JP2007128047A - Image forming apparatus - Google Patents

Image forming apparatus Download PDF

Info

Publication number
JP2007128047A
JP2007128047A JP2006243884A JP2006243884A JP2007128047A JP 2007128047 A JP2007128047 A JP 2007128047A JP 2006243884 A JP2006243884 A JP 2006243884A JP 2006243884 A JP2006243884 A JP 2006243884A JP 2007128047 A JP2007128047 A JP 2007128047A
Authority
JP
Japan
Prior art keywords
image
forming apparatus
image forming
target
exposure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006243884A
Other languages
Japanese (ja)
Other versions
JP5151099B2 (en
Inventor
Wakako Oshige
和歌子 大重
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ricoh Co Ltd
Original Assignee
Ricoh Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ricoh Co Ltd filed Critical Ricoh Co Ltd
Priority to JP2006243884A priority Critical patent/JP5151099B2/en
Publication of JP2007128047A publication Critical patent/JP2007128047A/en
Application granted granted Critical
Publication of JP5151099B2 publication Critical patent/JP5151099B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To solve the problems of an electrophotographic image forming apparatus in which the density gradation of a halftone part varies according to the sensitivity characteristic of a photoreceptor used in it and the gradation density of a halftone part varies due to wearing of the photoreceptor with time. <P>SOLUTION: The image forming apparatus includes a photoreceptor rotation torque measuring means and a means (image formation counter) for counting the number of revolutions of an image carrier. By measuring rotation torque with a prescribed timing, an amount of decrease in the film thickness of the photoreceptor is more accurately calculated from the rotation torque and image formation counter (or, for example, the time for which the photoreceptor is rotated). An amount of exposure (LD power × exposure time) is altered according to the amount of decrease in film thickness, the electrification potential of the photoreceptor, and an amount of change in the film thickness of the photoreceptor. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、電子写真を用いた複写機・FAX・プリンター、および電子写真記録装置のプロッタに関する。   The present invention relates to a copying machine, a FAX, a printer using electrophotography, and a plotter for an electrophotographic recording apparatus.

感光体に静電潜像を形成してこの静電潜像を現像系により現像剤で現像する電子写真方式画像形成装置における感光体の表面電位制御を行う電子写真プロセス制御装置がある。
感光体上または中間転写ベルト上に作成した所定のパターンのトナー付着量から、最終画像の最高濃度が一定となるように、前記感光体上の帯電部電位および前記現像系の現像バイアス電位の各目標値を前記現像系の環境変動や経時変動に応じて得る方法が行われている。
画像形成装置においてこのような帯電現像制御を行っても、用いる感光体の感度特性により、設定された感光体帯電電位によって中間調部分の濃度階調が異なるという問題がある。そのため、感光体の帯電電位に応じて露光量(LDパワー・露光時間)を変更することにより、帯電電位の変更にともなう中間調のずれを補正し、各帯電電位での階調性を同一に保つ必要がある。また同様に、経時で感光体が磨耗することによる感光体CTL膜厚変動によっても中間調部分の濃度階調が異なるという問題があるため、感光体膜厚変動に応じて露光量(LDパワー・露光時間)を変更することにより膜厚変動にともなう中間調のずれを補正し、各帯電電位での階調性を同一に保つ提案がある(例えば、特許文献1 参照。)。ただし、特許文献1には、帯電電位の変更にともなう中間調のずれを補正する方法については示されていない。
There is an electrophotographic process control device that controls the surface potential of a photosensitive member in an electrophotographic image forming apparatus that forms an electrostatic latent image on a photosensitive member and develops the electrostatic latent image with a developer by a developing system.
Each of the charged portion potential on the photosensitive member and the developing bias potential of the developing system so that the maximum density of the final image is constant from the toner adhesion amount of a predetermined pattern created on the photosensitive member or the intermediate transfer belt. A method for obtaining a target value in accordance with an environmental change or a change with time of the development system is performed.
Even if such charge development control is performed in the image forming apparatus, there is a problem that the density gradation of the halftone portion varies depending on the set photosensitive member charging potential due to the sensitivity characteristics of the photosensitive member used. Therefore, by changing the exposure amount (LD power / exposure time) according to the charging potential of the photosensitive member, the halftone deviation due to the change of the charging potential is corrected, and the gradation at each charging potential is made the same. Need to keep. Similarly, since there is a problem that the density gradation of the halftone portion varies depending on the variation of the photoconductor CTL film thickness due to the wear of the photoconductor over time, the exposure amount (LD power · There is a proposal for correcting a halftone shift accompanying a change in film thickness by changing the exposure time, and maintaining the same gradation property at each charging potential (see, for example, Patent Document 1). However, Patent Document 1 does not disclose a method for correcting a halftone shift caused by a change in charging potential.

感光体の帯電電位と感光体膜厚変動量に応じて露光量(LDパワー・露光時間)を変更することができる。それにより、帯電電位の変更にともなう中間調のずれを補正し、各帯電電位での階調性を同一に保つことができる。一般的に、経時・またはバイアス変更時の中間調の補正として所定のパターンを作成し露光量・帯電現像バイアスの設定を行うことが多いが、この調整には一定の待ち時間を要するが、前記の方法では帯電電位の変更に関しては、帯電電位の設定値・作像カウンタ(または感光体回転時間など)から予測される感光体膜厚から露光量を一意的に決定する方法であるため、(パターン作成に費やす)時間を短縮することができるとされている。ここで、作像カウンタ(または感光体回転時間など)から得られる回転距離tを用いて、予測される感光体膜厚d1は以下の式で算出される。
d0−d1=ωt×10−9 ・・・(1)
ただし、
ω:膜削れ係数
t:感光体回転距離[mm]
d0:初期感光体膜厚[μm]
d1:経時感光体膜厚[μm]
ωはデバックモニタで変更可能とする。
The exposure amount (LD power / exposure time) can be changed in accordance with the charging potential of the photosensitive member and the fluctuation amount of the photosensitive member film thickness. Accordingly, it is possible to correct a halftone shift due to a change in the charging potential, and to maintain the same gradation at each charging potential. Generally, it is often the case that a predetermined pattern is created as a halftone correction at the time or when the bias is changed, and the exposure amount and the charge development bias are set, but this adjustment requires a certain waiting time. In this method, regarding the change of the charging potential, the exposure amount is uniquely determined from the photosensitive member film thickness predicted from the setting value of the charging potential and the image forming counter (or the photosensitive member rotation time). It is said that the time spent for pattern creation can be shortened. Here, using the rotation distance t obtained from the image forming counter (or the photosensitive member rotation time or the like), the estimated photosensitive member film thickness d1 is calculated by the following equation.
d0−d1 = ωt × 10 −9 (1)
However,
ω: film scraping coefficient t: photosensitive member rotation distance [mm]
d0: initial photoreceptor film thickness [μm]
d1: Time-sensitive photoreceptor film thickness [μm]
ω can be changed by a debug monitor.

