JP2007126450A - Method for synthesizing etbe by microwave - Google Patents

Method for synthesizing etbe by microwave Download PDF

Info

Publication number
JP2007126450A
JP2007126450A JP2006272189A JP2006272189A JP2007126450A JP 2007126450 A JP2007126450 A JP 2007126450A JP 2006272189 A JP2006272189 A JP 2006272189A JP 2006272189 A JP2006272189 A JP 2006272189A JP 2007126450 A JP2007126450 A JP 2007126450A
Authority
JP
Japan
Prior art keywords
etbe
reaction
synthesizing
microwave
catalyst
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006272189A
Other languages
Japanese (ja)
Inventor
Koichi Ito
鉱一 伊藤
Harumi Okabe
治美 岡部
Yoko Umeda
陽子 梅田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Electric Power Company Holdings Inc
Original Assignee
Tokyo Electric Power Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Electric Power Co Inc filed Critical Tokyo Electric Power Co Inc
Priority to JP2006272189A priority Critical patent/JP2007126450A/en
Publication of JP2007126450A publication Critical patent/JP2007126450A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for synthesizing ETBE, capable of synthesizing ETBE in a short time, easily and at a low cost without requiring excess energy. <P>SOLUTION: The method for synthesizing ethyl tertiary butyl ether (ETBE) from a mixture consisting of ethanol and tertiary-butyl alcohol comprises synthesizing ETBE in the presence of a catalyst such as a strong acid ion exchange resin by heating with microwave irradiation. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、燃料もしくは燃料用添加剤として有用なエチルターシャリーブチルエーテル(以下「ETBE」と略す。)の合成方法に関する。   The present invention relates to a method for synthesizing ethyl tertiary butyl ether (hereinafter abbreviated as “ETBE”) useful as a fuel or fuel additive.

ETBEはガソリン代替燃料として欧米(特に欧州)で使用されている物質であり、特にバイオマス原料を用いて合成したものは地球温暖化対策のバイオマス燃料として注目され、国内でも導入が検討されている。ETBEは、(1)メチルターシャリーブチルエーテル(以下、「MTBE」と略す。)と同様、オクタン価向上効果があり、(2)MTBEに比較すると毒性が低い(MTBEはハイオクガソリンに添加されていたが、毒性の問題から2004年以降、添加中止となっている。)、(3)エタノールに比べてガソリンへの影響(蒸気圧の上昇や水分混入によるエンジン腐食、NOx増加)が少ない、(4)エタノール添加ガソリンと同等の発熱量で比較した場合、若干のコスト高となる、などの特徴がある。フランスやスペインでは、ETBEをガソリンに15%程度添加して使用している。   ETBE is a substance used in Europe and the United States (especially Europe) as an alternative fuel for gasoline, and especially synthesized using biomass raw materials is attracting attention as a biomass fuel for combating global warming, and its introduction is also being studied in Japan. ETBE, like (1) methyl tertiary butyl ether (hereinafter abbreviated as “MTBE”), has an effect of improving octane number, and (2) is less toxic than MTBE (MTBE was added to high-octane gasoline) Due to toxicity problems, the addition has been discontinued since 2004.) (3) Compared with ethanol, there is less impact on gasoline (elevated steam pressure, engine corrosion due to moisture mixing, NOx increase), (4) When compared with the calorific value equivalent to ethanol-added gasoline, there are features such as a slight increase in cost. In France and Spain, about 15% of ETBE is added to gasoline.

従来ETBEは、t−ブチルアルコールとエタノールを、触媒とする強酸性イオン交換樹脂を充填した反応蒸留塔で反応させることにより、製造している。   Conventionally, ETBE is produced by reacting t-butyl alcohol and ethanol in a reactive distillation column packed with a strong acidic ion exchange resin as a catalyst.

Figure 2007126450
Figure 2007126450

また、同時にt−ブチルアルコールの分解反応によりイソブテンが生成するため、イソブテンリッチガスを使用して、下記の反応によりETBEを製造できる。   At the same time, isobutene is produced by the decomposition reaction of t-butyl alcohol, so that ETBE can be produced by the following reaction using isobutene-rich gas.

Figure 2007126450
Figure 2007126450

特許文献1、2には、固体触媒の反応ステージを備えた反応装置を用いて、イソブチレンをエタノール及び水と化学量論的に加圧下で液相反応させて、ETBEとともにt−ブチルアルコールを合成する方法が提案されている。
特開2005−162669号公報 WO2005/044767号公報
In Patent Documents 1 and 2, using a reactor equipped with a solid catalyst reaction stage, isobutylene is subjected to a liquid phase reaction with ethanol and water under stoichiometric pressure to synthesize t-butyl alcohol together with ETBE. A method has been proposed.
JP 2005-162669 A WO2005 / 044767

しかし、ETBEの合成方法においては、反応容器を外部加熱するため余分なエネルギーを必要とし、また、加熱にむらがあるため副反応が起こりやすく、ETBEの収率を下げていた。このため、製造コストが高くなるという問題があった。一方、反応時間の短縮化には、マイクロ波照射が有効であることは知られているが、ETBEの合成にマイクロ波を使用した例はない。   However, in the method for synthesizing ETBE, extra energy is required to heat the reaction vessel to the outside, and side reactions are likely to occur due to uneven heating, reducing the yield of ETBE. For this reason, there existed a problem that manufacturing cost became high. On the other hand, it is known that microwave irradiation is effective for shortening the reaction time, but there is no example of using microwave for the synthesis of ETBE.

本発明は、このような現状に鑑みてなされたものであり、余分なエネルギーを必要とせず、短時間に簡易かつ低コストにETBEを合成できるETBEの合成方法を提供することを目的とする。   The present invention has been made in view of such a situation, and an object of the present invention is to provide a method for synthesizing ETBE that can synthesize ETBE easily and at low cost in a short time without requiring extra energy.

前記課題を解決するため、本発明者らは鋭意検討した結果、マイクロ波照射により外部加熱よりも短時間でETBEを合成でき、また副反応生成物を低く抑えられることを見出し、本発明に到達した。   In order to solve the above-mentioned problems, the present inventors have intensively studied and found that ETBE can be synthesized in a shorter time than external heating by microwave irradiation, and that side reaction products can be suppressed to a low level. did.

すなわち、本発明は以下のとおりである。
1)エタノールとターシャリーブチルアルコールとを含有する混合物からETBEを合成する方法であって、触媒の存在下、マイクロ波照射により加熱することを特徴とするETBEの合成方法、
2)触媒が強酸性イオン交換樹脂である前記1)に記載のETBEの合成方法、
3)反応温度が40〜100℃である前記1)又は2)に記載のETBEの合成方法。
That is, the present invention is as follows.
1) A method for synthesizing ETBE from a mixture containing ethanol and tertiary butyl alcohol, which comprises heating by microwave irradiation in the presence of a catalyst,
2) The method for synthesizing ETBE according to 1) above, wherein the catalyst is a strongly acidic ion exchange resin,
3) The method for synthesizing ETBE according to 1) or 2) above, wherein the reaction temperature is 40 to 100 ° C.

本発明によれば、余分なエネルギーを必要としないため所要エネルギーが少なく、簡易にしかも短時間にETBEを合成することができ、また、副反応生成物を低く抑えることができる。よって、低価格のETBEの提供が可能になる。   According to the present invention, since no extra energy is required, less energy is required, ETBE can be synthesized easily and in a short time, and side reaction products can be kept low. Therefore, it is possible to provide low-cost ETBE.

本発明に係るETBEの合成方法は、エタノールとターシャリーブチルアルコールとを含有する混合物からETBEを合成する方法であって、触媒の存在下、マイクロ波照射により加熱することを特徴とする。   The method for synthesizing ETBE according to the present invention is a method for synthesizing ETBE from a mixture containing ethanol and tertiary butyl alcohol, characterized by heating by microwave irradiation in the presence of a catalyst.

本発明における前記エタノールとt−ブチルアルコールの割合は、エタノール1モルに対して、t−ブチルアルコール0.2〜20モル、好ましくは0.5〜10モルである。t−ブチルアルコールが0.2モル未満であると、ジエチルエーテルの副生が多くなる。一方、20モルを超えると、t−ブチルアルコールがコストに占める割合が高くなり、ETBEの製造コストが高くなるからである。   The ratio of the said ethanol and t-butyl alcohol in this invention is 0.2-20 mol, Preferably it is 0.5-10 mol with respect to 1 mol of ethanol. When t-butyl alcohol is less than 0.2 mol, a by-product of diethyl ether increases. On the other hand, when the amount exceeds 20 mol, the proportion of t-butyl alcohol in the cost increases and the production cost of ETBE increases.

前記混合物には、エタノールとt−ブチルアルコールのほかに、モレキュラーシーブ、無水硫酸ナトリウム、無水硫酸カルシウム、酸無水物などの脱水剤や、ベンゼン、シクロヘキサンなどの溶媒が添加されていてもよい。   In addition to ethanol and t-butyl alcohol, a dehydrating agent such as molecular sieve, anhydrous sodium sulfate, anhydrous calcium sulfate, and acid anhydride, and a solvent such as benzene and cyclohexane may be added to the mixture.

前記混合物をマイクロ波照射により加熱してETBEを合成する場合、触媒存在下で反応させるが、触媒としてはカチオン交換樹脂、硫酸などの強酸性触媒が好ましい。これらの触媒のなかでも、強酸性イオン交換樹脂は触媒回収が容易である点より好ましく、強酸性触媒として使用可能である触媒用の強酸性イオン交換樹脂を使用することができる。好ましい強酸性イオン交換樹脂としては、例えば、イオン交換基がスルフォン酸基(SOH)等の強酸基が導入された多孔質タイプ(MR形)のスチレン系樹脂、触媒・非水溶液陽イオン交換樹脂として「アンバーリスト(Amberlyst)15JWET」(登録商標)の商品名で、ローム・アンド・ハース(Roam and Hass)社から製造・販売されているものなどを挙げることができる。 When the mixture is heated by microwave irradiation to synthesize ETBE, the reaction is carried out in the presence of a catalyst. The catalyst is preferably a strongly acidic catalyst such as a cation exchange resin or sulfuric acid. Among these catalysts, strong acid ion exchange resins are preferred from the viewpoint of easy catalyst recovery, and strong acid ion exchange resins for catalysts that can be used as strong acid catalysts can be used. Preferred strong acidic ion exchange resins include, for example, porous type (MR type) styrene resins in which strong acid groups such as sulfonic acid groups (SO 3 H) are introduced as ion exchange groups, and catalyst / non-aqueous cation exchange. Examples of the resin include those manufactured and sold by Roam and Hass under the trade name “Amberlyst 15JWET” (registered trademark).

触媒使用量は、エタノール1モルに対して、1〜20g、好ましくは3〜9gである。触媒量が1g未満であると、反応が完結しなくなる。一方、20gを超えても触媒効果は頭打ちとなり、コスト高となるからである。   The amount of catalyst used is 1 to 20 g, preferably 3 to 9 g, per 1 mol of ethanol. If the amount of catalyst is less than 1 g, the reaction will not be completed. On the other hand, even if it exceeds 20 g, the catalytic effect reaches its peak and the cost increases.

本発明のETBEの合成方法の好ましい一実施形態では、前記の特定の量比で、エタノールとt−ブチルアルコールを混合し、これらに必要に応じて上記した脱水剤や溶媒などを配合して液体混合物を調製し、得られた混合物を、触媒存在下で、マイクロ波照射により加熱する。   In a preferred embodiment of the method for synthesizing ETBE of the present invention, ethanol and t-butyl alcohol are mixed at the specific amount ratio described above, and the above-described dehydrating agent and solvent are blended as necessary. A mixture is prepared and the resulting mixture is heated by microwave irradiation in the presence of a catalyst.

照射するマイクロ波の出力や周波数、照射方法は、特に限定されるものではなく、反応温度が所定の範囲に保持できるよう電気的に制御すればよい。出力が低すぎる場合はETBE転化率が低くなり、一方、出力が高すぎる場合はマイクロ波の利用率が悪くなったり、生成物や反応物の蒸発が起こり、効率が悪くなる。マイクロ波の周波数は、通常、1GHz〜300GHzである。1GHz未満又は300GHzを超える周波数範囲では、反応促進効果が不十分となる。   The output, frequency, and irradiation method of the microwave to be irradiated are not particularly limited, and may be electrically controlled so that the reaction temperature can be maintained within a predetermined range. When the output is too low, the ETBE conversion rate is low. On the other hand, when the output is too high, the utilization rate of the microwave is deteriorated, and evaporation of products and reactants occurs, resulting in poor efficiency. The frequency of the microwave is usually 1 GHz to 300 GHz. In the frequency range below 1 GHz or above 300 GHz, the reaction promoting effect is insufficient.

マイクロ波の照射は連続照射、間欠照射のいずれの方法であってもよい。照射時間及び照射停止時間は、ETBEの生成状況に応じて適宜に決定することができる。   Microwave irradiation may be either continuous irradiation or intermittent irradiation. The irradiation time and the irradiation stop time can be appropriately determined according to the generation state of ETBE.

マイクロ波発振器としては、マグネトロン等のマイクロ波発振器や、固体素子を用いたマイクロ波発振器等を適宜用いることができる   As the microwave oscillator, a microwave oscillator such as a magnetron, a microwave oscillator using a solid element, or the like can be used as appropriate.

ETBE合成反応における反応温度は、40〜100℃である。反応は前記の温度範囲内であれば逐次進行するが、前記混合物の還流条件下で実施するのが、ETBE転化率を高められる点より好ましい。反応圧力は、常圧で行うことができるが、これに限定されない。   The reaction temperature in the ETBE synthesis reaction is 40 to 100 ° C. Although the reaction proceeds successively within the above temperature range, it is preferable to carry out the reaction under reflux conditions of the mixture from the viewpoint of increasing the ETBE conversion rate. The reaction pressure can be performed at normal pressure, but is not limited thereto.

反応時間は特に限定されないが、通常、0.5〜10時間程度、好ましくは0.5〜4時間程度反応させるのが良い。   Although reaction time is not specifically limited, Usually, it is good to make it react about 0.5 to 10 hours, Preferably about 0.5 to 4 hours.

以下、本発明の実施例について図面を参照して説明するが、本発明は以下の実施例にのみ限定されるものではない。   Hereinafter, examples of the present invention will be described with reference to the drawings. However, the present invention is not limited to the following examples.

(実施例1)
図1に示したマイクロ波照射装置(1)内に設置された、300mL容のガラス製三つ口フラスコに、エタノール1モル、ターシャリーブチルアルコール1モル、強酸性触媒として、「アンバーリスト(Amberlyst)15JWET」8gを入れた。上記の混合液を、スターラーで攪拌しながら、2.45GHzのマイクロ波を照射して混合液の温度を70℃まで昇温させた後、マイクロ波制御装置(2)を用いて、PID制御により反応温度を70℃に保持しながらマイクロ波を2時間連続照射し、ETBEの合成反応を行った。なお、三口フラスコの中央口には凝縮器(3)を取り付け、ブラインで冷却しながら、開放系で実験を行った。
Example 1
In a 300 mL glass three-necked flask installed in the microwave irradiation apparatus (1) shown in FIG. 1, 1 mol of ethanol, 1 mol of tertiary butyl alcohol and “Amberlyst (Amberlyst) ) 15JWET "8g. While stirring the above-mentioned mixed liquid with a stirrer, the microwave of 2.45 GHz was irradiated to raise the temperature of the mixed liquid to 70 ° C., and then the microwave control device (2) was used to perform PID control. While maintaining the reaction temperature at 70 ° C., microwaves were continuously irradiated for 2 hours to carry out an ETBE synthesis reaction. In addition, the condenser (3) was attached to the center neck of the three-neck flask, and the experiment was conducted in an open system while cooling with brine.

反応後の液体を、島津製作所製ガスクロマトグラフィーGC−2010AF/AOCで分析し、同定・定量した。ETBEに換算したときの転化率を、下記式により求めた。   The liquid after the reaction was analyzed and identified / quantified by gas chromatography GC-2010AF / AOC manufactured by Shimadzu Corporation. The conversion rate when converted to ETBE was determined by the following formula.

転化率(%)=〔ETBE合成量(mol)/初期エタノール量(mol)〕×100   Conversion rate (%) = [ETBE synthesis amount (mol) / initial ethanol amount (mol)] × 100

(実施例2)
マイクロ波を3時間連続照射した以外は、実施例1と同様な方法によりETBEの合成反応を行った。
(Example 2)
An ETBE synthesis reaction was carried out in the same manner as in Example 1 except that microwave irradiation was continued for 3 hours.

(実施例3)
マイクロ波を4時間連続照射した以外は、実施例1と同様な方法によりETBEの合成反応を行った。
(Example 3)
An ETBE synthesis reaction was carried out in the same manner as in Example 1 except that microwave irradiation was continued for 4 hours.

(実施例4〜5)
マイクロ波を0.5時間、1時間連続照射した以外は、実施例1と同様な方法によりETBEの合成反応を行った。
(Examples 4 to 5)
An ETBE synthesis reaction was carried out in the same manner as in Example 1 except that microwave irradiation was continued for 0.5 hour and 1 hour.

(比較例1)
加熱手段をマイクロ波照射ではなく70℃の温浴を用い、2時間反応させた以外は、実施例1と同様な方法によりETBEの合成反応を行った。なお。三口フラスコの中央口には凝縮器(3)を取り付け、ブラインで冷却しながら、開放系で実験を行った
(Comparative Example 1)
A synthetic reaction of ETBE was carried out in the same manner as in Example 1 except that the heating means was not microwave irradiation but a 70 ° C. warm bath was used and the reaction was performed for 2 hours. Note that. A condenser (3) was attached to the center neck of the three-neck flask, and the experiment was conducted in an open system while cooling with brine.

(比較例2)
加熱手段をマイクロ波照射ではなく70℃の温浴を用い、3時間反応させた以外は、実施例1と同様な方法によりETBEの合成反応を行った。
(Comparative Example 2)
A synthetic reaction of ETBE was carried out by the same method as in Example 1 except that the heating means was not microwave irradiation but a 70 ° C. warm bath was used and the reaction was performed for 3 hours.

(比較例3)
加熱手段をマイクロ波照射ではなく70℃の温浴を用い、4時間反応させた以外は、実施例1と同様な方法によりETBEの合成反応を行った。
(Comparative Example 3)
A synthetic reaction of ETBE was carried out in the same manner as in Example 1 except that the heating means was not microwave irradiation but a 70 ° C. warm bath was used and the reaction was performed for 4 hours.

(比較例4〜5)
加熱手段をマイクロ波照射ではなく70℃の温浴を用い、0.5時間、1時間反応させた以外は、実施例1と同様な方法によりETBEの合成反応を行った。
(Comparative Examples 4-5)
An ETBE synthesis reaction was carried out in the same manner as in Example 1 except that the heating means was not microwave irradiation but a 70 ° C. warm bath was used and the reaction was carried out for 0.5 hour and 1 hour.

実施例及び比較例の結果を表1にまとめて示す。   The results of Examples and Comparative Examples are summarized in Table 1.

Figure 2007126450
Figure 2007126450

表1の結果から、マイクロ波照射した方が、温浴加熱に比べて短時間でETBEを合成できることがわかった。   From the results shown in Table 1, it was found that microwave irradiation could synthesize ETBE in a shorter time than warm bath heating.

また、図2は、マイクロ波加熱(触媒あり、なし)した場合と、温浴加熱した場合における、混合物の温度上昇曲線を示している。図2から、マイクロ波と温浴の温度上昇傾向に差はほとんどなかった。また、マイクロ波の触媒の有無でも差がほとんどなく、触媒そのものは加熱していないものと思われた。   FIG. 2 shows the temperature rise curves of the mixture when microwave heating (with or without catalyst) and when heated in a warm bath. From FIG. 2, there was almost no difference in the temperature rising tendency of the microwave and the warm bath. Moreover, there was almost no difference in the presence or absence of the microwave catalyst, and the catalyst itself was not heated.

(実施例6)
CEM社製マイクロ波フォーカスドDiscover Bench Mate合成システムに設置された、100mL容のガラス製三口フラスコに、エタノール0.5モル、ターシャリーブチルアルコール0.5モル、強酸性触媒「アンバーリスト(Amberlyst)15JWET」4gを入れた。その後の試験・分析手順は実施例1と同一とし、マイクロ波による加熱試験を行った。反応時間は2時間とした。
(Example 6)
In a 100 mL glass three-necked flask installed in the microwave focused Discover Bench Mate synthesis system manufactured by CEM, 0.5 mol of ethanol, 0.5 mol of tertiary butyl alcohol, a strongly acidic catalyst “Amberlyst” 4 g of “15 JWET” was added. Subsequent test and analysis procedures were the same as in Example 1, and a microwave heating test was performed. The reaction time was 2 hours.

(実施例7)
実施例6と同様な手順でマイクロ波による加熱試験を行った。ただし、試験装置のキャビティに冷却空気を噴射し、反応部を周囲から冷却しながらマイクロ波で加熱した。実施例6と同じく反応温度は70℃、反応時間は2時間とした。
(Example 7)
A microwave heating test was performed in the same procedure as in Example 6. However, cooling air was injected into the cavity of the test apparatus, and the reaction part was heated with microwaves while cooling from the surroundings. As in Example 6, the reaction temperature was 70 ° C., and the reaction time was 2 hours.

(比較例6)
100mL容のがラス製三口フラスコに、エタノール0.5モル、ターシャリーブチルアルコール0.5モル、強酸性触媒「アンバーリスト(Amberlyst)15JWET」4gを入れ、温浴による試験を行った。実施例6と同じく反応温度は70℃、反応時間は2時間とした。
(Comparative Example 6)
A 100 mL volume flask made of Las was charged with 0.5 mol of ethanol, 0.5 mol of tertiary butyl alcohol, and 4 g of a strongly acidic catalyst “Amberlyst 15 JWET”, and a test using a warm bath was conducted. As in Example 6, the reaction temperature was 70 ° C., and the reaction time was 2 hours.

実施例6、7及び比較例6の結果を表2に示す。表2の結果から、反応温度は同じ70℃でも、冷却しながらマイクロ波を多く当てた方が、ETBEを多く合成できることが分かった。また、マイクロ波方式の方が温浴に比べ200倍程度省エネルギーであることがわかった。   The results of Examples 6 and 7 and Comparative Example 6 are shown in Table 2. From the results of Table 2, it was found that even when the reaction temperature was the same 70 ° C., more ETBE could be synthesized by applying more microwaves while cooling. Further, it was found that the microwave method is about 200 times more energy saving than the warm bath.

Figure 2007126450
Figure 2007126450

本発明の合成方法で得られるETBEは、低価格の含酸素燃料として単独で、または自動車ガソリンやディーゼルエンジン燃料の添加剤として使用することができる。   ETBE obtained by the synthesis method of the present invention can be used alone as an inexpensive oxygen-containing fuel or as an additive for automobile gasoline or diesel engine fuel.

本実施例1〜5の合成方法を説明する概略図である。It is the schematic explaining the synthesis | combining method of the present Examples 1-5. マイクロ波加熱と温浴加熱における温度上昇曲線を示す図である。It is a figure which shows the temperature rise curve in microwave heating and warm bath heating.

符号の説明Explanation of symbols

1 マイクロ波照射装置
2 マイクロ波制御装置
3 凝縮器
1 Microwave irradiation device 2 Microwave control device 3 Condenser

Claims (3)

エタノールとターシャリーブチルアルコールとを含有する混合物からエチルターシャリーブチルエーテル(以下「ETBE」と略す。)を合成する方法であって、触媒の存在下、マイクロ波照射により加熱することを特徴とするETBEの合成方法。 A method of synthesizing ethyl tertiary butyl ether (hereinafter abbreviated as “ETBE”) from a mixture containing ethanol and tertiary butyl alcohol, characterized by heating by microwave irradiation in the presence of a catalyst. Synthesis method. 触媒が強酸性イオン交換樹脂である請求項1に記載のETBEの合成方法。 The method for synthesizing ETBE according to claim 1, wherein the catalyst is a strongly acidic ion exchange resin. 反応温度が40〜100℃である請求項1又は2に記載のETBEの合成方法。 The method for synthesizing ETBE according to claim 1 or 2, wherein the reaction temperature is 40 to 100 ° C.
JP2006272189A 2005-10-04 2006-10-03 Method for synthesizing etbe by microwave Pending JP2007126450A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006272189A JP2007126450A (en) 2005-10-04 2006-10-03 Method for synthesizing etbe by microwave

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005291495 2005-10-04
JP2006272189A JP2007126450A (en) 2005-10-04 2006-10-03 Method for synthesizing etbe by microwave

Publications (1)

Publication Number Publication Date
JP2007126450A true JP2007126450A (en) 2007-05-24

Family

ID=38149396

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006272189A Pending JP2007126450A (en) 2005-10-04 2006-10-03 Method for synthesizing etbe by microwave

Country Status (1)

Country Link
JP (1) JP2007126450A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011016747A (en) * 2009-07-08 2011-01-27 National Institute Of Advanced Industrial Science & Technology Method for producing hydroxy aromatic derivative
CN115872843A (en) * 2022-10-24 2023-03-31 南通瑞合达医药科技有限公司 Novel synthesis process of ethyl tert-butyl ether

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07330667A (en) * 1994-06-10 1995-12-19 Koichi Shinozaki Production of esters by heating with microwave
US5527970A (en) * 1995-02-02 1996-06-18 Texaco Chemical Inc. Synthesis of ethyl t-butyl ether from t-butanol in one step using acid catalysts
JPH1036294A (en) * 1996-07-25 1998-02-10 Agency Of Ind Science & Technol Production of acid amide or acid imide or ester compound
JP2002532239A (en) * 1998-12-17 2002-10-02 パーソナル ケミストリー イ ウプサラ アーベー Microwave device and method for performing a chemical reaction
WO2004002617A1 (en) * 2002-06-26 2004-01-08 Cem Corporation Reaction and temperature control for high power microwave-assisted chemistry techniques
JP2004307435A (en) * 2003-04-10 2004-11-04 Nihon Gas Kk Method for preparing dimethyl ether and apparatus for carrying out synthetic reaction of dimethyl ether
JP2005162669A (en) * 2003-12-02 2005-06-23 Suzuki Takahiro Method of synthesizing etbe
JP2006225275A (en) * 2005-02-15 2006-08-31 Tokyo Electric Power Co Inc:The Method for synthesizing dimethyl ether
JP2007277179A (en) * 2006-04-07 2007-10-25 Tokyo Electric Power Co Inc:The Method for synthesizing dimethyl ether using microwave

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07330667A (en) * 1994-06-10 1995-12-19 Koichi Shinozaki Production of esters by heating with microwave
US5527970A (en) * 1995-02-02 1996-06-18 Texaco Chemical Inc. Synthesis of ethyl t-butyl ether from t-butanol in one step using acid catalysts
JPH1036294A (en) * 1996-07-25 1998-02-10 Agency Of Ind Science & Technol Production of acid amide or acid imide or ester compound
JP2002532239A (en) * 1998-12-17 2002-10-02 パーソナル ケミストリー イ ウプサラ アーベー Microwave device and method for performing a chemical reaction
WO2004002617A1 (en) * 2002-06-26 2004-01-08 Cem Corporation Reaction and temperature control for high power microwave-assisted chemistry techniques
JP2004307435A (en) * 2003-04-10 2004-11-04 Nihon Gas Kk Method for preparing dimethyl ether and apparatus for carrying out synthetic reaction of dimethyl ether
JP2005162669A (en) * 2003-12-02 2005-06-23 Suzuki Takahiro Method of synthesizing etbe
JP2006225275A (en) * 2005-02-15 2006-08-31 Tokyo Electric Power Co Inc:The Method for synthesizing dimethyl ether
JP2007277179A (en) * 2006-04-07 2007-10-25 Tokyo Electric Power Co Inc:The Method for synthesizing dimethyl ether using microwave

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011016747A (en) * 2009-07-08 2011-01-27 National Institute Of Advanced Industrial Science & Technology Method for producing hydroxy aromatic derivative
CN115872843A (en) * 2022-10-24 2023-03-31 南通瑞合达医药科技有限公司 Novel synthesis process of ethyl tert-butyl ether

Similar Documents

Publication Publication Date Title
Teng et al. A review on the performance of glycerol carbonate production via catalytic transesterification: Effects of influencing parameters
Cintas et al. Glycerol: a solvent and a building block of choice for microwave and ultrasound irradiation procedures
Peng et al. Facile and efficient conversion of furfuryl alcohol into n-butyl levulinate catalyzed by extremely low acid concentration
Wang et al. Microwave-assisted transesterification of glycerol with dimethyl carbonate over sodium silicate catalyst in the sealed reaction system
Okoye et al. A review on recent trends in reactor systems and azeotrope separation strategies for catalytic conversion of biodiesel-derived glycerol
CN103394372B (en) Heteropoly ionic liquid catalyst with Br*nsted-Lewis dual acidity
CN106495105B (en) A method of synthesis nanometer selenium material
CN113788793B (en) Sulfonic acid functionalized imidazole ionic liquid catalyst and preparation method and application thereof
CN101850244B (en) Preparation method of Al2O3-SiO3 solid acid catalyst in nuclear shell structure
Chen et al. A donor–acceptor complex enables the synthesis of E-olefins from alcohols, amines and carboxylic acids
Bartoli et al. Reaction of dicarbonates with carboxylic acids catalyzed by weak Lewis acids: general method for the synthesis of anhydrides and esters
CA2919220C (en) Method for catalytic conversion of ketoacids and hydrotreatment to hydrocarbons
Desai et al. Synthesis of energy rich fuel additive from biomass derived levulinic acid and furfuryl alcohol using novel tin-exchanged heteropoly acid supported on titania nanotubes as catalyst
EP3250541A1 (en) Methods for preparing glycerol tert-butyl ethers
Yang et al. NaZSM-5-catalyzed dimethyl carbonate synthesis via the transesterification of ethylene carbonate with methanol
JP2007126450A (en) Method for synthesizing etbe by microwave
Bernal et al. AQUIVION® perfluorosulfonic acid resin for butyl levulinate production from furfuryl alcohol
Kumar et al. Synthesis of an oxygenated fuel additive from a waste biomass derived aldehyde using a green catalyst: an experimental and DFT study
TWI267505B (en) Method for the catalytic conversion of alkylene carbonate with Mg, Al mixed (hydr)oxide catalyst and its use therefore
Zhang et al. Low-temperature production of 5-hydroxymethylfurfural from fructose using choline chloride–ethylene glycol–maleic acid ternary deep eutectic solvents
Zainol et al. Ethyl Levulinate synthesis from Levulinic acid and Furfuryl alcohol by Using modified carbon Cryogels
Umrigar et al. Optimization of process parameters for oleic acid esterification using microwave reactor: Catalytic activity, product distribution and reactor energy model
Sert et al. Application of green catalysts for the esterification of benzoic acid with different alcohols
Gao et al. Enhanced conversion of furfuryl alcohol to alkyl levulinates catalyzed by synergy of CrCl 3 and H 3 PO 4
Chen et al. Novel route for the synthesis of methyl propionate from 3-pentanone with dimethyl carbonate over solid bases

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090901

A977 Report on retrieval

Effective date: 20120307

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120313

A521 Written amendment

Effective date: 20120417

Free format text: JAPANESE INTERMEDIATE CODE: A523

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120523

A02 Decision of refusal

Effective date: 20121002

Free format text: JAPANESE INTERMEDIATE CODE: A02