar body was formed was 0.1 μm. In this example 19, the manufacturing method and the shape are the same as those of the sample 45 of the example 14, but when etching is performed to form the columnar body, a 0.05 × 0.1 mm branch body is formed on the side surface of the columnar body. Are etched into a shape in which four are added to the left and right respectively, and the surface roughness of the columnar body including the branch body is changed by changing the etching conditions to 0.08 μm for Ra in the sample 62 and 0.1 μm for Ra in the sample 63. In the sample 64, Ra was set to 0.5 μm.

上記の各試料について、上記実施例1と同じ方法で冷却実験を行ったところ、AlNヒータにRTD素子を埋込んで測定した温度は、試料62は40℃、試料63は34℃、及び試料64は32℃であった。   When each of the above samples was subjected to a cooling experiment in the same manner as in Example 1, the temperatures measured by embedding an RTD element in an AlN heater were 40 ° C. for Sample 62, 34 ° C. for Sample 63, and Sample 64. Was 32 ° C.

[実施例20]
上記実施例14の試料45の多孔質体では、重ね合わせたCu箔の片方に傾斜した直線状の柱状体を形成した。この実施例20では、製法及び形状は実施例14の試料45と同じであるが、Cu箔のエッチングの際に、柱状体の形状を変化させて多孔質体を作製した。
[Example 20]
In the porous body of the sample 45 of Example 14, a linear columnar body inclined on one side of the stacked Cu foil was formed. In Example 20, the manufacturing method and shape were the same as those of Sample 45 of Example 14, but the porous body was produced by changing the shape of the columnar body during the etching of the Cu foil.

即ち、試料65では、図7に示すように、幅100μm、外径1mmで、その片端が基体のCu箔と一体化し且つ片端がCu箔から0.8mmの位置にある柱状体を、0.35mm間隔で形成した。試料66では、図8に示すように、幅100μm、外径1mmのアーチ形状で、両端がCu箔と一体化した柱状体を0.2mm間隔で形成した。試料67では、図9に示すように、幅100μm、両端間距離1mm、外径250μmの曲線を複数含む形状の柱状体を、中心間ピッチ700μmで形成した。更に、試料68では、図10に示すように、幅100μm、両端間距離1mmのS字形状の柱状体を、中心間ピッチ700μmで形成した。   That is, in the sample 65, as shown in FIG. 7, a columnar body having a width of 100 μm, an outer diameter of 1 mm, one end integrated with the Cu foil of the base, and one end at a position of 0.8 mm from the Cu foil, They were formed at intervals of 35 mm. In Sample 66, as shown in FIG. 8, columnar bodies having an arch shape with a width of 100 μm and an outer diameter of 1 mm and integrated with Cu foil at both ends were formed at intervals of 0.2 mm. In sample 67, as shown in FIG. 9, columnar bodies having a shape including a plurality of curves having a width of 100 μm, a distance between both ends of 1 mm, and an outer diameter of 250 μm were formed at a center-to-center pitch of 700 μm. Further, in the sample 68, as shown in FIG. 10, S-shaped columnar bodies having a width of 100 μm and a distance between both ends of 1 mm were formed with a center-to-center pitch of 700 μm.

これらの各試料について、上記実施例1と同じ方法で冷却実験を行ったところ、AlNヒータにRTD素子を埋込んで測定した温度は、試料65は31℃、試料66は31℃、試料67は30℃、試料68は29℃であった。   For each of these samples, a cooling experiment was performed in the same manner as in Example 1. As a result, the temperatures measured by embedding the RTD element in the AlN heater were 31 ° C. for sample 65, 31 ° C. for sample 66, and 67 for sample 67. 30 ° C. and Sample 68 was 29 ° C.

[実施例21]
上記実施例15の試料49の多孔質体では、柱状体の先端の表面粗さはRaで0.1μmであった。この実施例21では、製法及び形状は実施例15の試料49と同じであるが、ワイヤー放電加工前のCu板表面の研磨砥粒条件を変えることにより、柱状体の先端の表面粗さを、試料69でRaが1μm、試料70でRaが5μm、試料71でRaが7μm、試料72でRaが9μmとなるように仕上げた。
[Example 21]
In the porous body of Sample 49 in Example 15, the surface roughness of the tip of the columnar body was 0.1 μm in Ra. In this Example 21, the manufacturing method and shape are the same as those of the sample 49 of Example 15, but the surface roughness of the tip of the columnar body is changed by changing the abrasive grain conditions on the Cu plate surface before wire electric discharge machining. In Sample 69, Ra was 1 μm, in Sample 70, Ra was 5 μm, in Sample 71, Ra was 7 μm, and in Sample 72, Ra was 9 μm.

これらの各試料について、上記実施例1と同じ方法で冷却実験を行ったところ、AlNヒータにRTD素子を埋込んで測定した温度は、試料49が34℃であったのに対し、試料69は36℃、試料70は37℃、試料71は40℃、試料72は42℃であった。   For each of these samples, a cooling experiment was performed in the same manner as in Example 1. As a result, the temperature measured by embedding the RTD element in the AlN heater was 34 ° C. for sample 49, while that for sample 69 was 36 ° C, Sample 70 was 37 ° C, Sample 71 was 40 ° C, and Sample 72 was 42 ° C.

[実施例22]
上記実施例15の試料49における柱状体の多孔質体の代わりに、この実施例22の試料73では、直径0.05mmCu線0.1gを絡み合わせたウール状の多孔質体を用いた。また、試料74では、直径0.05mmのカーボンファイバ0.1gを絡み合わせシート状の多孔質体を用いた。これら試料73と試料74の多孔質体を、それぞれ中央に直径2mmの穴を設けた20×20×5mmのCu基板とAl基板の間に挟み込んで、上記実施例1と同様の冷却系を作製した。
[Example 22]
Instead of the columnar porous material in the sample 49 of Example 15, the sample 73 of Example 22 used a wool-like porous material in which 0.1 g of a 0.05 mm diameter Cu wire was entangled. In the sample 74, a sheet-like porous body in which 0.1 g of carbon fiber having a diameter of 0.05 mm is entangled is used. The porous bodies of Sample 73 and Sample 74 are sandwiched between a 20 × 20 × 5 mm Cu substrate and an Al 2 O 3 substrate each having a hole with a diameter of 2 mm at the center, and cooling similar to that in Example 1 is performed. A system was made.

これらの各試料について、上記実施例1と同じ方法で冷却実験を行ったところ、AlNヒータにRTD素子を埋込んで測定した温度は、試料49が34℃であったのに対し、試料73は38℃、試料74は39℃であった。   For each of these samples, a cooling experiment was performed in the same manner as in Example 1. As a result, the temperature measured by embedding the RTD element in the AlN heater was 34 ° C. for sample 49, while that for sample 73 was 38 ° C. and Sample 74 was 39 ° C.

[実施例23]
上記実施例15の試料49では、柱状体を有する多孔質体の締め付け力は柱状体1本当たり20gであった。この実施例23では締付け力を変え、試料75では0.1g、試料76では1g、試料77では5g、試料78では50g、試料79では100gとした。
[Example 23]
In the sample 49 of Example 15, the tightening force of the porous body having the columnar body was 20 g per columnar body. In Example 23, the tightening force was changed to 0.1 g for sample 75, 1 g for sample 76, 5 g for sample 77, 50 g for sample 78, and 100 g for sample 79.

これらの各試料について、上記実施例1と同じ方法で冷却実験を行ったところ、AlNヒータにRTD素子を埋込んで測定した温度は、試料49が34℃であったのに対し、試料75は41℃、試料76は39℃、試料77は37℃、試料78は30℃、試料79は28℃であった。   For each of these samples, a cooling experiment was performed in the same manner as in Example 1. As a result, the temperature measured by embedding the RTD element in the AlN heater was 34 ° C. for sample 49, while that for sample 75 was 41 ° C, Sample 76 was 39 ° C, Sample 77 was 37 ° C, Sample 78 was 30 ° C, and Sample 79 was 28 ° C.

[実施例24]
上記実施例15の試料49における多孔質体を用い、試料80では、その背面側のCu板に17枚の20×1×50mmのCuフィンをAgろう付けした。また、試料81では、同じ試料49の多孔質体の背面(20×20mm)にも、表面と同じ柱状体を形成した。これらの試料80、81では、中央の直径2mmの貫通孔から多孔質体内の空気を5リットル/分で減圧引きすると共に、背面から1mm離れた位置に取り付けたDC12Vのファン(直径50mm)を用いて、背面に空気を送って冷却した。
[Example 24]
The porous body in the sample 49 of Example 15 was used, and in the sample 80, 17 20 × 1 × 50 mm Cu fins were brazed to the Cu plate on the back side thereof. In Sample 81, the same columnar body as the surface was formed on the back surface (20 × 20 mm) of the porous body of Sample 49. In these samples 80 and 81, the air in the porous body was decompressed at a rate of 5 liters / minute from the through hole having a diameter of 2 mm at the center, and a DC12V fan (diameter 50 mm) attached at a position 1 mm away from the back surface was used. Then, it was cooled by sending air to the back.

また、上記試料81の表面と背面に柱状体を形成した多孔質体であって、その中央に直径3mmの貫通孔を開けて試料82の多孔質体を作製した。この試料82では、背面から1mm離れた位置に取り付けたDC12Vのファン(直径50mm)を用いて、背面から空気を送って冷却した。   In addition, a porous body of the sample 82 was prepared by forming a through-hole having a diameter of 3 mm in the center of the porous body in which columnar bodies were formed on the front and back surfaces of the sample 81. The sample 82 was cooled by sending air from the back using a DC12V fan (diameter 50 mm) mounted at a position 1 mm away from the back.

これらの各試料について、上記実施例1と同じ方法で冷却実験を行ったところ、AlNヒータにRTD素子を埋込んで測定した温度は、試料80は27℃、試料81は28℃、試料82は27℃であった。   For each of these samples, a cooling experiment was performed in the same manner as in Example 1. As a result, the temperatures measured by embedding an RTD element in an AlN heater were 27 ° C. for sample 80, 28 ° C. for sample 81, and 82 ° for sample 82. It was 27 ° C.

[実施例25]
上記実施例15の試料49における多孔質体を用い、図11に示すように、その背面側のCu板の中央に多孔質体に達する直径3mmの円形貫通孔8aを開け、その周囲に幅1mmのL字状貫通孔8bを4個開けて、試料83の多孔質体1を作製した。
[Example 25]
Using the porous body in the sample 49 of Example 15 above, as shown in FIG. 11, a circular through hole 8a having a diameter of 3 mm reaching the porous body is opened in the center of the Cu plate on the back side, and the width is 1 mm around the periphery. 4 L-shaped through-holes 8b were opened, and the porous body 1 of the sample 83 was produced.

この多孔質体1を上記実施例1と同様に組み立てて冷却実験用の冷却系を構成したが、図12に示すように、中央の貫通孔8aと外周の4側面を大気開放して空気吸入側とし、排気側の4個のL字状貫通孔8bからポンプ9により5リッター/分で減圧引きした。この試料83について、上記実施例1と同じ方法で冷却実験を行ったところ、AlNヒータにRTD素子を埋込んで測定した温度は29℃であった。   The porous body 1 was assembled in the same manner as in Example 1 to constitute a cooling system for cooling experiments. As shown in FIG. 12, the central through hole 8a and the outer peripheral four sides were opened to the atmosphere and air was sucked. On the exhaust side, the pressure was reduced from the four L-shaped through holes 8b on the exhaust side by a pump 9 at 5 liters / minute. When the sample 83 was subjected to a cooling experiment in the same manner as in Example 1, the temperature measured by embedding an RTD element in an AlN heater was 29 ° C.

[実施例26]
上記実施例15の試料49の多孔質体にカーボンコートして、試料84の多孔質体を作製した。この試料84の多孔質体の輻射率は0.91であった。この試料84について、上記実施例1と同じ方法で冷却実験を行ったところ、AlNヒータにRTD素子を埋込んで測定した温度は29℃であった。
[Example 26]
The porous body of sample 84 was produced by carbon coating the porous body of sample 49 of Example 15. The emissivity of the porous body of Sample 84 was 0.91. When the sample 84 was subjected to a cooling experiment by the same method as in Example 1, the temperature measured by embedding the RTD element in the AlN heater was 29 ° C.

上記実施例15の試料49の多孔質体にNiめっきを5μm厚で施して、試料85の多孔質体を作製した。この試料85について、上記実施例1と同じ方法で冷却実験を行ったところ、AlNヒータにRTD素子を埋込んで測定した温度は、試料49が34℃であるのに対し、試料85は35℃であった。   A porous body of sample 85 was manufactured by applying Ni plating to the porous body of sample 49 of Example 15 to a thickness of 5 μm. When a cooling experiment was performed on the sample 85 by the same method as in Example 1, the temperature measured by embedding an RTD element in the AlN heater was 34 ° C. for the sample 49, whereas that for the sample 85 was 35 ° C. Met.

上記試料49と試料85の多孔質体を、温度80℃、湿度80%の高温加湿試験機で100時間暴露した後、上記と同じ評価を行ったところ、試料49は36℃であったが、試料85は36℃と特性変化はなかった。   The porous body of the sample 49 and the sample 85 was exposed for 100 hours with a high-temperature humidification tester with a temperature of 80 ° C. and a humidity of 80%, and the same evaluation as described above was performed. Sample 85 had no characteristic change at 36 ° C.

本発明による冷却部材の一具体例を示す概略の断面図である。It is a schematic sectional drawing which shows one specific example of the cooling member by this invention. 本発明の冷却部材における多孔質体の一具体例を示す概略の断面図である。It is a schematic sectional drawing which shows one specific example of the porous body in the cooling member of this invention. 本発明の冷却部材における多孔質体の他の具体例を示す概略の断面図である。It is a schematic sectional drawing which shows the other specific example of the porous body in the cooling member of this invention. 本発明の冷却部材を用いた冷却実験装置の具体例を示す概略の断面図である。It is a schematic sectional drawing which shows the specific example of the cooling experiment apparatus using the cooling member of this invention. 比較例による冷却実験装置を示す概略の断面図である。It is general | schematic sectional drawing which shows the cooling experimental apparatus by a comparative example. 実施例で多孔質体の一部として用いた一辺を凹凸形状に形成したCu箔を示す概略の断面図である。It is general | schematic sectional drawing which shows Cu foil which formed one side used as a part of porous body in the Example in uneven | corrugated shape. 本発明の多孔質体を構成する曲線を含む形状の柱状体を示す概略の断面図である。It is a schematic sectional drawing which shows the columnar body of the shape containing the curve which comprises the porous body of this invention. 本発明の多孔質体を構成するアーチ形状の柱状体を示す概略の断面図である。1 is a schematic cross-sectional view showing an arch-shaped columnar body constituting a porous body of the present invention. 本発明の多孔質体を構成する曲線を複数含む形状の柱状体を示す概略の断面図である。It is general | schematic sectional drawing which shows the columnar body of the shape containing multiple curves which comprise the porous body of this invention. 本発明の多孔質体を構成するS字形状の柱状体を示す概略の断面図である。It is a schematic sectional drawing which shows the S-shaped columnar body which comprises the porous body of this invention. 本発明の空気流通用の貫通孔を設けた多孔質体を示す概略の平面図である。1 is a schematic plan view showing a porous body provided with through holes for air circulation according to the present invention. 本発明の冷却部材を用いた冷却実験装置の他の具体例を示す概略の断面図である。It is general | schematic sectional drawing which shows the other specific example of the cooling experiment apparatus using the cooling member of this invention.

符号の説明Explanation of symbols

1 冷却部材
2 被冷却体
3 多孔質体
3a 柱状体
3b つば部
4 基材
5 AlNヒータ
6 Al基板
7 Cu基板
8 貫通孔
8a 円形貫通孔
8b L字状貫通孔
9 ポンプ
10 熱伝導シート
11 Alフィン
12 出張部
13 ファン


1 the cooling member 2 be cooled 3 porous body 3a columnar body 3b flange portion 4 substrate 5 AlN heater 6 Al 2 O 3 substrate 7 Cu substrate 8 through hole 8a circular through-hole 8b L-shaped through-hole 9 pump 10 the thermal conductivity Seat 11 Al fin 12 Business trip 13 Fan


Claims (28)

被冷却体に接触して冷却する冷却部材であって、少なくとも被冷却体との接触面側が開気孔を有する多孔質体からなり、該多孔質体が弾性変形及び/又は塑性変形して被冷却体と接触すると共に、多孔質体の開気孔内に冷媒を流すことを特徴とする冷却部材。   A cooling member that cools in contact with a body to be cooled, and at least a contact surface side with the body to be cooled is formed of a porous body having open pores, and the porous body is elastically deformed and / or plastically deformed to be cooled. A cooling member, wherein the cooling member is in contact with a body and allows a coolant to flow into open pores of the porous body. 前記被冷却体と多孔質体の接触状態での対向面積に対して、多孔質体が被冷却体と開気孔部分を除いて接触している部分が占める接触面積が0.01%以上であることを特徴とする、請求項1に記載の冷却部材。   The contact area occupied by the portion where the porous body is in contact with the cooled body excluding the open pores is 0.01% or more with respect to the opposing area in the contact state between the cooled body and the porous body. The cooling member according to claim 1, wherein: 前記多孔質体の空隙率が50%以上であることを特徴とする、請求項1又は2に記載の冷却部材。   The cooling member according to claim 1 or 2, wherein the porosity of the porous body is 50% or more. 前記多孔質体の厚みが200μm以上であることを特徴とする、請求項1〜3のいずれかに記載の冷却部材。   The cooling member according to claim 1, wherein the porous body has a thickness of 200 μm or more. 前記多孔質体が複数の凹凸形状を有することを特徴とする、請求項1〜4のいずれかに記載の冷却部材。   The cooling member according to claim 1, wherein the porous body has a plurality of uneven shapes. 前記多孔質体の内部の隙間に、多孔質体の厚み以内の板状体を形成することを特徴とする、請求項1〜5のいずれかに記載の冷却部材。   The cooling member according to any one of claims 1 to 5, wherein a plate-like body within the thickness of the porous body is formed in a gap inside the porous body. 前記多孔質体の弾性変形量及び/又は塑性変形量が100μm以上であることを特徴とする、請求項1〜6のいずれかに記載の冷却部材。   The cooling member according to claim 1, wherein an elastic deformation amount and / or a plastic deformation amount of the porous body is 100 μm or more. 前記多孔質体がヤング率150GPa以下の材料で構成されていることを特徴とする、請求項1〜7のいずれかに記載の冷却部材。   The cooling member according to claim 1, wherein the porous body is made of a material having a Young's modulus of 150 GPa or less. 前記多孔質体が熱伝導率100W/m・K以上の材料で構成されていることを特徴とする、請求項1〜8のいずれかに記載の冷却部材。   The cooling member according to claim 1, wherein the porous body is made of a material having a thermal conductivity of 100 W / m · K or more. 前記多孔質体が少なくとも銅又はアルミニウムを含むことを特徴とする、請求項1〜9のいずれかに記載の冷却部材。   The cooling member according to claim 1, wherein the porous body contains at least copper or aluminum. 前記被冷却体と多孔質体の接触状態での対向面積に対して、多孔質体の開気孔表面が冷媒と接触する冷媒接触面積が5倍以上であることを特徴とする、請求項1〜10のいずれかに記載の冷却部材。   The refrigerant contact area in which the surface of the open pores of the porous body is in contact with the refrigerant is 5 times or more with respect to the opposing area in the contact state between the body to be cooled and the porous body. The cooling member according to any one of 10. 前記多孔質体と被冷却体の接触面間に、それぞれの表面粗さに起因する凹凸の隙間を埋める50μm以下の薄い介在層を有することを特徴とする、請求項1〜11のいずれかに記載の冷却部材。   It has a thin intervening layer of 50 micrometers or less which fills up the unevenness | corrugation gap resulting from each surface roughness between the contact surfaces of the said porous body and a to-be-cooled body. The cooling member as described. 前記多孔質体が、冷却部材の基材上に多数の柱状体を配置した構造を有することを特徴とする、請求項1〜12のいずれかに記載の冷却部材。   The cooling member according to any one of claims 1 to 12, wherein the porous body has a structure in which a large number of columnar bodies are arranged on a substrate of the cooling member. 前記柱状体の径が500μm以下であり、アスペクト比が5以上であることを特徴とする、請求項13に記載の冷却部材。   The cooling member according to claim 13, wherein the columnar body has a diameter of 500 μm or less and an aspect ratio of 5 or more. 前記柱状体の側面に複数の枝状体を形成することを特徴とする、請求項13又は14に記載の冷却部材。   The cooling member according to claim 13 or 14, wherein a plurality of branch bodies are formed on a side surface of the columnar body. 前記柱状体の全体あるいは一部が曲線を含む形状の構造になっていることを特徴とする、請求項13〜15のいずれかに記載の冷却部材。   The cooling member according to any one of claims 13 to 15, wherein the whole or a part of the columnar body has a structure including a curve. 前記柱状体の全体あるいは一部が複数の曲線を含む形状、らせん形状、あるいはS字形状の構造になっていることを特徴とする、請求項13〜15のいずれかに記載の冷却部材。   The cooling member according to any one of claims 13 to 15, wherein the whole or a part of the columnar body has a shape including a plurality of curves, a spiral shape, or an S-shaped structure. 前記多孔質体が金属多孔体構造又は金属ハニカム構造を有することを特徴とする、請求項1〜12のいずれかに記載の冷却部材。   The cooling member according to claim 1, wherein the porous body has a metal porous body structure or a metal honeycomb structure. 前記多孔質体が金属線又はカーボン繊維を絡み合わせた構造になっていることを特徴とする、請求項1〜12のいずれかに記載の冷却部材。   The cooling member according to claim 1, wherein the porous body has a structure in which metal wires or carbon fibers are entangled with each other. 前記多孔質体が表面を金属化処理した樹脂であることを特徴とする、請求項1〜12のいずれかに記載の冷却部材。   The cooling member according to claim 1, wherein the porous body is a resin whose surface is metallized. 前記多孔質体が表面を金属化処理した多孔質フッ素樹脂であることを特徴とする、請求項20に記載の冷却部材。   The cooling member according to claim 20, wherein the porous body is a porous fluororesin having a metallized surface. 前記冷媒を送り込む又は吸出すことにより多孔質体の開気孔内に流通させることを特徴とする、請求項1〜21のいずれかに記載の冷却部材。   The cooling member according to any one of claims 1 to 21, wherein the cooling member is circulated into the open pores of the porous body by feeding or sucking out the refrigerant. 前記被冷却体との接触面の反対側である多孔質体の背面側に冷媒を流して冷却することを特徴とする、請求項22に記載の冷却部材。   23. The cooling member according to claim 22, wherein the cooling member is cooled by flowing a refrigerant on the back side of the porous body that is opposite to the contact surface with the object to be cooled. 前記被冷却体との接触面の反対側である多孔質体の背面側及び多孔質体の両方に冷媒を流して冷却することを特徴とする、請求項22に記載の冷却部材。   The cooling member according to claim 22, wherein the cooling member is cooled by flowing a coolant through both the back surface side of the porous body and the porous body, which are opposite to the contact surface with the object to be cooled. 前記冷媒を被冷却体との接触面の反対側である背面の1点あるいは複数設けた貫通孔から送り込む又は吸出すことにより、多孔質体の開気孔内に流通させることを特徴とする、請求項22に記載の冷却部材。   The refrigerant is circulated into the open pores of the porous body by feeding or sucking out the refrigerant from one or a plurality of through holes provided on the back side opposite to the contact surface with the object to be cooled. Item 23. The cooling member according to Item 22. 前記冷媒が空気であることを特徴とする、請求項125のいずれかに記載の冷却部材。   126. The cooling member according to claim 125, wherein the refrigerant is air. 前記多孔質体の表面の輻射率が0.5以上であることを特徴とする、請求項126のいずれかに記載の冷却部材。   127. The cooling member according to any one of claims 126, wherein the emissivity of the surface of the porous body is 0.5 or more. 請求項1〜27のいずれかに記載した冷却部材を備えることを特徴とする、テレビ、プロジェクタあるいはパソコンなどの電子機器。


An electronic device such as a television, a projector, or a personal computer, comprising the cooling member according to any one of claims 1 to 27.


JP2006122875A 2005-10-03 2006-04-27 Cooling member Pending JP2007129183A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006122875A JP2007129183A (en) 2005-10-03 2006-04-27 Cooling member

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005289505 2005-10-03
JP2006122875A JP2007129183A (en) 2005-10-03 2006-04-27 Cooling member

Publications (1)

Publication Number Publication Date
JP2007129183A true JP2007129183A (en) 2007-05-24

Family

ID=38151555

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006122875A Pending JP2007129183A (en) 2005-10-03 2006-04-27 Cooling member

Country Status (1)

Country Link
JP (1) JP2007129183A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009302275A (en) * 2008-06-13 2009-12-24 Tohoku Univ Ultralow temperature cooling system of micro-slush super high heat flux
JP2010135673A (en) * 2008-12-08 2010-06-17 Toshiba Schneider Inverter Corp Radiator of semiconductor device
CN102368482A (en) * 2011-10-10 2012-03-07 李再林 High-efficiency heat sink of porous metal structure
KR101555622B1 (en) * 2008-06-04 2015-09-24 베리안 세미콘덕터 이큅먼트 어소시에이츠, 인크. Techniques for changing temperature of a platen
JP2016004862A (en) * 2014-06-16 2016-01-12 株式会社デンソー Electronic control device

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0469959A (en) * 1990-07-11 1992-03-05 Hitachi Ltd Semiconductor module
JPH04139752A (en) * 1990-09-29 1992-05-13 Toshiba Corp Cooler
JPH1154675A (en) * 1997-06-04 1999-02-26 Lsi Logic Corp Heat sink for electronic device package
JP2001358482A (en) * 2000-04-14 2001-12-26 Matsushita Refrig Co Ltd Heat radiative module
JP2004273880A (en) * 2003-03-11 2004-09-30 Nippon Densan Corp Electronic part cooling device
JP2005167102A (en) * 2003-12-05 2005-06-23 Nec Corp Electronic unit and its heat radiation structure

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0469959A (en) * 1990-07-11 1992-03-05 Hitachi Ltd Semiconductor module
JPH04139752A (en) * 1990-09-29 1992-05-13 Toshiba Corp Cooler
JPH1154675A (en) * 1997-06-04 1999-02-26 Lsi Logic Corp Heat sink for electronic device package
JP2001358482A (en) * 2000-04-14 2001-12-26 Matsushita Refrig Co Ltd Heat radiative module
JP2004273880A (en) * 2003-03-11 2004-09-30 Nippon Densan Corp Electronic part cooling device
JP2005167102A (en) * 2003-12-05 2005-06-23 Nec Corp Electronic unit and its heat radiation structure

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101555622B1 (en) * 2008-06-04 2015-09-24 베리안 세미콘덕터 이큅먼트 어소시에이츠, 인크. Techniques for changing temperature of a platen
JP2009302275A (en) * 2008-06-13 2009-12-24 Tohoku Univ Ultralow temperature cooling system of micro-slush super high heat flux
JP2010135673A (en) * 2008-12-08 2010-06-17 Toshiba Schneider Inverter Corp Radiator of semiconductor device
CN102368482A (en) * 2011-10-10 2012-03-07 李再林 High-efficiency heat sink of porous metal structure
JP2016004862A (en) * 2014-06-16 2016-01-12 株式会社デンソー Electronic control device

Similar Documents

Publication Publication Date Title
US20090126903A1 (en) Heat transfer member, convex structural member, electronic apparatus, and electric product
JP3268734B2 (en) Method of manufacturing electronic device heat radiation unit using heat pipe
JP2007294554A (en) Convex structural member
US20070000642A1 (en) Thermally conductive member and cooling system using the same
JP3122382U (en) Thermal conduction member, heat dissipation structure, and electronic equipment
US6856076B2 (en) Plasma display device having efficient heat conductivity
JP2002237375A (en) Ceramic plate for semiconductor manufacturing/testing device, and manufacturing method of the same
US7391157B2 (en) Plasma display device
JP2003188323A (en) Graphite sheet and its manufacturing method
JP2007129183A (en) Cooling member
JP2005210035A (en) Graphite composite material
CN111741649A (en) Thermal superconducting heat dissipation plate and preparation method thereof, radiator and 5G base station equipment
JP2007273930A (en) Cooling member
JP2007294785A (en) Heat transfer element aggregate member
US8071194B2 (en) Heat collector
JPH0783582A (en) Sealed equipment container cooling device
WO2013061409A1 (en) Water-cooling apparatus, electronic apparatus having water-cooling apparatus, and water-cooling method
CN212463856U (en) Heat superconducting radiating plate, radiator and 5G base station equipment
JP3116877U (en) Antioxidation apparatus having a low-melting-point metal alloy heat conduction medium
JP2006013217A (en) Heatsink using carbon graphite
JP2008209887A (en) Plasma display device
TWM261006U (en) Heatsink sheet of optic-electric apparatus
KR20170119979A (en) Heat radiation sheet and method for manufacturing the same
TWI287700B (en) Heat dissipation module
JP2002093975A (en) Cooling structure for circuit board

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20070420

Free format text: JAPANESE INTERMEDIATE CODE: A621

A977 Report on retrieval

Effective date: 20090902

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090908

A521 Written amendment

Effective date: 20091105

Free format text: JAPANESE INTERMEDIATE CODE: A523

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101130

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110127

A02 Decision of refusal

Effective date: 20111220

Free format text: JAPANESE INTERMEDIATE CODE: A02