JP2007124276A - Piezoelectric fiber and nondestructive inspection method using it - Google Patents

Piezoelectric fiber and nondestructive inspection method using it Download PDF

Info

Publication number
JP2007124276A
JP2007124276A JP2005313715A JP2005313715A JP2007124276A JP 2007124276 A JP2007124276 A JP 2007124276A JP 2005313715 A JP2005313715 A JP 2005313715A JP 2005313715 A JP2005313715 A JP 2005313715A JP 2007124276 A JP2007124276 A JP 2007124276A
Authority
JP
Japan
Prior art keywords
piezoelectric
piezoelectric fiber
vibration
nondestructive inspection
core
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005313715A
Other languages
Japanese (ja)
Other versions
JP2007124276A5 (en
JP4630988B2 (en
Inventor
Koji Sato
宏司 佐藤
Junji Takatsubo
純治 高坪
Masaru Nagamine
勝 長峰
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NAGAMINE SEISAKUSHO KK
National Institute of Advanced Industrial Science and Technology AIST
Nagamine Manufacturing Co Ltd
Original Assignee
NAGAMINE SEISAKUSHO KK
National Institute of Advanced Industrial Science and Technology AIST
Nagamine Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NAGAMINE SEISAKUSHO KK, National Institute of Advanced Industrial Science and Technology AIST, Nagamine Manufacturing Co Ltd filed Critical NAGAMINE SEISAKUSHO KK
Priority to JP2005313715A priority Critical patent/JP4630988B2/en
Publication of JP2007124276A publication Critical patent/JP2007124276A/en
Publication of JP2007124276A5 publication Critical patent/JP2007124276A5/ja
Application granted granted Critical
Publication of JP4630988B2 publication Critical patent/JP4630988B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)
  • Transducers For Ultrasonic Waves (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a piezoelectric fiber capable of efficiently performing a nondestructive inspection without lowering the strength of a structure and a nondestructive inspection method using it. <P>SOLUTION: A rod-like piezoelectric fiber A for which a conductive linear metallic core 1 is turned to a core material and a ceramics piezoelectric material 2 is coated around it and turned to an outer layer material is attached to the structure S, and ultrasonic vibrations are planarly generated from the piezoelectric fiber A. When two piezoelectric fibers A and A' are used as the one for generating ultrasonic waves and the one for receiving them, a defect is detected in a square region. Also, since the metallic core 1 functions as a strength member, the strength of the structure S is not lowered even when it is embedded in the structure S. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、圧電ファイバおよびそれを用いた非破壊検査方法に関する。   The present invention relates to a piezoelectric fiber and a nondestructive inspection method using the same.

非破壊検査については、超音波探傷技術が従来より用いられている。
この超音波探傷技術は、圧電素子を構造体の表面に貼り付けたり、内部に埋め込んで設置し、圧電素子から構造体に超音波振動を与えて、その反射波を観測するというものである。すなわち、内部に傷がある場合と無い場合とでは、反射して戻ってくる反射波の時間が違ってくるので、これによって内部のひび割れや、鋳物の巣、溶接の良否などを判定することができる(非特許文献1)。
For non-destructive inspection, ultrasonic flaw detection technology has been conventionally used.
In this ultrasonic flaw detection technique, a piezoelectric element is affixed to the surface of a structure or embedded in the structure, and ultrasonic vibration is applied from the piezoelectric element to the structure to observe the reflected wave. In other words, the time of the reflected wave that is reflected and returned differs depending on whether there is a scratch inside or not, so that it is possible to determine internal cracks, casting nests, welding quality, etc. Yes (Non-Patent Document 1).

しかるに、上記のように、圧電素子を構造体の内部に埋め込むと、構造体自体の強度が低下するという問題がある。
また、振動は発信デバイスから発信し、受信デバイスで検出するので探傷できる部分は線状にしかならない。よって、一定の面積を診断するには、発振器と受振器を走査しなければならず、診断に大変な時間がかかり、効率が悪いものであった。
However, as described above, when the piezoelectric element is embedded in the structure, there is a problem that the strength of the structure itself decreases.
In addition, since vibration is transmitted from the transmitting device and detected by the receiving device, the portion that can be flawed is only linear. Therefore, in order to diagnose a certain area, it is necessary to scan the oscillator and the geophone, which takes a very long time and is inefficient.

一方、圧電素子については、従来から水晶共振子などが用いられていたが、近年では、強誘電体セラミックスであるチタン酸ジルコン酸鉛系の振動子が用いられるようになっている。このチタン酸ジルコン酸鉛系振動子は、変換効率が高く、送波と受波を兼用できるという利点がある(非特許文献2)。   On the other hand, quartz resonators have been conventionally used for piezoelectric elements, but in recent years, a lead zirconate titanate-based vibrator, which is a ferroelectric ceramic, has been used. This lead zirconate titanate-based vibrator has an advantage of high conversion efficiency and can be used for both transmission and reception (Non-patent Document 2).

ちなみに、チタン酸ジルコン酸鉛系振動子を使った撓みアクチュエータとしては、つぎの従来技術がある(特許文献1)。
振動子は、白金やステンレス鋼などの金属コアを芯線として、その周囲にチタン酸ジルコン酸鉛結晶を被覆しており、この振動子を炭素繊維強化プラスチックの積層物に多層に埋め込んだ構造としている。そして、幾つかの金属コアのみを長手方向に伸縮させて、曲げを発生させ、この曲げ変形力をアクチュエータとして利用しようとしたものである。
しかしながら、この従来技術では、実際には曲げ変形はほとんど発生せず、仮に曲げ変形が発生しても、その変形の伝播は限られたものになるので、実用性のある技術ではなかった。
Incidentally, as a bending actuator using a lead zirconate titanate-based vibrator, there is the following conventional technique (Patent Document 1).
The vibrator has a structure in which a metal core such as platinum or stainless steel is used as a core wire and a lead zirconate titanate crystal is coated around the core, and this vibrator is embedded in a multilayer of carbon fiber reinforced plastic. . Then, only some metal cores are expanded and contracted in the longitudinal direction to cause bending, and this bending deformation force is used as an actuator.
However, in this prior art, in reality, almost no bending deformation occurs, and even if bending deformation occurs, propagation of the deformation is limited, and thus it has not been practical.

図解電気の大百科 474〜475頁 平成9年12月20日第1版第2刷発行(株)オーム社Encyclopedia of Illustrated Electricity Pages 474-475 December 20, 1997 First edition, second edition, published 日本の最新技術シリーズ(12) センサ百科 160〜162頁 日刊工業新聞社 1983年7月25日発行Japanese Latest Technology Series (12) Sensor Encyclopedia 160-162 Nikkan Kogyo Shimbun, July 25, 1983 特開2003‐328266号JP 2003-328266 A

本発明は上記事情に鑑み、構造体の強度を低下させることがなく、かつ、非破壊検査を効率よく行える圧電ファイバおよびそれを用いた診断方法を提供することを目的とする。   In view of the above circumstances, an object of the present invention is to provide a piezoelectric fiber that can efficiently perform a nondestructive inspection without reducing the strength of the structure and a diagnostic method using the same.

第1発明の圧電ファイバは、導電性を有する線状の金属コアを芯材とし、その周囲にセラミックス圧電材料の外層材を被覆して棒状に構成したことを特徴とする。
第2発明の圧電ファイバは、第1発明において、前記金属コアが1本、前記外層材の中に入れられていることを特徴とする。
第3発明の圧電ファイバは、第1発明において、前記金属コアが2本並列に、前記外層材の中に入れられていることを特徴とする。
第4発明の非破壊検査方法は、請求項1の圧電ファイバを、構造体に取付け、該圧電ファイバに通電して超音波振動を面状で発生させることを特徴とする。
第5発明の非破壊検査方法は、請求項1の圧電ファイバを、構造体の被検査面を挟む超音波振動の発振位置と受振位置に取り付けて、発振位置の圧電ファイバに通電して超音波振動を面状で発生させ、受振位置の圧電ファイバで超音波振動を受振することを特徴とする。
The piezoelectric fiber according to the first aspect of the invention is characterized in that a linear metal core having conductivity is used as a core, and an outer layer material of a ceramic piezoelectric material is covered around the core to form a rod shape.
A piezoelectric fiber according to a second invention is characterized in that, in the first invention, one of the metal cores is placed in the outer layer material.
According to a third aspect of the present invention, there is provided the piezoelectric fiber according to the first aspect, wherein the two metal cores are placed in parallel in the outer layer material.
A nondestructive inspection method of a fourth invention is characterized in that the piezoelectric fiber of claim 1 is attached to a structure, and the piezoelectric fiber is energized to generate ultrasonic vibration in a planar shape.
In a nondestructive inspection method according to a fifth aspect of the present invention, the piezoelectric fiber according to claim 1 is attached to an oscillation position and a receiving position of ultrasonic vibration sandwiching the surface to be inspected of the structure, and the piezoelectric fiber at the oscillation position is energized to generate ultrasonic waves. Vibration is generated in a planar shape, and ultrasonic vibration is received by a piezoelectric fiber at a receiving position.

第1発明によれば、棒状の圧電ファイバの全長から半径方向へ超音波振動を発振させ、また受振させることができるため、一定の面積を有する領域を一度に探傷することができる。また、金属コアは強度部材として機能するので、検査対象である構造体に埋め込んだとしても構造体の強度を低下させることがない。よって、常時設置型の検査も行える。
第2発明によれば、金属コアは導電性を有しているので、この金属コアを介して通電すれば、セラミックス圧電材料を振動させ探傷に利用させることができる。また、構造的には一本の金属コアを芯材とする単純なものであるから、製造が容易である。
第3発明によれば、金属コアが2本とも外層材の中に配置されているので、セラミックス圧電材料を、2本の金属コア間で往復する方向にのみ振動させることができる。このようにして振動に指向性が与えられると、振動をより遠くまで伝播させることができ、より広い面積での探傷が可能となる。
第4発明によれば、圧電ファイバは棒状であって長いので、面状に超音波振動を発生させることができる。このため、広い面積の探傷を一度に行え、検査効率が高くなる。
第5発明によれば、超音波振動の発振側も受振側も棒状に長い圧電ファイバを用いるので、四角形の領域内を一度に探傷することができる。よって、検査効率が一層高くなる。
According to the first invention, since ultrasonic vibration can be oscillated and received in the radial direction from the entire length of the rod-like piezoelectric fiber, a region having a certain area can be detected at a time. In addition, since the metal core functions as a strength member, the strength of the structure does not decrease even if the metal core is embedded in the structure to be inspected. Therefore, a permanent installation type inspection can also be performed.
According to the second aspect of the invention, since the metal core has electrical conductivity, the ceramic piezoelectric material can be vibrated and used for flaw detection when energized through the metal core. Moreover, since it is structurally simple with a single metal core as a core material, manufacturing is easy.
According to the third invention, since both of the metal cores are arranged in the outer layer material, the ceramic piezoelectric material can be vibrated only in the direction of reciprocation between the two metal cores. When directivity is given to the vibration in this way, the vibration can be propagated farther, and flaw detection over a wider area becomes possible.
According to the fourth invention, since the piezoelectric fiber is rod-shaped and long, ultrasonic vibration can be generated in a planar shape. For this reason, flaw detection over a large area can be performed at a time, and the inspection efficiency is increased.
According to the fifth aspect of the present invention, since the ultrasonic vibration oscillation side and the reception side use the piezoelectric fiber that is long in a rod shape, it is possible to detect the inside of the rectangular region at a time. Therefore, the inspection efficiency is further increased.

つぎに、本発明の実施形態を図面に基づき説明する。
まず、本発明の非破壊検査に用いる圧電ファイバを説明する。
図3は本発明における圧電ファイバの一例を示す説明図である。図4は本発明における圧電ファイバの他の例を示す説明図である。
Next, an embodiment of the present invention will be described with reference to the drawings.
First, the piezoelectric fiber used for the nondestructive inspection of this invention is demonstrated.
FIG. 3 is an explanatory view showing an example of a piezoelectric fiber according to the present invention. FIG. 4 is an explanatory view showing another example of the piezoelectric fiber in the present invention.

図3の(A)図に示す圧電ファイバAは、金属コア1を芯材とし、その周囲にセラミックス圧電材料2(以下、圧電セラミックス2という)を被覆して外層材としたものである。
金属コア1としては、白金やパラジウム、銀パラジウム合金などの導電性があり、外装の圧電性セラミックス材2の焼結温度に耐え、柔軟性あるいは非脆性を有する線状の金属が用いられる。直径は外装材の厚みを考慮し、必要な分極電圧、性能により、0.05〜0.8mm程度の幅で設計を行う必要がある。
圧電セラミックス2はPZT材料、チタン酸ジルコン酸鉛系材料や、BNT材料チタン酸ニオブ酸ビスマス系材料が用いられる。被覆の方法は任意であり、公知の形成方法のいずれを用いてもよい。
外層材の外径は、0.1〜1mm位が好ましく、例えば、0.1〜0.2mmの物がCFRPなどの複合材料の中に埋め込む場合、市販されているCFRPプリプレグ1枚、もしくは2枚の中に埋め込むことができるため、容易に埋め込むことができ、埋め込みの影響を軽減することができる。また直径は小さいほど構造材に埋め込んだとき、構造材の強度が低下しなくてよい、また、長さも任意である。
A piezoelectric fiber A shown in FIG. 3A has a metal core 1 as a core material and a ceramic piezoelectric material 2 (hereinafter referred to as piezoelectric ceramic 2) around the metal core 1 as an outer layer material.
As the metal core 1, a linear metal that has conductivity such as platinum, palladium, silver palladium alloy, can withstand the sintering temperature of the piezoelectric ceramic material 2 of the exterior, and has flexibility or non-brittleness is used. The diameter needs to be designed with a width of about 0.05 to 0.8 mm depending on the required polarization voltage and performance in consideration of the thickness of the exterior material.
As the piezoelectric ceramic 2, a PZT material, a lead zirconate titanate material, or a BNT material bismuth titanate niobate material is used. The coating method is arbitrary, and any known forming method may be used.
The outer diameter of the outer layer material is preferably about 0.1 to 1 mm. For example, when an object of 0.1 to 0.2 mm is embedded in a composite material such as CFRP, it is embedded in one or two commercially available CFRP prepregs. Therefore, embedding can be easily performed, and the influence of embedding can be reduced. Further, the smaller the diameter, the lower the strength of the structural material when embedded in the structural material, and the length is also arbitrary.

図3の(B)図に示すように、1本の金属コア1が圧電セラミックス層2の中心にある場合、圧電セラミックス層2の外周に導電性の被膜を形成し外部電極3とすることがある。
この場合、金属コア1と外部電極3間に一定周波数の電圧を印加すると、圧電セラミックス層2が同じ周波数で振動し、その振動が放射状に外界に向けて振動が伝播される。このような外部電極3を用いた電圧ファイバAは、非導電性の構造体に埋め込んだり、導電性の構造体であっても、その表面に接着して使用する場合に適している。また外部電極3をグランドに落とせば、内部の信号ライン1は外部からの電磁的なノイズを遮断し、高感度なセンサにすることができる。
ただし、構造体が導電性であり、その構造体に埋め込んで使用する場合は、金属コア1と周囲の構造体との間で電圧を印加すると圧電セラミックス層2に振動が発生するので、この場合は、外部電極3を用いなくてもよい。
As shown in FIG. 3B, when one metal core 1 is at the center of the piezoelectric ceramic layer 2, a conductive coating may be formed on the outer periphery of the piezoelectric ceramic layer 2 to form the external electrode 3. is there.
In this case, when a voltage having a constant frequency is applied between the metal core 1 and the external electrode 3, the piezoelectric ceramic layer 2 vibrates at the same frequency, and the vibration is propagated radially toward the outside. The voltage fiber A using such an external electrode 3 is suitable for use in a case where it is embedded in a non-conductive structure or is adhered to the surface of a conductive structure. Further, if the external electrode 3 is dropped to the ground, the internal signal line 1 can block electromagnetic noise from the outside and can be a highly sensitive sensor.
However, when the structure is conductive and is used by being embedded in the structure, vibration is generated in the piezoelectric ceramic layer 2 when a voltage is applied between the metal core 1 and the surrounding structure. The external electrode 3 may not be used.

図4の(A)図は他の実施形態の圧電ファイバBを示している。
芯線である金属コア1,1は2本用いられており、圧電セラミックス層2の中で平行に配置されている。金属コア1や圧電セラミックス層2の材質は、前記実施形態と同様である。
この実施形態では、2本の金属コア1,1間に電圧を印加すると、その間の圧電セラミックス層2が印加電圧と同じ周波数で振動を発生する。また、このため、第1実施形態で用いた外部電極3は必ずしも必要がない。
本実施形態では、2本の金属コア1,1間の部分の圧電セラミックス層2に振動が発生するので、振動が2本の金属コア1,1の並ぶ面に沿って発振する指向性を有する点に特徴がある。
FIG. 4A shows a piezoelectric fiber B according to another embodiment.
Two metal cores 1 and 1 which are core wires are used, and are arranged in parallel in the piezoelectric ceramic layer 2. The material of the metal core 1 and the piezoelectric ceramic layer 2 is the same as that of the said embodiment.
In this embodiment, when a voltage is applied between the two metal cores 1 and 1, the piezoelectric ceramic layer 2 between them generates vibration at the same frequency as the applied voltage. For this reason, the external electrode 3 used in the first embodiment is not necessarily required.
In this embodiment, since vibration is generated in the piezoelectric ceramic layer 2 between the two metal cores 1, 1, the vibration has directivity that oscillates along the surface where the two metal cores 1, 1 are arranged. There is a feature in the point.

つぎに、本発明の非破壊検査方法を説明する。
図1は本発明の一実施形態に係る非破壊検査方法を示している。
(A)図に示すように、構造体Sの表面に2本の圧電ファイバA,Aを平行に並べて接着剤で固定する。一方の圧電ファイバAを発振側とし、他方の圧電ファイバA´を受振側として用いる。発振側の圧電ファイバAに通電して超音波振動を発生させると、圧電ファイバAは長いので、振動は面状に伝播していって、受振側の圧電ファイバA´がその振動を受振し、振動に応じた電圧を発生する。
Next, the nondestructive inspection method of the present invention will be described.
FIG. 1 shows a nondestructive inspection method according to an embodiment of the present invention.
(A) As shown in the figure, two piezoelectric fibers A and A are arranged in parallel on the surface of the structure S and fixed with an adhesive. One piezoelectric fiber A is used as the oscillation side, and the other piezoelectric fiber A ′ is used as the vibration receiving side. When ultrasonic vibration is generated by energizing the piezoelectric fiber A on the oscillation side, the piezoelectric fiber A is long, so that the vibration propagates in a plane shape, and the piezoelectric fiber A ′ on the receiving side receives the vibration, Generates voltage according to vibration.

振動の伝わり方は構造材Sに傷等が有るか無いかによって変る。すなわち、振動発振位置と受振位置との間に、亀裂や破断等があると、振動発振位置から伝わってきた超音波が亀裂部分で回り込んだりするため、受振信号に変化が生じる。この生じた変化により、内部亀裂の位置や大きさを検出することが可能となる。したがって、受振側の圧電ファイバA´の起電力波形を観察することで、傷の有無、大きさ等を判定できる。また、定期的に行うと、内部の亀裂の進行や、疲労破壊の状態をモニタリングを行える。
そして、本実施形態のように、超音波振動を面状で発生させると、一度に一定の面積を有する四角形の領域内の診断ができるので、診断能率が高くなる。
なお、発振側または受振側にのみ本実施形態の長い圧電ファイバAを用い、他方に点状に設置する従来の圧電素子を用いてもよい。この場合でも、探傷面積は三角形になるので、従来の線状の探傷面積よりは効率のよい診断が行える。
The way the vibration is transmitted varies depending on whether or not the structural material S has scratches or the like. That is, if there is a crack or break between the vibration oscillation position and the vibration receiving position, the ultrasonic wave transmitted from the vibration oscillation position wraps around the crack portion, so that the vibration receiving signal changes. Due to this change, the position and size of the internal crack can be detected. Therefore, by observing the electromotive force waveform of the piezoelectric fiber A ′ on the receiving side, it is possible to determine the presence / absence, size, etc. of the scratch. In addition, if performed regularly, the progress of internal cracks and the state of fatigue failure can be monitored.
If ultrasonic vibration is generated in a planar shape as in this embodiment, diagnosis within a rectangular region having a certain area at a time can be performed, so that the diagnostic efficiency increases.
The long piezoelectric fiber A of the present embodiment may be used only on the oscillation side or the vibration receiving side, and a conventional piezoelectric element installed in a dot shape may be used on the other side. Even in this case, since the flaw detection area is a triangle, the diagnosis can be performed more efficiently than the conventional linear flaw detection area.

図1の(B)図は金属コア1を2本用いた圧電ファイバBを2本用いて構造材Sの表面に距離を離して貼付したものである。
この場合も、(A)図の方法と同様に、一定の四角形の面積を診断することができる。また、発振側または受振側にのみ圧電ファイバBを用い、他方に点状の圧電素子を用いて、三角形状の面積を探傷することもできる。
本実施形態の圧電ファイバBでは、発生する振動に指向性があるので、より長い距離を伝播させることができる。このため、より広い面積での診断が可能である。また、2本の圧電ファイバB,B´を所望の場所に設置すれば、ある特定の場所のみを指向した超音波振動を発振し、振動状態のモニタリングを行うことが可能となる。
FIG. 1B is a diagram in which two piezoelectric fibers B using two metal cores 1 are used and are attached to the surface of the structural material S at a distance from each other.
In this case as well, a certain square area can be diagnosed, as in the method of FIG. Further, it is possible to detect a triangular area by using the piezoelectric fiber B only on the oscillation side or the receiving side and using a point-like piezoelectric element on the other side.
In the piezoelectric fiber B of this embodiment, since the generated vibration has directivity, a longer distance can be propagated. For this reason, diagnosis in a larger area is possible. Further, if the two piezoelectric fibers B and B ′ are installed at a desired location, it is possible to oscillate ultrasonic vibration directed only at a specific location and monitor the vibration state.

図2は本発明の他の実施形態に係る非破壊検査方法を示している。
(A)図は、構造材Sの内部に2本の孔を距離をあけて穿孔し、それぞれの中に1本ずつ圧電ファイバA,A´を埋め込んだものである。一対の圧電ファイバA.A´は互いに離間し、かつ平行である。
(B)図は2本の金属コア1,1を用いる圧電ファイバBを2本離間して埋め込んだものである。
FIG. 2 shows a nondestructive inspection method according to another embodiment of the present invention.
(A) In the figure, two holes are formed at a distance in the structure material S, and one piezoelectric fiber A, A ′ is embedded in each hole. A pair of piezoelectric fibers A ′ are spaced apart and parallel to each other.
(B) In the figure, two piezoelectric fibers B using two metal cores 1 and 1 are embedded separately.

上記2つの診断方法では、常時圧電ファイバA、Bを埋め込んで使用できるので、構造体を通常の使用に供しながら、常時診断が可能となるので、亀裂等の発生を初期段階で発見することができる。
また、これらの実施形態は、金属コア1が、強度部材として機能するので、孔をあけたとしても構造体の強度の低下を極力防止することができる。
In the above two diagnostic methods, the piezoelectric fibers A and B can always be embedded and used. Therefore, the structure can be always diagnosed while being used for normal use. Therefore, the occurrence of cracks or the like can be detected at an early stage. it can.
In these embodiments, since the metal core 1 functions as a strength member, even if a hole is made, a decrease in the strength of the structure can be prevented as much as possible.

つぎに、図5に基づき実験例を説明する。
圧電ファイバAは、内部に直径0.05mmの白金コアを持つ直径0.2mmのPZT材料からなる圧電材料を形成し、さらにその表面に、スパッタリングや無電解めっき、シルバーペーストなどを用いて導電性皮膜を形成したものである。
上記の圧電ファイバAを1本、長さ300mm、幅50mm、厚み4mmのアルミニウム板に貼り付けている。この圧電ファイバAの金属コアと導電性皮膜との間にバースト信号を加え、圧電ファイバAにd33方向の振動を励振した。発生した振動は、アルミ板上を進行していく。その時の振動を圧電ファイバAから30mm、100mmはなれた位置で圧電デバイスCh1〜Ch4を用いて検出した。圧電デバイスCh1〜Ch3は亀裂(Crack)をはさんで取付け、圧電デバイスCh4は正常な板部分に取り付けた。
検出結果を図6に示す。同図に示すように、亀裂がない場合は超音波信号が直接伝わってくるため、検出デバイスからの信号が大きく出ているが、亀裂が進行してくると、亀裂により、超音波に回り込みが発生するため、信号の伝播が遅れてくる。また信号自体も亀裂により、超音波振動が弱められるため、信号の大きさも弱くなっていっているのがわかる。
Next, an experimental example will be described with reference to FIG.
Piezoelectric fiber A is formed with a 0.2 mm diameter PZT material with a platinum core having a 0.05 mm diameter inside, and a conductive film is formed on the surface using sputtering, electroless plating, silver paste, or the like. Formed.
One piezoelectric fiber A is attached to an aluminum plate having a length of 300 mm, a width of 50 mm, and a thickness of 4 mm. A burst signal was applied between the metal core of the piezoelectric fiber A and the conductive film, and vibration in the d33 direction was excited in the piezoelectric fiber A. The generated vibration travels on the aluminum plate. The vibration at that time was detected using the piezoelectric devices Ch1 to Ch4 at positions 30 mm and 100 mm away from the piezoelectric fiber A. The piezoelectric devices Ch1 to Ch3 were attached with cracks, and the piezoelectric device Ch4 was attached to a normal plate portion.
The detection result is shown in FIG. As shown in the figure, when there is no crack, the ultrasonic signal is transmitted directly, so the signal from the detection device is large, but when the crack progresses, the crack causes the ultrasonic wave to wrap around. As a result, signal propagation is delayed. It can also be seen that the signal itself is also weakening because the ultrasonic vibration is weakened due to the crack itself.

本発明は、構造体に生じた亀裂の検出や亀裂の進行の検出を行なうことができるため、ビル、陸橋等の構造体から、航空機、自動車等の幅広い社会インフラに利用することができ、構造体内部の疲労破壊防止、損傷個所診断を行い構造体の信頼性の向上とメンテナンスコストの軽減が可能である。   Since the present invention can detect cracks occurring in a structure and detect the progress of cracks, it can be used for a wide range of social infrastructures such as aircraft and automobiles from structures such as buildings and overpasses. It is possible to improve the reliability of the structure and reduce the maintenance cost by preventing fatigue breakdown inside the body and diagnosing damaged parts.

本発明の第1実施形態に係る非破壊検査方法を示す説明図である。It is explanatory drawing which shows the nondestructive inspection method which concerns on 1st Embodiment of this invention. 本発明の第2実施形態に係る非破壊検査方法を示す説明図である。It is explanatory drawing which shows the nondestructive inspection method which concerns on 2nd Embodiment of this invention. 本発明における圧電ファイバの一例を示す説明図である。It is explanatory drawing which shows an example of the piezoelectric fiber in this invention. 本発明における圧電ファイバの他の例を示す説明図である。It is explanatory drawing which shows the other example of the piezoelectric fiber in this invention. 実験例の説明図である。It is explanatory drawing of an experiment example. 実験結果を示すグラフである。It is a graph which shows an experimental result.

符号の説明Explanation of symbols

1 金属コア
2 セラミックス圧電材料
3 外部電極
1 Metal Core 2 Ceramic Piezoelectric Material 3 External Electrode

Claims (5)

導電性を有する線状の金属コアを芯材とし、その周囲にセラミックス圧電材料の外層材を被覆して棒状に構成した
ことを特徴とする圧電ファイバ。
A piezoelectric fiber comprising a linear metal core having electrical conductivity as a core material, and an outer layer material of a ceramic piezoelectric material coated around the core material to form a rod shape.
前記金属コアが1本、前記外層材の中に入れられている
ことを特徴とする請求項1記載の圧電ファイバ。
The piezoelectric fiber according to claim 1, wherein one metal core is placed in the outer layer material.
前記金属コアが2本並列に、前記外層材の中に入れられている
ことを特徴とする請求項1記載の圧電ファイバ。
The piezoelectric fiber according to claim 1, wherein two metal cores are placed in parallel in the outer layer material.
請求項1の圧電ファイバを、構造体に取付け、該圧電ファイバに通電して超音波振動を面状で発生させる
ことを特徴とする非破壊検査方法。
A nondestructive inspection method comprising attaching the piezoelectric fiber according to claim 1 to a structure, and energizing the piezoelectric fiber to generate ultrasonic vibrations in a planar shape.
請求項1の圧電ファイバを、構造体の被検査面を挟む超音波振動の発振位置と受振位置に取り付けて、発振位置の圧電ファイバに通電して超音波振動を面状で発生させ、受振位置の圧電ファイバで超音波振動を受振する
ことを特徴とする非破壊検査方法。
The piezoelectric fiber according to claim 1 is attached to an oscillation position and a receiving position of ultrasonic vibration sandwiching the surface to be inspected of the structure, and the ultrasonic vibration is generated in a planar shape by energizing the piezoelectric fiber at the oscillation position. A nondestructive inspection method characterized by receiving ultrasonic vibration with a piezoelectric fiber.
JP2005313715A 2005-10-28 2005-10-28 Piezoelectric fiber and nondestructive inspection method using the same Expired - Fee Related JP4630988B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005313715A JP4630988B2 (en) 2005-10-28 2005-10-28 Piezoelectric fiber and nondestructive inspection method using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005313715A JP4630988B2 (en) 2005-10-28 2005-10-28 Piezoelectric fiber and nondestructive inspection method using the same

Publications (3)

Publication Number Publication Date
JP2007124276A true JP2007124276A (en) 2007-05-17
JP2007124276A5 JP2007124276A5 (en) 2008-12-11
JP4630988B2 JP4630988B2 (en) 2011-02-09

Family

ID=38147629

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005313715A Expired - Fee Related JP4630988B2 (en) 2005-10-28 2005-10-28 Piezoelectric fiber and nondestructive inspection method using the same

Country Status (1)

Country Link
JP (1) JP4630988B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101858888A (en) * 2010-04-16 2010-10-13 南京航空航天大学 Structure damage positioning device based on metal core bearing piezoelectric fiber
CN110226238A (en) * 2017-01-11 2019-09-10 帝人富瑞特株式会社 Piezoelectric structure body and the equipment for using it
JPWO2021193957A1 (en) * 2020-03-26 2021-09-30

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0279695U (en) * 1988-12-06 1990-06-19
JP2003328266A (en) * 2002-01-21 2003-11-19 National Institute Of Advanced Industrial & Technology Lead zirconate titanate fiber, smart board using lead zirconate titanate fiber and actuator and sensor utilizing smart board

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0279695U (en) * 1988-12-06 1990-06-19
JP2003328266A (en) * 2002-01-21 2003-11-19 National Institute Of Advanced Industrial & Technology Lead zirconate titanate fiber, smart board using lead zirconate titanate fiber and actuator and sensor utilizing smart board

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101858888A (en) * 2010-04-16 2010-10-13 南京航空航天大学 Structure damage positioning device based on metal core bearing piezoelectric fiber
CN110226238A (en) * 2017-01-11 2019-09-10 帝人富瑞特株式会社 Piezoelectric structure body and the equipment for using it
US11700772B2 (en) 2017-01-11 2023-07-11 Teijin Frontier Co., Ltd. Piezoelectric structure and device using same
CN110226238B (en) * 2017-01-11 2023-08-15 帝人富瑞特株式会社 Piezoelectric structure and device using same
JPWO2021193957A1 (en) * 2020-03-26 2021-09-30
WO2021193957A1 (en) * 2020-03-26 2021-09-30 株式会社村田製作所 Composite fiber
JP7173401B2 (en) 2020-03-26 2022-11-16 株式会社村田製作所 Composite fiber
CN115362287A (en) * 2020-03-26 2022-11-18 株式会社村田制作所 Composite fiber

Also Published As

Publication number Publication date
JP4630988B2 (en) 2011-02-09

Similar Documents

Publication Publication Date Title
JP6004587B2 (en) Ultrasonic transducer assembly and system for monitoring structural integrity
US20100192693A1 (en) Acoustic transducer assembly
US9002022B1 (en) Methods for non-destructive inspection of thick fiber-reinforced composite parts
KR20210132227A (en) Enhanced guided wave thermography inspection systems and methods of using the same
JP4630988B2 (en) Piezoelectric fiber and nondestructive inspection method using the same
WO2015178821A1 (en) Sensor and method for detecting acoustic emission from a bearing
JP2007124276A5 (en)
Bowen et al. Flexible piezoelectric transducer for ultrasonic inspection of non-planar components
JP2010190884A (en) Crack detection support device and crack detection support method
JP5105851B2 (en) Ultrasonic probe
Engineer The mechanical and resonant behaviour of a dry coupled thickness-shear PZT transducer used for guided wave testing in pipe line
JP4134911B2 (en) Ultrasonic transducer and method for manufacturing the same
WO2020027729A1 (en) Structural health monitoring method and system
JP2005064919A (en) High-temperature ultrasonic probe
JP2010050796A (en) Ultrasonic probe element
JP2005156432A (en) Breaking sound sensor
Hailu et al. Comparison of different piezoelectric materials for the design of embedded transducers for structural health monitoring applications
Dhutti et al. Development of low frequency high temperature ultrasonic transducers for in-service monitoring of pipework in power plants
JP2005083752A (en) Breaking sound sensor
KR101960019B1 (en) Magnetostriction transducer having enhanced magnitude of output signal due to a resonance structure, and method of enhancing magnitude of output signal of transducers
Kim et al. Continuous fatigue crack monitoring without baseline data
CN217739088U (en) Ultrasonic straight probe, ultrasonic sensor and online monitoring system
CN220479326U (en) Ultra-long bending vibration acoustic wave transducer and acoustic wave detecting instrument
JP2007288289A (en) Ultrasonic transducer and ultrasonic cleaner
Schubert et al. A novel sensor design for generation and detection of shear-horizontal waves based on piezoelectric fibres

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081023

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20081024

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081029

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100917

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100928

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101014

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131126

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees