JP2007126693A - Aluminum material of hardly eluting impurity and manufacturing method therefor - Google Patents
Aluminum material of hardly eluting impurity and manufacturing method therefor Download PDFInfo
- Publication number
- JP2007126693A JP2007126693A JP2005318955A JP2005318955A JP2007126693A JP 2007126693 A JP2007126693 A JP 2007126693A JP 2005318955 A JP2005318955 A JP 2005318955A JP 2005318955 A JP2005318955 A JP 2005318955A JP 2007126693 A JP2007126693 A JP 2007126693A
- Authority
- JP
- Japan
- Prior art keywords
- aluminum
- aluminum material
- treatment
- film
- coating film
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000012535 impurity Substances 0.000 title claims abstract description 30
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 title claims abstract description 25
- 229910052782 aluminium Inorganic materials 0.000 title claims abstract description 19
- 239000000463 material Substances 0.000 title claims abstract description 17
- 238000004519 manufacturing process Methods 0.000 title claims description 7
- 238000000034 method Methods 0.000 claims abstract description 66
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims abstract description 35
- 238000007789 sealing Methods 0.000 claims abstract description 23
- 238000010828 elution Methods 0.000 claims abstract description 20
- 238000004140 cleaning Methods 0.000 claims abstract description 19
- 239000002904 solvent Substances 0.000 claims abstract description 9
- 239000007769 metal material Substances 0.000 claims abstract description 5
- TWNQGVIAIRXVLR-UHFFFAOYSA-N oxo(oxoalumanyloxy)alumane Chemical compound O=[Al]O[Al]=O TWNQGVIAIRXVLR-UHFFFAOYSA-N 0.000 claims abstract description 4
- WNROFYMDJYEPJX-UHFFFAOYSA-K aluminium hydroxide Chemical compound [OH-].[OH-].[OH-].[Al+3] WNROFYMDJYEPJX-UHFFFAOYSA-K 0.000 claims abstract description 3
- 238000005868 electrolysis reaction Methods 0.000 claims description 20
- 150000003839 salts Chemical class 0.000 claims description 17
- 229910052751 metal Inorganic materials 0.000 claims description 11
- 239000002184 metal Substances 0.000 claims description 11
- 238000012360 testing method Methods 0.000 claims description 11
- 239000007921 spray Substances 0.000 claims description 10
- 238000009835 boiling Methods 0.000 claims description 7
- 238000005260 corrosion Methods 0.000 claims description 7
- 230000007797 corrosion Effects 0.000 claims description 7
- 229910000838 Al alloy Inorganic materials 0.000 claims description 4
- 238000002048 anodisation reaction Methods 0.000 claims description 3
- KRHYYFGTRYWZRS-UHFFFAOYSA-M Fluoride anion Chemical compound [F-] KRHYYFGTRYWZRS-UHFFFAOYSA-M 0.000 claims description 2
- BPQQTUXANYXVAA-UHFFFAOYSA-N Orthosilicate Chemical compound [O-][Si]([O-])([O-])[O-] BPQQTUXANYXVAA-UHFFFAOYSA-N 0.000 claims description 2
- 238000007743 anodising Methods 0.000 claims description 2
- 230000015572 biosynthetic process Effects 0.000 claims description 2
- 239000000203 mixture Substances 0.000 claims description 2
- 150000007524 organic acids Chemical class 0.000 claims description 2
- 150000007522 mineralic acids Chemical class 0.000 claims 1
- 239000011248 coating agent Substances 0.000 abstract description 12
- 238000000576 coating method Methods 0.000 abstract description 12
- 150000002500 ions Chemical class 0.000 abstract description 6
- 239000004065 semiconductor Substances 0.000 abstract description 6
- 230000001678 irradiating effect Effects 0.000 abstract description 2
- 239000011148 porous material Substances 0.000 description 17
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 14
- 238000005406 washing Methods 0.000 description 11
- 238000004506 ultrasonic cleaning Methods 0.000 description 8
- 239000010407 anodic oxide Substances 0.000 description 7
- MUBZPKHOEPUJKR-UHFFFAOYSA-N Oxalic acid Chemical compound OC(=O)C(O)=O MUBZPKHOEPUJKR-UHFFFAOYSA-N 0.000 description 6
- 238000007654 immersion Methods 0.000 description 6
- 239000002253 acid Substances 0.000 description 5
- 239000010410 layer Substances 0.000 description 5
- 238000004040 coloring Methods 0.000 description 3
- 230000000052 comparative effect Effects 0.000 description 3
- -1 silicofluoride Chemical class 0.000 description 3
- NBIIXXVUZAFLBC-UHFFFAOYSA-N Phosphoric acid Chemical compound OP(O)(O)=O NBIIXXVUZAFLBC-UHFFFAOYSA-N 0.000 description 2
- 239000000498 cooling water Substances 0.000 description 2
- 239000013078 crystal Substances 0.000 description 2
- 238000000691 measurement method Methods 0.000 description 2
- 150000002739 metals Chemical class 0.000 description 2
- 235000006408 oxalic acid Nutrition 0.000 description 2
- 238000007781 pre-processing Methods 0.000 description 2
- 238000012545 processing Methods 0.000 description 2
- 238000003672 processing method Methods 0.000 description 2
- 238000002604 ultrasonography Methods 0.000 description 2
- 239000013585 weight reducing agent Substances 0.000 description 2
- 229910018072 Al 2 O 3 Inorganic materials 0.000 description 1
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 1
- 150000001242 acetic acid derivatives Chemical class 0.000 description 1
- MQRWBMAEBQOWAF-UHFFFAOYSA-N acetic acid;nickel Chemical compound [Ni].CC(O)=O.CC(O)=O MQRWBMAEBQOWAF-UHFFFAOYSA-N 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 125000001931 aliphatic group Chemical group 0.000 description 1
- 150000004645 aluminates Chemical class 0.000 description 1
- 229910000147 aluminium phosphate Inorganic materials 0.000 description 1
- 150000001412 amines Chemical class 0.000 description 1
- 230000004888 barrier function Effects 0.000 description 1
- 239000003518 caustics Substances 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 150000001860 citric acid derivatives Chemical class 0.000 description 1
- 239000008199 coating composition Substances 0.000 description 1
- 239000003086 colorant Substances 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 238000011109 contamination Methods 0.000 description 1
- 238000002425 crystallisation Methods 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 238000005238 degreasing Methods 0.000 description 1
- 238000007598 dipping method Methods 0.000 description 1
- 239000012153 distilled water Substances 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000005530 etching Methods 0.000 description 1
- 238000011049 filling Methods 0.000 description 1
- 235000019000 fluorine Nutrition 0.000 description 1
- 150000002222 fluorine compounds Chemical class 0.000 description 1
- 125000001153 fluoro group Chemical group F* 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 150000004677 hydrates Chemical class 0.000 description 1
- 230000036571 hydration Effects 0.000 description 1
- 238000006703 hydration reaction Methods 0.000 description 1
- 150000002484 inorganic compounds Chemical class 0.000 description 1
- 229910010272 inorganic material Inorganic materials 0.000 description 1
- 238000002386 leaching Methods 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 239000003595 mist Substances 0.000 description 1
- 238000012544 monitoring process Methods 0.000 description 1
- 229940078494 nickel acetate Drugs 0.000 description 1
- 150000002894 organic compounds Chemical class 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 238000004806 packaging method and process Methods 0.000 description 1
- 238000012856 packing Methods 0.000 description 1
- 239000000565 sealant Substances 0.000 description 1
- 229910052708 sodium Inorganic materials 0.000 description 1
- 239000011734 sodium Substances 0.000 description 1
- 230000006641 stabilisation Effects 0.000 description 1
- 238000011105 stabilization Methods 0.000 description 1
- 239000010935 stainless steel Substances 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
- 239000002344 surface layer Substances 0.000 description 1
- 150000003892 tartrate salts Chemical class 0.000 description 1
Landscapes
- Cleaning And De-Greasing Of Metallic Materials By Chemical Methods (AREA)
Abstract
Description
本発明は材料中の不純物溶出が影響する環境において使用に適するアルミニウム材料に関する。 The present invention relates to an aluminum material suitable for use in an environment where the elution of impurities in the material affects.
半導体製造装置に於いて実装密度が向上するに連れて、各部品を構成する材料よりの金属及び不純物の発生が問題となってくる。この為に真空装置の内面にはこれら不純物の発生の少ないステンレス製の金属製品が主に用いられてきた。しかし近頃の装置大型化に伴い製品重量の大きさ、製品の移動等のコストアップが必然的に加わるようになり、これを解決する為には軽量化は避けて通れない課題である。 As the mounting density is improved in a semiconductor manufacturing apparatus, the generation of metals and impurities from the material constituting each component becomes a problem. For this reason, stainless steel metal products with little generation of impurities have been mainly used on the inner surface of vacuum devices. However, along with the recent increase in the size of the apparatus, an increase in the weight of the product, the cost of moving the product, etc. are inevitably added, and in order to solve this, weight reduction is an inevitable problem.
ここで軽量化、低コスト、加工性がよい素材としてアルミニウムが注目される。しかし、アルミニウムを使用するに当たり、克服しなければならない課題として、耐食性がある。対耐食性の簡便で信頼性を備えた処理法として陽極酸化皮膜処理法がある。しかしこの方法では工程中よりの不純物混入が発生するために対応策が必要となる。 Here, aluminum attracts attention as a material that is lightweight, low-cost, and has good workability. However, corrosion resistance is a problem that must be overcome when using aluminum. There is an anodic oxide film processing method as a simple and reliable processing method of corrosion resistance. However, this method requires countermeasures because impurities are mixed in during the process.
陽極酸化処理で形成された皮膜は構造的には蜂の巣の構造と良く似ており、素材から表面に向けて蜂の巣状に微小の穴があいており、巣の穴に当たる多孔質層とその壁面、穴の底の蓋(バリヤー層)より成り立っている多孔質皮膜である。多孔質皮膜の役割を大別すると、耐食性に関与する項目は皮膜厚さ、封孔処理と皮膜の組成であり、皮膜よりの不純物発生は封孔処理の成分と皮膜組成より決められることが大きい。 The film formed by the anodization treatment is structurally similar to the honeycomb structure, with a microscopic hole in the form of a honeycomb from the material to the surface, a porous layer that hits the hole of the nest and its wall surface, It is a porous film made up of a lid (barrier layer) at the bottom of the hole. When the role of the porous film is roughly divided, the items related to corrosion resistance are the film thickness, the sealing treatment and the composition of the coating, and the generation of impurities from the coating is largely determined by the component of the sealing treatment and the coating composition. .
ここで封孔処理とは多孔質層の穴が陽極酸化処理のままであると、外部より腐食性の物質が出入りすることによる耐食性低下が発生するのでこれを解決するための処理で、基本的には陽極酸化皮膜(Al2O3)を熱と水分により水和物(Al(OH)3)に変化させることである。この反応により、皮膜に体積膨張が起こり、このことにより多孔質層の微小孔が更に小さくなる。これを水和封孔と言い、現状では沸騰水法、蒸気法が用いられ、その他の方法として金属塩法、常温法等が使用されている。 Here, the sealing treatment is a treatment for solving the problem because the corrosion resistance decreases due to the entry / exit of corrosive substances from the outside if the holes of the porous layer remain anodized. In this method, the anodized film (Al 2 O 3 ) is changed to a hydrate (Al (OH) 3 ) by heat and moisture. This reaction causes volume expansion in the coating, which further reduces the micropores in the porous layer. This is called hydration sealing, and currently the boiling water method and the steam method are used, and the metal salt method, the room temperature method and the like are used as other methods.
皮膜からの不純物溶出を計測する方法は、皮膜から溶媒へのイオンの溶出量を電気伝導度で計測する方法で行われる。例えば、冷却水などに溶解したイオンを監視、除去する方法について、特許文献1に記載がある様に、冷却水の電気伝導度を常時測定し、溶出イオンを除去するユニットを組み合わせたシステムが提案されているが、本来は使用部品からイオンの溶出が無いようにすることが最も望ましいことである。
本発明はアルミニウム材料において、皮膜よりの金属または不純物発生は多孔質層中の残留成分、壁面よりの溶出、または封孔時の金属及び金属塩等の溶出が主たる原因と考えて、これらを限りなく少なくすることを目的とするものである。 In the aluminum material according to the present invention, the generation of metal or impurities from the film is considered to be mainly caused by residual components in the porous layer, elution from the wall surface, or elution of metals and metal salts during sealing. The purpose is to reduce it.
本発明は、表面に不純物溶出量の少ない陽極酸化皮膜を有するアルミニウム金属材料であって、以下に規定する不純物の溶出量が電気伝導度で5μS/cm以下であり、耐食性が皮膜厚さ10μmで塩水噴霧試験360時間、レイティングナンバー(R.N.)9.5以上を有する事を特徴とする、アルミニウム材料及びその製造方法である。ここで規定される不純物の溶出量は、純水への溶出量に比例して電気伝導度が上昇することを利用した計測法であって、測定法はJIS−K2234に定められている金属腐食性試験装置を用い、純水500mlを含むガラス製密閉容器中に、面積18cm2(3cm×3cmの両面)アルミニウム材料試料を入れ、60℃に加熱し、蒸発蒸気は冷却されリフラックスしている状態で360時間連続加熱運転後において溶媒である水について測定した電気伝導度を持って示されるものである。 The present invention is an aluminum metal material having an anodic oxide film with a small amount of impurity elution on the surface, the amount of impurity elution specified below is 5 μS / cm or less in electrical conductivity, and the corrosion resistance is 10 μm. It is an aluminum material characterized by having a salt spray test of 360 hours and a rating number (RN) of 9.5 or more, and a method for producing the same. The amount of impurities stipulated here is a measurement method utilizing the increase in electrical conductivity in proportion to the amount of leaching into pure water, and the measurement method is metal corrosion as defined in JIS-K2234. Using a property test apparatus, an aluminum material sample having an area of 18 cm 2 (both sides of 3 cm × 3 cm) is placed in a glass sealed container containing 500 ml of pure water, heated to 60 ° C., and the evaporated vapor is cooled and refluxed. It is shown with the electrical conductivity measured for the solvent water after 360 hours continuous heating operation in the state.
不純物溶出に用いる溶媒は純度1μS/cm以下の純水であり、通常蒸留水が用いられる。電気伝導度の測定は、横河電気株式会社製の導電導率計SC82で行われる。 The solvent used for impurity elution is pure water having a purity of 1 μS / cm or less, and usually distilled water is used. The electrical conductivity is measured with a conductivity meter SC82 manufactured by Yokogawa Electric Corporation.
不純物防止用皮膜の形成は、アルミニウム金属素材に形成した陽極酸化皮膜を超音波法及び/又は電解法、或いはこれに振動法、浸漬流水法等を組み合わせた洗浄をした後、乾式及び/又は湿式による遠赤外線照射単独での後処理、又は乾式及び/又は湿式による遠赤外照射の前に常温、沸騰水、蒸気もしくは金属塩などの封孔処理を施し、その後に遠赤外線の照射を施すことが好ましい。更に、1種又は2種以上の無機化合物又は有機化合物を用いて封孔処理を行うことも出来る。又ここで言う乾式遠赤外線照射とは大気又は雰囲気中での乾式状態での遠赤外線照射を言い、湿式遠赤外線照射とは被処理材表面が水又は化合物により液状及び/又は霧化状雰囲気における遠赤外線照射を言う。 The film for preventing impurities is formed by cleaning the anodic oxide film formed on the aluminum metal material using an ultrasonic method and / or an electrolytic method, or a combination of this method with a vibration method, a submerged water method, etc., and then dry and / or wet. Apply far-infrared irradiation after treatment, or perform sealing treatment at room temperature, boiling water, steam or metal salt before dry and / or wet far-infrared irradiation, and then perform far-infrared irradiation. Is preferred. Furthermore, the sealing treatment can be performed using one or more inorganic compounds or organic compounds. The dry far-infrared irradiation referred to here means far-infrared irradiation in the dry state in the air or atmosphere, and the wet far-infrared irradiation refers to the surface of the material to be treated in a liquid and / or atomized atmosphere with water or a compound. Far-infrared irradiation.
本発明において陽極酸化皮膜の洗浄は超音波、流水洗浄又は交流による電解洗浄、あるいはこれらの組み合わせで行なわれる。電解洗浄法として逆電法と称される洗浄法を用いても良い。これらの洗浄法を用いると不純物溶出量を本発明で規定する量以下とする事が出来るが、別の洗浄法ではイオン溶出量をこのように減少させることが出来ない。 In the present invention, the anodic oxide film is cleaned by ultrasonic cleaning, flowing water cleaning, AC electrolytic cleaning, or a combination thereof. A cleaning method called a reverse electric method may be used as the electrolytic cleaning method. When these cleaning methods are used, the impurity elution amount can be made to be equal to or less than the amount specified in the present invention, but the ion elution amount cannot be reduced in this way by another cleaning method.
封孔処理の具体的な方法は、陽極酸化皮膜に存在する微細孔の孔内を上記の方法で洗浄をした後に、必要に応じて純水またはアルミニウム系、アルミン酸系、ケイ酸塩系、ケイフッ化物系、フッ化物系、ホウフッ化物系及びフッ素系ケイ酸などの酢酸塩、クエン酸塩、酒石酸塩、アミン系の一つ又は二つ以上を組み合わせた浴中に70℃以上、5〜30分処理し、擬水和物を作り、更に90℃以上の純水中にて擬水和物から水和物化と変化させ、次に乾式及び/又は湿式による遠赤外線照射よる後処理により水和物を1部及び/又は擬結晶させる。このようにして形成した陽極酸化皮膜は不純物の溶出防止用皮膜として作用し、純水中で60±1℃、360時間浸漬運転した時の純水の導電率が5μS/cm/18cm2程度以下となる。 The specific method of sealing treatment is to clean the fine pores present in the anodic oxide film by the above method, and then, if necessary, pure water or aluminum-based, aluminate-based, silicate-based, 70 ° C. or higher, 5-30 in a bath in which one or two or more of acetates, citrates, tartrates, and amines such as silicofluoride, fluoride, borofluoride, and fluorosilicic acid are combined. Pseudo-hydrates are made, and pseudo-hydrates are formed. Further, pseudo-hydrates are changed to hydrates in pure water at 90 ° C. or higher, and then hydrated by post-treatment by dry and / or wet far-infrared irradiation. 1 part and / or pseudocrystal of the product. The anodic oxide film thus formed acts as a film for preventing impurities from elution, and the conductivity of pure water when immersed in pure water at 60 ± 1 ° C. for 360 hours is about 5 μS / cm / 18 cm 2 or less. It becomes.
不純物溶出防止用皮膜を構成する成分は、80%〜99.9%の酸化アルミニウム及び/又は水酸化アルミニウムが主成分であり、残余の0.01〜20%は皮膜補助成分で、これらはケイ酸塩系、ケイフッ化物系、フッ化物系、ホウフッ化物系及びフッ素系から選ばれた一種以上からなるものである。 The components constituting the impurity elution preventing film are 80% to 99.9% aluminum oxide and / or aluminum hydroxide as the main components, and the remaining 0.01 to 20% are film auxiliary components. It is composed of one or more selected from acid salts, silicofluorides, fluorides, borofluorides, and fluorines.
アルミニウム合金の陽極酸化で製造した皮膜は通常無数の微細な孔からなるセル構造をとっており、このセル構造を封孔処理したものが公知の用途に多用されているが、このものからの不純物溶出量は60℃、360時間運転時で20〜30μS/cm/18cm2程度の導電度となり、半導体装置に使用したとき不純物溶出量が大きすぎて悪影響が大きくて実装密度上がってくる将来の製品に対して実用に供することが難しい。 Films produced by anodization of aluminum alloys usually have a cell structure consisting of innumerable fine pores, and this cell structure that has been sealed is often used for known applications. elution amount 60 ° C., 360 hours becomes 20~30μS / cm / 18cm 2 of about conductivity at the time of operation, future products adverse effects is too large impurity elution coming up packing density greater when used in a semiconductor device It is difficult to put it to practical use.
本発明におけるアルミ金属部品表面の陽極酸化皮膜は主に非晶質のアルミニウム酸化物からなっており、これに常温、沸騰水、蒸気もしくは金属塩による封孔の1つ以上と組み合わせた封孔処理を行い、更に乾式及び/又は湿式による遠赤外線照射よる後処理を行う事により非晶質と結晶に近い擬結晶の混合状態に進む。これにより構造的に非晶質よりも安定化する為に、従来公知のアルマイトに比べて不純物の溶出は著しく小さくなる。 The anodized film on the surface of the aluminum metal part in the present invention is mainly composed of an amorphous aluminum oxide, and this is combined with one or more sealing holes at room temperature, boiling water, steam or metal salt. Then, after further treatment by far-infrared irradiation by dry and / or wet, the process proceeds to a mixed state of amorphous and pseudo-crystals close to crystals. As a result, the structure is more stable than amorphous so that the elution of impurities is significantly smaller than that of conventionally known alumite.
陽極酸化処理としては、周知の通り、硫酸、シュウ酸等による単独浴又はこれらの混酸浴、電解発色用の有機酸との複数混合浴がある。一方、複数浴電解法として、硫酸電解後に2次電解を行う電解着色法がある。これらは色調が目的である。しかし今回の目的である電気伝導度に関しては、アルミニウム陽極酸化皮膜の欠点である多孔質構造の空孔部位よりの溶媒への不純物溶出がある為に導電度が上がる。 As well known, the anodic oxidation treatment includes a single bath with sulfuric acid, oxalic acid or the like, a mixed acid bath thereof, or a mixed bath with an organic acid for electrolytic coloring. On the other hand, as a multiple bath electrolysis method, there is an electrolytic coloring method in which secondary electrolysis is performed after sulfuric acid electrolysis. These are colors. However, with regard to the electrical conductivity, which is the object of this time, the conductivity increases due to the elution of impurities into the solvent from the pores of the porous structure, which is a drawback of the aluminum anodized film.
本発明では不純物防止の為に、空孔内の不純物の効率的な除去方法、及び空孔の容積の減少、皮膜の安定化が必須となる。不純物除去法としては各種の洗浄法が公知であり、空孔容積の減少には既知の封孔法、擬結晶化法又は、ポアー・フィーリング法がある。一般的な封孔法では表層部位の皮膜が水和物となり、表面が体積膨張する為に入口(表面側)の孔径が小さくなり中の孔径の大きさに殆ど変化は来たさないで、むしろ多孔質空孔内部の洗浄に支障を来たす傾向にある。また入口(表面側)の孔径が小さいために、空孔内部の不純物が長時間溶媒に溶出する傾向にあるので不向きである。ポアー・フィーリング法では確かに空孔内が詰められるが、溶媒に浸漬すると、不純物の溶出がある。 In the present invention, in order to prevent impurities, it is essential to efficiently remove impurities in the pores, reduce the volume of the pores, and stabilize the coating. Various cleaning methods are known as impurity removal methods, and there are known sealing methods, pseudo-crystallization methods, and pore feeling methods for reducing the pore volume. In a general sealing method, the surface layer film becomes a hydrate, and the surface expands in volume, so the diameter of the inlet (surface side) becomes smaller and the size of the inner diameter is almost unchanged. Rather, it tends to hinder the cleaning of the porous pores. In addition, since the pore diameter at the entrance (surface side) is small, impurities inside the pores tend to elute into the solvent for a long time, which is not suitable. In the pore feeling method, the pores are certainly filled, but when immersed in a solvent, impurities are eluted.
これらの点から解決手段として本発明は、皮膜を生成工程、洗浄工程、空孔を詰める工程、封じる工程、安定工程と分けて組み立てた。特に皮膜生成工程においては、多孔質空孔の洗浄に留意して、電解浴の孔径による電解順位を定め、同一皮膜厚さでも、多孔質空孔内部を洗浄し易い様に電解浴による孔径の違いを鑑み、皮膜成長に伴う複数電解法を特徴としている。そして本発明での洗浄法は超音波又は逆電法、交流法による電解洗浄を必要としている。又封孔方法としては、空孔の容積を減少させる為に、電解着色法とポアー・フィーリング法並びに溶媒に溶出しにくい封孔法と遠赤外線照射法との組み合わせにより成り立っている。これらの複数電解法、洗浄法、複数封孔法及び後処理の組み合わせにより、導電度が目的の数値に達成する。 From these points, the present invention was assembled as a solving means by dividing the film into a production process, a cleaning process, a process of filling holes, a process of sealing, and a stabilization process. In particular, in the film formation process, paying attention to the cleaning of the porous pores, the order of electrolysis according to the pore size of the electrolytic bath is determined, and even with the same coating thickness, the pore size of the electrolytic bath can be easily cleaned. In view of the difference, it features a multiple electrolysis method with film growth. The cleaning method according to the present invention requires electrolytic cleaning by an ultrasonic method, a reverse electric method, or an alternating current method. Further, the sealing method includes a combination of an electrolytic coloring method, a pore feeling method, a sealing method that hardly dissolves in a solvent, and a far-infrared irradiation method in order to reduce the pore volume. The combination of the multiple electrolysis method, the cleaning method, the multiple sealing method and the post-treatment achieves the conductivity to the target value.
陽極酸化処理の好ましい方法として複数浴陽極酸化皮膜処理法があるが、これは硫酸法又は、リン酸法の無機系電解法、カルボキシル基又は、スルホン基の官能基を同一又は、複合的に2つ以上有する脂肪族又は芳香族の有機化合物を含んだ有機系電解法、無機系電解浴と有機系電解浴の組み合わせた混酸系電解法の1つ又は2つ以上の電解法を連続的に組み合わせる多種類多段電解浴法を用いて行う製造法である。 As a preferred method of anodizing treatment, there is a multi-bath anodic oxide film treatment method, which is a sulfuric acid method or an inorganic electrolytic method of a phosphoric acid method. Continuously combining one or two or more electrolysis methods of an organic electrolysis method including an aliphatic or aromatic organic compound having two or more, a mixed acid electrolysis method combining an inorganic electrolysis bath and an organic electrolysis bath This is a production method using a multi-type multi-stage electrolytic bath method.
本発明の金属材料は半導体装置等のコンタミを特に嫌う分野の部品として用いると、従来のアルマイト製品では達成不能な皮膜であったが、不純物の溶出を防止できる皮膜が出来た事により更なる半導体の実装密度向上も、この点からの問題の解決に寄与できる可能性が出て来た。 The metal material of the present invention was a film that could not be achieved with conventional alumite products when used as a part in a field where contamination is particularly afflicted with semiconductor devices, etc. There is a possibility that the improvement of the packaging density can contribute to the solution of the problem from this point.
次に、本発明の実施例を説明する。 Next, examples of the present invention will be described.
アルミニウム合金(A6061、片側面積25cm2)を脱脂、エッチング、脱スマット後、第一電解;硫酸浴(遊離硫酸濃度130g/L、溶存アルミニウム濃度5g/L、浴温21℃、電圧14V、)で30分処理後、超音波にて5分洗浄後、電解洗浄(交流12V,ケイフッ化ソーダ7g/L,20℃、10分)、更に超音波にて5分洗浄後沸騰水仮封孔(80℃、5分)、蒸気封孔(0.5MPa、15分)を行い、NGKキルンテック(株)社製インフラスタインBヒーター使用のバッチ形遠赤外炉で遠赤外線を30分照射し乾燥した。皮膜厚さは10±1μm、塩水噴霧試験360時間でR.N.9.8以上あった。純度1μS/cmの純水500ml中に60℃、360時間浸漬後横河電機(株)製の導電率計SC82にて計測したところ、3.4μS/cm/18cm2であった。 After degreasing, etching, desmutting of aluminum alloy (A6061, 25 cm 2 on one side), first electrolysis; sulfuric acid bath (free sulfuric acid concentration 130 g / L, dissolved aluminum concentration 5 g / L, bath temperature 21 ° C., voltage 14 V,) After treatment for 30 minutes, washing with ultrasound for 5 minutes, electrolytic washing (AC 12V, sodium silicofluoride 7 g / L, 20 ° C., 10 minutes), further washing with ultrasound for 5 minutes, and boiling water temporary sealing (80 C., 5 minutes), steam sealing (0.5 MPa, 15 minutes) was performed, and drying was performed by irradiating far infrared rays for 30 minutes in a batch type far infrared furnace using an Infrastein B heater manufactured by NGK Kiln Tech Co., Ltd. The film thickness was 10 ± 1 μm, and the salt spray test was performed for 360 hours. N. It was 9.8 or more. When immersed in 500 ml of pure water having a purity of 1 μS / cm at 60 ° C. for 360 hours and measured with a conductivity meter SC82 manufactured by Yokogawa Electric Corporation, it was 3.4 μS / cm / 18 cm 2 .
実施例1と同様の被処理物及び前処理及び電解条件で処理を行い、洗浄を流水浸漬法で行った後、更に超音波洗浄を10分行い沸騰水仮封孔後、実施例1と同じ遠赤外線炉で表面に蒸気ミスト中にて15分遠赤外線を照射し、再度超音波洗浄を10分行った。皮膜厚さは10±1μm、塩水噴霧試験360時間R.N.9.8以上で、純水中に60℃、360時間浸漬後横河電機(株)製導電率計SC82にて計測したところ、3.6μS/cm/18cm2であった。 The same treatment as in Example 1 was performed under the same pretreatment and electrolysis conditions, and after washing was performed by a flowing water immersion method, ultrasonic cleaning was further performed for 10 minutes, and after boiling water was temporarily sealed, the same as in Example 1 In the far-infrared furnace, the surface was irradiated with far-infrared rays in a vapor mist for 15 minutes, and then subjected to ultrasonic cleaning again for 10 minutes. The film thickness is 10 ± 1 μm, salt spray test 360 hours R.D. N. It was 3.6 μS / cm / 18 cm 2 when measured with a conductivity meter SC82 manufactured by Yokogawa Electric Corporation after immersing in pure water at 60 ° C. for 360 hours at 9.8 or higher.
実施例1と同様の被処理物及び前処理及び電解条件で処理を行い、洗浄を流水浸漬法で行った後、更に超音波洗浄を10分行い、次に乾式の遠赤外線照射による封孔を15分行い、更に超音波洗浄を10分行った。皮膜厚さは10±1μm、塩水噴霧試験360時間でR.N.は9.8以上であった。純水中に60℃、360時間浸漬後横河電機(株)導電率計SC82にて計測したところ、3.8μS/cm/18cm2であった。 The same treatment as in Example 1 and the pretreatment and electrolysis conditions were performed, and after washing was performed by flowing water immersion, ultrasonic washing was further performed for 10 minutes, and then sealing by dry far infrared irradiation was performed. It was performed for 15 minutes, and further ultrasonic cleaning was performed for 10 minutes. The film thickness was 10 ± 1 μm, and the salt spray test was performed for 360 hours. N. Was 9.8 or more. When immersed in pure water at 60 ° C. for 360 hours and measured with a conductivity meter SC82 by Yokogawa Electric Corporation, it was 3.8 μS / cm / 18 cm 2 .
実施例1と同様の被処理物及び前処理及び電解条件で処理を行い、洗浄を流水浸漬法で行った後、電解洗浄(交流13V,硫酸0.05モル/L,20℃、10分)を行い、更に超音波洗浄を10分、大気中での遠赤外線照射を30分、更に超音波洗浄を10分行った。皮膜厚さは10±1μm、塩水噴霧試験360時間でR.N.は9.8以上であった。純水中に60℃、360時間浸漬後横河電機(株)導電率計SC82にて計測したところ、3.5μS/cm/18cm2であった。 The same treatment as in Example 1 was performed under the same pretreatment and electrolysis conditions, and after washing was performed by a flowing water immersion method, electrolytic washing (AC 13 V, sulfuric acid 0.05 mol / L, 20 ° C., 10 minutes) Further, ultrasonic cleaning was performed for 10 minutes, far-infrared irradiation in the atmosphere was performed for 30 minutes, and ultrasonic cleaning was further performed for 10 minutes. The film thickness was 10 ± 1 μm, and the salt spray test was performed for 360 hours. N. Was 9.8 or more. When immersed in pure water at 60 ° C. for 360 hours and measured with a conductivity meter SC82 by Yokogawa Electric Corporation, it was 3.5 μS / cm / 18 cm 2 .
実施例1と同様の被処理物及び前処理及び電解条件で処理を行い、洗浄を流水浸漬法で行った後、常温封孔(エコノシール2S;エバテック社製、10g/L,28℃、10分)を行い、超音波洗浄を10分、大気中での遠赤外線照射を30分、超音波洗浄を10分行った。皮膜厚さは10±1μm、塩水噴霧試験360時間でR.N.は9.8以上であった。純水中に60℃、360時間浸漬後横河電機(株)導電率計SC82にて計測したところ、3.7μS/cm/18cm2であった。 The same treatment as in Example 1 was performed under the same pretreatment and electrolysis conditions, and washing was performed by a flowing water immersion method, followed by room temperature sealing (Econo Seal 2S; manufactured by Evatech, 10 g / L, 28 ° C., 10 ° C. Minute), ultrasonic cleaning was performed for 10 minutes, far-infrared irradiation in the atmosphere was performed for 30 minutes, and ultrasonic cleaning was performed for 10 minutes. The film thickness was 10 ± 1 μm, and the salt spray test was performed for 360 hours. N. Was 9.8 or more. 60 ° C. in pure water, was measured at 360 hours after dipping Yokogawa Electric Corporation conductivity meter SC82, was 3.7μS / cm / 18cm 2.
(比較例1)実施例1と同様の被処理物及び前処理及び電解条件で処理を行い、洗浄を流水浸漬法で行った後、沸騰水封孔を行った所、皮膜厚さは10±1μm、塩水噴霧試験360時間R.N.9.8以上あっが、純水中に60℃、360時間浸漬後横河電機(株)導電率計SC82にて計測したところ、8.1μS/cm/18cm2であった。 (Comparative example 1) After processing with the to-be-processed object and pre-processing and electrolysis conditions similar to Example 1, and performing washing | cleaning by a flowing water immersion method, the place where boiling water sealing was performed, the film thickness is 10 +/-. 1 μm, salt spray test 360 hours R.D. N. Although it was 9.8 or more, it was 8.1 μS / cm / 18 cm 2 when measured with a conductivity meter SC82 by Yokogawa Electric Corporation after being immersed in pure water at 60 ° C. for 360 hours.
(比較例2)実施例1と同様の被処理物及び前処理及び電解条件で処理を行い、洗浄を流水浸漬法で行った後、封孔処理を金属塩としてフーコー07(古河電工社製;酢酸ニッケル系封孔剤、7g/L、93℃、15分)を用いて行った。皮膜厚さは10±1μm、塩水噴霧試験360時間R.N.9.8以上あった。純水中に60℃、360時間浸漬後横河電機(株)導電率計SC82にて計測したところ、10.4μS/cm/18cm2であった。 (Comparative example 2) After processing with the to-be-processed object and pre-processing and electrolysis conditions similar to Example 1, and washing | cleaning by a flowing water immersion method, Foucault 07 (made by Furukawa Electric; Nickel acetate sealant, 7 g / L, 93 ° C., 15 minutes). The film thickness is 10 ± 1 μm, salt spray test 360 hours R.D. N. It was 9.8 or more. After being immersed in pure water at 60 ° C. for 360 hours, measured with a conductivity meter SC82 by Yokogawa Electric Corporation, it was 10.4 μS / cm / 18 cm 2 .
(比較例3)実施例1と同様の被処理物を用い、同様の前処理をした後、電解浴として混酸浴(遊離硫酸120g/L、遊離シュウ酸10g/L溶存アルミニウム4g/L)を用い、浴温5℃、直流電流密度1.2A/dm2、30分電解処理し、流水振動法にて10分水洗後封孔なしにて低温乾燥した。皮膜厚さは10±1μm、塩水噴霧試験360時間R.N.9.8以上あった。純水中に60℃、360時間浸漬後横河電機(株)導電率計SC82にて計測したところ、13.3μS/cm/18cm2であった。 (Comparative Example 3) Using the same treatment as in Example 1, and performing the same pretreatment, a mixed acid bath (free sulfuric acid 120 g / L, free oxalic acid 10 g / L dissolved aluminum 4 g / L) was used as an electrolytic bath. The sample was subjected to electrolytic treatment at a bath temperature of 5 ° C. and a direct current density of 1.2 A / dm 2 for 30 minutes, washed with running water for 10 minutes and then dried at low temperature without sealing. The film thickness is 10 ± 1 μm, salt spray test 360 hours R.D. N. It was 9.8 or more. When immersed in pure water at 60 ° C. for 360 hours and measured with a conductivity meter SC82 by Yokogawa Electric Corporation, it was 13.3 μS / cm / 18 cm 2 .
本発明のアルミニウム製品は軽量化を必要とする半導体装置または皮膜中の不純物溶出を嫌う部位または部品等に使用される。
The aluminum product of the present invention is used in a semiconductor device that requires weight reduction or a part or component that dislikes impurity elution in a film.
Claims (4)
4. The method for producing an aluminum material according to claim 3, wherein the anodizing treatment is performed by a direct current method or a pulse method film formation, and the cleaning method is performed by a multiple electrolysis method comprising two or more stages combining a reverse electric method and an alternating current method.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005318955A JP4936101B2 (en) | 2005-11-02 | 2005-11-02 | Low impurity elution aluminum material and method for producing the same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005318955A JP4936101B2 (en) | 2005-11-02 | 2005-11-02 | Low impurity elution aluminum material and method for producing the same |
Publications (3)
Publication Number | Publication Date |
---|---|
JP2007126693A true JP2007126693A (en) | 2007-05-24 |
JP2007126693A5 JP2007126693A5 (en) | 2009-03-19 |
JP4936101B2 JP4936101B2 (en) | 2012-05-23 |
Family
ID=38149576
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2005318955A Active JP4936101B2 (en) | 2005-11-02 | 2005-11-02 | Low impurity elution aluminum material and method for producing the same |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4936101B2 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR102625963B1 (en) * | 2021-11-23 | 2024-01-17 | 주식회사 대한세라믹스 | Manufacturing method of spherical aluminium oxide powder |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003073853A (en) * | 2001-08-28 | 2003-03-12 | Mitsubishi Alum Co Ltd | Surface treated aluminum material superior in corrosion resistance, and manufacturing method therefor |
JP2003160897A (en) * | 2001-11-22 | 2003-06-06 | Nihon Kagaku Sangyo Co Ltd | Method for sealing anodic oxide film of aluminum or aluminum alloy |
JP2005036315A (en) * | 2003-06-19 | 2005-02-10 | Toyo Roki Mfg Co Ltd | Method of forming oxide film on aluminum or aluminum alloy |
JP2005262466A (en) * | 2004-03-16 | 2005-09-29 | Fuji Photo Film Co Ltd | Manufacturing method of aluminum support for lithographic printing form |
-
2005
- 2005-11-02 JP JP2005318955A patent/JP4936101B2/en active Active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003073853A (en) * | 2001-08-28 | 2003-03-12 | Mitsubishi Alum Co Ltd | Surface treated aluminum material superior in corrosion resistance, and manufacturing method therefor |
JP2003160897A (en) * | 2001-11-22 | 2003-06-06 | Nihon Kagaku Sangyo Co Ltd | Method for sealing anodic oxide film of aluminum or aluminum alloy |
JP2005036315A (en) * | 2003-06-19 | 2005-02-10 | Toyo Roki Mfg Co Ltd | Method of forming oxide film on aluminum or aluminum alloy |
JP2005262466A (en) * | 2004-03-16 | 2005-09-29 | Fuji Photo Film Co Ltd | Manufacturing method of aluminum support for lithographic printing form |
Also Published As
Publication number | Publication date |
---|---|
JP4936101B2 (en) | 2012-05-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR100213397B1 (en) | A method of forming a corrosion resistant protective coating on aluminum substrate | |
TWI248991B (en) | Aluminum alloy member superior in corrosion resistance and plasma resistance | |
JP2912101B2 (en) | A method for producing a modified oxide ceramics layer on a metal forming an isolation layer, if necessary, and an object to be produced therefrom | |
US5039388A (en) | Plasma forming electrode and method of using the same | |
KR100216659B1 (en) | Corrosion resistant protective coating on aluminum substrate | |
KR20030010509A (en) | Al alloy member having excellent corrosion resistance | |
JP2006513322A (en) | Color finishing method | |
TW432763B (en) | Excimer laser generator provided with a laser chamber with a fluoride passivated inner surface | |
JP5078013B2 (en) | Metal member having metal oxide film and method for producing the same | |
JP5995144B2 (en) | Aluminum member repair method, repair solution, aluminum material and method for manufacturing the same | |
JP2006348368A (en) | Method for surface treating aluminum and aluminum alloy | |
JP4936101B2 (en) | Low impurity elution aluminum material and method for producing the same | |
JP5284740B2 (en) | Method for forming anodized film and aluminum alloy member using the same | |
KR20180087457A (en) | Corrosion-resistant coatings for semiconductor process equipment | |
JP2005105300A (en) | Surface treatment method of aluminum or aluminum alloy used for vacuum device and its components, and vacuum device and its components | |
JP2004538375A (en) | Magnesium anodizing system and method | |
US5462634A (en) | Surface-treated aluminum material and method for its surface treatment | |
JPH09184094A (en) | Surface treated aluminum material and its production | |
KR100489640B1 (en) | Electrolyte solution for anodizing and corrosion-resisting coating method of magnesium alloy using the same | |
JP4994668B2 (en) | Hydration method of anodized film of Al or Al alloy | |
JP3705898B2 (en) | Surface-treated aluminum components for vacuum equipment and manufacturing method thereof | |
KR20130121064A (en) | Metaloxide/coating compositions of alumium heat exchanger for home appliance, heat exchanger comprising the said compositions | |
JP2011252192A (en) | Method for treating aluminum anodized film and heat exchanging device | |
JP2003003296A (en) | Surface treated aluminum material and aluminum formed body | |
JP4744099B2 (en) | Surface treatment method of aluminum material for inner wall of vacuum vessel |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20081027 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20081226 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20090417 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20110510 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20110706 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20110823 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20111102 |
|
A911 | Transfer to examiner for re-examination before appeal (zenchi) |
Free format text: JAPANESE INTERMEDIATE CODE: A911 Effective date: 20111206 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20120110 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20120209 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20180302 Year of fee payment: 6 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 Ref document number: 4936101 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |