JP2007127020A - Exhaust emission control device - Google Patents

Exhaust emission control device Download PDF

Info

Publication number
JP2007127020A
JP2007127020A JP2005319486A JP2005319486A JP2007127020A JP 2007127020 A JP2007127020 A JP 2007127020A JP 2005319486 A JP2005319486 A JP 2005319486A JP 2005319486 A JP2005319486 A JP 2005319486A JP 2007127020 A JP2007127020 A JP 2007127020A
Authority
JP
Japan
Prior art keywords
exhaust
exhaust gas
nox
reduction catalyst
flow rate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005319486A
Other languages
Japanese (ja)
Inventor
Hiroshi Hirabayashi
浩 平林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hino Motors Ltd
Original Assignee
Hino Motors Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hino Motors Ltd filed Critical Hino Motors Ltd
Priority to JP2005319486A priority Critical patent/JP2007127020A/en
Publication of JP2007127020A publication Critical patent/JP2007127020A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Exhaust Gas After Treatment (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an exhaust emission control device for appropriately regenerating NOx occlusion reduction catalyst while suitably reducing NOx by controlling a flow rate of exhaust gas 7 even in various operation states. <P>SOLUTION: An exhaust emission control device which is equipped with NOx occlusion reduction catalysts 10, 12 at some midpoints of exhaust flow passages 11, 13 and which reduces and purifies NOx by adding fuel as a reducing agent to the upstream side of the NOx occlusion reduction catalysts 10, 12, contains fuel addition means 15, 19 which are provided to the exhaust flow passages 11, 13 on the upstream side from the NOx occlusion reduction catalysts 10, 12 and which inject fuel, flow passage regulating valves 16, 20 which are mounted in the exhaust flow passages 11, 13 on the upstream side from the fuel addition means 15, 19 and which regulates openings of the exhaust flow passages 11, 13, and flow rate sensors 17, 21 for detecting the flow rate of exhaust gas 7 to send control signals to the flow passage regulating valves 16, 20. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、排気浄化装置に関するものである。   The present invention relates to an exhaust emission control device.

従来より、排気管の途中に装備した排気浄化用触媒により排気浄化を図ることが行われており、この種の排気浄化用触媒としては、排気空燃比がリーンの時に排気ガス中のNOxを酸化して硝酸塩の状態で一時的に吸蔵し、排気ガス中のO2濃度が低下した時に未燃HCやCO等の介在によりNOxを分解放出して還元浄化する性質を備えたNOx吸蔵還元触媒がある。 Conventionally, exhaust purification is carried out with an exhaust purification catalyst installed in the middle of the exhaust pipe. As this type of exhaust purification catalyst, NOx in exhaust gas is oxidized when the exhaust air-fuel ratio is lean. Thus, a NOx occlusion reduction catalyst having the property of temporarily storing in the form of nitrate and decomposing and releasing NOx through the intervention of unburned HC, CO, etc. when the O 2 concentration in the exhaust gas decreases is reduced and purified. is there.

この種のNOx吸蔵還元触媒としては、白金・バリウム・アルミナ触媒や、白金・カリウム・アルミナ触媒等が前述した如き性質を有するものとして既に知られている。   As this type of NOx occlusion reduction catalyst, platinum / barium / alumina catalyst, platinum / potassium / alumina catalyst, and the like have already been known.

そして、NOx吸蔵還元触媒においては、NOxの吸蔵量が増大して飽和量に達してしまうと、それ以上のNOxを吸蔵できなくなるため、定期的にNOx吸蔵還元触媒に流入する排気ガスのO2濃度を低下させてNOxを分解放出させる必要がある。 Then, in the NOx storage reduction catalyst, when the storage amount of NOx will reach a saturation amount increases, it becomes impossible occludes more NOx, O 2 in the exhaust gas flowing into the regular NOx storage reduction catalyst It is necessary to decompose and release NOx by reducing the concentration.

例えば、ガソリン機関に使用した場合であれば、機関の運転空燃比を低下(機関をリッチ空燃比で運転)することにより、排気ガス中のO2濃度を低下し且つ排気ガス中の未燃HCやCO等の還元成分を増加してNOxの分解放出を促すことができるが、NOx吸蔵還元触媒をディーゼル機関の排気浄化装置として使用した場合には機関をリッチ空燃比で運転することが困難である。 For example, when used in a gasoline engine, the operating air-fuel ratio of the engine is reduced (the engine is operated at a rich air-fuel ratio), thereby reducing the O 2 concentration in the exhaust gas and unburned HC in the exhaust gas. It is possible to promote the decomposition and release of NOx by increasing reducing components such as CO and CO. However, when the NOx storage reduction catalyst is used as an exhaust purification device of a diesel engine, it is difficult to operate the engine at a rich air-fuel ratio. is there.

このため、NOx吸蔵還元触媒より上流側の排気管に燃料添加手段を設置し、該燃料添加手段により排気ガス中に燃料(HC)を噴射して添加することにより、この添加燃料を還元剤としてNOx吸蔵還元触媒上でO2と反応させることで排気ガス中のO2濃度を低下させるようにしている。又、同時に、燃料添加手段より上流側の排気管に流路調整弁を設置し、該流路調整弁により所定の時間で排ガス流路を開き、排気ガスの流量を制御するようにしている(例えば、特許文献1、2参照)。
特開2003−247416号公報 特開2004−162600号公報
For this reason, fuel addition means is installed in the exhaust pipe upstream of the NOx storage reduction catalyst, and fuel (HC) is injected and added into the exhaust gas by the fuel addition means, so that this added fuel is used as a reducing agent. The O 2 concentration in the exhaust gas is lowered by reacting with O 2 on the NOx storage reduction catalyst. At the same time, a flow path adjustment valve is installed in the exhaust pipe upstream of the fuel addition means, and the flow path adjustment valve opens the exhaust gas flow path in a predetermined time to control the flow rate of the exhaust gas ( For example, see Patent Documents 1 and 2).
JP 2003-247416 A Japanese Patent Laid-Open No. 2004-162600

しかしながら、エンジンの運転状態が変化する過渡時には、NOx吸蔵還元触媒に流入する排気ガスのガス流量が変化するため、従来例の如く流路調整弁により時間で排気ガスの流量を制御する構成では、NOxを好適に低減することができないと共に、NOx吸蔵還元触媒を適切に再生制御することができないという問題があった。   However, when the engine operating state changes, the flow rate of the exhaust gas flowing into the NOx storage reduction catalyst changes. Therefore, in the configuration in which the flow rate of the exhaust gas is controlled by the flow path adjustment valve as in the conventional example, There has been a problem that NOx cannot be suitably reduced and the NOx storage reduction catalyst cannot be properly regenerated.

本発明は上述の実情に鑑みてなしたもので、種々の運転状態においても排気ガスの流量を制御してNOxを好適に低減すると共にNOx吸蔵還元触媒を適切に再生制御する排気浄化装置を提供することを目的としている。   The present invention has been made in view of the above-described circumstances, and provides an exhaust purification device that controls the flow rate of exhaust gas to reduce NOx appropriately even in various operating conditions and appropriately regenerates and controls the NOx storage reduction catalyst. The purpose is to do.

本発明は、排気流路の途中にNOx吸蔵還元触媒を装備し且つ該NOx吸蔵還元触媒の上流側に還元剤として燃料を添加してNOxを還元浄化するように構成した排気浄化装置であって、前記NOx吸蔵還元触媒より上流側の排気流路に設置されて燃料を噴射する燃料添加手段と、該燃料添加手段より上流側の排気流路に設置されて排気流路の開度を調整する流路調整弁と、排気ガスの流量を検出して流路調整弁に制御信号を送る流量センサとを備えたことを特徴とする排気浄化装置、にかかるものである。   The present invention is an exhaust emission control device equipped with a NOx storage reduction catalyst in the middle of an exhaust passage and configured to reduce and purify NOx by adding fuel as a reducing agent upstream of the NOx storage reduction catalyst. A fuel addition means installed in the exhaust passage upstream of the NOx occlusion reduction catalyst and injecting fuel; and an opening of the exhaust passage arranged in the exhaust passage upstream of the fuel addition means is adjusted. The present invention relates to an exhaust gas purification device including a flow path adjustment valve and a flow rate sensor that detects a flow rate of exhaust gas and sends a control signal to the flow path adjustment valve.

本発明において、流路調整弁は、エンジン回転数の制御マップにより設定された目標排気ガス流量に、排気流路の排気ガスの流量を合わせるよう、排気流路の開度を調整することが好ましい。   In the present invention, it is preferable that the flow path adjustment valve adjusts the opening degree of the exhaust flow path so that the flow rate of the exhaust gas in the exhaust flow path matches the target exhaust gas flow rate set by the control map of the engine speed. .

本発明は、NOx吸蔵還元触媒を装備した排気流路を並列に複数備え、流路調整弁により排気流路を切り換えるよう構成することが好ましい。   In the present invention, it is preferable that a plurality of exhaust passages equipped with NOx occlusion reduction catalysts are provided in parallel, and the exhaust passages are switched by a passage adjustment valve.

本発明は、NOx吸蔵還元触媒より下流側の排気流路に設置されて排気ガスの空気過剰率を検出するλセンサを備えることが好ましい。   The present invention preferably includes a λ sensor that is installed in the exhaust passage downstream of the NOx storage reduction catalyst and detects the excess air ratio of the exhaust gas.

本発明は、NOx吸蔵還元触媒より下流側の排気流路に設置されて排気ガス中のO2濃度を検出するO2センサを備えることが好ましい。 The present invention preferably includes an O 2 sensor that is installed in the exhaust passage downstream of the NOx storage reduction catalyst and detects the O 2 concentration in the exhaust gas.

而して、本願発明によれば、排気流路の開度を調整する流路調整弁と、排気ガスの流量を検出して流路調整弁に制御信号を送る流量センサとを備えるので、エンジンの運転状態により排気ガスの流量が変化する場合においても、流量センサ及び流路調整弁により排気ガスの流量を制御し、NOxを好適に低減することができると共にNOx吸蔵還元触媒を適切に再生制御することができる。   Thus, according to the present invention, the engine includes the flow path adjustment valve that adjusts the opening degree of the exhaust flow path and the flow rate sensor that detects the flow rate of the exhaust gas and sends a control signal to the flow path adjustment valve. Even when the exhaust gas flow rate changes depending on the operation state, the flow rate sensor and the flow path control valve control the exhaust gas flow rate, so that NOx can be suitably reduced and the NOx storage reduction catalyst is appropriately regenerated and controlled. can do.

流路調整弁は、エンジン回転数の制御マップにより設定された目標排気ガス流量に、排気流路の排気ガスの流量を合わせるよう、排気流路の開度を調整すると、エンジンの運転状態に応じて目標排気ガス流量を変更し得るので、エンジンの運転状態により排気ガスの流量が変化する場合においても、流量センサ及び流路調整弁を用いて排気ガスの流量を適切な状態に制御し、NOxを好適に低減することができると共にNOx吸蔵還元触媒を好適に再生制御することができる。   The flow path adjustment valve adjusts the exhaust flow path so that the exhaust gas flow rate in the exhaust flow path matches the target exhaust gas flow rate set by the engine speed control map. The target exhaust gas flow rate can be changed, so even when the exhaust gas flow rate changes depending on the engine operating state, the flow rate sensor and the flow path adjustment valve are used to control the exhaust gas flow rate to an appropriate state. The NOx occlusion reduction catalyst can be suitably regenerated and controlled.

NOx吸蔵還元触媒を装備した排気流路を並列に複数備え、流路調整弁により排気流路を切り換えるよう構成すると、流路調整弁により、一方の排気流路を開いてNOx吸蔵還元触媒を使用すると共に、他方の排気流路を閉じて他のNOx吸蔵還元触媒を再生するので、複数のNOx吸蔵還元触媒を交互に再生制御し、NOxを好適に低減することができると共にNOx吸蔵還元触媒を適切に再生制御することができる。   If multiple exhaust passages equipped with NOx storage reduction catalyst are provided in parallel and the exhaust passage is switched by the passage adjustment valve, one exhaust passage is opened by the passage adjustment valve and the NOx storage reduction catalyst is used. At the same time, the other exhaust passage is closed to regenerate the other NOx storage reduction catalyst, so that a plurality of NOx storage reduction catalysts can be controlled alternately to regenerate, and NOx can be suitably reduced and the NOx storage reduction catalyst can be reduced. Appropriate playback control can be performed.

NOx吸蔵還元触媒より下流側の排気流路に設置されて排気ガスの空気過剰率を検出するλセンサを備えると、λセンサにより排気ガス中の空気過剰率を検出してフィードバック制御をかけるので、燃料添加手段又は/及び流路調整弁を適切な条件で作動させ、NOx吸蔵還元触媒を好適に再生制御することができる。   If a λ sensor is installed in the exhaust passage downstream of the NOx storage reduction catalyst and detects the excess air ratio of the exhaust gas, the excess air ratio in the exhaust gas is detected by the λ sensor, and feedback control is performed. The NOx storage reduction catalyst can be suitably regenerated and controlled by operating the fuel addition means or / and the flow path regulating valve under appropriate conditions.

NOx吸蔵還元触媒より下流側の排気流路に設置されて排気ガス中のO2濃度を検出するO2センサを備えると、O2センサにより排気ガス中のO2濃度を検出してフィードバック制御をかけるので、燃料添加手段又は/及び流路調整弁を適切な条件で作動させ、NOx吸蔵還元触媒を好適に再生制御することができる。 When provided with the O 2 sensor that the NOx storage-reduction catalyst is disposed in an exhaust passage on the downstream side detects the O 2 concentration in the exhaust gas, the O 2 sensor detected and feedback control of the O 2 concentration in the exhaust gas Therefore, the NOx occlusion reduction catalyst can be suitably regenerated and controlled by operating the fuel addition means or / and the flow path adjustment valve under appropriate conditions.

上記した本発明の排気浄化装置によれば、種々の運転状態においても排気ガスの流量を制御してNOxを好適に低減すると共にNOx吸蔵還元触媒を適切に再生制御するという優れた効果を奏し得る。   According to the above-described exhaust purification device of the present invention, it is possible to achieve an excellent effect of controlling the exhaust gas flow rate to suitably reduce NOx and appropriately controlling the regeneration of the NOx storage reduction catalyst even in various operating states. .

以下本発明の実施の形態を図面を参照しつつ説明する。   Embodiments of the present invention will be described below with reference to the drawings.

図1は本発明を実施する形態の一例を示すもので、図中1はディーゼルエンジンを示し、ここに図示しているディーゼルエンジン1では、ターボチャージャ2が備えられており、エアクリーナ3から導いた空気4が吸気管5を介し前記ターボチャージャ2のコンプレッサ2aへと送られ、コンプレッサ2aで加圧された空気4が更にインタクーラ6へと送られて冷却され、インタクーラ6から図示しないインテークマニホールドへと空気4が導かれてディーゼルエンジン1の各シリンダに導入されるようにしてある。   FIG. 1 shows an example of an embodiment for carrying out the present invention. In the figure, reference numeral 1 denotes a diesel engine. In the diesel engine 1 shown here, a turbocharger 2 is provided and led from an air cleaner 3. The air 4 is sent to the compressor 2a of the turbocharger 2 through the intake pipe 5, and the air 4 pressurized by the compressor 2a is further sent to the intercooler 6 to be cooled, and from the intercooler 6 to an intake manifold (not shown). Air 4 is guided and introduced into each cylinder of the diesel engine 1.

また、このディーゼルエンジン1の各シリンダには、図示しない燃料タンクからの液体燃料(軽油)がディーゼルエンジン1の各シリンダ内に噴射されて燃焼されるようにしてあり、ディーゼルエンジン1の各シリンダから排出された排気ガス7がエキゾーストマニホールド8を介しターボチャージャ2のタービン2bへと送られ、タービン2bを駆動した排気ガス7が排気管9を介し下流へ排出されるようにしてある。   Further, in each cylinder of the diesel engine 1, liquid fuel (light oil) from a fuel tank (not shown) is injected into each cylinder of the diesel engine 1 and burned, and from each cylinder of the diesel engine 1. The discharged exhaust gas 7 is sent to the turbine 2b of the turbocharger 2 through the exhaust manifold 8, and the exhaust gas 7 that has driven the turbine 2b is discharged downstream through the exhaust pipe 9.

排気管9の下流には、分岐により2本の流路を並列に配置するよう、一つのNOx吸蔵還元触媒10を装備する第一の排気流路11と、他のNOx吸蔵還元触媒12を装備した第二の排気流路13とを備えており、第一の排気流路11と第二の排気流路13の下流には、合流して一本になる下流側の排気流路14を備えている。   Downstream of the exhaust pipe 9, a first exhaust passage 11 equipped with one NOx storage reduction catalyst 10 and another NOx storage reduction catalyst 12 are installed so that two passages are arranged in parallel by branching. The second exhaust flow path 13 is provided, and downstream of the first exhaust flow path 11 and the second exhaust flow path 13 is provided with a downstream exhaust flow path 14 that merges into one. ing.

第一の排気流路11には、NOx吸蔵還元触媒10より上流側に設置されて還元剤の燃料を噴射する第一の燃料添加手段の燃料添加ノズル15と、燃料添加ノズル15より上流側で分岐箇所の近傍に設置されて第一の排気流路11の開度を調整する第一の流路調整弁16と、第一の燃料添加手段の燃料添加ノズル15とNOx吸蔵還元触媒10との間に設置されて排気ガス7の流量を検出する第一の流量センサ17と、NOx吸蔵還元触媒10の下流側に設置されて排気ガス7の空気過剰率を検出する第一のλセンサ18と、第一の流量センサ17の下流でNOx吸蔵還元触媒の前方に配置される入口温度センサ(図示せず)と、第一のλセンサ18の上流でNOx吸蔵還元触媒の後方に配置される出口温度センサ(図示せず)とを備えている。   In the first exhaust passage 11, a fuel addition nozzle 15 of a first fuel addition means that is installed upstream of the NOx storage reduction catalyst 10 and injects fuel of the reducing agent, and upstream of the fuel addition nozzle 15. A first flow path adjustment valve 16 that is installed in the vicinity of the branch point and adjusts the opening degree of the first exhaust flow path 11, a fuel addition nozzle 15 of the first fuel addition means, and the NOx occlusion reduction catalyst 10. A first flow rate sensor 17 that is installed in between and detects the flow rate of the exhaust gas 7; a first λ sensor 18 that is installed downstream of the NOx storage reduction catalyst 10 and detects the excess air ratio of the exhaust gas 7; An inlet temperature sensor (not shown) disposed downstream of the first flow rate sensor 17 and in front of the NOx storage reduction catalyst, and an outlet disposed upstream of the first λ sensor 18 and behind the NOx storage reduction catalyst. And a temperature sensor (not shown).

第二の排気流路13には、NOx吸蔵還元触媒12より上流側に設置されて還元剤の燃料を噴射する第二の燃料添加手段の燃料添加ノズル19と、燃料添加ノズル19より上流側で分岐箇所の近傍に設置されて第二の排気流路13の開度を調整する第二の流路調整弁20と、第二の燃料添加手段の燃料添加ノズル19とNOx吸蔵還元触媒12との間に設置されて排気ガス7の流量を検出する第二の流量センサ21と、NOx吸蔵還元触媒12の下流側に設置されて排気ガス7の空気過剰率を検出する第二のλセンサ22と、第二の流量センサ21の下流でNOx吸蔵還元触媒の前方に配置される入口温度センサ(図示せず)と、第二のλセンサ22の上流でNOx吸蔵還元触媒の後方に配置される出口温度センサ(図示せず)とを備えている。   In the second exhaust passage 13, a fuel addition nozzle 19 of a second fuel addition means that is installed upstream of the NOx storage reduction catalyst 12 and injects fuel of the reducing agent, and upstream of the fuel addition nozzle 19. A second flow path adjustment valve 20 that is installed in the vicinity of the branch point and adjusts the opening degree of the second exhaust flow path 13, a fuel addition nozzle 19 of the second fuel addition means, and the NOx occlusion reduction catalyst 12. A second flow rate sensor 21 installed between them to detect the flow rate of the exhaust gas 7, and a second λ sensor 22 installed downstream from the NOx storage reduction catalyst 12 to detect the excess air ratio of the exhaust gas 7; An inlet temperature sensor (not shown) disposed downstream of the second flow rate sensor 21 and in front of the NOx storage reduction catalyst, and an outlet disposed upstream of the second λ sensor 22 and behind the NOx storage reduction catalyst. And a temperature sensor (not shown).

ここで、NOx吸蔵還元触媒10,12は、特に限定されるものではないが、Ptの貴金属、Li,Na,Mg,K,Ca,Cs,Ba,Y,La,Ce,Pr,Nd,Eu,Gd,Dy等のほかランタノイド系金属のNOx吸蔵剤、アルミナ、チタニア、ジルコニア等の担持体の構成例がある。又、第一の燃料添加手段の燃料添加ノズル15と第二の燃料添加手段の燃料添加ノズル19には、加圧ポンプ23により燃料タンク24から供給配管25を介して軽油等の還元剤の燃料が供給されるようになっている。更に、第一の排気流路11及び第二の排気流路13は、第一のλセンサ18、第二のλセンサ22の代わりに、O2濃度を検出するO2センサを備えても良い。 Here, the NOx occlusion reduction catalysts 10 and 12 are not particularly limited, but Pt noble metals, Li, Na, Mg, K, Ca, Cs, Ba, Y, La, Ce, Pr, Nd, and Eu. In addition to lanthanoid-based metal NOx storage agents, alumina, titania, zirconia, and the like. The fuel addition nozzle 15 of the first fuel addition means and the fuel addition nozzle 19 of the second fuel addition means are supplied with a reducing agent fuel such as light oil from a fuel tank 24 through a supply pipe 25 by a pressure pump 23. Is to be supplied. Further, the first exhaust flow path 11 and the second exhaust passage 13, a first λ sensor 18, in place of the second λ sensor 22 may be provided with O 2 sensor for detecting the O 2 concentration .

下流側の排気流路14には、触媒化のパティキュレートフィルタ26と、パティキュレートフィルタ26の前方に配置される入口温度センサ(図示せず)と、パティキュレートフィルタ26の後方に配置される出口温度センサ(図示せず)とを備えている。   The downstream exhaust passage 14 has a catalytic particulate filter 26, an inlet temperature sensor (not shown) disposed in front of the particulate filter 26, and an outlet disposed in the rear of the particulate filter 26. And a temperature sensor (not shown).

ここで、パティキュレートフィルタ26は、コージェライト等のセラミックで製作された多孔質ハニカム構造のフィルタ本体を主構成とし、このフィルタ本体における格子状に区画された各流路の入口が栓体により交互に目封じされ、入口が目封じされていない流路については、その出口が栓体により目封じされるようになっており、各流路を区画する多孔質薄壁を通過した排出ガスのみが下流側へ排出されて、多孔質薄壁の内側表面にパティキュレートが捕集されるようにしてある。   Here, the particulate filter 26 is mainly composed of a filter body having a porous honeycomb structure made of ceramic such as cordierite, and the inlets of the respective flow paths partitioned in a lattice shape in the filter body are alternately arranged by plugs. As for the flow path that is sealed by the inlet and the inlet is not sealed, the outlet is sealed by the plug, and only the exhaust gas that has passed through the porous thin wall that defines each flow path is sealed. It is discharged downstream and particulates are collected on the inner surface of the porous thin wall.

一方、第一の燃料添加手段の燃料添加ノズル15、第二の燃料添加手段の燃料添加ノズル19、第一の流路調整弁16、第二の流路調整弁20は、エンジン制御コンピュータ(ECU:Electronic Control Unit)を兼ねた制御装置(制御手段)27に接続されて制御信号により制御されており、制御装置27には、第一の流量センサ17、NOx吸蔵還元触媒10の入口温度センサ及び出口温度センサ、第一のλセンサ18又はO2センサ、第二の流量センサ21、NOx吸蔵還元触媒12の入口温度センサ及び出口温度センサ、第二のλセンサ22又はO2センサ、パティキュレートフィルタ26の入口温度センサ及び出口温度センサからデータが入力されるようになっており、更に、ディーゼルエンジン1の機関回転数を検出する回転センサ(図示せず)から回転数信号(エンジン回転数)が入力されると共に、アクセルペダル(図示せず)の踏み込み角度を検出するアクセルセンサ(図示せず)から負荷信号が入力されるようになっている。 On the other hand, the fuel addition nozzle 15 of the first fuel addition means, the fuel addition nozzle 19 of the second fuel addition means, the first flow path adjustment valve 16, and the second flow path adjustment valve 20 are connected to an engine control computer (ECU). Is connected to a control device (control means) 27 also serving as an electronic control unit, and is controlled by a control signal. The control device 27 includes a first flow rate sensor 17, an inlet temperature sensor of the NOx storage reduction catalyst 10, and Outlet temperature sensor, first λ sensor 18 or O 2 sensor, second flow rate sensor 21, inlet temperature sensor and outlet temperature sensor of NOx storage reduction catalyst 12, second λ sensor 22 or O 2 sensor, particulate filter Data are inputted from 26 inlet temperature sensors and outlet temperature sensors, and a rotation sensor (not shown) for detecting the engine speed of the diesel engine 1 is also shown. The rotation speed signal (engine rotation speed) is input from), so that the load signal from the accelerator sensor (not shown) for detecting a depression angle of an accelerator pedal (not shown) is input.

又、制御装置27においては、回転センサからの回転数信号(エンジン回転数)と、第一の燃料添加手段、第二の燃料添加手段による燃料噴射量とに基づいて、制御マップから、第一の排気流路11及び第二の排気流路13の目標排気ガス流量が読み出されて決定されると共に、第一のλセンサ18、第二のλセンサ22からの排気ガス7の空気過剰率のデータ、又はO2センサからのO2濃度のデータがフィードバックされるようになっている。ここで、制御装置27の制御マップは、回転数信号(エンジン回転数)と燃料噴射量とに基づくものに限られず、回転センサからの回転数信号(エンジン回転数)と、入口温度センサ及び出口温度センサからのNOx吸蔵還元触媒10,12の温度とに基づくものでも良く、特に限定されるものではない。 Further, in the control device 27, based on the rotational speed signal (engine rotational speed) from the rotation sensor and the fuel injection amount by the first fuel addition means and the second fuel addition means, the control map 27 The target exhaust gas flow rates of the exhaust flow path 11 and the second exhaust flow path 13 are read and determined, and the excess air ratio of the exhaust gas 7 from the first λ sensor 18 and the second λ sensor 22 is determined. Or the O 2 concentration data from the O 2 sensor is fed back. Here, the control map of the control device 27 is not limited to the one based on the rotational speed signal (engine rotational speed) and the fuel injection amount, but the rotational speed signal (engine rotational speed) from the rotational sensor, the inlet temperature sensor, and the outlet. It may be based on the temperature of the NOx storage reduction catalysts 10 and 12 from the temperature sensor, and is not particularly limited.

以下、本発明を実施する形態例の作用を説明する。   The operation of the embodiment for carrying out the present invention will be described below.

ディーゼルエンジン1から排気ガス7が排出された際には、第一の流路調整弁16及び第二の流路調整弁20の開閉により、第一の排気流路11又は第二の排気流路13のいずれか一方のNOx吸蔵還元触媒10,12で排気ガス7を浄化し、他方でNOx吸蔵還元触媒12,10を再生する。下記の例では、第一の流路調整弁16を開放して第一の排気流路11のNOx吸蔵還元触媒10で排気ガス7を浄化し、同時に第二の流路調整弁20を閉止して第二の排気流路13のNOx吸蔵還元触媒12を再生する場合を示す。   When the exhaust gas 7 is discharged from the diesel engine 1, the first exhaust passage 11 or the second exhaust passage is opened and closed by opening and closing the first passage adjustment valve 16 and the second passage adjustment valve 20. The exhaust gas 7 is purified by any one of the NOx storage reduction catalysts 10, 12, and the NOx storage reduction catalysts 12, 10 are regenerated on the other side. In the following example, the first flow path adjustment valve 16 is opened, the exhaust gas 7 is purified by the NOx occlusion reduction catalyst 10 in the first exhaust flow path 11, and the second flow path adjustment valve 20 is closed at the same time. A case where the NOx storage reduction catalyst 12 in the second exhaust flow path 13 is regenerated is shown.

第一の排気流路11では、排気ガス7がNOx吸蔵還元触媒10上を流れ、NOx吸蔵還元触媒10上では、排気ガス7中のNOxとO2が反応し、NOxを硝酸塩の状態で吸蔵して排気ガス7を浄化する。 In the first exhaust passage 11, the exhaust gas 7 flows on the NOx storage reduction catalyst 10, and on the NOx storage reduction catalyst 10, NOx and O 2 in the exhaust gas 7 react to store NOx in the form of nitrate. Then, the exhaust gas 7 is purified.

第二の排気流路13では、第二の燃料添加手段の燃料添加ノズル15より還元剤の燃料を添加し、燃料の添加量に対する相対的な空気過剰率を低下させて還元剤とNOxの反応選択性を向上させ、これによりNOx吸蔵還元触媒12からNOxを積極的に分解放出してNOx吸蔵還元触媒12の再生を図り、同時に放出したNOxをNOx吸蔵還元触媒12上で燃料と反応させて還元浄化する。   In the second exhaust passage 13, the reducing agent fuel is added from the fuel addition nozzle 15 of the second fuel addition means, and the relative excess air ratio with respect to the amount of fuel added is reduced to react the reducing agent with NOx. The selectivity is improved, whereby NOx is actively decomposed and released from the NOx storage reduction catalyst 12 to regenerate the NOx storage reduction catalyst 12, and simultaneously the released NOx reacts with the fuel on the NOx storage reduction catalyst 12. Reduce and purify.

ここで、NOx吸蔵還元触媒12を再生する際には、第二の流量センサ21により排気ガス7の流量を測定してデータを制御装置27に送り、制御装置27では、回転数信号(エンジン回転数)と燃料噴射量とに基づく制御マップにより設定された目標排気ガス流量に、第二の排気流路13の排気ガス7の流量を合わせるよう、第二の流路調整弁20を制御しており、排気ガス7の流量が目標排気ガス流量より多い場合には第二の流路調整弁20の開度を絞り、排気ガス7の流量が目標排気ガス流量より少ない場合には第二の流路調整弁20の開度を開いている。   Here, when the NOx occlusion reduction catalyst 12 is regenerated, the flow rate of the exhaust gas 7 is measured by the second flow rate sensor 21 and the data is sent to the control device 27. 2) and the second flow path adjustment valve 20 is controlled so that the flow rate of the exhaust gas 7 in the second exhaust flow path 13 is matched with the target exhaust gas flow rate set by the control map based on the fuel injection amount. When the flow rate of the exhaust gas 7 is higher than the target exhaust gas flow rate, the opening degree of the second flow path adjustment valve 20 is reduced, and when the flow rate of the exhaust gas 7 is lower than the target exhaust gas flow rate, the second flow rate is adjusted. The opening of the path adjustment valve 20 is opened.

又、ディーゼルエンジン1の運転状態(回転数、トルク)が変化して排気ガス7の流量が変化する過渡運転状態では、第二の流量センサ21で随時検出することにより、第二の流路調整弁20を微細に制御して第二の排気流路13の開度を最適な状態に変更し、排気ガス7の流量の変化に対応している。   Further, in a transient operation state in which the operation state (rotation speed, torque) of the diesel engine 1 changes and the flow rate of the exhaust gas 7 changes, the second flow rate adjustment is performed by the second flow sensor 21 detecting at any time. The valve 20 is finely controlled to change the opening degree of the second exhaust passage 13 to an optimum state, corresponding to the change in the flow rate of the exhaust gas 7.

同時に、第二の排気流路13の第二のλセンサ22は、排気ガス7中の空気過剰率を検出して制御装置27に送り、第二の燃料添加手段による燃料の添加量を最適にするようにフィードバック制御している。又、第二のλセンサ22の代わりにO2センサを用いた場合には、排気ガス7中のO2濃度を検出して制御装置27に送り、同様に第二の燃料添加手段の燃料の添加量を最適にするようにフィードバック制御している。 At the same time, the second λ sensor 22 in the second exhaust flow path 13 detects the excess air ratio in the exhaust gas 7 and sends it to the control device 27 to optimize the amount of fuel added by the second fuel addition means. Feedback control is performed. When an O 2 sensor is used instead of the second λ sensor 22, the O 2 concentration in the exhaust gas 7 is detected and sent to the control device 27, and the fuel of the second fuel addition means is similarly detected. Feedback control is performed to optimize the addition amount.

更に、第一の排気流路11及び第二の排気流路13の下流のパティキュレートフィルタ26では、排気ガス7中の煤を補足し、燃焼させている。   Further, the particulate filter 26 downstream of the first exhaust passage 11 and the second exhaust passage 13 captures soot in the exhaust gas 7 and burns it.

第二の排気流路13のNOx吸蔵還元触媒の再生が終了した後には、第一の流路調整弁16を閉止すると共に第二の流路調整弁20を開放し、同様に、第一の排気流路11のNOx吸蔵還元触媒10を再生すると共に、第二の排気流路13のNOx吸蔵還元触媒12により排気ガス7を浄化する。   After the regeneration of the NOx storage reduction catalyst in the second exhaust passage 13 is completed, the first passage adjustment valve 16 is closed and the second passage adjustment valve 20 is opened. The NOx storage reduction catalyst 10 in the exhaust passage 11 is regenerated, and the exhaust gas 7 is purified by the NOx storage reduction catalyst 12 in the second exhaust passage 13.

このように、実施の形態例によれば、第一の排気流路11及び第二の排気流路13の開度を調整する第一の流路調整弁16及び第二の流路調整弁20と、排気ガス7の流量を検出して第一の流路調整弁16及び第二の流路調整弁20に制御信号を送る第一の流量センサ17及び第二の流量センサ21とを備えるので、エンジンの運転状態の過渡時により排気ガス7の流量が変化する場合においても、第一の流量センサ17、第二の流量センサ21、第一の流路調整弁16、第二の流路調整弁20により排気ガス7の流量を制御し、NOxを好適に低減することができると共にNOx吸蔵還元触媒10,12を適切に再生制御することができる。   Thus, according to the embodiment, the first flow path adjustment valve 16 and the second flow path adjustment valve 20 that adjust the opening degree of the first exhaust flow path 11 and the second exhaust flow path 13 are used. And a first flow rate sensor 17 and a second flow rate sensor 21 that detect the flow rate of the exhaust gas 7 and send control signals to the first flow path adjustment valve 16 and the second flow path adjustment valve 20. Even when the flow rate of the exhaust gas 7 changes due to the transition of the operating state of the engine, the first flow rate sensor 17, the second flow rate sensor 21, the first flow path adjustment valve 16, and the second flow path adjustment The flow rate of the exhaust gas 7 can be controlled by the valve 20 so that NOx can be suitably reduced and the NOx storage reduction catalysts 10 and 12 can be appropriately regenerated and controlled.

事実、本発明者等が行った実験結果によれば、ディーゼルエンジン1の過渡時状態において、図2のグラフで示す通り、実施の形態例で燃料添加をした場合の実施例では、約42%もの高いNOx低減率が得られるのに対し、従来の如き、流量センサのない形態で燃料添加を行っていた場合の比較例では、約33%のNOx低減率しか得られないという結果になり、実施の形態例ではNOxを好適に低減することが明らかである。   In fact, according to the results of experiments conducted by the present inventors, in the example in which fuel is added in the embodiment in the transient state of the diesel engine 1, as shown in the graph of FIG. While a high NOx reduction rate can be obtained, in the comparative example in which fuel addition is performed in the form without a flow rate sensor as in the conventional case, only a NOx reduction rate of about 33% is obtained, In the embodiment, it is clear that NOx is suitably reduced.

実施の形態例において、第一の流路調整弁16及び第二の流路調整弁20は、エンジン回転数の制御マップにより設定された目標排気ガス流量に、排気流路の排気ガス7の流量を合わせるよう、第一の排気流路11又は第二の排気流路13の開度を調整すると、ディーゼルエンジン1の運転状態に応じて目標排気ガス流量を変更し得るので、ディーゼルエンジン1の運転状態の過渡時により排気ガス7の流量が変化する場合においても、第一の流量センサ17、第二の流量センサ21、第一の流路調整弁16、第二の流路調整弁20を用いて排気ガス7の流量を適切な状態に制御し、NOxを好適に低減すると共にNOx吸蔵還元触媒10,12を好適に再生制御することができる。   In the embodiment, the first flow path adjustment valve 16 and the second flow path adjustment valve 20 have the target exhaust gas flow rate set by the engine speed control map and the flow rate of the exhaust gas 7 in the exhaust flow channel. If the opening degree of the first exhaust passage 11 or the second exhaust passage 13 is adjusted so as to match, the target exhaust gas flow rate can be changed according to the operation state of the diesel engine 1, so that the operation of the diesel engine 1 is performed. Even when the flow rate of the exhaust gas 7 changes due to a state transition, the first flow rate sensor 17, the second flow rate sensor 21, the first flow path adjustment valve 16, and the second flow path adjustment valve 20 are used. Thus, the flow rate of the exhaust gas 7 can be controlled to an appropriate state, and NOx can be suitably reduced and the NOx storage reduction catalysts 10 and 12 can be suitably regenerated.

実施の形態例は、NOx吸蔵還元触媒10,12を装備した第一の排気流路11、第二の排気流路13を並列に複数備え、第一の流路調整弁16、第二の流路調整弁20により第一の排気流路11、第二の排気流路13を切り換えるよう構成すると、第一の流路調整弁16、第二の流路調整弁20により、一方の排気流路11,13を開いてNOx吸蔵還元触媒10,12を使用すると共に、他方の排気流路13,11を閉じて他のNOx吸蔵還元触媒12,10を再生するので、複数のNOx吸蔵還元触媒10,12を交互に再生制御し、排気ガス7中のNOxを好適に低減することができると共にNOx吸蔵還元触媒10,12を適切に再生制御することができる。   The embodiment includes a plurality of first exhaust passages 11 and second exhaust passages 13 equipped with NOx storage reduction catalysts 10 and 12 in parallel, a first passage adjustment valve 16, and a second flow passage. When the first exhaust flow path 11 and the second exhaust flow path 13 are switched by the path adjustment valve 20, one exhaust flow path is formed by the first flow path adjustment valve 16 and the second flow path adjustment valve 20. 11 and 13 are used to use the NOx storage reduction catalysts 10 and 12, and the other exhaust passages 13 and 11 are closed to regenerate the other NOx storage reduction catalysts 12 and 10, so that a plurality of NOx storage reduction catalysts 10 are regenerated. , 12 can be alternately controlled to reduce NOx in the exhaust gas 7 and the NOx storage reduction catalysts 10, 12 can be appropriately controlled to regenerate.

実施の形態例は、NOx吸蔵還元触媒10,12より下流側の排気流路11,13に設置されて排気ガス7の空気過剰率を検出する第一のλセンサ18、第二のλセンサ22を備えると、第一のλセンサ18、第二のλセンサ22により排気ガス7中の空気過剰率を検出してフィードバック制御をかけるので、第一の燃料添加手段、第二の燃料添加手段又は/及び第一の流路調整弁16、第二の流路調整弁20を適切な条件で作動させ、NOx吸蔵還元触媒10,12を好適に再生制御することができる。   In the embodiment, the first λ sensor 18 and the second λ sensor 22 that are installed in the exhaust passages 11 and 13 on the downstream side of the NOx storage reduction catalysts 10 and 12 and detect the excess air ratio of the exhaust gas 7 are used. When the first λ sensor 18 and the second λ sensor 22 detect the excess air ratio in the exhaust gas 7 and apply feedback control, the first fuel addition means, the second fuel addition means or / And the first flow path adjustment valve 16 and the second flow path adjustment valve 20 are operated under appropriate conditions, and the NOx storage reduction catalysts 10 and 12 can be suitably regenerated and controlled.

実施の形態例は、NOx吸蔵還元触媒10,12より下流側の排気流路11,13に設置されて排気ガス7中のO2濃度を検出するO2センサを備えると、O2センサにより排気ガス7中のO2濃度を検出してフィードバック制御をかけるので、第一の燃料添加手段、第二の燃料添加手段又は/及び第一の流路調整弁16、第二の流路調整弁20を適切な条件で作動させ、NOx吸蔵還元触媒10,12を好適に再生制御することができる。 PREFERRED EMBODIMENTS Embodiments, when provided with an O 2 sensor for detecting the O 2 concentration in the exhaust gas 7 is installed from the NOx storage reduction catalyst 10, 12 in the exhaust passage 11 and 13 of the downstream exhaust the O 2 sensor Since the O 2 concentration in the gas 7 is detected and feedback control is performed, the first fuel addition means, the second fuel addition means or / and the first flow path adjustment valve 16, the second flow path adjustment valve 20. Can be operated under appropriate conditions, and the NOx storage reduction catalysts 10 and 12 can be suitably regenerated.

尚、本発明の排気浄化装置は、上述の形態例にのみ限定されるものではなく、第二の排気流路を備えることなく、第一の排気流路の構成のみで、排気ガスの浄化及びNOx吸蔵還元触媒を再生するようにしても良いこと、その他、本発明の要旨を逸脱しない範囲内において種々変更を加え得ることは勿論である。   Note that the exhaust purification device of the present invention is not limited to the above-described embodiment, and does not include the second exhaust flow path, but only the configuration of the first exhaust flow path, and exhaust gas purification and Of course, the NOx occlusion reduction catalyst may be regenerated, and various changes can be made without departing from the scope of the present invention.

本発明を実施する形態の一例を示す概略図である。It is the schematic which shows an example of the form which implements this invention. NOx低減率について比較例と比較したグラフである。It is the graph compared with the comparative example about the NOx reduction rate.

符号の説明Explanation of symbols

7 排気ガス
10 NOx吸蔵還元触媒
11 第一の排気流路
12 NOx吸蔵還元触媒
13 第二の排気流路
15 燃料添加ノズル(第一の燃料添加手段)
16 第一の流路調整弁
17 第一の流量センサ
18 第一のλセンサ
19 燃料添加ノズル(第二の燃料添加手段)
20 第二の流路調整弁
21 第二の流量センサ
22 第二のλセンサ
7 Exhaust gas 10 NOx occlusion reduction catalyst 11 First exhaust passage 12 NOx occlusion reduction catalyst 13 Second exhaust passage 15 Fuel addition nozzle (first fuel addition means)
16 First flow path adjustment valve 17 First flow sensor 18 First λ sensor 19 Fuel addition nozzle (second fuel addition means)
20 Second flow regulating valve 21 Second flow sensor 22 Second λ sensor

Claims (5)

排気流路の途中にNOx吸蔵還元触媒を装備し且つ該NOx吸蔵還元触媒の上流側に還元剤として燃料を添加してNOxを還元浄化するように構成した排気浄化装置であって、前記NOx吸蔵還元触媒より上流側の排気流路に設置されて燃料を噴射する燃料添加手段と、該燃料添加手段より上流側の排気流路に設置されて排気流路の開度を調整する流路調整弁と、排気ガスの流量を検出して流路調整弁に制御信号を送る流量センサとを備えたことを特徴とする排気浄化装置。   An exhaust gas purification apparatus equipped with a NOx storage reduction catalyst in the middle of an exhaust passage and configured to reduce and purify NOx by adding fuel as a reducing agent upstream of the NOx storage reduction catalyst, wherein the NOx storage A fuel addition unit that is installed in an exhaust passage upstream of the reduction catalyst and injects fuel, and a passage adjustment valve that is installed in the exhaust passage upstream of the fuel addition unit and adjusts the opening of the exhaust passage And a flow rate sensor for detecting a flow rate of the exhaust gas and sending a control signal to the flow path adjustment valve. 流路調整弁は、エンジン回転数の制御マップにより設定された目標排気ガス流量に、排気流路の排気ガスの流量を合わせるよう、排気流路の開度を調整することを特徴とする請求項1に記載の排気浄化装置。   The flow path adjustment valve adjusts the opening degree of the exhaust flow path so that the flow rate of the exhaust gas in the exhaust flow path matches the target exhaust gas flow rate set by the control map of the engine speed. The exhaust emission control device according to 1. NOx吸蔵還元触媒を装備した排気流路を並列に複数備え、流路調整弁により排気流路を切り換えるよう構成したことを特徴とする請求項1又は2に記載の排気浄化装置。   The exhaust emission control device according to claim 1 or 2, wherein a plurality of exhaust passages equipped with NOx occlusion reduction catalyst are provided in parallel, and the exhaust passage is switched by a passage adjustment valve. NOx吸蔵還元触媒より下流側の排気流路に設置されて排気ガスの空気過剰率を検出するλセンサを備えたことを特徴とする請求項1〜3のいずれかに記載の排気浄化装置。   The exhaust emission control device according to any one of claims 1 to 3, further comprising a λ sensor that is installed in an exhaust passage downstream of the NOx storage reduction catalyst and detects an excess air ratio of exhaust gas. NOx吸蔵還元触媒より下流側の排気流路に設置されて排気ガス中のO2濃度を検出するO2センサを備えたことを特徴とする請求項1〜3のいずれかに記載の排気浄化装置。 An exhaust emission control device as claimed in any one of claims 1 to 3, comprising the O 2 sensor from the NOx storage-reduction catalyst is disposed in an exhaust passage on the downstream side detects the O 2 concentration in the exhaust gas .
JP2005319486A 2005-11-02 2005-11-02 Exhaust emission control device Pending JP2007127020A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005319486A JP2007127020A (en) 2005-11-02 2005-11-02 Exhaust emission control device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005319486A JP2007127020A (en) 2005-11-02 2005-11-02 Exhaust emission control device

Publications (1)

Publication Number Publication Date
JP2007127020A true JP2007127020A (en) 2007-05-24

Family

ID=38149869

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005319486A Pending JP2007127020A (en) 2005-11-02 2005-11-02 Exhaust emission control device

Country Status (1)

Country Link
JP (1) JP2007127020A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009016896A1 (en) * 2007-07-27 2009-02-05 Toyota Jidosha Kabushiki Kaisha Exhaust purification device for internal combustion engine
CN102305118A (en) * 2010-01-14 2012-01-04 通用汽车环球科技运作有限责任公司 System and method for controlling exhaust gas temperature during particulate matter filter regeneration

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002349236A (en) * 2001-05-25 2002-12-04 Hino Motors Ltd Exhaust emission control device for engine
JP2003097256A (en) * 2001-09-21 2003-04-03 Toyota Motor Corp Internal combustion engine
JP2003106142A (en) * 2001-10-01 2003-04-09 Toyota Motor Corp Exhaust emission control device
JP2003293751A (en) * 2002-04-05 2003-10-15 Toyota Motor Corp Device and method for exhaust emission control

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002349236A (en) * 2001-05-25 2002-12-04 Hino Motors Ltd Exhaust emission control device for engine
JP2003097256A (en) * 2001-09-21 2003-04-03 Toyota Motor Corp Internal combustion engine
JP2003106142A (en) * 2001-10-01 2003-04-09 Toyota Motor Corp Exhaust emission control device
JP2003293751A (en) * 2002-04-05 2003-10-15 Toyota Motor Corp Device and method for exhaust emission control

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009016896A1 (en) * 2007-07-27 2009-02-05 Toyota Jidosha Kabushiki Kaisha Exhaust purification device for internal combustion engine
CN102305118A (en) * 2010-01-14 2012-01-04 通用汽车环球科技运作有限责任公司 System and method for controlling exhaust gas temperature during particulate matter filter regeneration

Similar Documents

Publication Publication Date Title
CN101316993B (en) Method of controlling exhaust gas purification system and exhaust gas purification system
JP4972914B2 (en) Exhaust gas purification system regeneration control method and exhaust gas purification system
US20080271438A1 (en) Engine-Driven Vehicle with Exhaust Emission Control
JP2006242020A (en) Exhaust emission control device
JP2007239752A (en) Exhaust emission control device for internal combustion engine
JP2008157188A (en) Emission purifying device
JP2007247652A (en) Exhaust emission control device for internal combustion engine
JP2006320854A (en) Selective reduction type catalyst and exhaust gas purifier of engine for use therein
JP5900728B2 (en) Engine exhaust purification system
JP2004204699A (en) Exhaust gas purifying device
JP2009092015A (en) Exhaust emission control device
JP2013174203A (en) Exhaust emission control device
JP2005090256A (en) Pressure detecting mechanism in exhaust emission control device of internal combustion engine
WO2005078252A1 (en) Engine exhaust emission control system
JP4737143B2 (en) Exhaust gas purification device for internal combustion engine
JP2007127020A (en) Exhaust emission control device
JP2006329020A (en) Exhaust emission control device for engine
JP2007127069A (en) Exhaust emission control device
EP2460996B1 (en) Exhaust emission purifier of internal combustion engine
JP4671834B2 (en) Engine exhaust gas purification device
JP2007021422A (en) Selective reduction catalyst and engine exhaust control system using the same
JP2006200497A (en) Emission control device
JP2010150978A (en) Exhaust emission control device
JP5470808B2 (en) Exhaust gas purification system and exhaust gas purification method
JP2010059806A (en) Exhaust emission control device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20081016

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100816

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100914

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101104

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110216

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110628