特開平9−120245号公報JP-A-9-120245

ここで感光体の膜厚減少スピードを決めるための係数として用いられる膜削れ係数ωは、感光体種などに応じて設計時に計測されたデータから設定される。しかし、同種の感光体においても膜厚減少量にばらつきがあり、このばらつきは感光体の回転トルクと関係していることがわかってきている。感光体の膜削れは主に感光体とクリーニング手段との間で起こっているため、感光体・クリーニング手段間の当接圧・当接角などが大きく影響し、これらの影響は回転トルクに表れる。そこで、本発明では、画像形成装置が、もしくは感光体を含むプロセスカートリッジが各色ごとに回転トルク情報を持ち、この回転トルクと作像カウンタ(または感光体回転時間など)からより正確な膜厚減少量を算出し、この膜厚減少量と感光体の帯電電位と感光体膜厚変動量に応じて露光量(LDパワー・露光時間)を変更することを提案する。   Here, the film scraping coefficient ω used as a coefficient for determining the film thickness reduction speed of the photosensitive member is set from data measured at the time of design according to the photosensitive member type and the like. However, even in the same type of photoconductor, the film thickness reduction amount varies, and it has been found that this variation is related to the rotational torque of the photoconductor. Since the photoconductor film scraping occurs mainly between the photoconductor and the cleaning means, the contact pressure and contact angle between the photoconductor and the cleaning means have a large effect, and these effects appear in the rotational torque. . Therefore, in the present invention, the image forming apparatus or the process cartridge including the photosensitive member has the rotational torque information for each color, and the film thickness can be more accurately reduced from the rotational torque and the image forming counter (or the photosensitive member rotation time). It is proposed to calculate the amount and change the exposure amount (LD power / exposure time) according to the film thickness reduction amount, the charging potential of the photoconductor, and the photoconductor film thickness fluctuation amount.

請求項1に記載の発明では、像担持体と、該像担持体表面を一様に帯電させるための帯電手段と、帯電された前記像担持体表面に静電潜像を形成するための露光手段と、前記静電潜像をトナー像化する現像手段と、を備え、前記帯電手段と前記現像手段のうちの少なくとも一方と前記像担持体とを一体とし装置本体に着脱可能なプロセスカートリッジとして構成した画像形成装置において、前記像担持体の回転トルクを測定するトルク測定手段と、該トルク測定手段により出荷前に測定された像担持体の回転トルクを記録するための記録媒体と、前記像担持体の回転回数を計数する計数手段とを有し、前記記録媒体に記録された回転トルクと、前記計数手段により計数された回転回数に基づいて、予測される前記像担持体の感光層の膜厚、および目標一様帯電電位に基づいて、前記露光手段の露光条件を算出し、算出結果を用いて前記露光手段を制御する露光制御手段を備えることを特徴とする。
請求項2に記載の発明では、請求項1に記載の画像形成装置において、前記像担持体上に濃度検知用基準トナー像を形成し、該濃度検知用基準トナー像の画像濃度を検知する画像濃度検知手段と、画像濃度を目標の画像濃度とするための目標現像バイアスと目標一様帯電電位とを関連付けて記憶した目標電位決定テーブルとを有し、前記画像濃度検知手段の検知結果に基づいて目標現像バイアスを定め、定められた目標現像バイアスに基づいて前記目標電位決定テーブルから、前記目標一様帯電電位を定め、定められた目標一様帯電電位となるように上記帯電手段を制御し、且つ、定められた目標現像バイアスとなるように上記現像手段を制御する帯電現像制御手段とを備えたことを特徴とする。
According to the first aspect of the present invention, the image carrier, charging means for uniformly charging the surface of the image carrier, and exposure for forming an electrostatic latent image on the charged surface of the image carrier. And a developing means for converting the electrostatic latent image into a toner image, and at least one of the charging means and the developing means and the image carrier are integrated into a process cartridge that can be attached to and detached from the apparatus main body. In the configured image forming apparatus, torque measuring means for measuring the rotational torque of the image carrier, a recording medium for recording the rotational torque of the image carrier measured by the torque measuring means before shipment, and the image Counting means for counting the number of rotations of the carrier, and based on the rotational torque recorded on the recording medium and the number of rotations counted by the counting means, the expected photosensitive layer of the image carrier Film thickness Based on the fine target uniform charging potential, and calculates the exposure condition of the exposing unit, characterized in that it comprises an exposure control means for controlling said exposing means using the calculated results.
According to a second aspect of the present invention, in the image forming apparatus according to the first aspect, an image that forms a density detection reference toner image on the image carrier and detects an image density of the density detection reference toner image. A density detection unit, and a target potential determination table that stores a target development bias for setting the image density as a target image density and a target uniform charging potential in association with each other, and is based on a detection result of the image density detection unit. The target developing bias is determined, the target uniform charging potential is determined from the target potential determination table based on the determined target developing bias, and the charging unit is controlled so as to be the determined target uniform charging potential. And a charging and developing control means for controlling the developing means so as to have a predetermined target developing bias.

請求項3に記載の発明では、請求項2に記載の画像形成装置において、前記帯電現像制御手段は、少なくとも前記像担持体の感光層膜厚減少量が5μm以上になったときには作動させることを特徴とする。
請求項4に記載の発明では、請求項2に記載の画像形成装置において、前記帯電現像制御手段は、少なくとも形成すべき画像の解像度が500dpiを超えているときには作動させることを特徴とする。
According to a third aspect of the present invention, in the image forming apparatus according to the second aspect, the charging and developing control means is operated at least when the amount of decrease in the photosensitive layer thickness of the image carrier becomes 5 μm or more. Features.
According to a fourth aspect of the present invention, in the image forming apparatus according to the second aspect, the charging and developing control means is operated at least when the resolution of an image to be formed exceeds 500 dpi.

請求項5に記載の発明では、請求項1ないし4のいずれか1つに記載の画像形成装置において、前記露光条件制御手段は、少なくとも前記像担持体の感光層膜厚減少量が5μm以上になったときには作動させることを特徴とする。
請求項6に記載の発明では、請求項1ないし4のいずれか1つに記載の画像形成装置において、前記露光条件制御手段は、少なくとも形成すべき画像の解像度が500dpiを超えているときには作動させることを特徴とする。
According to a fifth aspect of the present invention, in the image forming apparatus according to any one of the first to fourth aspects, the exposure condition control means has at least a decrease in the photosensitive layer thickness of the image carrier of 5 μm or more. It is actuated when it becomes.
According to a sixth aspect of the present invention, in the image forming apparatus according to any one of the first to fourth aspects, the exposure condition control means is operated at least when the resolution of an image to be formed exceeds 500 dpi. It is characterized by that.

請求項7に記載の発明では、請求項1ないし6のいずれか1つに記載の画像形成装置において、前記露光制御手段は露光パワーを制御する手段であることを特徴とする。
請求項8に記載の発明では、請求項1ないし7のいずれか1つに記載の画像形成装置において、前記露光制御手段は露光時間を制御する手段であることを特徴とする。
請求項9に記載の発明では、請求項1ないし8のいずれか1つに記載の画像形成装置において、前記露光条件は、或る所定のタイミングにて行われる画像濃度調整制御の際に、目標一様帯電電位、および目標現像バイアスを定めた後に、前記一様目標帯電電位と前記像担持体回転回数から算出することを特徴とする。
請求項10に記載の発明では、請求項9に記載の画像形成装置において、前記露光条件は、或る所定のタイミングにて行われる画像濃度調整制御の際に、目標一様帯電電位、および目標現像バイアスを定めた後に、前記算出値に基づいて設定されることを特徴とする。
According to a seventh aspect of the invention, in the image forming apparatus according to any one of the first to sixth aspects, the exposure control means is means for controlling exposure power.
According to an eighth aspect of the present invention, in the image forming apparatus according to any one of the first to seventh aspects, the exposure control means is means for controlling an exposure time.
According to a ninth aspect of the present invention, in the image forming apparatus according to any one of the first to eighth aspects, the exposure condition is a target at the time of image density adjustment control performed at a predetermined timing. After the uniform charging potential and the target developing bias are determined, the uniform target charging potential and the number of rotations of the image carrier are calculated.
According to a tenth aspect of the present invention, in the image forming apparatus according to the ninth aspect, the exposure condition includes a target uniform charging potential and a target at the time of image density adjustment control performed at a predetermined timing. After the development bias is determined, it is set based on the calculated value.

本発明によれば、
帯電手段と現像手段と露光手段と回転トルクを記憶する手段とを有する画像形成装置において、帯電電位の設定値を変数パラメータとし露光量を一意的に決定するある算出式と、感光体回転トルク+作像カウンタから予測される感光体膜厚を変数パラメータとし前記算出式の変数を一意的に決定する算出式により、帯電電位の設定値・作像カウンタから露光量を一意的に決定して露光量制御手段を働かせるので、一般的な中間調パタンを作成し露光量を決定する中間調補正方法と比べ簡易的な上、パタン作成に費やす時間を短縮することができる。
画像濃度を目標の画像濃度とするための目標現像バイアスと目標一様帯電電位とを関連付けて記憶した目標電位決定テーブルを用いて帯電バイアス・現像バイアスを制御する帯電現像制御手段を設けたので、画像濃度を一定に保つことができる。
露光量制御手段や、帯電現像制御手段を、少なくともそれらが有効に働く条件下においては必ず作動させるので、高い画像品質を保つことができる。
帯電電位・感光体膜厚変動にともない変更する露光量変更手段を発光素子のパワー(PM)としているため、連続的に露光量を変更できる。
帯電電位・感光体膜厚変動にともない変更する露光量変更手段を発光素子の点灯時間としているため、発光素子のパワーを変更させる手段と比べ精度よく露光量を調整できる。
前記露光条件は所定の画像濃度調整の際に目標帯電電位と目標現像バイアスを決定した後に、その設定値と回転トルク、回転回数とから算出され設定されるため、決定した目標帯電電位から露光量を即反映することができる。
According to the present invention,
In an image forming apparatus having a charging unit, a developing unit, an exposure unit, and a unit for storing rotational torque, a calculation formula for uniquely determining an exposure amount using a set value of a charging potential as a variable parameter, and photosensitive member rotational torque + Exposure by uniquely determining the exposure potential from the set value of the charging potential and the imaging counter using a calculation formula that uniquely determines the variable of the calculation formula using the photosensitive film thickness predicted from the imaging counter as a variable parameter. Since the amount control means is operated, it is simpler than the halftone correction method in which a general halftone pattern is created and the exposure amount is determined, and the time spent for pattern creation can be shortened.
Since the charge development control means for controlling the charge bias / development bias is provided by using the target potential determination table that stores the target development bias and the target uniform charge potential for associating the image density with the target image density. The image density can be kept constant.
Since the exposure amount control means and the charge development control means are always operated at least under the condition that they work effectively, high image quality can be maintained.
Since the exposure amount changing means that changes in accordance with fluctuations in the charging potential and the photoreceptor film thickness is the power (PM) of the light emitting element, the exposure amount can be changed continuously.
Since the exposure amount changing means that changes in accordance with the change in the charging potential and the photoreceptor film thickness is the lighting time of the light emitting element, the exposure amount can be adjusted with higher accuracy than the means for changing the power of the light emitting element.
Since the exposure condition is calculated and set from the set value, rotational torque, and number of rotations after determining the target charging potential and target development bias at the time of predetermined image density adjustment, the exposure amount is determined from the determined target charging potential. Can be reflected immediately.

図1は帯電電位によって中間調濃度が変動する例を示す図である。
同図において符号AはVd=300Vのときの濃度曲線、BはVd=500Vのときの濃度曲線、CはVd=700Vのときの濃度曲線、をそれぞれ示す。
同図において横軸は諧調(最高255)、縦軸は像濃度をそれぞれ表す。
図2は中間濃度補正式を線図に表した図である。
同図において横軸は帯電電位Vd(単位:V)、縦軸はLDパワー(単位:mW)をそれぞれ表す。
図3は図1に示した各色の濃度曲線に補正式を適用した結果を示す図である。
横軸、縦軸は図1と同様である。
露光量一定条件下において、帯電電位の変更にともなう中間調の変動の一例を図1に示す。露光量一定条件下では、環境や剤劣化などの現像剤の現像能力変化を補正するための、濃度プロコンによるバイアス変更時に変更される感光体上帯電電位によって、図1のように中間調濃度が変動してしまうことがわかる。このような変動を補正する手段としては、感光体帯電電位Vdに対して露光量を一意的に変更させる手段が考えられる。そこで、a、bを所定の係数とする以下の補正式を用いて、感光体帯電電位Vdを変数パラメータとして、像面に対する露光量を算出すると、図3に示すように各帯電電位間での中間調濃度変動を補正する事ができる。
像面光量=a×Vd+b ・・・〔露光量補正式1〕
ここでは補正式の一例として一次式を示しているが、感光体特性に応じて決定される式であり多項式でも構わない。
FIG. 1 is a diagram showing an example in which the halftone density varies depending on the charging potential.
In the figure, symbol A represents a concentration curve when Vd = 300V, B represents a concentration curve when Vd = 500V, and C represents a concentration curve when Vd = 700V.
In the figure, the horizontal axis represents gradation (maximum 255), and the vertical axis represents image density.
FIG. 2 is a diagram showing the intermediate density correction formula in a diagram.
In the figure, the horizontal axis represents charging potential Vd (unit: V), and the vertical axis represents LD power (unit: mW).
FIG. 3 is a diagram showing a result of applying the correction formula to the density curve of each color shown in FIG.
The horizontal and vertical axes are the same as in FIG.
FIG. 1 shows an example of a change in halftone accompanying a change in charging potential under a condition where the exposure amount is constant. Under the condition of a constant exposure amount, the halftone density is changed as shown in FIG. 1 due to the charged potential on the photoconductor which is changed when the bias is changed by the density process control for correcting the developing ability change of the developer such as environment and agent deterioration. It turns out that it fluctuates. As a means for correcting such a variation, a means for uniquely changing the exposure amount with respect to the photosensitive member charging potential Vd can be considered. Therefore, when the exposure amount for the image plane is calculated using the following correction formula with a and b as predetermined coefficients and the photosensitive member charging potential Vd as a variable parameter, as shown in FIG. Halftone density fluctuations can be corrected.
Image surface light quantity = a × Vd + b [Exposure amount correction formula 1]
Although a linear expression is shown here as an example of the correction expression, it is an expression determined according to the photoreceptor characteristics, and may be a polynomial expression.

図4は感光体CTL膜厚が減少した場合の中間調変動の一例を示す図である。
同図において符号Dは感光体膜厚が初期値(減少量0)の場合の濃度曲線、Eは感光体膜厚の減少量が10μmの場合の濃度曲線をそれぞれ示す。横軸、縦軸は図1と同様である。
図5は感光体磨耗量と必要とする露光量との関係を説明するための図である。
同図において、横軸は感光体磨耗量(単位:μm)、縦軸はLDパワー(単位:mW)をそれぞれ表す。
前記の補正式を用いて中間調濃度を補正してもなお、感光体が経時で磨耗し、感光体CTL膜厚が減少した場合、図4に示すように、感光体膜厚の減少によって中間調濃度が下がってしまうことがわかる。中間調濃度(例えば2by2)を、経時での感光体膜厚変動に対して初期と同等に保つには、図5に一例を示すように膜厚減少量に応じて露光量を大きくしなければならない。
露光量に関して、前記感光体帯電電位に対する露光量の〔露光量補正式1〕が適用されているため、経時ではこの〔露光量補正式1〕を変更するための別の補正式を用意する必要がある。この補正式を〔露光量補正式2〕とし後述する。
以下に各補正式の適用の例を示す。なお、感光体の膜厚に関しては予測式から算出する手段を用いている。
FIG. 4 is a diagram showing an example of halftone fluctuation when the photoconductor CTL film thickness is decreased.
In the figure, symbol D indicates a density curve when the photoreceptor film thickness is an initial value (reduction amount 0), and E indicates a density curve when the photoreceptor film thickness decrease is 10 μm. The horizontal and vertical axes are the same as in FIG.
FIG. 5 is a diagram for explaining the relationship between the photoreceptor wear amount and the required exposure amount.
In the figure, the horizontal axis represents the photoreceptor wear amount (unit: μm), and the vertical axis represents LD power (unit: mW).
Even if the halftone density is corrected using the above correction equation, when the photoconductor is worn out with time and the photoconductor CTL film thickness is decreased, as shown in FIG. It can be seen that the adjustment density is lowered. In order to keep the halftone density (for example, 2by2) equal to the initial value with respect to fluctuations in the photoreceptor film thickness over time, the exposure amount must be increased in accordance with the film thickness reduction amount as shown in FIG. Don't be.
Since the exposure amount [Exposure amount correction formula 1] with respect to the photosensitive member charging potential is applied with respect to the exposure amount, it is necessary to prepare another correction formula for changing the [Exposure amount correction formula 1] over time. There is. This correction formula will be described later as [Exposure amount correction formula 2].
Examples of applying each correction formula are shown below. Note that means for calculating the film thickness of the photoreceptor from a prediction formula is used.

初めに、経時におけるLDパワーの設定について述べる。
中間濃度を補正するため感光体帯電電位Vdを変化させたとき、所望の像濃度を得るための像面光量は、前記の補正式を利用して、
初期像面光量[mW]=ξ1×Vd+ξ2 ・・・〔露光量補正式1〕
ただし、ξ1:LDパワー補正係数1
ξ2:LDパワー補正係数2
となる。
次に、経時における膜厚変動の予測式を設定する。これは、感光体回転トルクと作像カウンタから感光体膜厚を予測する算出式である。この関係式は感光体種・作像プロセスなどにより様々に変動する可能性があるため、係数に関しては外部(操作パネル等)から変更可能としておくことが望ましい。
経時膜厚d1は、感光体の回転数カウンタから得られる回転距離tに対する比例式で表すことができる。
d0−d1=ωt×10−9 ・・・(1)
ただし、
ω:膜削れ係数
t:感光体走行距離[mm]
d0:初期感光体膜厚[μm]→ 31μm
d1:経時感光体膜厚[μm]
First, the setting of LD power over time will be described.
When the photosensitive member charging potential Vd is changed to correct the intermediate density, the image plane light quantity for obtaining a desired image density is obtained by using the above correction equation.
Initial image plane light quantity [mW] = ξ1 × Vd + ξ2 (exposure amount correction formula 1)
However, ξ1: LD power correction coefficient 1
ξ2: LD power correction factor 2
It becomes.
Next, a prediction formula for film thickness variation over time is set. This is a calculation formula for predicting the photosensitive member film thickness from the photosensitive member rotation torque and the image forming counter. Since this relational expression may vary depending on the photosensitive member type, the image forming process, etc., it is desirable that the coefficient be changeable from the outside (operation panel or the like).
The time-lapse film thickness d1 can be expressed by a proportional expression with respect to the rotation distance t obtained from the rotation number counter of the photosensitive member.
d0−d1 = ωt × 10 −9 (1)
However,
ω: Film scraping coefficient t: Photoreceptor travel distance [mm]
d0: initial photoreceptor film thickness [μm] → 31 μm
d1: Time-sensitive photoreceptor film thickness [μm]

図6は感光体回転トルクTと感光体減少速度の関係を示す図である。
同図において横軸は感光体トルク(単位:N・cm)、縦軸は感光体磨耗量の感光体走行距離に対する比(無名数)で表した感光体磨耗速度(単位:10−10)である。
ある一定の作像カウンタ中に生じる膜厚減少量には同図に示すような関係があるため、(1)式で示した膜削れ係数ωは、回転トルクを使って以下の式で表すことができる。
ω=g×T+h ・・・(2)
ただし、
g:膜削れ係数1
h:膜削れ係数2
とする。
このことから、(1)式は次のように表すことができる。
d0−d1=(g×T+h)×t×10−9 ・・・(3)
g、hはデバックモニタで変更可能とする。
FIG. 6 is a graph showing the relationship between the photosensitive member rotational torque T and the photosensitive member decreasing speed.
In the figure, the horizontal axis represents the photosensitive member torque (unit: N · cm), and the vertical axis represents the photosensitive member wear rate (unit: 10 −10 ) expressed as a ratio (unknown number) of the photosensitive member wear amount to the photosensitive member travel distance. is there.
Since the film thickness reduction amount generated in a certain image forming counter has a relationship as shown in the figure, the film scraping coefficient ω shown in the equation (1) is expressed by the following equation using the rotational torque. Can do.
ω = g × T + h (2)
However,
g: Film scraping coefficient 1
h: Film scraping coefficient 2
And
From this, the equation (1) can be expressed as follows.
d0−d1 = (g × T + h) × t × 10 −9 (3)
g and h can be changed by the debug monitor.

経時において感光体の表面層が削れることに伴うLDパワーの補正式を設定する。
経時像面光量=初期像面光量×(d1/d0)−τ ・・・〔露光量補正式2〕
ただし、
τ:経時像面光量変換係数
したがって、
経時像面光量=〔露光量補正式1〕×(d1/d0)−τ
この式のd1に(3)式を変形して代入する。
経時像面光量
=(ξ1×Vd+ξ2)×〔{d0−(g×T+h)×t×10−9}/d0〕−τ
・・・〔露光量補正式2’〕
この他、感光体回転トルクに関しては、出荷前に感光体ごとにトルク測定を行い、その測定値を画像形成装置の有する記録媒体へ記録するものとしている。もしくは少なくとも感光体とクリーニング手段が一体となったプロセスカートリッジを有する画像形成装置であるならば、プロセスカートリッジごとトルク測定を行い、その測定値を画像形成装置の有する記録媒体へ記録するものとしている。
感光体がクリーニング部材と接触している構成の場合、感光体回転トルクは製造時から出荷までの時間によって変動していく傾向があるため、トルク測定は出荷直前(実際使用される直前)にされることが望ましい。
本実施例では、プロセスカートリッジを有する画像形成装置で、(プロセスカートリッジを有するという一例)記録媒体としてICチップが搭載されており、画像形成装置へ搭載されると画像形成装置の有するICチップデータ読み取り手段によって記録データが読み込まれる構成となっており、画像形成装置への搭載時(交換直後または本体着荷直後)に、感光体トルクTが読み取られ〔露光量補正式2’〕へ設定される。
記録媒体はICチップに限らず例えばプロセスカートリッジに付けられた伝票などの手段でもよい。感光体トルクTをデバックモニタで変更可能という構成にすれば、出荷時に伝票に従いオペパネ上から手入力するとしてもよい。伝票ではICチップと比べコスト的に有利である。
A correction formula for the LD power accompanying the scraping of the surface layer of the photoreceptor over time is set.
Time-lapse image plane light amount = initial image surface light amount × (d1 / d0) −τ (exposure amount correction formula 2)
However,
τ: Temporal image plane light quantity conversion coefficient
Time-lapse image plane light amount = [exposure amount correction formula 1] × (d1 / d0) −τ
The expression (3) is transformed and substituted into d1 of this expression.
Time-lapse image plane light quantity = (ξ1 × Vd + ξ2) × [{d0− (g × T + h) × t × 10 −9 } / d0] −τ
... [Exposure amount correction formula 2 ']
In addition, with respect to the photosensitive member rotational torque, torque measurement is performed for each photosensitive member before shipment, and the measured value is recorded on a recording medium included in the image forming apparatus. Alternatively, if the image forming apparatus has a process cartridge in which at least the photosensitive member and the cleaning unit are integrated, the torque is measured for each process cartridge, and the measured value is recorded on the recording medium of the image forming apparatus.
When the photoconductor is in contact with the cleaning member, the photoconductor rotation torque tends to fluctuate depending on the time from manufacture to shipment. Therefore, the torque measurement is performed immediately before shipment (just before actual use). It is desirable.
In this embodiment, an image forming apparatus having a process cartridge has an IC chip mounted as a recording medium (an example of having a process cartridge), and when mounted on the image forming apparatus, the IC chip data read by the image forming apparatus is read. The recording data is read by the means, and when mounted on the image forming apparatus (immediately after replacement or immediately after the main body arrives), the photosensitive member torque T is read and set to [exposure amount correction formula 2 ′].
The recording medium is not limited to an IC chip, and may be means such as a slip attached to a process cartridge. If the photosensitive member torque T can be changed by the debug monitor, it may be manually input from the operation panel according to the slip at the time of shipment. The slip is advantageous in terms of cost compared with the IC chip.

図7は画像形成装置の画像形成プロセスに関わる主要部を示す断面図である。
同図において符号1は感光体、2は帯電手段、4は現像手段、5は転写手段、6は画像濃度検知手段、Lは書き込み光束をそれぞれ示す。
画像形成装置は、感光体1と、感光体1を帯電させるための帯電手段2と、感光体1上へ潜像を書き込むための図示しない書込み手段と、潜像にトナーを供給しトナー像を生成するための現像手段4と、トナー像を感光体上から転写するための転写手段5とを備え、現像手段4よりも下流で転写手段5よりも上流であって感光体に対向する位置に、画像濃度(またはトナー像の付着量)を検知する画像濃度検知手段6を備えている。
一定露光量にて、帯電バイアス・現像バイアスを増減させることによって感光体1表面に濃度検知用トナー基準パターン像(基準パターン)を形成し、この基準パターンを画像濃度検知手段6で検知する。そして、この画像濃度検知手段6の検知結果から最大画像濃度が一定となるような目標現像バイアスを定め、例えば一例として、この目標現像バイアスに基づき、定められた目標電位決定テーブルから、目標一様帯電電位を定める。
このように、感光体1に付着したトナー濃度から目標現像バイアスや目標帯電電位を定めているので、トナー帯電量の変動によって生じる画像濃度変動を抑制することができる。
この他にも、画像濃度検知手段6が転写体5に対向する形で位置し、転写体5上の基準パターンを検知するという構成でもよい。
FIG. 7 is a cross-sectional view showing the main parts involved in the image forming process of the image forming apparatus.
In the figure, reference numeral 1 is a photosensitive member, 2 is a charging unit, 4 is a developing unit, 5 is a transfer unit, 6 is an image density detecting unit, and L is a writing beam.
The image forming apparatus includes a photosensitive member 1, a charging unit 2 for charging the photosensitive member 1, a writing unit (not shown) for writing a latent image on the photosensitive member 1, and a toner image by supplying toner to the latent image. A developing means 4 for generating and a transferring means 5 for transferring a toner image from the photosensitive member are provided, at a position downstream of the developing means 4 and upstream of the transferring means 5 and facing the photosensitive member. The image density detecting means 6 for detecting the image density (or the toner image adhesion amount) is provided.
A toner reference pattern image for density detection (reference pattern) is formed on the surface of the photoreceptor 1 by increasing / decreasing the charging bias / development bias at a constant exposure amount, and this reference pattern is detected by the image density detection means 6. Then, a target development bias is set from the detection result of the image density detection means 6 so that the maximum image density is constant. For example, based on this target development bias, the target uniform bias is determined from the determined target potential determination table. Determine the charging potential.
As described above, since the target development bias and the target charging potential are determined from the toner density attached to the photoreceptor 1, fluctuations in image density caused by fluctuations in the toner charge amount can be suppressed.
In addition, the image density detector 6 may be positioned so as to face the transfer body 5 and detect a reference pattern on the transfer body 5.

露光手段の制御の具体例を示す。初めにLDパワーを制御する場合について述べる。
例えば発光素子をLDとし、そのLDパワーを〔露光量補正式1〕、〔露光量補正式2〕に適用すると次式のようになる。
g:膜削れ係数1=6.7、
h:膜削れ係数2=24、
感光体回転トルクT=26(N・cm)とした場合、
LDパワー(mW)
=(0.0005×Vd+0.05)×{31.0−(6.7×26+24)×t×10−9/31.0}−0.7
ただし、
Vd:帯電電位(−V)
t:感光体走行距離(mm)
となる。
A specific example of the control of the exposure means will be shown. First, the case of controlling the LD power will be described.
For example, when the light emitting element is an LD and the LD power is applied to [Exposure amount correction formula 1] and [Exposure amount correction formula 2], the following formula is obtained.
g: film scraping coefficient 1 = 6.7
h: film scraping coefficient 2 = 24,
When the photosensitive member rotational torque T = 26 (N · cm),
LD power (mW)
= (0.0005 × Vd + 0.05) × {31.0− (6.7 × 26 + 24) × t × 10 −9 /31.0}−0.7
However,
Vd: Charging potential (-V)
t: Photoreceptor travel distance (mm)
It becomes.

次に露光時間を制御する場合について述べる。
LDの点灯時間を%で表し、その点灯時間を〔露光量補正式1〕、〔露光量補正式2〕に適応すると次式のようになる。
ω:膜削れ係数=198とした場合、
PWM(%)=(0.08×Vd+15)×{31.0−(6.7×26+24)×t×10−9/31.0}−0.7
ただし、
Vd:帯電電位(−V)
t:感光体走行距離(mm)
図8は濃度プロコン実行から露光量決定までの流れを説明するための図である。
上記の露光条件の算出のタイミングは、濃度調整プロコンが終了し、帯電印加バイアス・現像バイアスの設定値が決定した直後とする。すなわち、濃度検出用のトナー像から例えばトナー付着量γを読み取り、その値を帯電電位テーブルに照らし合わせてγに対応する帯電電位Vdを読み出す。一方、トルク測定手段による回転トルクの測定結果が記録された記録データと、そのときの作像カウンタの値を読み取って、それぞれ〔露光量補正式1〕、〔露光量補正式2〕に入力しそこから算出された露光量を設定する。
Next, the case where the exposure time is controlled will be described.
When the LD lighting time is expressed in% and the lighting time is applied to [Exposure amount correction formula 1] and [Exposure amount correction formula 2], the following formula is obtained.
When ω: film scraping coefficient = 198,
PWM (%) = (0.08 × Vd + 15) × {31.0− (6.7 × 26 + 24) × t × 10 −9 /31.0}−0.7
However,
Vd: Charging potential (-V)
t: Photoreceptor travel distance (mm)
FIG. 8 is a diagram for explaining a flow from execution of the density process control to determination of the exposure amount.
The timing for calculating the exposure conditions is immediately after the density adjustment process is completed and the set values of the charging application bias and the development bias are determined. That is, for example, the toner adhesion amount γ is read from the toner image for density detection, and the charged potential Vd corresponding to γ is read by comparing the value with the charge potential table. On the other hand, the recorded data in which the measurement result of the rotational torque by the torque measuring means is recorded and the value of the image forming counter at that time are read and input to [Exposure amount correction formula 1] and [Exposure amount correction formula 2], respectively. The exposure amount calculated therefrom is set.

図9は濃度プロコン実行から露光量決定までの流れの他の例を説明するための図である。
この流れ図は、図8に示した流れ図に対し、感光体トルクの測定工程を加えたものになっている。
濃度調整プロコン直前に、プロコン前に設定されていた帯電・現像バイアス設定値にて、例えば感光体を一定時間駆動させ駆動モータの電流値を測定することによってトルクを測定する。
測定結果は記録媒体に保存しておく。プロコン終了後に、この測定されたトルク値と、プロコンで決定された目標帯電電位と、作像カウンタから露光量とを算出することにより、リアルタイムに近い感光体回転トルク値を用いることができるため、より正確な露光条件を算出することができる。
FIG. 9 is a diagram for explaining another example of the flow from the execution of the density process control to the determination of the exposure amount.
This flowchart is obtained by adding a photoconductor torque measuring step to the flowchart shown in FIG.
Immediately before the density adjustment process control, the torque is measured by, for example, driving the photosensitive member for a predetermined time and measuring the current value of the drive motor at the charging / development bias setting value set before the process control.
The measurement result is stored in a recording medium. Since the measured torque value, the target charging potential determined by the process control, and the exposure amount from the image forming counter can be calculated after completion of the process control, a photoconductor rotation torque value close to real time can be used. More accurate exposure conditions can be calculated.

図10は磨耗した感光体によるカラー画像の品質を評価した結果を示す図である。同図(a)は本発明の補正を行わない場合の結果、同図(b)は本発明の補正を行った場合の結果をそれぞれ示す。
同図において符号A〜Fは評価者を示し、評価者のしたの数値は評価ランクを示し、評価値3は基準サンプルと同等(品質上問題なし)、2は基準サンプルとやや異なる(品質上やや問題あり)、1は基準サンプルと全く異なる(品質不良)をそれぞれ示す。感光体磨耗量の単位はμmである。
図11は図10(a)の評価結果をグラフ化した図である。
同図において符号□は過半数の評価者が付与した評価ランク、△はその他付与された評価ランクを示し、符号の脇の数値は対応する評価者の人数を示す。符号×は評価値の平均値を示す。
評価サンプル作成に当たってはマゼンタ1色だけが磨耗状態にある感光体を用い、他の色は新品の感光体を用いた。基準サンプルとして全ての感光体が新品の画像形成装置で作成した画像を用い、評価サンプルと基準サンプルとの比較で官能評価法により判定した。評価に当たっては、人の肌の色を対象として、3、2、1の3段階評価を行った。
ここで、画像の評価値が2以上を許容値とみなした場合、この評価結果から見ると、本発明の制御を適用しない場合、感光体の磨耗量は5μmまでなら許容できることが分かる。この感光体膜厚の初期値は31μmであったので、残りの感光体層膜厚は26μmになる。
これに対し、本発明の制御を適用した場合、感光体の磨耗量は磨耗量が15μmになってもなお、評価値は2以上を保っている。
したがって、初期の段階から本発明の制御を適用しても良いが、感光体磨耗量が5μmを超える時点から本発明の制御を適用するようにしてもよい。
FIG. 10 is a diagram showing a result of evaluating the quality of a color image by a worn photoconductor. FIG. 4A shows the result when the correction of the present invention is not performed, and FIG. 4B shows the result when the correction of the present invention is performed.
In the figure, symbols A to F indicate the evaluator, the numerical value of the evaluator indicates the evaluation rank, the evaluation value 3 is equivalent to the reference sample (no problem in quality), and 2 is slightly different from the reference sample (in terms of quality) 1 is slightly different from the reference sample (quality defect). The unit of photoconductor wear is μm.
FIG. 11 is a graph of the evaluation result of FIG.
In the figure, symbol □ indicates an evaluation rank assigned by a majority of the evaluators, Δ indicates other assigned evaluation ranks, and a numerical value next to the symbol indicates the number of corresponding evaluators. The symbol x indicates the average value of the evaluation values.
In preparing the evaluation sample, a photoconductor in which only one magenta color is in a worn state was used, and a new photoconductor was used for the other colors. An image created by an image forming apparatus in which all the photoconductors are new as a reference sample was used, and a judgment was made by a sensory evaluation method by comparing the evaluation sample with the reference sample. In the evaluation, a three-step evaluation of 3, 2, and 1 was performed for the color of human skin.
Here, when the evaluation value of the image is considered to be 2 or more, it can be seen from this evaluation result that if the control of the present invention is not applied, the wear amount of the photoconductor is allowable up to 5 μm. Since the initial value of the photoconductor film thickness was 31 μm, the remaining photoconductor film thickness was 26 μm.
On the other hand, when the control of the present invention is applied, the evaluation value remains 2 or more even when the wear amount of the photosensitive member becomes 15 μm.
Therefore, the control of the present invention may be applied from the initial stage, but the control of the present invention may be applied from the time when the photoreceptor wear amount exceeds 5 μm.

図12はカラーの写真画像を解像度別に官能評価した結果を示す図である。同図(a)は本発明の補正を行わない場合の結果、同図(b)は本発明の補正を行った場合の結果をそれぞれ示す。
同図における符号は図9におけるそれらと同じである。
図13は図12(a)の評価結果をグラフ化した図である。
評価サンプルの作成方法は、マゼンタ1色だけが15μm磨耗した感光体を用い、他の色は新品の感光体を用いた。評価方法は図9において示した方法と同様である。
いずれの感光体も膜厚の初期値は31μmである。
ここで、画像の評価値が2以上を許容値とみなした場合、この評価結果から見ると、本発明の制御を適用しない場合、500dpiまでなら許容できることがわかる。
これに対し、本発明の制御を適用した場合、1200dpiでも十分高い評価値が得られることが分かる。したがって、本発明の制御を初期の段階から適用しても良いが、上記の結果を踏まえれば、500dpiを超えている画像に対して適用しても十分高画質が得られる。
FIG. 12 is a diagram showing the results of sensory evaluation of color photographic images by resolution. FIG. 4A shows the result when the correction of the present invention is not performed, and FIG. 4B shows the result when the correction of the present invention is performed.
The reference numerals in the figure are the same as those in FIG.
FIG. 13 is a graph showing the evaluation results of FIG.
As a method for preparing an evaluation sample, a photoconductor in which only one magenta color was worn by 15 μm was used, and a new photoconductor was used for the other colors. The evaluation method is the same as the method shown in FIG.
In all the photoreceptors, the initial value of the film thickness is 31 μm.
Here, when the evaluation value of the image is considered to be 2 or more, it can be seen from this evaluation result that if the control of the present invention is not applied, the image can be allowed up to 500 dpi.
On the other hand, when the control of the present invention is applied, it can be seen that a sufficiently high evaluation value can be obtained even at 1200 dpi. Therefore, the control of the present invention may be applied from the initial stage. However, based on the above result, a sufficiently high image quality can be obtained even when applied to an image exceeding 500 dpi.

図14はモノクロの写真画像を解像度別に官能評価した結果を示す図である。同図(a)は本発明の補正を行わない場合の結果、同図(b)は本発明の補正を行った場合の結果をそれぞれ示す。
同図における符号も図10におけるそれらと同じである。
この図で見る限り、すべての条件において評価値は2以上になっている。したがって、モノクロ画像の場合は、本発明による制御を行わなくとも、実用上問題ないところであるが、制御を行えばさらに評価値が上がることは明らかである。そこで、例えば解像度が1000dpi以上になったら制御を実施するとか、あるいは、カラー画像と全く同じ条件で制御を実施するとかいった方法が選択できる。
FIG. 14 is a diagram showing the results of sensory evaluation of monochrome photographic images by resolution. FIG. 4A shows the result when the correction of the present invention is not performed, and FIG. 4B shows the result when the correction of the present invention is performed.
The reference numerals in the figure are the same as those in FIG.
As seen in this figure, the evaluation value is 2 or more under all conditions. Therefore, in the case of a monochrome image, there is no practical problem even if the control according to the present invention is not performed, but it is clear that the evaluation value further increases if the control is performed. Therefore, for example, a method of performing control when the resolution becomes 1000 dpi or more, or performing control under exactly the same conditions as a color image can be selected.

図15はプロセスカートリッジを用いた画像形成装置の例を示す図である。
同図において符号3は書き込み手段を示す。
転写ベルト5に対向して、画像形成ステージが4個並んでいる。各画像形成ステージはその主要部がプロセスカートリッジで構成されている。プロセスカートリッジには感光体ドラム1と、帯電手段2、および現像手段4が含まれる。プロセスカートリッジは画像形成装置本体に対し、感光体1の長手方向に抜き差し可能になっていて、必要に応じ簡単に交換ができるようになっている。
この様な形態にすることでユーザー自身による交換作業が容易になり、保守性が向上するほかに、プロセスカートリッジの交換だけで良好な画像が得られる画像形成装置が可能になる。
FIG. 15 is a diagram illustrating an example of an image forming apparatus using a process cartridge.
In the figure, reference numeral 3 denotes a writing means.
Four image forming stages are arranged facing the transfer belt 5. The main part of each image forming stage is composed of a process cartridge. The process cartridge includes a photosensitive drum 1, a charging unit 2, and a developing unit 4. The process cartridge can be inserted into and removed from the image forming apparatus main body in the longitudinal direction of the photosensitive member 1, and can be easily replaced as necessary.
By adopting such a configuration, the user can easily perform the replacement work and the maintainability is improved. In addition, the image forming apparatus can obtain a good image only by replacing the process cartridge.

帯電電位によって中間調濃度が変動する例を示す図である。It is a figure which shows the example from which a halftone density is fluctuate | varied with charging potential. 中間濃度補正式を線図に表した図である。FIG. 6 is a diagram showing an intermediate density correction formula in a diagram. 図1に示した各色の濃度曲線に補正式を適用した結果を示す図である。It is a figure which shows the result of having applied the correction formula to the density curve of each color shown in FIG. 感光体CTL膜厚が減少した場合の中間調変動の一例を示す図である。It is a figure which shows an example of a halftone fluctuation | variation when the photoconductor CTL film thickness reduces. 感光体磨耗量と必要とする露光量との関係を説明するための図である。It is a figure for demonstrating the relationship between photoconductor abrasion amount and required exposure amount. 感光体回転トルクTと感光体減少速度の関係を示す図である。It is a figure which shows the relationship between the photoreceptor rotation torque T and a photoreceptor decreasing speed. 画像形成装置の画像形成プロセスに関わる主要部を示す断面図である。FIG. 2 is a cross-sectional view illustrating a main part related to an image forming process of the image forming apparatus. 濃度プロコン実行から露光量決定までの流れを説明するための図である。It is a figure for demonstrating the flow from density | concentration process control execution to exposure amount determination. 濃度プロコン実行から露光量決定までの流れの他の例を説明するための図である。It is a figure for demonstrating the other example of the flow from density | concentration process control execution to exposure amount determination. 磨耗した感光体によるカラー画像の品質を評価した結果を示す図である。It is a figure which shows the result of having evaluated the quality of the color image by the photoconductor worn out. 図9(a)の評価結果をグラフ化した図である。FIG. 10 is a graph of the evaluation result of FIG. カラーの写真画像を解像度別に官能評価した結果を示す図である。It is a figure which shows the result of having sensory-evaluated the color photographic image according to the resolution. 図11(a)の評価結果をグラフ化した図である。It is the figure which made the graph the evaluation result of Fig.11 (a). モノクロの写真画像を解像度別に官能評価した結果を示す図である。It is a figure which shows the result of having sensory-evaluated the monochrome photographic image according to the resolution. プロセスカートリッジを用いた画像形成装置の例を示す図である。1 is a diagram illustrating an example of an image forming apparatus using a process cartridge.

符号の説明Explanation of symbols

1 感光体
2 帯電手段
3 書き込み手段
4 現像手段
5 転写手段
6 画像濃度検知手段
DESCRIPTION OF SYMBOLS 1 Photoconductor 2 Charging means 3 Writing means 4 Developing means 5 Transfer means 6 Image density detection means

Claims (10)

像担持体と、該像担持体表面を一様に帯電させるための帯電手段と、帯電された前記像担持体表面に静電潜像を形成するための露光手段と、前記静電潜像をトナー像化する現像手段と、を備え、前記帯電手段と前記現像手段のうちの少なくとも一方と前記像担持体とを一体とし装置本体に着脱可能なプロセスカートリッジとして構成した画像形成装置において、前記像担持体の回転トルクを測定するトルク測定手段と、該トルク測定手段により出荷前に測定された像担持体の回転トルクを記録するための記録媒体と、前記像担持体の回転回数を計数する計数手段とを有し、前記記録媒体に記録された回転トルクと、前記計数手段により計数された回転回数に基づいて、予測される前記像担持体の感光層の膜厚、および目標一様帯電電位に基づいて、前記露光手段の露光条件を算出し、算出結果を用いて前記露光手段を制御する露光制御手段を備えることを特徴とする画像形成装置。   An image carrier, charging means for uniformly charging the surface of the image carrier, exposure means for forming an electrostatic latent image on the charged surface of the image carrier, and the electrostatic latent image An image forming apparatus comprising: a developing unit configured to form a toner image, wherein at least one of the charging unit, the developing unit, and the image carrier is integrated and configured as a process cartridge that is detachable from an apparatus main body. Torque measuring means for measuring the rotational torque of the carrier, a recording medium for recording the rotational torque of the image carrier measured before shipment by the torque measuring means, and a count for counting the number of rotations of the image carrier And a predicted film thickness of the photosensitive layer of the image carrier and a target uniform charging potential based on the rotational torque recorded on the recording medium and the number of rotations counted by the counting means. Based on Te image forming apparatus, comprising an exposure control means for calculating the exposure conditions of the exposure means, for controlling said exposure means using the calculated results. 請求項1に記載の画像形成装置において、前記像担持体上に濃度検知用基準トナー像を形成し、該濃度検知用基準トナー像の画像濃度を検知する画像濃度検知手段と、画像濃度を目標の画像濃度とするための目標現像バイアスと目標一様帯電電位とを関連付けて記憶した目標電位決定テーブルとを有し、前記画像濃度検知手段の検知結果に基づいて目標現像バイアスを定め、定められた目標現像バイアスに基づいて前記目標電位決定テーブルから、前記目標一様帯電電位を定め、定められた目標一様帯電電位となるように上記帯電手段を制御し、且つ、定められた目標現像バイアスとなるように上記現像手段を制御する帯電現像制御手段とを備えたことを特徴とする画像形成装置。   The image forming apparatus according to claim 1, wherein a density detection reference toner image is formed on the image carrier, an image density detection unit that detects an image density of the density detection reference toner image, and an image density target And a target potential determination table that stores the target development bias and the target uniform charging potential in association with each other. The target development bias is determined and determined based on the detection result of the image density detection means. Based on the target development bias, the target uniform charging potential is determined from the target potential determination table, the charging means is controlled so as to be the predetermined target uniform charging potential, and the target developing bias is determined. An image forming apparatus comprising: a charging and developing control unit that controls the developing unit so that 請求項2に記載の画像形成装置において、前記帯電現像制御手段は、少なくとも前記像担持体の感光層膜厚減少量が5μm以上になったときには作動させることを特徴とする画像形成装置。   3. The image forming apparatus according to claim 2, wherein the charging / developing control means is operated at least when the amount of decrease in the photosensitive layer thickness of the image carrier is 5 [mu] m or more. 請求項2に記載の画像形成装置において、前記帯電現像制御手段は、少なくとも形成すべき画像の解像度が500dpiを超えているときには作動させることを特徴とする画像形成装置。   3. The image forming apparatus according to claim 2, wherein the charging and developing control unit is operated at least when the resolution of an image to be formed exceeds 500 dpi. 請求項1ないし4のいずれか1つに記載の画像形成装置において、前記露光条件制御手段は、少なくとも前記像担持体の感光層膜厚減少量が5μm以上になったときには作動させることを特徴とする画像形成装置。   5. The image forming apparatus according to claim 1, wherein the exposure condition control unit is operated at least when the amount of decrease in the photosensitive layer thickness of the image carrier is 5 μm or more. Image forming apparatus. 請求項1ないし4のいずれか1つに記載の画像形成装置において、前記露光条件制御手段は、少なくとも形成すべき画像の解像度が500dpiを超えているときには作動させることを特徴とする画像形成装置。   5. The image forming apparatus according to claim 1, wherein the exposure condition control means is operated at least when the resolution of an image to be formed exceeds 500 dpi. 請求項1ないし6のいずれか1つに記載の画像形成装置において、前記露光制御手段は露光パワーを制御する手段であることを特徴とする画像形成装置。   7. The image forming apparatus as claimed in claim 1, wherein the exposure control means is means for controlling exposure power. 請求項1ないし7のいずれか1つに記載の画像形成装置において、前記露光制御手段は露光時間を制御する手段であることを特徴とする画像形成装置。   8. The image forming apparatus according to claim 1, wherein the exposure control means is means for controlling an exposure time. 請求項1ないし8のいずれか1つに記載の画像形成装置において、前記露光条件は、或る所定のタイミングにて行われる画像濃度調整制御の際に、目標一様帯電電位、および目標現像バイアスを定めた後に、前記一様目標帯電電位と前記像担持体回転回数から算出することを特徴とする画像形成装置。   9. The image forming apparatus according to claim 1, wherein the exposure condition includes a target uniform charging potential and a target developing bias when image density adjustment control is performed at a predetermined timing. The image forming apparatus is calculated from the uniform target charging potential and the number of rotations of the image carrier. 請求項9に記載の画像形成装置において、前記露光条件は、或る所定のタイミングにて行われる画像濃度調整制御の際に、目標一様帯電電位、および目標現像バイアスを定めた後に、前記算出値に基づいて設定されることを特徴とする画像形成装置。   10. The image forming apparatus according to claim 9, wherein the exposure condition is calculated after a target uniform charging potential and a target developing bias are determined in an image density adjustment control performed at a predetermined timing. An image forming apparatus that is set based on a value.
JP2006243884A 2005-10-03 2006-09-08 Image forming apparatus Expired - Fee Related JP5151099B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006243884A JP5151099B2 (en) 2005-10-03 2006-09-08 Image forming apparatus

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2005290546 2005-10-03
JP2005290546 2005-10-03
JP2006243884A JP5151099B2 (en) 2005-10-03 2006-09-08 Image forming apparatus

Publications (2)

Publication Number Publication Date
JP2007128047A true JP2007128047A (en) 2007-05-24
JP5151099B2 JP5151099B2 (en) 2013-02-27

Family

ID=38150716

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006243884A Expired - Fee Related JP5151099B2 (en) 2005-10-03 2006-09-08 Image forming apparatus

Country Status (1)

Country Link
JP (1) JP5151099B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019078873A (en) * 2017-10-24 2019-05-23 コニカミノルタ株式会社 Image forming apparatus and program

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02287480A (en) * 1989-04-28 1990-11-27 Ricoh Co Ltd Image forming device
JPH09120245A (en) * 1995-10-25 1997-05-06 Canon Inc Process cartridge and image forming device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02287480A (en) * 1989-04-28 1990-11-27 Ricoh Co Ltd Image forming device
JPH09120245A (en) * 1995-10-25 1997-05-06 Canon Inc Process cartridge and image forming device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019078873A (en) * 2017-10-24 2019-05-23 コニカミノルタ株式会社 Image forming apparatus and program
JP7069636B2 (en) 2017-10-24 2022-05-18 コニカミノルタ株式会社 Image forming equipment and programs

Also Published As

Publication number Publication date
JP5151099B2 (en) 2013-02-27

Similar Documents

Publication Publication Date Title
JP5804764B2 (en) Image processing device
JP4953588B2 (en) Image forming apparatus
JP5511891B2 (en) Image forming apparatus
US7149439B2 (en) Method and device for estimating toner concentration and image forming apparatus equipped with such device
JP6195149B2 (en) Image forming apparatus
US10775727B2 (en) Image forming apparatus with a charging amount acquisition unit that performs a charging amount acquisition operation for forming a measurement toner image on an image carrier
JP6573388B2 (en) Image forming apparatus
JP2010128012A (en) Photoreceptor life determination device and image forming apparatus using the same
JP2007304523A (en) Image forming apparatus
JP5777687B2 (en) Image forming apparatus
JP6659118B2 (en) Image forming device
JP2013117622A (en) Image forming apparatus
JP2009098279A (en) Managing device and managing program for consumables, and consumed amount estimating method
JP7167598B2 (en) image forming device
JP2006145903A (en) Image forming apparatus and process cartridge
JP2008020818A (en) Image forming apparatus and image stabilization method
JP4965103B2 (en) Image forming apparatus
JP5151099B2 (en) Image forming apparatus
US20170322502A1 (en) Image forming apparatus
JP2012063683A (en) Image formation device
JP2002082578A (en) Image forming method and image forming device
JP2955237B2 (en) Latent image potential estimating apparatus and latent image potential estimating method
JP2002072581A (en) Image-forming device and process cartridge
JP2004317538A (en) Image forming apparatus
JP2005208585A (en) Image forming apparatus, toner counter, and calculating method of toner consumption

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090603

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110927

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111128

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120911

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120928

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121106

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121119

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151214

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151214

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees