JP2007125370A - カテゴリー型インデクスからの画像のデータベースの作成のためのシステム、方法及び装置 - Google Patents

カテゴリー型インデクスからの画像のデータベースの作成のためのシステム、方法及び装置 Download PDF

Info

Publication number
JP2007125370A
JP2007125370A JP2006262033A JP2006262033A JP2007125370A JP 2007125370 A JP2007125370 A JP 2007125370A JP 2006262033 A JP2006262033 A JP 2006262033A JP 2006262033 A JP2006262033 A JP 2006262033A JP 2007125370 A JP2007125370 A JP 2007125370A
Authority
JP
Japan
Prior art keywords
image
deviation
anatomical
severity
database
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006262033A
Other languages
English (en)
Other versions
JP5142009B2 (ja
Inventor
Blumenfeld Janet
ジャネット・ブルーメンフェルド
Gopal B Avinash
ゴパル・ビー・アヴィナッシュ
William J Bridge
ウィリアム・ジョセフ・ブリッジ
Saad Ahmed Sirohey
サード・アーメッド・シロヘイ
Satoshi Minoshima
サトシ・ミノシマ
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
University of Washington
General Electric Co
Original Assignee
University of Washington
General Electric Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by University of Washington, General Electric Co filed Critical University of Washington
Publication of JP2007125370A publication Critical patent/JP2007125370A/ja
Application granted granted Critical
Publication of JP5142009B2 publication Critical patent/JP5142009B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/0002Inspection of images, e.g. flaw detection
    • G06T7/0012Biomedical image inspection
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V30/00Character recognition; Recognising digital ink; Document-oriented image-based pattern recognition
    • G06V30/10Character recognition
    • G06V30/24Character recognition characterised by the processing or recognition method
    • G06V30/242Division of the character sequences into groups prior to recognition; Selection of dictionaries
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16HHEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
    • G16H30/00ICT specially adapted for the handling or processing of medical images
    • G16H30/20ICT specially adapted for the handling or processing of medical images for handling medical images, e.g. DICOM, HL7 or PACS
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/56Details of data transmission or power supply
    • A61B8/565Details of data transmission or power supply involving data transmission via a network
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/30Subject of image; Context of image processing
    • G06T2207/30004Biomedical image processing
    • G06T2207/30016Brain
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V2201/00Indexing scheme relating to image or video recognition or understanding
    • G06V2201/03Recognition of patterns in medical or anatomical images

Landscapes

  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Radiology & Medical Imaging (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Health & Medical Sciences (AREA)
  • Medical Informatics (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Quality & Reliability (AREA)
  • Multimedia (AREA)
  • Epidemiology (AREA)
  • Primary Health Care (AREA)
  • Public Health (AREA)
  • Measuring And Recording Apparatus For Diagnosis (AREA)
  • Ultra Sonic Daignosis Equipment (AREA)
  • Medical Treatment And Welfare Office Work (AREA)
  • Apparatus For Radiation Diagnosis (AREA)
  • Magnetic Resonance Imaging Apparatus (AREA)
  • Nuclear Medicine (AREA)

Abstract

【課題】医用解剖学的画像から、より一貫性があり、統一された形式を有し、信頼性の高い医学的状態及び疾患の診断を提供する。
【解決手段】本システム100は正常画像データベース102を含んでいる。正常画像データベース102は無疾患の解剖学的構造の画像を含んでいる。正常な解剖学的画像を標準化して解剖学的特徴を抽出する構成要素104と、抽出された解剖学的特徴画像を平均するもう一つの構成要素106とによって生成される。抽出された解剖学的特徴の画像(1又は複数)と正常画像データベース102内の画像との間の比較を行なう構成要素110を含んでいる。比較は静的比較作業フロー112を生ずる。比較は、特定の解剖学的特徴に特異的なZスコアのデータベース114を生ずる。比較は、縦断的比較作業フロー116を生ずる。縦断方向は時間方向としても知られる。縦断的比較は、一定の時間区間にわたって画像を比較する。
【選択図】図1

Description

本発明は一般的には、医療診断に関し、さらに具体的には、患者の画像からの医学的状態の診断に関する。
医学的状態又は疾患の一形態に神経変性障害(NDD)がある。NDDは早期段階で検出することが困難であり、また様々な患者群にわたる比較のために標準化された態様で定量化することも困難である。研究者は、正常患者群からの統計的偏差を決定する方法を開発している。
これら初期の方法は、2種の形式の標準化すなわち解剖学的標準化及び強度標準化を用いて患者画像を変換することを含んでいる。解剖学的標準化は、患者の座標系から標準化された参照座標系へ画像を変換する。強度標準化は、参照画像に対して等価な強度を有するように患者の画像を調節することを含んでいる。得られた変換画像は、参照データベースと比較される。データベースは、年齢及びトレーサに特異的な参照データを含んでいる。得られる解析の殆どは、点毎又は部位毎の統計的偏差の形態を取っており、典型的にはZスコアとして図示される。幾つかの実施形態では、トレーサは核医学撮像に用いられる放射性トレーサである。
NDDの検出の重要な要素は、年齢及びトレーサ別の正常データベースの開発である。これらの正常体に対する比較は、標準化された領域、例えばTalairach領域又はモントリオール神経科学病院方式(MNI)領域においてのみ行なわれ得る。MNIは、正常な対照体に対する磁気共鳴撮像(MRI)走査の大規模な系列を用いることにより標準脳を定義している。Talairach領域は、解剖されてTalairach及びTournoux図譜(アトラス)として写真撮影された脳を参照する。Talairach領域及びMNI領域のいずれにおいても、位置合わせ手法を用いてデータをこの標準的な領域に対して写像しなければならない。上述の方法の変形を用いた現行の方法としては、トレーサNeuroQ(商標)、統計的パラメータ・マッチング(SPM)、3D定位表面投影(3D−SSP)等がある。
一旦、比較が行なわれたら、解剖学的構造の統計的偏差を表わす画像を表示し、可能性としてはこの後に、画像に関して疾患の診断を行なう。この診断は極めて専門化された業務であって、高度に熟練した医用画像の専門家によってのみ行なわれ得る。これらの専門家でも、疾患の重症度についての主観的な判定を下し得るに留まる。このため、診断は一貫性を欠き標準化されていないものとなりがちである。診断は、科学と言うよりも芸術の領分に入りがちである。
上に述べた理由及び本明細書を精読して理解すると当業者には明らかになるような以下に述べるその他の理由で、医用解剖学的画像から、より一貫性があり、統一された形式を有し、信頼性の高い医学的状態及び疾患の診断を提供することが当技術分野で必要とされている。
ここでは以上に述べた欠点、短所及び問題を取り扱い、これらについては以下の明細書を精読して検討することにより理解されよう。
一観点では、医療診断画像の規範カテゴリー型インデクスを作成する方法が、少なくとも一つの解剖学的部位の画像データにアクセスするステップであって、この解剖学的画像データは撮像の時刻での解剖学的部位における少なくとも1種のトレーサに関する機能的情報の指示と一致している、アクセスするステップと、人間の規準に基づいて解剖学的画像データ及び規範標準化解剖学的画像データから偏差データを決定するステップと、少なくとも一つの解剖学的部位の各々について偏差データを提示するステップと、少なくとも一つの解剖学的部位の各々について或る重症度にカテゴリー分けされている期待画像偏差を提示するステップと、重症度インデクスの選択の指示を受け取るステップと、ルール・ベース型工程に関して複数の重症度インデクスから結合重症度スコアを生成するステップと、を含んでいる。
もう一つの観点では、医療診断画像の規範カテゴリー型インデクスについて人間を訓練する方法が、少なくとも一つの解剖学的部位の画像データにアクセスするステップであって、この解剖学的画像データは撮像の時刻での解剖学的部位における少なくとも1種のトレーサに関する機能的情報の指示と一致している、アクセスするステップと、解剖学的画像データ及び規範標準化解剖学的画像データから偏差データを決定するステップと、少なくとも一つの解剖学的部位の各々について偏差データを提示するステップと、少なくとも一つの解剖学的部位の各々について或る重症度にカテゴリー分けされている専門家判定による画像偏差を提示するステップと、表示画像と専門家判定による画像偏差との視覚的類似性に基づいて重症度インデクスの選択の指示を選択することについて人間を誘導するステップと、を含んでいる。
さらにもう一つの観点では、疾患状態の変化を識別する方法が、解剖学的特徴の少なくとも二つの縦断的画像データにアクセスするステップであって、この縦断的解剖学的画像データは撮像の時刻での解剖学的特徴における少なくとも1種のトレーサに関する機能的情報の指示と一致している、アクセスするステップと、人間の規準に基づいて縦断的解剖学的画像データの各々及び規範標準化解剖学的画像データから偏差データを提示するステップと、解剖学的特徴について偏差データを提示するステップと、解剖学的特徴の各々について或る重症度にカテゴリー分けされている期待画像偏差を提示するステップと、各々の縦断的データ集合について重症度インデクスの選択の指示を受け取るステップと、ルール・ベース型工程に関してこれら複数の重症度インデクスから結合重症度変化スコアを生成するステップと、を含んでいる。
さらに他の観点では、疾患状態の変化を識別する方法が、解剖学的特徴の縦断的画像データにアクセスするステップと、解剖学的縦断的画像データを、撮像の時刻での解剖学的特徴における少なくとも1種のトレーサに関して規範標準化解剖学的画像データと比較するステップと、解剖学的特徴の各々について偏差データを提示するステップと、解剖学的特徴の各々について或る重症度にカテゴリー分けされている期待画像偏差を提示するステップと、解剖学的特徴の縦断的画像データの各々について重症度インデクスの選択の指示を受け取るステップであって、この解剖学的縦断的画像データは撮像の時刻での解剖学的特徴における少なくとも1種のトレーサに関する機能的情報の指示と一致している、受け取るステップと、ルール・ベース型工程に関してこれら複数の重症度インデクスから結合重症度変化スコアを生成するステップと、結合重症度変化スコアを提示するステップと、を含んでいる。
さらにもう一つの観点では、診断医用画像の例示的な知識ベースを生成する方法が、少なくとも一つの解剖学的特徴の画像偏差データにアクセスするステップと、カテゴリー型重症度を画像偏差データの各々に割り当てるステップと、画像偏差データ及び画像偏差データの各々に対するカテゴリー型重症度のデータベースを生成するステップと、を含んでいる。
様々な範囲のシステム、クライアント、サーバ、方法及びコンピュータ読み取り可能な媒体について本書で記載する。本節の概要に記載した観点及び利点に加えて、さらに他の観点及び利点は、図面を参照して以下の詳細な説明を精読することにより明らかとなろう。
以下の詳細な説明では、本書の一部を成し、実施可能な特定の実施形態を例示のために示す添付図面を参照する。これらの実施形態は、当業者がこれらの実施形態を実施することを可能にするのに十分な詳細にわたって記載されており、各実施形態の範囲から逸脱せずに他の実施形態を用いてもよいし、また論理的変形、機械的変形、電気的変形及び他の変形を施してもよいことを理解されたい。従って、以下の詳細な説明は限定の意味で解釈されるべきでない。
以下の詳細な説明は五つの節に分かれている。第一節では、システム・レベルの全体像について説明する。第二節では、方法の実施形態について説明する。第三節では、実施形態を実施し得る場合に共に用いられるハードウェア及び動作環境について説明する。第四節では、実施形態の装置について説明する。最後に、第五節では、詳細な説明の結論を掲げる。
〔システム・レベルの全体像〕
図1は、正常患者群からの統計的偏差を決定するシステムの全体像のブロック図である。システム100は、医用解剖学的画像から、より一貫性があり、統一された形式を有し、信頼性の高い医学的状態及び疾患の診断を提供する当技術分野での必要性を解決する。
システム100は正常画像データベース102を含んでいる。正常画像データベース102は無疾患の解剖学的構造の画像を含んでいる。正常画像データベース102は、有疾患の解剖学的構造の画像を識別する支援をするための比較用の基準線を与える。比較の基準線は、医用解剖学的画像から、より一貫性があり、統一された形式を有し、信頼性の高い医学的状態及び疾患の診断を提供する。
幾つかの実施形態では、正常画像データベース102は、正常な解剖学的画像を標準化して解剖学的特徴を抽出する構成要素104と、抽出された解剖学的特徴画像を平均するもう一つの構成要素106とによって生成される。平均された解剖学的特徴画像は、正常な解剖学的特徴と看做されるのに十分なだけ典型的な無疾患の解剖学的特徴の範囲内に収まる。後に図11及び図12で正常画像データベース102を生成する実例を示す。
システム100はまた、一患者の解剖学的画像を標準化して標準化された患者画像の解剖学的特徴を抽出する構成要素108を含んでいる。抽出された解剖学的特徴の画像(1又は複数)及び正常画像データベース102内の画像は、比較を可能にする形式で符号化される。
システム100はまた、抽出された解剖学的特徴の画像(1又は複数)と正常画像データベース102内の画像との間の比較を行なう構成要素110を含んでいる。幾つかの実施形態では、ピクセル毎の比較を行なう。幾つかの実施形態では、比較は静的比較作業フロー112を生ずる。静的比較作業フローの一実施形態は図3に示される。幾つかの実施形態では、比較は、特定の解剖学的特徴に特異的なZスコアのデータベース114を生ずる。幾つかの実施形態では、比較は、縦断的比較作業フロー116を生ずる。縦断方向は時間方向としても知られる。縦断的比較は、一定の時間区間にわたって画像を比較する。後の図15の装置1500が関連する一実施形態を記述している。
幾つかの実施形態は、図14のコンピュータ1402のようなコンピュータでの多重処理多重スレッド型動作環境で動作する。システム100は如何なる特定の正常画像データベース102、正常な解剖学的画像を標準化して解剖学的特徴を抽出する構成要素104、抽出された解剖学的特徴画像を平均する構成要素106、一患者の解剖学的画像を標準化して標準化された患者画像の解剖学的特徴を抽出する構成要素108、抽出された解剖学的特徴の画像(1又は複数)と正常画像データベース内の画像との間の比較を行なう構成要素110、静的比較作業フロー112、特定の解剖学的特徴に特異的なZスコアのデータベース114、及び縦断的比較作業フロー116にも限定されないが、分かり易くするために、単純化された正常画像データベース102、正常な解剖学的画像を標準化して解剖学的特徴を抽出する構成要素104、抽出された解剖学的特徴画像を平均する構成要素106、一患者の解剖学的画像を標準化して標準化された患者画像の解剖学的特徴を抽出する構成要素108、抽出された解剖学的特徴の画像(1又は複数)と正常画像データベース内の画像との間の比較を行なう構成要素110、静的比較作業フロー112、特定の解剖学的特徴に特異的なZスコアのデータベース114、及び縦断的比較作業フロー116について説明する。
〔方法の実施形態〕
前節では、一実施形態の動作のシステム・レベルの全体像について説明した。本節では、一連の流れ図を参照しながらかかる実施形態の特定の方法について説明する。流れ図を参照しながらこれらの方法を記述することにより、当業者は、コンピュータ読み取り可能な媒体からの命令を実行する適当なコンピュータでこれらの方法を実行するためのかかる命令を含めて、かかるプログラム、ファームウェア又はハードウェアを開発することが可能になる。同様に、サーバ側のコンピュータ・プログラム、ファームウェア、又はハードウェアによって実行されるこれらの方法もまた、コンピュータで実行可能な命令で構成される。方法200〜1300は、図14のコンピュータ1402のようなコンピュータで走行するプログラムによって実行されるか、又はかかるコンピュータの一部であるファームウェア若しくはハードウェアによって実行される。
図2は、正常患者群からの統計的偏差を決定する方法200の流れ図である。方法200は、正常な解剖学的画像を標準化して解剖学的特徴を抽出するステップ202を含んでいる。幾つかの実施形態では、標準化するステップは、Talairach領域又はモントリオール神経科学病院方式(MNI)領域のような定義済み図譜/座標系に対して正常解剖学的画像を写像するステップを含んでいる。方法200はまた、抽出された解剖学的特徴画像を平均して正常な無疾患の解剖学的特徴のデータベースを生ずるステップ204を含んでいる。
方法200は、一患者の解剖学的画像を標準化して、標準化された患者画像から解剖学的特徴を抽出するステップ206を含んでいる。方法200はまた、抽出された患者解剖学的特徴の画像(1又は複数)と正常画像データベース内の画像とを比較するステップ208を含んでいる。
方法200はまた、静的比較作業フローを生成するステップ210、特定の解剖学的特徴に特異的なZスコアのデータベース114を生成するステップ212、及び縦断的比較作業フローを生成するステップ214を含んでいる。縦断方向は時間方向としても知られる。縦断的比較は、一定の時間区間にわたって画像を比較する。
方法200の幾つかの実施形態では、特定の解剖学的特徴に特異的なZスコアのデータベース114を生成するステップ212の後に、方法200はさらに、解剖学的構造に特異的なZインデクスのデータベースにおいて特定のトレーサに関連する脳のような1又は複数の特定の解剖学的特徴の1又は複数の画像にアクセスするステップ、検索された脳画像データを同じトレーサに関連する規範標準化脳画像データ102と比較して、1又は複数の重症度スコアを生ずるステップ、そして重症度スコアに関連してZスコアデータベース114を更新するステップ、また選択随意で重症度Zスコアを編集し、高精度化し、且つ/又は更新するステップ、並びに例示的な画像及びZスコアデータベース114からの関連する重症度スコアを提示するステップを含んでいる。
図3は、読影者を重症度インデクスに誘導する静的比較作業フローの図である。静的比較作業フロー300は、解剖学的特徴「A」302、解剖学的特徴「B」304、解剖学的特徴「C」306、及び「第n」解剖学的特徴308のような一定数の解剖学的特徴について動作可能である。解剖学的特徴の実例としては、脳又は心臓の解剖学的特徴がある。
各々の解剖学的特徴について、疾患範囲又は状態についてばらつきを有する一定数の画像が与えられる。例えば、解剖学的特徴「A」302では、疾患範囲又は状態についてばらつきを有する一定数の画像310が与えられ、解剖学的特徴「B」304では、疾患範囲又は状態についてばらつきを有する一定数の画像312が与えられ、解剖学的特徴「C」306では、疾患範囲又は状態についてばらつきを有する一定数の画像314が与えられ、解剖学的特徴「N」308では、疾患範囲又は状態についてばらつきを有する一定数の画像316が与えられる。
各々の解剖学的特徴について、解剖学的特徴の画像は、疾患又は状態の重症度に従って順序付け318される。例えば、解剖学的特徴「A」302では、画像310は、疾患又は状態の最小範囲若しくは最小量から疾患又は状態の最大量若しくは最大範囲まで昇順で順序付けされる。
この後に、画像320を評価して、順序付けされた画像の集合に対して比較しながら画像320における疾患範囲又は状態を決定する。例えば、解剖学的特徴「A」302の順序付けされた画像310の集合と比較しながら画像320を評価して画像320の疾患範囲又は状態を決定する。幾つかの実施形態では、患者からの多数の解剖学的構造302、304、306及び308についての多数の画像320が評価される。
この比較から、患者画像320の疾患範囲を表現する又は象徴する重症度インデクス322が生成される。幾つかの実施形態では、多数の画像320での疾患範囲を表現する又は象徴する多数の重症度インデクス322が生成される。さらに他の幾つかの実施形態では、統計的解析326を用いて集計患者重症度スコア324が生成される。
静的比較作業フロー300は、一定数の解剖学的特徴及び一定数の実例データについて動作可能である。但し、この解剖学的特徴の数及び実例データの数は、解剖学的特徴の数及び実例データの数の一実施形態に過ぎない。他の実施形態では、他の数の解剖学的特徴及び他の数の実例データが具現化される。
図4は、一実施形態による構造化された固有の医療診断指令補助を生成する方法400の流れ図である。方法400は、医用解剖学的画像から、より一貫性があり、統一された形式を有し、信頼性の高い医学的状態及び疾患の診断を提供する当技術分野での必要性を解決する。
方法400は、解剖学的特徴の画像の重症度インデクスの指示を受け取るステップ402を含んでいる。重症度インデクスは、無疾患の解剖学的構造に比較した解剖学的構造内の疾患範囲を示す。解剖学的構造の実例としては、脳及び心臓がある。期待される画像又は専門家の誘導による画像を利用者が指定すると、これをトリガとして各々の解剖学的位置及びトレーサについての重症度インデクスを設定する。
画像の各々は、解剖学的特徴が少なくとも1種のトレーサを含んでいる間に形成されている。画像は、磁気共鳴撮像、陽電子放出断層写真法、計算機式断層写真法、単光子放出計算機式断層写真法、超音波撮像及び光学的撮像のような多数の従来の撮像手法の任意の一つを用いて取得されている。
重症度インデクスを受け取るステップ402の幾つかの実施形態は、グラフィック・ユーザ・インタフェイスから又はグラフィック・ユーザ・インタフェイスを介して選択される重症度インデクスを受け取るステップを含んでおり、選択される重症度インデクスは人間によってグラフィック・ユーザ・インタフェイスに手動で入力される。これらの実施形態では、人間が重症度インデクスを展開して、コンピュータのキーボードに重症度インデクスを入力することによりこの重症度インデクスを伝達し、ここから重症度インデクスが受け取られる。幾つかの実施形態では、一定数の画像の各々についての重症度インデクスを受け取る402。
方法400はまた、動作402において受け取られた複数の重症度インデクスから結合重症度スコアを生成するステップ404を含んでいる。結合重症度スコアは、ルール・ベース型工程に関して生成される。幾つかの実施形態では、結合重症度スコアを生成するステップは、ルール・ベース型工程に関して複数の重症度インデクスから生成されるか又は合計される。幾つかの実施形態では、疾患状態について合計重症度スコアを形成するためにルール・ベース式方法を用いて、各々の解剖学的構造及びトレーサによる重症度インデクスを集計する。
図5は、図4の方法400の受け取る動作402の前に実行される動作の一実施形態による方法500の流れ図である。方法500は、医用解剖学的画像から、より一貫性があり、統一された形式を有し、信頼性の高い医学的状態及び疾患の診断を提供する当技術分野での必要性を解決する。
方法500は、脳又は他の解剖学的特徴に特異的な画像データにアクセスするステップ502を含んでいる。脳の画像データは、撮像の時刻での脳における少なくとも1種のトレーサに関する機能的情報の指示と一致している。幾つかの実施形態では、F−18−デオキシグルコース又はフルオロデオキシグルコース(FDG)、Ceretec(商標)、Trodat(商標)等のような放射性トレーサ又は放射性医薬品を用いて特定の解剖学的情報及び機能的情報について患者を撮像する。各々の放射性トレーサは、機能及び代謝に関係する別個の特性情報を提供する。アクセスされる患者画像は、関係のあるトレーサ及び年齢群に対応して標準化されている。
方法500はまた、人間規準に基づいて脳画像データ及び規範標準化脳画像データから偏差データを決定するステップ504を含んでいる。人間規準の実例は、患者の年齢及び/又は性別である。幾つかの実施形態では、偏差データを決定するステップは、上の図3に示すように、脳画像データを、撮像の時刻での脳における少なくとも1種のトレーサに関して規範標準化脳画像データと比較するステップを含んでいる。幾つかの実施形態では、画像は、標準化された正常な患者の参照画像とピクセル毎に比較される。
この後に、方法500は、脳についての重症度偏差データを利用者に対して表示するステップ506を含んでいる。幾つかの実施形態では、差画像は、各々の解剖学的位置及びトレーサについての正常値からの偏差の色表現又は濃淡表現の形態にあってよい。
他の実施形態では、偏差データは、紙への印刷のような他の媒体で提示される。
続いて、期待画像偏差が、脳に関連する或る重症度にカテゴリー分けされて、利用者に対して提示される508。重症度インデクスは、脳の疾患範囲、状態又は異常の定量化を提供する。
図6は、一実施形態による構造化された固有の医療診断指令補助を生成する方法600の流れ図である。方法600は、医用解剖学的画像から、より一貫性があり、統一された形式を有し、信頼性の高い医学的状態及び疾患の診断を提供する当技術分野での必要性を解決する。
方法600では、アクセスする動作502、決定する動作504、提示する動作506及び508、並びに受け取る動作402は、生成する動作404を実行する前に複数回にわたり実行される。具体的には、アクセスする動作502、決定する動作504、提示する動作506及び508、並びに受け取る動作402は、処理に利用可能な解剖学的構造データ602がなくなるまで実行される。例えば、図3において、各々の解剖学的特徴「A」302、解剖学的特徴「B」304、解剖学的特徴「C」306、及び「第n」の解剖学的特徴308についてのインデクスが動作502〜508において生成される。
動作502〜508の全回の繰り返しが完了したら、結合重症度スコアを生成する404。重症度スコアをさらに多量のデータから生成するほど数学的にさらに信頼性の高い結合重症度スコアを与えると考えられる場合がある。
上の方法600において説明した実施形態では、各々の解剖学的特徴についてのインデクス及びスコアを逐次的に生成している。しかしながら、方法600の他の実施形態は、各々の解剖学的特徴についてのインデクス及びスコアを並列に生成する。
図7は、一実施形態による医療診断画像の規範カテゴリー型インデクスについて人間を訓練する方法700の流れ図である。方法700は、医用解剖学的画像から、より一貫性があり、統一された形式を有し、信頼性の高い医学的状態及び疾患の診断を提供する当技術分野での必要性を解決する。
方法700は、或る重症度のカテゴリについての脳の専門家判定による期待画像偏差を利用者に対して提示するステップ702を含んでいる。重症度インデクスは、脳の疾患範囲、状態又は異常の定量化を提供する。
この後に、方法700は、表示画像及び専門家判定による画像偏差の視覚的類似性に基づいて重症度インデクスの選択の指示を選択することについて人間を誘導するステップ704を含んでいる。画像は、患者についての重症度評価を下すように利用者を誘導する。
図8は、図7の方法700の前に実行される動作の一実施形態による方法800の流れ図である。方法800は、医用解剖学的画像から、より一貫性があり、統一された形式を有し、信頼性の高い医学的状態及び疾患の診断を提供する当技術分野での必要性を解決する。
方法800は、脳又は他の解剖学的特徴に特異的な画像データにアクセスするステップ802を含んでいる。脳の画像データは、撮像の時刻での脳における少なくとも1種のトレーサに関する機能的情報の指示と一致している。
方法800はまた、人間規準に基づいて脳画像データ及び規範標準化脳画像データから偏差データを決定するステップ804を含んでいる。人間規準の実例は、患者の年齢及び/又は性別である。幾つかの実施形態では、偏差データを決定するステップは、上の図3に示すように、脳画像データを、撮像の時刻での脳における少なくとも1種のトレーサに関して規範標準化脳画像データと比較するステップを含んでいる。
この後に、方法800は、脳についての重症度偏差データを利用者に対して表示するステップ806を含んでいる。他の実施形態では、偏差データは、紙への印刷のような他の媒体において提示される。
図9は、一実施形態による構造化された固有の医療診断指令補助を生成する方法900の流れ図である。方法900は、医用解剖学的画像から、より一貫性があり、統一された形式を有し、信頼性の高い医学的状態及び疾患の診断を提供する当技術分野での必要性を解決する。
方法900では、アクセスする動作802、決定する動作804、提示する動作806及び702、並びに誘導する動作704は、結合重症度スコアを生成する前に複数回にわたり実行される。
図10は、一実施形態に従って疾患状態の変化を識別する方法1000の流れ図である。方法1000は、医用解剖学的画像から、より一貫性があり、統一された形式を有し、信頼性の高い医学的状態及び疾患の診断を提供する当技術分野での必要性を解決する。
方法1000の幾つかの実施形態は、少なくとも二つの解剖学的特徴に特異的な縦断的画像データにアクセスするステップ1002を含んでいる。縦断的解剖学的画像データは、撮像の時刻での解剖学的特徴における少なくとも1種のトレーサに関する機能的情報を示す。解剖学的特徴の実例としては、脳又は心臓がある。縦断方向は時間方向としても知られる。縦断的比較は、一定の時間区間にわたって画像を比較する。
画像は、磁気共鳴撮像、陽電子放出断層写真法、計算機式断層写真法、単光子放出計算機式断層写真法、超音波撮像及び光学的撮像のような多数の従来の撮像手法の任意の一つを用いて取得されている。患者は、二つの異なる時間的瞬間にトレーサを用いて特定の解剖学的情報及び機能的情報について撮像される。各々のトレーサは、機能及び代謝に関係する別個の特性情報を提供する。各々の時間的瞬間にアクセスされる患者画像は、関係のあるトレーサ及び年齢群に対応して標準化されている。
この後に、方法1000の幾つかの実施形態は、人間規準に基づいて縦断的解剖学的画像データの各々及び規範標準化解剖学的画像データから偏差データを決定するステップ1004を含んでいる。人間規準の実例は、患者の年齢及び/又は性別である。偏差データを決定するステップ1004の幾つかの実施形態は、解剖学的縦断的画像データを、撮像の時刻での解剖学的特徴におけるトレーサに関して規範標準化解剖学的画像データと比較するステップを含んでいる。幾つかの実施形態では、縦断的解析における各々の時間的瞬間の画像を、標準化された正常な患者の参照画像とピクセル毎に比較する。
続いて、方法1000は、解剖学的特徴からの重症度偏差データを利用者に対して提示するステップ1006を含んでいる。幾つかの実施形態では、偏差データは、縦断的解剖学的画像と規範標準化解剖学的画像との間の差を示す差画像の形態にある。さらに、差画像は、各々の解剖学的位置及びトレーサについて、縦断的解析における時間的瞬間毎に、正常値からの偏差の色表現又は濃淡表現の形態にあってもよい。
この後に、方法1000は、解剖学的特徴に関連した或る重症度にカテゴリー分けされている期待画像偏差を利用者に対して提示するステップ1008を含んでいる。幾つかの実施形態では、利用者が期待画像と合致すると、これをトリガとして、縦断的解析の全ての瞬間で各々の解剖学的位置及びトレーサについて重症度インデクスを設定する。
続いて、方法1000は、各々の縦断的データ集合について利用者から重症度インデクスの選択の指示を受け取るステップ1010を含んでいる。重症度インデクスの指示を受け取るステップ1010の幾つかの実施形態は、グラフィック・ユーザ・インタフェイスから選択された重症度インデクスを受け取るステップを含んでおり、選択された重症度インデクスは、人間によってグラフィック・ユーザ・インタフェイスに手動で入力される。幾つかの実施形態では、期待画像を、関連する重症度レベルと共に利用者に対して表示する。画像は、利用者が縦断的解析の時間的瞬間の各々において現患者について重症度評価を下すように誘導する。
続いて、方法1000は、これら複数の重症度インデクスから結合重症度変化スコアを生成するステップ1012を含んでいる。幾つかの実施形態では、結合重症度変化スコアは、ルール・ベース型工程に関して生成され、次いで、結合重症度変化スコアが利用者に対して提示される。結合重症度スコアを生成する幾つかの実施形態は、ルール・ベース型工程に関してこれら複数の重症度インデクスを合計するステップを含んでいる。幾つかの実施形態では、各々の解剖学的構造及びトレーサによる重症度インデクスは個々に又は比較されながら(縦断的検討の瞬間の差)ルール・ベース型方法を用いて集計されて、縦断的検討の全ての瞬間での疾患状態についての合計の変化後の重症度スコアを形成する。解剖学的位置変化をより多く指示し得る方法、及び全疾患状態重症度スコア変化を与える方法のいずれの方法の変化判定でも具現化することができる。
方法1000の幾つかの実施形態では、縦断的画像データにアクセスするステップ1002、偏差を決定するステップ1004、提示するステップ1006及び1008、並びに重症度インデクスを受け取るステップ1010は、結合重症度変化スコアを生成するステップ1012及び表示するステップ1014の前に一定の回数にわたり実行される。幾つかの実施形態では、一定数の重症度インデクスが、特定の解剖学的構造について経時的に表示され、これにより、疾患の治療の進行又は疾患の治療の進行の欠如を経時的に示す。
図11は、一実施形態による診断医用画像の例示的知識ベース又は正常知識ベースを作成する方法1100の流れ図である。方法1100は、医用解剖学的画像から、より一貫性があり、統一された形式を有し、信頼性の高い医学的状態及び疾患の診断を提供する当技術分野での必要性を解決する。
方法1100は、特定のトレーサに関連する1又は複数の特定の解剖学的特徴の1又は複数の画像にアクセスするステップ1102を含んでいる。偏差データは、正常な解剖学的状態又は無疾患の解剖学的構造を表わすものと考えられる画像からの偏差又は差を表わすデータである。幾つかの実施形態では、偏差画像データは、後述の図12の方法1200に記載するもののように、正常な被検体データベースからの画像と、疾患の全ての重症度に関係するデータを含む疑わしい疾患画像データベースからの画像とを比較することにより、方法1100の実行の前に導かれる。
幾つかの実施形態では、画像偏差データを導き出した元の画像は、患者にトレーサを用いずに作成され又は生成されている。他の実施形態では、画像偏差データを導き出した元の画像は、患者にトレーサを用いて作成され又は生成されている。
方法1100はまた、疾患の全ての重症度に関する機能的情報の指示と一致するように偏差データの画像の各々にカテゴリー型重症度を割り当てるステップ1104を含んでいる。カテゴリー型重症度は、何らかの範囲内にある疾患又は医学的状態の重症度の範囲を記述する。幾つかの実施形態では、カテゴリー型重症度は、例示的な画像からの画像の偏差の測度を記述する。疾患又は状態の程度の実例は、図3に画像の昇順318に関して記載されており、同図では昇順318に並んだ各々の画像が疾患又は状態の一つのカテゴリー型重症度を表わしている。
この後に、方法1100は、画像偏差データ及び画像偏差データの各々に対するカテゴリー型重症度のデータベース又は知識ベースを生成するステップ1106を含んでいる。一例では、図1の正常画像データベース102が生成され、又は画像偏差データで更新されて画像偏差データのカテゴリー型重症度に関連付けされる。
方法1100の幾つかの実施形態はまた、例示的な重症度偏差画像を高精度化する又は更新するステップを含んでいる。さらに明確に述べると、例示的な重症度偏差データベースは、新たに割り当てられた重症度偏差画像を既存の重症度画像(1又は複数)と集計することにより高精度化され、又は重症度偏差画像の新たなカテゴリを導入する若しくは既存のカテゴリを除去することにより更新される。
図12は、一実施形態による偏差データを生成する方法1200の流れ図である。方法1200は、方法1100において要求される偏差データを生成するために上の方法1100の前に実行され得る。方法1200は、医用解剖学的画像から、より一貫性があり、統一された形式を有し、信頼性の高い医学的状態及び疾患の診断を提供する当技術分野での必要性を解決する。
方法1200は、特定のトレーサに関連した脳のような1又は複数の特定の解剖学的特徴の1又は複数の画像にアクセスするステップ1102を含んでいる。
方法1200はまた、上の図3に示すように、脳画像データを同じトレーサに関連する規範標準化脳画像データと比較するステップ1202を含んでおり、脳の疑わしい疾患域を表わす画像とデータベース内の画像との間の偏差を得る。幾つかの実施形態では、比較するステップ1202はトレーサに関して実行され、又は他の実施形態ではトレーサに関連させずに実行される。
方法1200はまた、この比較から偏差画像データを生成するステップ1204を含んでいる。
図13は、一実施形態による参照診断医用画像を生成する方法1300の流れ図である。方法1300は、医用解剖学的画像から、より一貫性があり、統一された形式を有し、信頼性の高い医学的状態及び疾患の診断を提供する当技術分野での必要性を解決する。
方法1300は、トレーサに関係する正常な病状発現前の解剖学的特徴の複数の画像を含んでいるデータベースにアクセスするステップ1302を含んでいる。幾つかの実施形態では、動作1302は、トレーサに関係する機能的情報の利用を介して正常な被検体を用いて規範データベースを作成することを含んでいる。
この後に、方法1300は、解剖学的特徴における疑わしい疾患域を表わす画像にアクセスするステップ502と、解剖学的特徴における疑わしい疾患域を表わす画像をデータベース内の画像と比較するステップ1202を含んでおり、このようにして解剖学的特徴における疑わしい疾患域を表わす画像とデータベース内の画像との間の偏差を得る。幾つかの実施形態では、画像にアクセスするステップは、トレーサの利用を介して疾患の多様な重症度に対応している可能性のある機能的情報の指示と一致した疑わしい画像のデータベースにアクセスすることを含んでいる。
次いで、各々の解剖学的特徴について偏差を表わす複数の画像を形成し1204、カテゴリー型重症度を偏差を表わすこれら複数の画像の各々に割り当てて1104、偏差を表わすこれら複数の画像及び偏差を表わすこれら複数の画像の各々のカテゴリー型重症度のデータベースを生成する1106。
方法1300の幾つかの実施形態では、例示的な重症度偏差データベースは、新たに割り当てられた重症度偏差画像を既存の重症度画像(1又は複数)と集計することにより高精度化され、又は重症度偏差画像の新たなカテゴリを導入する若しくは既存のカテゴリを除去することにより更新される。
幾つかの実施形態では、方法200〜1300は、図14のプロセッサ1404のようなプロセッサによって実行されるとそれぞれの方法をプロセッサに実行させる一連の命令を表わす搬送波に実現されたコンピュータ・データ信号として具現化される。他の実施形態では、方法200〜1300は、図14のプロセッサ1404のようなプロセッサにそれぞれの方法を実行するように指令することが可能な実行可能な命令を有するコンピュータ・アクセス可能な媒体として具現化される。様々な実施形態において、媒体は磁気媒体、電子媒体又は光学媒体である。
さらに明確に述べると、コンピュータ読み取り可能なプログラムの実施形態では、Java(商標)、Smalltalk又はC++のようなオブジェクト指向言語を用いてプログラムをオブジェクト指向で構造化することができ、またCOBOL又はCのような手続き型言語を用いてプログラムを手続き指向で構造化することもできる。ソフトウェア・コンポーネントは、リモート・プロシージャ・コール(RPC)、コモン・オブジェクト・リクエスト・ブローカ・アーキテクチャ(CORBA)、コンポーネント・オブジェクト・モデル(COM)、分散型コンポーネント・オブジェクト・モデル(DCOM)、分散型システム・オブジェクト・モデル(DSOM)及びリモート・メソッド・インヴォケーション(RMI)等のアプリケーション・プログラム・インタフェイス(API)又はプロセス間通信の手法のような当業者に周知の多くの手段の任意のもので通信する。各コンポーネントは、図14のコンピュータ1402のように1台という少数のコンピュータで実行されるか、或いはコンポーネントが存在するのと少なくとも同数のコンピュータで実行される。
〔ハードウェア及び動作環境〕
図14は、様々な実施形態を実施することのできるハードウェア及び動作環境1400のブロック図である。図14の説明は、幾つかの実施形態を具現化し得る場合に共に用いられるコンピュータ・ハードウェア及び適当な計算環境の全体像を扱う。実施形態を、コンピュータで実行可能な命令を実行するコンピュータに関して説明する。しかしながら、幾つかの実施形態は、コンピュータで実行可能な命令が読み出し専用メモリで具現化されているようなコンピュータ・ハードウェアで専ら具現化することもできる。また、幾つかの実施形態は、タスクを実行する遠隔装置が通信ネットワークを介して結合されているようなクライアント/サーバ型コンピュータ環境で具現化することができる。プログラム・モジュールは、分散型計算環境ではローカルのメモリ記憶装置及び遠隔のメモリ記憶装置の両方に位置していてよい。
コンピュータ1402は、Intel社、Motorola社、Cyrix社その他から市販されているプロセッサ1404を含んでいる。コンピュータ1402はまた、ランダム・アクセス・メモリ(RAM)1406、読み出し専用メモリ(ROM)1408、1又は複数の大容量記憶装置1410、及び様々なシステム構成要素を処理ユニット1404に結合して動作させるシステム・バス1412を含んでいる。メモリ1406、1408、及び大容量記憶装置1410は、コンピュータによるアクセスが可能な媒体の形式である。大容量記憶装置1410はさらに明確に述べると、コンピュータによるアクセスが可能な不揮発性媒体の形式であり、1又は複数のハード・ディスク・ドライブ、フレキシブル・ディスク・ドライブ、光ディスク・ドライブ及びテープ・カートリッジ・ドライブを含み得る。プロセッサ1404は、コンピュータによるアクセスが可能な媒体に記憶されているコンピュータ・プログラムを実行する。
コンピュータ1402は、通信装置1416を介してインターネット1414に接続されて通信することができる。インターネット1414への接続性については、当技術分野では周知である。一実施形態では、通信装置1416は、当技術分野で「ダイヤル・アップ接続」として公知のものを介してインターネットに接続する通信ドライバに応答するモデムである。もう一つの実施形態では、通信装置1416は、構内網(LAN)に接続されているEthernet(商標)又は類似のハードウェア・ネットワーク・カードであり、LAN自体は当技術分野で「直接接続」(例えばT1回線等)として公知のものを介してインターネットに接続される。
利用者は、キーボード1418又はポインティング・デバイス1420のような入力装置を介してコンピュータ1402に命令及び情報を入力する。キーボード1418は、当技術分野で公知のようにコンピュータ1402へのテキスト情報の入力を可能にするが、実施形態は如何なる特定の形式のキーボードにも限定されていない。ポインティング・デバイス1420は、Microsoft Windows(商標)の各バージョンのようなオペレーティング・システムのグラフィック・ユーザ・インタフェイス(GUI)によって提供される画面ポインタの制御を可能にする。実施形態は、如何なる特定のポインティング・デバイス1420にも限定されない。かかるポインティング・デバイスとしては、マウス、指触パッド、トラックボール、遠隔制御及びポイント・スティック等がある。他の入力装置(図示されていない)としては、マイクロフォン、ジョイスティック、ゲーム・パッド、衛星放送用パラボラ・アンテナ又はスキャナ等がある。
幾つかの実施形態では、コンピュータ1402は表示装置1422に結合されて動作する。表示装置1422はシステム・バス1412に接続されている。表示装置1422は、コンピュータの利用者による観察に供するためにコンピュータ、ビデオ及び他の情報を含めた情報の表示を可能にする。実施形態は如何なる特定の表示装置1422にも限定されない。かかる表示装置としては、陰極線管(CRT)表示器(モニタ)、及び液晶表示器(LCD)のようなフラット・パネル表示器等がある。モニタに加えて、コンピュータは典型的には、プリンタのような他の周辺入出力装置(図示されていない)を含んでいる。スピーカ1424及び1426は、信号の音響出力を提供する。スピーカ1424及び1426もシステム・バス1412に接続されている。
コンピュータ1402はまた、コンピュータによるアクセスが可能な媒体であるRAM1406、ROM1408及び大容量記憶装置1410に記憶されてプロセッサ1404によって実行されるオペレーティング・システム(図示されていない)を含んでいる。オペレーティング・システムの例としては、Microsoft Windows(商標)、Apple MacOS(商標)、Linux(商標)、UNIX(商標)等がある。但し、実例は如何なる特定のオペレーティング・システムにも限定されず、またかかるオペレーティング・システムの構築及び利用は当技術分野で周知である。
コンピュータ1402の実施形態は、如何なる形式のコンピュータ1402にも限定されない。実施形態を変形させると、コンピュータ1402は、PC互換コンピュータ、MacOS(商標)互換コンピュータ、Linux(商標)互換コンピュータ、又はUNIX(商標)互換コンピュータを含む。かかるコンピュータの構築及び動作は当技術分野で周知である。
コンピュータ1402は、利用者が制御可能なポインタを含むグラフィック・ユーザ・インタフェイス(GUI)を提供する少なくとも一つのオペレーティング・システムを用いて動作させることができる。コンピュータ1402は、少なくとも一つのオペレーティング・システムの内部で走行する少なくとも一つのウェブ・ブラウザ・アプリケーション・プログラムを有することができ、コンピュータ1402の利用者がイントラネット、エクストラネット、又はユニバーサル・リソース・ロケータ(URL)のアドレスによって指定されるようなインターネットのワールド・ワイド・ウェブ・ページにアクセスすることを可能にする。ブラウザ・アプリケーション・プログラムの実例としては、Netscape Navigator(商標)及びMicrosoft Internet Explorer(商標)等がある。
コンピュータ1402は、遠隔のコンピュータ1428のような1又は複数の遠隔のコンピュータに対する論理的な接続を用いたネットワーク化された環境で動作することができる。これらの論理的接続は、コンピュータ1402に結合されている通信装置又はコンピュータ1402の一部によって達成される。実施形態は、特定の形式の通信装置に限定されない。遠隔のコンピュータ1428は、もう1台のコンピュータ、サーバ、ルータ、ネットワークPC、クライアント、ピア(peer)装置又は他の共通ネットワーク・ノードであってよい。図14に示す論理的接続は、構内網(LAN)1430及び広域網(WAN)1432を含んでいる。かかる網構成環境は、事務所、企業内コンピュータ網、イントラネット、エクストラネット及びインターネットとして広く普及している。
LAN型網構成環境で用いる場合には、コンピュータ1402及び遠隔のコンピュータ1428は、通信装置1416の一形式であるネットワーク・インタフェイス又はアダプタ1434を介してローカルのネットワーク1430に接続される。遠隔のコンピュータ1428もまた、ネットワーク装置1436を含んでいる。従来のWAN型網構成環境で用いる場合には、コンピュータ1402及び遠隔のコンピュータ1428は、モデム(図示されていない)を介してWAN1432と通信する。モデムは内部モデムであっても外部モデムであってもよく、システム・バス1412に接続される。ネットワーク化された環境では、コンピュータ1402に対して図示されているプログラム・モジュール又はその一部を遠隔のコンピュータ1428に記憶させることもできる。
コンピュータ1402はまた、電源1438を含んでいる。各々の電源はバッテリであってよい。
〔装置の実施形態〕
前節では、方法について説明した。本節では、かかる実施形態の特定の装置について説明する。
図15は、一実施形態による参照診断医用画像を形成する装置1500のブロック図である。装置1500は、医用解剖学的画像から、より一貫性があり、統一された形式を有し、信頼性の高い医学的状態及び疾患の診断を提供する当技術分野での必要性を解決する。
装置1500では、画像データに対して4種の異なる比較を実行することができる。すなわち、未処理画像の比較1502、標準偏差画像の比較1504、重症度画像の比較1506、及び重症度スコアの比較である。これらの比較は、段階1502、1502、1506又は1508のいずれで生じてもよい。比較1502〜1508の各々は、検査時刻T1510及び検査時刻T1512のような縦断的(時間的)領域にわたって実行される。
検査時刻T1510及び検査時刻T1512では、それぞれ複数の未処理の原画像1514及び1516と、原画像1518及び1520とがディジタル撮像装置によって形成される。
検査時刻T1510及び検査時刻T1512の後に、未処理の原画像及び1又は複数の標準化画像(図示されていない)から、次の3種のデータの任意の一つが生成される。すなわち、複数の標準化偏差画像1522及び1524、1526及び1528、重症度インデクス1530〜1536、又は重症度スコア1538及び1540である。偏差画像1522〜1528は、未処理の原画像1514〜1520と標準化画像との間の偏差を図形的に表わす。重症度インデクス1530〜1536は、未処理の原画像1514〜1520と標準化画像との間の臨床的に知覚される偏差を数値的に表わす。重症度スコア1538及び1540は、重症度インデクス1530〜1536から生成される。重症度スコア1538及び1540は、未処理画像1514〜1520の状態の複合的臨床指標を数値的に表わす。
〔結論〕
コンピュータ方式医療診断システムについて説明した。本書では特定の実施形態を図示して説明したが、当業者は、同じ目的を達成するために考案された任意の構成を図示の特定の実施形態に置換し得ることを認められよう。本出願は、あらゆる適応構成又は変形を包含するものとする。例えば、説明は手続きに関して行なったが、当業者には、手続き型設計環境、又は所要の関係を提供するその他任意の設計環境で具現化形態を形成し得ることが認められよう。
具体的には、当業者は、方法及び装置の名称が実施形態を限定するものではないことを容易に認められよう。さらに、実施形態の範囲から逸脱せずに、付加的な方法及び装置を各構成要素に追加したり、構成要素間で作用を再構成したり、将来の機能拡張や実施形態で用いられている物理的装置に対応する新たな構成要素を導入したりすることができる。当業者は、各実施形態が将来の通信装置、異なるファイル・システム及び新たなデータ型に応用可能であることを容易に認められよう。
本出願で用いられている術語は、全てのオブジェクト指向型データベース及び通信環境、並びに本書に記載しているものと同じ作用を果たす代替技術を包含するものとする。また、図面の符号に対応する特許請求の範囲中の符号は、単に本願発明の理解をより容易にするために用いられているものであり、本願発明の範囲を狭める意図で用いられたものではない。そして、本願の特許請求の範囲に記載した事項は、明細書に組み込まれ、明細書の記載事項の一部となる。
正常患者群からの統計的偏差を決定するシステムの全体像のブロック図である。 正常患者群からの統計的偏差を決定する方法の流れ図である。 読影者を重症度インデクスに誘導する静的比較作業フローの図である。 一実施形態による構造化された固有の医療診断指令補助を生成する方法の流れ図である。 図4の方法の前に実行される動作の一実施形態による方法の流れ図である。 一実施形態による構造化された固有の医療診断指令補助を生成する方法の流れ図である。 一実施形態による医療診断画像の規範カテゴリー型インデクスについて人間を訓練する方法の流れ図である。 図7の方法の前に実行される動作の一実施形態による方法の流れ図である。 一実施形態による構造化された固有の医療診断指令補助を生成する方法の流れ図である。 一実施形態に従って疾患状態の変化を識別する方法の流れ図である。 一実施形態による診断医用画像の例示的知識ベース又は正常知識ベースを作成する方法の流れ図である。 一実施形態による偏差データを生成する方法の流れ図である。 一実施形態による参照診断医用画像を生成する方法の流れ図である。 様々な実施形態を実施することのできるハードウェア及び動作環境のブロック図である。 一実施形態による参照診断医用画像を形成する装置のブロック図である。
符号の説明
100 正常患者群からの統計的偏差を決定するシステム
200 正常患者群からの統計的偏差を決定する方法
300 静的比較作業フロー
310、312、314、316 ばらつきを有する一定数の画像
318 順序付け
320 評価される入力画像
400、600、900 構造化された固有の医療診断指令補助を生成する方法
500 図4の方法400の受け取る動作402の前に実行される動作の方法
700 医療診断画像の規範カテゴリー型インデクスについて人間を訓練する方法
800 図7の方法700の前に実行される動作の方法
1000 疾患状態の変化を識別する方法
1100 診断医用画像の例示的知識ベース又は正常知識ベースを作成する方法
1200 偏差データを生成する方法
1300 参照診断医用画像を生成する方法
1400 ハードウェア及び動作環境
1402 コンピュータ
1412 システム・バス
1500 参照診断医用画像を形成する装置

Claims (10)

  1. 診断医用画像の例示的な知識ベースを作成するために、
    少なくとも一つの解剖学的特徴の画像偏差データにアクセスするステップ(1102)と、
    前記画像偏差データの各々にカテゴリー型重症度を割り当てるステップ(1104)と、
    前記画像偏差データ及び該画像偏差データの各々に対する前記カテゴリー型重症度のデータベースを生成するステップ(1106)と、
    を実行するようにプロセッサに指令することが可能な実行可能な命令を有するコンピュータ・アクセス可能な媒体。
  2. 前記画像偏差データは、
    例示的な画像からの画像の偏差の測度(1522)
    をさらに含んでいる、請求項1に記載のコンピュータ・アクセス可能な媒体。
  3. 診断医用画像の例示的な知識ベースを作成するために、
    トレーサに関して、疾患の疑われる少なくとも一つの解剖学的特徴の画像データにアクセスするステップ(1102)と、
    疾患の疑われる少なくとも一つの解剖学的特徴の前記画像データを、前記トレーサに関して正規化データベースと比較するステップ(1202)と、
    偏差画像データを生成するステップ(1204)と、
    前記画像偏差データの各々にカテゴリー型重症度を割り当てるステップ(1104)と、
    前記画像偏差データ及び該画像偏差データの各々に対する前記カテゴリー型重症度のデータベースを生成するステップ(1106)と、
    を実行するようにプロセッサに指令することが可能な実行可能な命令を有するコンピュータ・アクセス可能な媒体。
  4. 前記トレーサに関して正規化データベース(102)を作成するステップ
    を実行するように前記プロセッサに指令することが可能な実行可能な命令をさらに含んでいる請求項3に記載のコンピュータ・アクセス可能な媒体。
  5. 前記アクセスされる画像は、磁気共鳴撮像、陽電子放出断層写真法、計算機式断層写真法、単光子放出計算機式断層写真法、超音波撮像及び光学的撮像の一つを用いて取得される(1002)、請求項3に記載のコンピュータ・アクセス可能な媒体。
  6. 参照診断医用画像を形成するために、
    トレーサに関連する正常な解剖学的特徴の複数の画像のデータベースにアクセスするステップ(1302)と、
    前記解剖学的特徴における疑わしい疾患域を表わす画像にアクセスするステップ(1102)と、
    前記解剖学的特徴における疑わしい疾患域を表わす前記画像を前記データベース内の画像と比較するステップ(1202)であって、前記解剖学的特徴における疑わしい疾患域を表わす前記画像と前記データベース内の画像との間の偏差を得る、比較するステップ(1202)と、
    前記複数の偏差を表わす複数の画像を形成するステップ(1204)と、
    前記複数の偏差の各々を表わす前記複数の画像の各々にカテゴリー型重症度を割り当てるステップ(1104)と、
    前記偏差を表わす複数の画像及び該偏差を表わす複数の画像の各々の前記カテゴリー型重症度のデータベースを生成するステップ(1106)と、
    を実行するようにプロセッサに指令することが可能な実行可能な命令を有するコンピュータ・アクセス可能な媒体。
  7. 前記アクセスされる画像は、磁気共鳴撮像、陽電子放出断層写真法、計算機式断層写真法、単光子放出計算機式断層写真法、超音波撮像及び光学的撮像の一つを用いて取得される(1002)、請求項6に記載のコンピュータ・アクセス可能な媒体。
  8. 参照診断医用画像を形成するために、
    トレーサに関連して、解剖学的特徴における疑わしい疾患域を表わす複数の画像と、前記解剖学的特徴における無疾患域を表わす複数の画像との間の偏差を表わす複数の画像を形成するステップ(1204)と、
    前記偏差を表わす複数の画像の各々にカテゴリー型重症度を割り当てるステップ(1104)と、
    前記偏差を表わす複数の画像及び該偏差を表わす複数の画像の各々の前記カテゴリー型重症度のデータベースを生成するステップ(1106)と、
    を実行するようにプロセッサに指令することが可能な実行可能な命令を有するコンピュータ・アクセス可能な媒体。
  9. 前記偏差を表わす複数の画像を形成するステップの前に、
    前記トレーサに関連して、正常な解剖学的特徴の前記複数の画像のデータベース(102)を記憶するステップと、
    前記解剖学的特徴における疑わしい疾患域を表わす画像にアクセスするステップ(1102)と、
    前記解剖学的特徴における疑わしい疾患域を表わす前記画像を前記データベース内の画像と比較するステップ(1202)であって、前記解剖学的特徴における疑わしい疾患域を表わす前記画像と前記データベース内の画像との間の前記偏差を得る、比較するステップ(1202)と、
    を実行するようにプロセッサに指令することが可能な実行可能な命令をさらに含んでいる請求項8に記載のコンピュータ・アクセス可能な媒体。
  10. 前記アクセスされる画像は、磁気共鳴撮像、陽電子放出断層写真法、計算機式断層写真法、単光子放出計算機式断層写真法、超音波撮像及び光学的撮像の一つを用いて取得される(1002)、請求項8に記載のコンピュータ・アクセス可能な媒体。
JP2006262033A 2005-09-29 2006-09-27 診断医用画像の知識ベースを作成する命令を含むコンピュータ・アクセス可能な媒体 Expired - Fee Related JP5142009B2 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US11/240,610 2005-09-29
US11/240,610 US20070081700A1 (en) 2005-09-29 2005-09-29 Systems, methods and apparatus for creation of a database of images from categorical indices

Publications (2)

Publication Number Publication Date
JP2007125370A true JP2007125370A (ja) 2007-05-24
JP5142009B2 JP5142009B2 (ja) 2013-02-13

Family

ID=37852956

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006262033A Expired - Fee Related JP5142009B2 (ja) 2005-09-29 2006-09-27 診断医用画像の知識ベースを作成する命令を含むコンピュータ・アクセス可能な媒体

Country Status (4)

Country Link
US (1) US20070081700A1 (ja)
JP (1) JP5142009B2 (ja)
CN (1) CN1971565B (ja)
DE (1) DE102006046746A1 (ja)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010004851A1 (ja) * 2008-07-07 2010-01-14 浜松ホトニクス株式会社 脳疾患診断システム
JP2010029481A (ja) * 2008-07-29 2010-02-12 Univ Of Tsukuba 腫瘍の経過観察レポート自動作成診断支援システム
JP2014531925A (ja) * 2011-09-26 2014-12-04 コーニンクレッカ フィリップス エヌ ヴェ 医用画像システム及び方法
JP2016158681A (ja) * 2015-02-27 2016-09-05 Hoya株式会社 画像処理装置
JP2019045193A (ja) * 2017-08-30 2019-03-22 社会福祉法人兵庫県社会福祉事業団 画像処理方法、画像処理装置、およびプログラム
WO2019131225A1 (ja) * 2017-12-25 2019-07-04 浜松ホトニクス株式会社 脳画像解析装置、脳画像解析方法、及び脳画像解析プログラム
JP2020027507A (ja) * 2018-08-14 2020-02-20 キヤノン株式会社 医用情報処理装置及び医用情報処理方法、プログラム

Families Citing this family (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8909325B2 (en) 2000-08-21 2014-12-09 Biosensors International Group, Ltd. Radioactive emission detector equipped with a position tracking system and utilization thereof with medical systems and in medical procedures
US9040016B2 (en) 2004-01-13 2015-05-26 Biosensors International Group, Ltd. Diagnostic kit and methods for radioimaging myocardial perfusion
US9470801B2 (en) 2004-01-13 2016-10-18 Spectrum Dynamics Llc Gating with anatomically varying durations
US7968851B2 (en) 2004-01-13 2011-06-28 Spectrum Dynamics Llc Dynamic spect camera
EP1778957A4 (en) 2004-06-01 2015-12-23 Biosensors Int Group Ltd OPTIMIZING THE MEASUREMENT OF RADIOACTIVE EMISSIONS IN SPECIFIC BODY STRUCTURES
US9316743B2 (en) 2004-11-09 2016-04-19 Biosensors International Group, Ltd. System and method for radioactive emission measurement
US9943274B2 (en) 2004-11-09 2018-04-17 Spectrum Dynamics Medical Limited Radioimaging using low dose isotope
EP1824520B1 (en) * 2004-11-17 2016-04-27 Biosensors International Group, Ltd. Methods of detecting prostate cancer
US8837793B2 (en) 2005-07-19 2014-09-16 Biosensors International Group, Ltd. Reconstruction stabilizer and active vision
US7929737B2 (en) 2005-09-29 2011-04-19 General Electric Company Method and system for automatically generating a disease severity index
WO2007058895A2 (en) * 2005-11-11 2007-05-24 Visualsonics Inc. Overlay image contrast enhancement
US8243999B2 (en) * 2006-05-03 2012-08-14 Ut-Battelle, Llc Method and system for the diagnosis of disease using retinal image content and an archive of diagnosed human patient data
US8894974B2 (en) 2006-05-11 2014-11-25 Spectrum Dynamics Llc Radiopharmaceuticals for diagnosis and therapy
US9275451B2 (en) * 2006-12-20 2016-03-01 Biosensors International Group, Ltd. Method, a system, and an apparatus for using and processing multidimensional data
JP5646128B2 (ja) * 2007-02-28 2014-12-24 株式会社東芝 医用画像検索システム
JP5329911B2 (ja) * 2007-11-02 2013-10-30 株式会社東芝 医用画像管理装置および医用画像システム
US20090138279A1 (en) * 2007-11-23 2009-05-28 General Electric Company Systems, methods and apparatus for analysis and visualization of metadata information
US8010381B2 (en) * 2008-05-20 2011-08-30 General Electric Company System and method for disease diagnosis from patient structural deviation data
US8180125B2 (en) * 2008-05-20 2012-05-15 General Electric Company Medical data processing and visualization technique
US8430816B2 (en) * 2008-05-20 2013-04-30 General Electric Company System and method for analysis of multiple diseases and severities
US8099299B2 (en) * 2008-05-20 2012-01-17 General Electric Company System and method for mapping structural and functional deviations in an anatomical region
US8786873B2 (en) * 2009-07-20 2014-07-22 General Electric Company Application server for use with a modular imaging system
JP5355316B2 (ja) * 2009-09-10 2013-11-27 キヤノン株式会社 テンプレート画像の評価方法及び生体運動検出装置
US8243882B2 (en) 2010-05-07 2012-08-14 General Electric Company System and method for indicating association between autonomous detector and imaging subsystem
US8934685B2 (en) * 2010-09-21 2015-01-13 General Electric Company System and method for analyzing and visualizing local clinical features
US9207300B2 (en) * 2012-10-26 2015-12-08 Siemens Medical Solutions Usa, Inc. Automatic system for timing in imaging
EP3451210B1 (en) 2017-08-31 2021-03-03 Siemens Healthcare GmbH Method for comparing reference values in medical imaging processes, system comprising a local medical imaging device, computer program product and computer-readable program
CN110298820A (zh) * 2019-05-28 2019-10-01 上海联影智能医疗科技有限公司 影像分析方法、计算机设备和存储介质
US12033740B2 (en) * 2021-12-04 2024-07-09 Vasileios K. Papaioannou Systems and methods for robust and automatic face de-identification for CT and MRI

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09147082A (ja) * 1995-11-20 1997-06-06 Sumitomo Heavy Ind Ltd 画像診断支援装置
JPH09330405A (ja) * 1996-06-10 1997-12-22 Nippon Telegr & Teleph Corp <Ntt> 画像処理方法
JP2002262033A (ja) * 2001-02-28 2002-09-13 Brother Ind Ltd 情報処理装置およびコンピュータプログラム
JP2003225231A (ja) * 2001-11-20 2003-08-12 General Electric Co <Ge> 肺疾患検出のための方法及びシステム
JP2003524492A (ja) * 2000-02-04 2003-08-19 ザ・ユニバーシティー・オブ・シカゴ 医学的画像のコンピュータ支援解釈用知的探索ワークステーションのための方法、システム、及びコンピュータ読取り型媒体
JP2003284690A (ja) * 2002-03-28 2003-10-07 Nippon Telegr & Teleph Corp <Ntt> 比較読影支援方法、比較読影支援装置、比較読影支援プログラム及びそのプログラムを記録した記録媒体
JP2004517380A (ja) * 2000-08-01 2004-06-10 ロジカル イミジズ、インコーポレイテッド 相互参照される知識と画像データベースを使用した診断支援のシステムと方法
JP2004239782A (ja) * 2003-02-06 2004-08-26 Daiichi Radioisotope Labs Ltd 脳画像データ処理システム、方法、プログラムおよび記録媒体
JP2004334403A (ja) * 2003-05-02 2004-11-25 Med Solution Kk 遠隔画像解析システムおよびその方法
JP2005020338A (ja) * 2003-06-26 2005-01-20 Fuji Photo Film Co Ltd 異常陰影検出方法および装置並びにプログラム
JP2005237441A (ja) * 2004-02-24 2005-09-08 Kokuritsu Seishin Shinkei Center 脳疾患の診断支援方法及び装置

Family Cites Families (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4839807A (en) * 1987-08-03 1989-06-13 University Of Chicago Method and system for automated classification of distinction between normal lungs and abnormal lungs with interstitial disease in digital chest radiographs
US5109868A (en) * 1991-03-18 1992-05-05 E. R. Squibb & Sons, Inc. Method for diagnosing senile dementia of the Alzheimer's type
US5262945A (en) * 1991-08-09 1993-11-16 The United States Of America As Represented By The Department Of Health And Human Services Method for quantification of brain volume from magnetic resonance images
US5434050A (en) * 1991-08-13 1995-07-18 Regents Of The University Of Minnesota Labelled β-amyloid peptide and methods of screening for Alzheimer's disease
US5617861A (en) * 1994-02-16 1997-04-08 Huntington Medical Research Institutes Magnetic resonance spectral analysis of the brain for diagnosis of clinical conditions
WO1996012187A1 (en) * 1994-10-13 1996-04-25 Horus Therapeutics, Inc. Computer assisted methods for diagnosing diseases
US5632276A (en) * 1995-01-27 1997-05-27 Eidelberg; David Markers for use in screening patients for nervous system dysfunction and a method and apparatus for using same
CN1194045A (zh) * 1995-07-25 1998-09-23 好乐思治疗公司 计算机辅助疾病诊断方法
US6622036B1 (en) * 2000-02-09 2003-09-16 Cns Response Method for classifying and treating physiologic brain imbalances using quantitative EEG
AU4078900A (en) * 1999-04-06 2000-10-23 Harrington Arthritis Research Center Methods for tracking the progression of alzheimer's disease and identifying treatments using transgenic mice
US6430430B1 (en) * 1999-04-29 2002-08-06 University Of South Florida Method and system for knowledge guided hyperintensity detection and volumetric measurement
US6490472B1 (en) * 1999-09-03 2002-12-03 The Mcw Research Foundation, Inc. MRI system and method for producing an index indicative of alzheimer's disease
DE19946429A1 (de) * 1999-09-28 2001-04-05 Stefan Vilsmeier Kontinuierliche Erfassung und Analyse von Gewebeveränderungen
ES2250205T3 (es) * 1999-11-01 2006-04-16 Arthrovision, Inc. Evaluacion de la progresion de una enfermedad utilizando resonancia magnetica nuclear.
US7092748B2 (en) * 2000-02-18 2006-08-15 Centro Nacional De Investigaciones Cientificas (Cnic) System and method for the tomography of the primary electric current of the brain and of the heart
ATE539681T1 (de) * 2001-01-30 2012-01-15 R Christopher Decharms Methoden für die physiologische überwachung, schulung und regulierung
EP1293925A1 (en) * 2001-09-18 2003-03-19 Agfa-Gevaert Radiographic scoring method
US8090164B2 (en) * 2003-08-25 2012-01-03 The University Of North Carolina At Chapel Hill Systems, methods, and computer program products for analysis of vessel attributes for diagnosis, disease staging, and surgical planning
US7935055B2 (en) * 2003-09-19 2011-05-03 Siemens Medical Solutions Usa, Inc. System and method of measuring disease severity of a patient before, during and after treatment
US20050085705A1 (en) * 2003-10-21 2005-04-21 Rao Stephen M. fMRI system for use in detecting neural abnormalities associated with CNS disorders and assessing the staging of such disorders
US20050215889A1 (en) * 2004-03-29 2005-09-29 The Board of Supervisory of Louisiana State University Methods for using pet measured metabolism to determine cognitive impairment
US7042219B2 (en) * 2004-08-12 2006-05-09 Esaote S.P.A. Method for determining the condition of an object by magnetic resonance imaging
US7653263B2 (en) * 2005-06-30 2010-01-26 General Electric Company Method and system for volumetric comparative image analysis and diagnosis

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09147082A (ja) * 1995-11-20 1997-06-06 Sumitomo Heavy Ind Ltd 画像診断支援装置
JPH09330405A (ja) * 1996-06-10 1997-12-22 Nippon Telegr & Teleph Corp <Ntt> 画像処理方法
JP2003524492A (ja) * 2000-02-04 2003-08-19 ザ・ユニバーシティー・オブ・シカゴ 医学的画像のコンピュータ支援解釈用知的探索ワークステーションのための方法、システム、及びコンピュータ読取り型媒体
JP2004517380A (ja) * 2000-08-01 2004-06-10 ロジカル イミジズ、インコーポレイテッド 相互参照される知識と画像データベースを使用した診断支援のシステムと方法
JP2002262033A (ja) * 2001-02-28 2002-09-13 Brother Ind Ltd 情報処理装置およびコンピュータプログラム
JP2003225231A (ja) * 2001-11-20 2003-08-12 General Electric Co <Ge> 肺疾患検出のための方法及びシステム
JP2003284690A (ja) * 2002-03-28 2003-10-07 Nippon Telegr & Teleph Corp <Ntt> 比較読影支援方法、比較読影支援装置、比較読影支援プログラム及びそのプログラムを記録した記録媒体
JP2004239782A (ja) * 2003-02-06 2004-08-26 Daiichi Radioisotope Labs Ltd 脳画像データ処理システム、方法、プログラムおよび記録媒体
JP2004334403A (ja) * 2003-05-02 2004-11-25 Med Solution Kk 遠隔画像解析システムおよびその方法
JP2005020338A (ja) * 2003-06-26 2005-01-20 Fuji Photo Film Co Ltd 異常陰影検出方法および装置並びにプログラム
JP2005237441A (ja) * 2004-02-24 2005-09-08 Kokuritsu Seishin Shinkei Center 脳疾患の診断支援方法及び装置

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9723988B2 (en) 2008-07-07 2017-08-08 Hamamatsu Photonics K.K. Brain disease diagnosis system
JP2010012176A (ja) * 2008-07-07 2010-01-21 Hamamatsu Photonics Kk 脳疾患診断システム
US8676294B2 (en) 2008-07-07 2014-03-18 Hamamatsu Photonics K.K. Brain disease diagnosis system
WO2010004851A1 (ja) * 2008-07-07 2010-01-14 浜松ホトニクス株式会社 脳疾患診断システム
TWI478697B (zh) * 2008-07-07 2015-04-01 Hamamatsu Photonics Kk Diagnosis of brain diseases
KR101558635B1 (ko) 2008-07-07 2015-10-07 하마마츠 포토닉스 가부시키가이샤 뇌 질환 진단 시스템
JP2010029481A (ja) * 2008-07-29 2010-02-12 Univ Of Tsukuba 腫瘍の経過観察レポート自動作成診断支援システム
JP2014531925A (ja) * 2011-09-26 2014-12-04 コーニンクレッカ フィリップス エヌ ヴェ 医用画像システム及び方法
JP2016158681A (ja) * 2015-02-27 2016-09-05 Hoya株式会社 画像処理装置
JP2019045193A (ja) * 2017-08-30 2019-03-22 社会福祉法人兵庫県社会福祉事業団 画像処理方法、画像処理装置、およびプログラム
JP7038370B2 (ja) 2017-08-30 2022-03-18 社会福祉法人兵庫県社会福祉事業団 画像処理方法、画像処理装置、およびプログラム
WO2019131225A1 (ja) * 2017-12-25 2019-07-04 浜松ホトニクス株式会社 脳画像解析装置、脳画像解析方法、及び脳画像解析プログラム
JP2019113444A (ja) * 2017-12-25 2019-07-11 浜松ホトニクス株式会社 脳画像解析装置、脳画像解析方法、及び脳画像解析プログラム
JP6998760B2 (ja) 2017-12-25 2022-01-18 浜松ホトニクス株式会社 脳画像解析装置、脳画像解析方法、及び脳画像解析プログラム
JP2020027507A (ja) * 2018-08-14 2020-02-20 キヤノン株式会社 医用情報処理装置及び医用情報処理方法、プログラム
JP7273470B2 (ja) 2018-08-14 2023-05-15 キヤノン株式会社 医用情報処理装置及び医用情報処理方法、プログラム

Also Published As

Publication number Publication date
DE102006046746A1 (de) 2007-04-05
CN1971565B (zh) 2013-06-12
JP5142009B2 (ja) 2013-02-13
US20070081700A1 (en) 2007-04-12
CN1971565A (zh) 2007-05-30

Similar Documents

Publication Publication Date Title
JP5142009B2 (ja) 診断医用画像の知識ベースを作成する命令を含むコンピュータ・アクセス可能な媒体
JP5142010B2 (ja) 結合重症度変化スコアを生成するコンピュータ
JP5142011B2 (ja) 或る期間にわたる病気の治療の進展又は進展不足を示す複合重症度スコアを生成する命令を持つコンピュータ・アクセス可能な記憶媒体
US20210210179A1 (en) Evolving contextual clinical data engine for medical information
JP6275876B2 (ja) 医療データ処理のための進化型文脈的臨床データエンジン
US7929737B2 (en) Method and system for automatically generating a disease severity index
US9271651B2 (en) System and method for integrated quantifiable detection, diagnosis and monitoring of disease using patient related time trend data
US8099299B2 (en) System and method for mapping structural and functional deviations in an anatomical region
US8180125B2 (en) Medical data processing and visualization technique
US8430816B2 (en) System and method for analysis of multiple diseases and severities
US8934685B2 (en) System and method for analyzing and visualizing local clinical features
US8010381B2 (en) System and method for disease diagnosis from patient structural deviation data
US8908947B2 (en) Integration of medical software and advanced image processing
US20110129129A1 (en) System and method for integrated quantifiable detection, diagnosis and monitoring of disease using population related data for determining a disease signature
US20110129131A1 (en) System and method for integrated quantifiable detection, diagnosis and monitoring of disease using population related time trend data and disease profiles
US20090138279A1 (en) Systems, methods and apparatus for analysis and visualization of metadata information
US20110129130A1 (en) System and method for integrated quantifiable detection, diagnosis and monitoring of disease using population related time trend data
US10839299B2 (en) Non-leading computer aided detection of features of interest in imagery
Miller et al. Improving Prognostic Accuracy of Myocardial Perfusion Imaging With Quantitative Assessment

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090914

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100913

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110921

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110927

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20111121

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20111125

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120301

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120731

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120924

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121016

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20121108

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121108

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151130

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5142009

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees