JP2007123646A - Structure of multilayer printed wiring board - Google Patents

Structure of multilayer printed wiring board Download PDF

Info

Publication number
JP2007123646A
JP2007123646A JP2005315535A JP2005315535A JP2007123646A JP 2007123646 A JP2007123646 A JP 2007123646A JP 2005315535 A JP2005315535 A JP 2005315535A JP 2005315535 A JP2005315535 A JP 2005315535A JP 2007123646 A JP2007123646 A JP 2007123646A
Authority
JP
Japan
Prior art keywords
layer
conductive
wiring
conductive wiring
printed wiring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005315535A
Other languages
Japanese (ja)
Inventor
Hiroshi Harada
博司 原田
Masahide Oikawa
雅英 及川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Avionics Co Ltd
Original Assignee
Nippon Avionics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Avionics Co Ltd filed Critical Nippon Avionics Co Ltd
Priority to JP2005315535A priority Critical patent/JP2007123646A/en
Publication of JP2007123646A publication Critical patent/JP2007123646A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Production Of Multi-Layered Print Wiring Board (AREA)
  • Structure Of Printed Boards (AREA)
  • Manufacturing Of Printed Wiring (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To suppress the generation of a void at the time of lamination in a multilayer printed wiring board. <P>SOLUTION: In the structure of a multilayer printed wiring board; a conductive wiring layer 3 that becomes an inner layer is formed, an area which is in the same layer as the conductive wiring layer 3 and in which conductive wiring is not formed at least is filled with a resin 5, the resin 5 is polished, and then an adhesive resin layer is laminated on a polished surface. In such a structure of the multilayer printed wiring board, a dummy conductive layer 4 is formed in the area which is in the same layer as the conductive wiring layer 3 and in which conductive wiring is not formed. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、内層に配線回路層を有する積層構造のプリント配線板に関するものである。   The present invention relates to a laminated printed wiring board having a wiring circuit layer as an inner layer.

従来から、多層プリント配線板と呼ばれる積層構造のプリント配線板は、コアと呼ばれ
るガラスクロス等で補強された樹脂基板の上に、銅等による導体回路と層間絶縁樹脂層と
を交互に積層することで作製される。
Conventionally, a printed wiring board with a laminated structure called a multilayer printed wiring board is made by alternately laminating a conductor circuit made of copper or the like and an interlayer insulating resin layer on a resin substrate reinforced with a glass cloth or the like called a core. It is made with.

例えば従来の代表的な多層プリント配線板の製造工程を図5に示す。まず、図5(a)
で示す符号51は前述したコアであり、その両主面にはサブトラクティブ法等で形成され
た導電配線層52、53が設けられている。これをコア基板54とする。またその上下に
は、樹脂付き銅箔55、56が配されている。これら樹脂付き銅箔は銅箔57、58に接
着樹脂層59,60が積層されたもので、図5(b)で示すように加熱および加圧により
積層される。
For example, FIG. 5 shows a conventional process for manufacturing a typical multilayer printed wiring board. First, FIG. 5 (a)
Reference numeral 51 denotes the core described above, and conductive wiring layers 52 and 53 formed by a subtractive method or the like are provided on both main surfaces thereof. This is the core substrate 54. Also, copper foils 55 and 56 with resin are arranged above and below. These copper foils with resin are obtained by laminating adhesive resin layers 59 and 60 on copper foils 57 and 58, and are laminated by heating and pressing as shown in FIG.

次に図5(c)で示すようにコア基板54に形成された導電配線層52、53のうち層
間接続用のパッドをめがけてレーザ加工等により凹所61が形成される。これら凹所は導
電配線層52,53が十分に露出するように形成され、さらに表面に残った残渣を薬品等
で除去する。
Next, as shown in FIG. 5C, a recess 61 is formed by laser processing or the like over the pad for interlayer connection among the conductive wiring layers 52 and 53 formed on the core substrate 54. These recesses are formed so that the conductive wiring layers 52 and 53 are sufficiently exposed, and the residue remaining on the surface is removed with chemicals or the like.

次に図5(d)で示すように最外層の銅箔57、58、凹所61の側面、導電配線層5
2、53の露出面全てを覆うように銅によるパネルめっきが施される。その後図5(e)
で示すように両外面の導電層を所望の配線形状にエッチング等で加工することにより、内
層配線となる導電配線層52、53に加えて外層配線63が形成され、さらに層間接続部
64が形成される。
Next, as shown in FIG. 5D, the outermost copper foils 57 and 58, the side surfaces of the recess 61, the conductive wiring layer 5
Panel plating with copper is performed so as to cover all the exposed surfaces of Nos. 2 and 53. Thereafter, FIG. 5 (e)
As shown in FIG. 5, by processing the conductive layers on both outer surfaces into a desired wiring shape by etching or the like, the outer wiring 63 is formed in addition to the conductive wiring layers 52 and 53 serving as the inner wiring, and the interlayer connection portion 64 is further formed Is done.

また、近年になり図6で示すような層間接続構造も知られてきた(特許文献1)。この
構造も図6(a)で示すように、コア基板54の上下に樹脂付き銅箔が配されるが、この
場合の樹脂付き銅箔65、66は、銅箔67、68に接着樹脂層69、70が積層されて
いるのに加え、コア基板54に形成済みの層間接続用パッドの位置に対応して導電ペース
ト71が柱状に形成されている。
In recent years, an interlayer connection structure as shown in FIG. 6 has also been known (Patent Document 1). In this structure, as shown in FIG. 6 (a), copper foils with resin are arranged above and below the core substrate 54. In addition to the stacked layers 69 and 70, a conductive paste 71 is formed in a columnar shape corresponding to the position of the interlayer connection pad formed on the core substrate 54.

このあと図6(b)で示すように、コア基板54と樹脂付き銅箔65、66とが加熱お
よび加圧のもとに積層され、両外面にパネルめっきが施される。さらに図6(c)のよう
に両外面の導電層を所望の配線形状にエッチング等で加工することにより、内層配線とな
る導電配線層52、53に加えて外層配線72が形成され、さらに硬化した導電ペースト
からなる層間接続部73が形成される。
Thereafter, as shown in FIG. 6B, the core substrate 54 and the resin-coated copper foils 65 and 66 are laminated under heat and pressure, and panel plating is performed on both outer surfaces. Further, as shown in FIG. 6C, by processing the conductive layers on both outer surfaces into a desired wiring shape by etching or the like, the outer wiring 72 is formed in addition to the conductive wiring layers 52 and 53 to be the inner wiring, and further cured. An interlayer connection portion 73 made of the conductive paste is formed.

このようにプリント配線板の積層構造および層間接続構造の代表的な2例を挙げたが、
近年では、携帯端末等の市場から要求されるプリント配線板の厚さ制限の厳しい要求、あ
るいは高多層板市場からは一層あたりの厚さへの厳しい要求があり、この場合は、接着樹
脂層を限界まで薄くすることが必要となってきた。
As described above, two typical examples of the laminated structure of the printed wiring board and the interlayer connection structure are given.
In recent years, there has been a strict requirement for the thickness limit of the printed wiring board required by the market for mobile terminals or the like, or a strict requirement for the thickness per layer from the high multilayer board market. It has become necessary to make it as thin as possible.

このような状況から接着樹脂層を薄くすることで、次のような問題が生じた。図7にそ
の様子を示す。図7は前述の代表的な積層構造の2例であり、図7(a)は凹所にめっき
を施すことによる層間接続、図7(b)は導電ペーストによる層間接続の断面の様子であ
る。
The following problems were caused by making the adhesive resin layer thinner from such a situation. This is shown in FIG. 7A and 7B show two examples of the above-described typical laminated structure. FIG. 7A shows an interlayer connection by plating a recess, and FIG. 7B shows a cross-sectional state of the interlayer connection by a conductive paste. .

ここで、両者の接着樹脂層59、60、69、70が限界まで薄くなるということは、
接着樹脂層の厚さに対する導電配線層52、53の厚さの比率が高くなることにつながる
。したがって加熱および加圧のもとに積層されるとき接着樹脂層がある程度流動性を持つ
とはいえ、接着樹脂層が薄い場合は、導電配線層がある領域とない領域とでは圧力に差が
生じるため、図7(a)のアや図7(b)のイで示す領域にはボイドが発生しやすくなり
、極端な例では後の加熱工程でデラミネーションに至る場合もある。
Here, both adhesive resin layers 59, 60, 69, 70 are thinned to the limit,
This leads to an increase in the ratio of the thickness of the conductive wiring layers 52 and 53 to the thickness of the adhesive resin layer. Therefore, even when the adhesive resin layer has some fluidity when laminated under heating and pressurization, if the adhesive resin layer is thin, there will be a difference in pressure between the region with and without the conductive wiring layer. For this reason, voids are likely to occur in the regions indicated by a in FIG. 7A and b in FIG. 7B, and in an extreme example, delamination may occur in the subsequent heating step.

この問題の対策の一つとして、導電配線層による凹凸を絶縁樹脂で埋める公知の技術が
ある。この方法は図8(a)で示すように導電配線層52、53が形成されたコア基板5
4の主面にスクリーン印刷等で樹脂層を形成し、図8(b)で示すように形成した樹脂層
(コート樹脂)表面を研磨し、平滑化するものである。以下この方法をアンダーコート加
工と称する。
As one of measures against this problem, there is a known technique for filling unevenness caused by the conductive wiring layer with an insulating resin. In this method, the core substrate 5 on which the conductive wiring layers 52 and 53 are formed as shown in FIG.
A resin layer is formed on the main surface 4 by screen printing or the like, and the surface of the resin layer (coat resin) formed as shown in FIG. 8B is polished and smoothed. Hereinafter, this method is referred to as undercoat processing.

特開2005−209993号公報(図2)Japanese Patent Laying-Open No. 2005-209993 (FIG. 2)

このアンダーコート加工を施せば、図9(a)で示すように積層時の接着樹脂層に加わ
る圧力は、基板全域でほぼ均等にすることができる。また、この例の場合は前述した凹所
にめっきを施す層間接続法なので、アンダーコートの研磨は導電配線層の上部(符号ウで
示す)にもコート樹脂を残し、レーザ当で接着樹脂層とコート樹脂を一気に除去して図9
(b)のように凹所を形成すればよい。
If this undercoat process is performed, as shown in FIG. 9A, the pressure applied to the adhesive resin layer at the time of lamination can be made substantially uniform over the entire area of the substrate. In addition, in this example, the interlayer connection method in which the above-mentioned recess is plated, so that the undercoat polishing also leaves the coat resin on the upper part of the conductive wiring layer (indicated by symbol C), and the adhesive resin layer with the laser. The coating resin is removed all at once.
What is necessary is just to form a recess like (b).

一方、前述した導電ペーストによる層間接続方法を採用する場合は、図10(a)で示
すように、アンダーコート加工でコート樹脂を研磨する際に導電配線層の表面が露出する
まで研磨を行う必要がある。この場合は導電配線層表面を数μm除去するまで研磨を続け
るのが一般的である。このようにすれば図10(b)で示すように積層時の接着樹脂層に
加わる圧力は、基板全域でほぼ均等にすることができる。
On the other hand, when the interlayer connection method using the conductive paste described above is adopted, as shown in FIG. 10A, polishing is necessary until the surface of the conductive wiring layer is exposed when the coating resin is polished by undercoat processing. There is. In this case, the polishing is generally continued until the surface of the conductive wiring layer is removed by several μm. In this way, as shown in FIG. 10B, the pressure applied to the adhesive resin layer at the time of lamination can be made substantially uniform over the entire area of the substrate.

しかしながらアンダーコート加工におけるコート樹脂は金属からなる導電配線層に比し
て容易に切削されやすく、研磨機で平坦に加工しようとしても、導電配線層が密な領域と
比較して、広範囲に導電配線層がない領域あるいは疎な領域の研磨量が多くなる傾向があ
る。
However, the coating resin in the undercoat process is easier to cut than the conductive wiring layer made of metal, and even when trying to process it flatly with a polishing machine, the conductive wiring layer has a wider range compared to the dense area of the conductive wiring layer. There is a tendency that the amount of polishing in a region without a layer or a sparse region increases.

その結果導電配線層がないあるいは疎な領域の厚さが薄くなり、図11(b)の符号オ
で示す部分には、やはりボイドが発生しやすくなる。ここで、凹所にめっきを施す層間接
続構造(図11(a))の符号エの部分と、導電ペーストによる層間接続構造(図11(
b))の符号オの部分とを比較すると、アンダーコート加工時に導電配線層の上面を数μ
m研磨する必要がある図11(b)の形態の方に顕著にこの問題が表れる。
As a result, the thickness of a region where there is no conductive wiring layer or a sparse region is thinned, and voids are likely to be generated in the portion indicated by reference character O in FIG. Here, the portion of the interlayer connection structure (FIG. 11 (a)) for plating the recess and the interlayer connection structure (FIG.
b)), the upper surface of the conductive wiring layer is several μm at the time of undercoat processing.
This problem appears remarkably in the form of FIG.

本発明は第1の態様として、内層となる導電配線層が形成され、この導電配線層と同一
層で少なくとも導電配線が形成されない領域に樹脂が充填され、この樹脂が研磨されたの
ちに研磨面に接着樹脂層が積層される多層プリント配線板の構造であって、前記導電配線
層と同一層の、導電配線が形成されていない領域に、ダミーの導電層が形成されているこ
とを特徴とする多層プリント配線板の構造を提供する。
As a first aspect of the present invention, a conductive wiring layer serving as an inner layer is formed, a resin is filled in a region where at least conductive wiring is not formed in the same layer as the conductive wiring layer, and the polishing surface is formed after the resin is polished. A structure of a multilayer printed wiring board in which an adhesive resin layer is laminated, wherein a dummy conductive layer is formed in a region of the same layer as the conductive wiring layer where no conductive wiring is formed. A multilayer printed wiring board structure is provided.

また本発明は第2の態様として、前記ダミーの導電層は、前記導電配線層と同一素材で
あることを特徴とする第1の態様として記載の多層プリント配線板の構造を提供する。
According to a second aspect of the present invention, there is provided a multilayer printed wiring board structure according to the first aspect, wherein the dummy conductive layer is made of the same material as the conductive wiring layer.

さらに本発明は第3の態様として、前記ダミーの導電層は任意のパターン形状で形成さ
れ、このダミーの導電層が形成される領域において、前記パターン形状により導かれる導
電層形成面積と導電層非形成面積との比が、前記導電配線が形成されている領域の導電配
線形成面積と導電配線非形成面積との比にほぼ近似であることを特徴とする第2の態様と
して記載の多層プリント配線板の構造を提供する。
Further, according to a third aspect of the present invention, the dummy conductive layer is formed in an arbitrary pattern shape, and in the region where the dummy conductive layer is formed, a conductive layer formation area and a conductive layer non-conductive region guided by the pattern shape are formed. The multilayer printed wiring according to the second aspect, wherein the ratio of the formation area is approximately approximate to the ratio of the conductive wiring formation area and the conductive wiring non-formation area in the region where the conductive wiring is formed Provides board structure.

本発明の第1の態様によれば、アンダーコート加工時の研磨量がプリント配線板全体で
均一になり、研磨後の板厚が均一になる。したがって、この研磨面を接着樹脂層と積層し
た場合でもボイドの発生を防ぐことができる。
According to the first aspect of the present invention, the amount of polishing at the time of undercoat processing is uniform throughout the printed wiring board, and the plate thickness after polishing is uniform. Therefore, even when this polished surface is laminated with the adhesive resin layer, generation of voids can be prevented.

また本発明の第2の態様によれば、導電配線層とダミーの導電層の研磨されやすさが単
位面積あたりで同等になり、より研磨後の板厚を均一にすることが容易になる。
Further, according to the second aspect of the present invention, the ease of polishing of the conductive wiring layer and the dummy conductive layer becomes equal per unit area, and it becomes easier to make the plate thickness after polishing more uniform.

さらに本発明の第3の態様によれば、導電配線のある領域とダミーの導電層のある領域
との研磨されやすさを一層同等にしやすくなり、より研磨後の板厚を均一にすることが容
易になる。
Furthermore, according to the third aspect of the present invention, it becomes easier to equalize the region where the conductive wiring is provided and the region where the dummy conductive layer is provided, and the thickness after polishing can be made more uniform. It becomes easy.

次に添付図面を参照して本発明に係る多層プリント配線板の構造の実施形態を詳細に説
明する。
Next, an embodiment of the structure of a multilayer printed wiring board according to the present invention will be described in detail with reference to the accompanying drawings.

図1は本発明の第1の態様に係る実施形態を示す多層プリント配線板の平面図である。
ここでは、生産工程の合理化のために製品となる複数枚のプリント配線板を1枚の基板上
に取り合わせた多面取り基板を例にあげた。
FIG. 1 is a plan view of a multilayer printed wiring board showing an embodiment according to the first aspect of the present invention.
Here, a multi-sided board in which a plurality of printed wiring boards, which are products, are combined on a single board for the purpose of rationalizing the production process is taken as an example.

図1において符号1は生産過程での1単位となる基盤であり、製品となる多層プリント
配線板2を4枚取り合わせたものである。この4枚はプリント配線板としての生産工程が
終了してから分割されることもあるが、このまま部品実装を行って、ほぼ機能的にも完成
に近い状態になってから分割されることが多い。また分割に際しては、基板表面の切断位
置に断面V形状の溝(図示せず)やスリット(図示せず)を設けておいたり、基板自体や
設備の都合により種々の公知の方法が採用される。
In FIG. 1, reference numeral 1 denotes a base that is a unit in the production process, and is a combination of four multilayer printed wiring boards 2 that are products. These four sheets may be divided after the production process as a printed wiring board is completed, but it is often divided after the components are mounted as they are and the state is almost functionally close to completion. . In the division, a groove (not shown) or a slit (not shown) having a V-shaped cross section is provided at a cutting position on the surface of the substrate, or various known methods are adopted depending on the convenience of the substrate itself or equipment. .

また、図1で示しているのは導電配線層3が形成された後であって積層前のコア基板の
表面の様子である。ここで導電配線層3は製品となるプリント配線板の機能に必要な導電
配線であり、他の層に層間接続するためのパッド3Aや、この層の中で2次元的に接続機
能を果たす配線パターン3Bで構成されている。言わば導電層が製品機能に必要な領域で
ある。
Further, FIG. 1 shows the state of the surface of the core substrate after the conductive wiring layer 3 is formed and before lamination. Here, the conductive wiring layer 3 is a conductive wiring necessary for the function of a printed wiring board as a product, and a pad 3A for interlayer connection to other layers and a wiring that performs a two-dimensional connection function in this layer. It consists of pattern 3B. In other words, the conductive layer is an area necessary for product function.

一方これ以外の領域には製品機能としては必要のないダミーの導電層4が配設されてい
る。この様子を断面図にして図2に示す。ここで図2(a)はアンダーコート加工を施す
前の状態であり、紙面左側が製品機能に必要な導電配線層3であり紙面右側がダミーの導
電層4である。この例の場合ダミーの導電配線像はべたパターン形状となっている。
On the other hand, a dummy conductive layer 4 which is not necessary for the product function is disposed in the other region. This situation is shown in a sectional view in FIG. Here, FIG. 2A shows a state before the undercoat process is performed, the conductive wiring layer 3 necessary for the product function on the left side of the paper and the dummy conductive layer 4 on the right side of the paper. In this example, the dummy conductive wiring image has a solid pattern shape.

また、図2(b)にはアンダーコート加工用のコート樹脂5が塗布された様子を示し、
図2(c)には前記コート樹脂5の余分な部分を削除し平滑化するために研磨が施された
あとの様子を示す。ここで、図2(c)のように導電配線層3の層間接続用パッド3Aは
上面がコート樹脂5から確実に露出していなければならないので、研磨が進行して研磨ツ
ールが導電配線層3やダミーの導電層4の上面に接触してからも研磨を継続し、さらに数
μm研磨を進行させる。
FIG. 2B shows a state in which the coating resin 5 for undercoat processing is applied,
FIG. 2 (c) shows a state after polishing to remove and smooth the excess portion of the coating resin 5. FIG. Here, as shown in FIG. 2C, the upper surface of the interlayer connection pad 3A of the conductive wiring layer 3 must be surely exposed from the coating resin 5, so that the polishing progresses and the polishing tool is connected to the conductive wiring layer 3. Alternatively, the polishing is continued even after contacting the upper surface of the dummy conductive layer 4, and the polishing is further advanced by several μm.

このときダミーの導電層4が無ければ導電配線層3のある領域に比べて研磨されやすい
樹脂のみの紙面右側の板厚が薄くなってしまう場合がある。したがってダミーの導電層4
を配設することで板厚を基板全域にわたって均等にできるのであるが、やみくもにべたパ
ターンを広く形成したのでは前記数μmの研磨をべたパターン全域にわたって行わねばな
らず無駄であるため、べたパターンの面積を適当に調節するのがよい。
At this time, if the dummy conductive layer 4 is not provided, the plate thickness on the right side of the sheet of the resin alone, which is easily polished, may be thinner than in a region where the conductive wiring layer 3 is present. Therefore, the dummy conductive layer 4
It is possible to make the plate thickness uniform over the entire area of the substrate, but it is wasteful to form the solid pattern on the entire substrate because it is necessary to perform the polishing of several μm over the entire pattern. It is recommended to appropriately adjust the area of the.

次に本発明の第2の態様に係る実施形態について説明する。図1で示したダミーの導電
層4は導電配線層3のパターン形成と同時に形成したものである。つまり基板1表面に形
成した銅箔層の不要部分をエッチング等で除去する際にこのべたパターンをマスキング等
で残したものである。
Next, an embodiment according to the second aspect of the present invention will be described. The dummy conductive layer 4 shown in FIG. 1 is formed simultaneously with the pattern formation of the conductive wiring layer 3. That is, when the unnecessary portion of the copper foil layer formed on the surface of the substrate 1 is removed by etching or the like, the solid pattern is left by masking or the like.

これにより導電配線層3と同一素材のダミーの導電層4が形成でき、研磨に対する単位
面積あたりの抵抗が等しくなる。したがって、前述したべたパターンの面積による調節を
行うことで基板全体の研磨に対する抵抗を均一にすることが容易になる。また、ダミーの
導電層4を形成するのに工程を増やす必要もない。
As a result, a dummy conductive layer 4 made of the same material as that of the conductive wiring layer 3 can be formed, and the resistance per unit area against polishing becomes equal. Therefore, it becomes easy to make the resistance to polishing of the entire substrate uniform by adjusting the area of the solid pattern described above. Further, it is not necessary to increase the number of steps for forming the dummy conductive layer 4.

さらに本発明の第3の態様に係る実施形態について説明する。図3は図1で示した基板
1とほぼ同様のコア基板の平面図であるが、図1の符号4で示したダミーの導電層4がべ
たパターンであるのに対して図3のダミーの導電層7は網目状のパターン形状で形成され
ている。その他同一の構成要素には同一の符号を付してある。
Further, an embodiment according to the third aspect of the present invention will be described. FIG. 3 is a plan view of a core substrate substantially similar to the substrate 1 shown in FIG. 1, but the dummy conductive layer 4 indicated by reference numeral 4 in FIG. The conductive layer 7 is formed in a mesh pattern shape. Other identical components are denoted by the same reference numerals.

ここでダミーの導電層7を網目状にすることで前記数μmの研磨の面積を無駄に広くす
ること無く、しかも広い領域にわたってダミーの導電層を配置することができる。このパ
ターン形状は、ストライプ、格子、ドット等いかなる形でもよいが、幾何学的な模様であ
ったほうが均等に形成しやすい。また、前記ストライプのように平面上で極端に方向性の
あるパターン形状は、研磨方法によっては研磨結果に影響を及ぼす可能性があるので避け
た方がよい。
Here, by forming the dummy conductive layer 7 in a mesh shape, the dummy conductive layer can be disposed over a wide region without unnecessarily widening the polishing area of several μm. The pattern shape may be any shape such as a stripe, lattice, or dot, but a geometric pattern is easier to form. Also, a pattern shape that is extremely directional on a flat surface, such as the stripe, may affect the polishing result depending on the polishing method, and should be avoided.

また、図4に図3で示した基板の断面形状を示すが、基板全体の研磨に対する抵抗を可
能な限り均一にするのであれば、導電配線層3がある領域の導電配線形成面積と導電配線
非形成面積との比に、ダミーの導電層4がある領域の導電層形成面積と導電層非形成面積
との比がほぼ近似であることが望ましい。
4 shows the cross-sectional shape of the substrate shown in FIG. 3. If the resistance to the polishing of the entire substrate is made as uniform as possible, the conductive wiring formation area and the conductive wiring in the region where the conductive wiring layer 3 is present are shown. It is desirable that the ratio of the conductive layer formation area and the conductive layer non-formation area in the region where the dummy conductive layer 4 is present is approximately approximate to the ratio of the non-formation area.

この比は、CADデータを利用して電子的に演算することで導き出す方法もあるが、導
電配線層の領域内での配線密度が十分に高い場合は、その基板の配線設計で適用されてい
る配線ルールのL/S(ライン/スペース)比を用いてダミーの導電層7のパターン形状
を簡単にデザインすることができる。したがってこの場合、アンダーコート加工後の板厚
の均一性をさらに容易に得ることができる。
This ratio can be derived by calculating electronically using CAD data, but if the wiring density in the region of the conductive wiring layer is sufficiently high, it is applied in the wiring design of the substrate. The pattern shape of the dummy conductive layer 7 can be easily designed by using the L / S (line / space) ratio of the wiring rule. Therefore, in this case, the uniformity of the plate thickness after the undercoat process can be obtained more easily.

本発明の実施形態を示す平面図The top view which shows embodiment of this invention 本発明の実施形態を示す要部断面図Sectional drawing which shows the principal part which shows embodiment of this invention 本発明の他の実施形態を示す平面図The top view which shows other embodiment of this invention 本発明の他の実施形態を示す要部断面図Sectional drawing which shows the principal part which shows other embodiment of this invention. 従来の技術を示す断面図Sectional view showing conventional technology 従来の技術を示す断面図Sectional view showing conventional technology 従来の技術を示す断面図Sectional view showing conventional technology 従来の技術を示す断面図Sectional view showing conventional technology 従来の技術を示す断面図Sectional view showing conventional technology 従来の技術を示す断面図Sectional view showing conventional technology 従来の技術を示す断面図Sectional view showing conventional technology

符号の説明Explanation of symbols

1、6 基板
2 プリント配線板
3 導電配線層
3A 層間接続用パッド
3B 配線パターン
4、7 ダミーの導電層
5 コート樹脂
DESCRIPTION OF SYMBOLS 1, 6 Board | substrate 2 Printed wiring board 3 Conductive wiring layer 3A Interlayer connection pad 3B Wiring pattern 4, 7 Dummy conductive layer 5 Coat resin

Claims (3)

内層となる導電配線層が形成され、この導電配線層と同一層で少なくとも導電配線が形成
されない領域に樹脂が充填され、この樹脂が研磨されたのちに研磨面に接着樹脂層が積層
される多層プリント配線板の構造であって、
前記導電配線層と同一層の、導電配線が形成されていない領域に、ダミーの導電層が形成
されていることを特徴とする多層プリント配線板の構造。
A multilayer in which a conductive wiring layer to be an inner layer is formed, a resin is filled in at least a region where the conductive wiring is not formed in the same layer as this conductive wiring layer, and an adhesive resin layer is laminated on the polished surface after the resin is polished A printed wiring board structure,
A structure of a multilayer printed wiring board, wherein a dummy conductive layer is formed in a region of the same layer as the conductive wiring layer where no conductive wiring is formed.
前記ダミーの導電層は、前記導電配線層と同一素材であることを特徴とする請求項1に記
載の多層プリント配線板の構造。
The multilayer printed wiring board structure according to claim 1, wherein the dummy conductive layer is made of the same material as the conductive wiring layer.
前記ダミーの導電層は任意のパターン形状で形成され、このダミーの導電層が形成される
領域において、前記パターン形状により導かれる導電層形成面積と導電層非形成面積との
比が、前記導電配線が形成されている領域の導電配線形成面積と導電配線非形成面積との
比にほぼ近似であることを特徴とする請求項2に記載の多層プリント配線板の構造。

The dummy conductive layer is formed in an arbitrary pattern shape, and in the region where the dummy conductive layer is formed, the ratio of the conductive layer forming area and the conductive layer non-forming area guided by the pattern shape is the conductive wiring. The structure of the multilayer printed wiring board according to claim 2, wherein the structure is approximately approximate to a ratio of a conductive wiring formation area and a conductive wiring non-formation area in a region where the wiring is formed.

JP2005315535A 2005-10-31 2005-10-31 Structure of multilayer printed wiring board Pending JP2007123646A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005315535A JP2007123646A (en) 2005-10-31 2005-10-31 Structure of multilayer printed wiring board

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005315535A JP2007123646A (en) 2005-10-31 2005-10-31 Structure of multilayer printed wiring board

Publications (1)

Publication Number Publication Date
JP2007123646A true JP2007123646A (en) 2007-05-17

Family

ID=38147140

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005315535A Pending JP2007123646A (en) 2005-10-31 2005-10-31 Structure of multilayer printed wiring board

Country Status (1)

Country Link
JP (1) JP2007123646A (en)

Similar Documents

Publication Publication Date Title
EP2563105B1 (en) Printed substrate manufacturing method and printed substrate employing same
TW201424501A (en) Package structure and method for manufacturing same
CN114554712A (en) Circuit board and manufacturing method thereof
US7172925B2 (en) Method for manufacturing printed wiring board
US10903577B2 (en) Printed wiring board
JP3488839B2 (en) Manufacturing method of printed wiring board
CN110381664B (en) Manufacturing method of PCB with cavity and PCB
JP2003304072A (en) Multilayer wiring board and method of manufacturing the same
CN104159392A (en) Printed circuit board and preparation method thereof
KR101805074B1 (en) Preparation method of ceramic multilayer circuit board
JP4372493B2 (en) Method for manufacturing ceramic green sheet and method for manufacturing electronic component using ceramic green sheet
JP2009246146A (en) Method of manufacturing for circuit board
JP2007123646A (en) Structure of multilayer printed wiring board
JP7187821B2 (en) Printed wiring board and manufacturing method thereof
JP2005191549A (en) Module with built-in components manufacturing method and module with built-in components
TWI519224B (en) Manufacturing method of multilayer flexible circuit structure
JP2007096097A (en) Electronic component element, method of manufacturing the same and aggregate substrate thereof
KR102016947B1 (en) method of manufacturing printed circuit board for dial switch
JP4541051B2 (en) Resistance element built-in wiring board and manufacturing method of resistance element built-in wiring board
KR102016943B1 (en) method of manufacturing printed circuit board for dial switch
KR102016946B1 (en) method of manufacturing printed circuit board for dial switch
US10993333B2 (en) Methods of manufacturing ultra thin dielectric printed circuit boards with thin laminates
KR102016940B1 (en) method of manufacturing printed circuit board for dial switch
KR102016948B1 (en) method of manufacturing printed circuit board for dial switch
JP5682342B2 (en) Manufacturing method of multilayer ceramic electronic component

Legal Events

Date Code Title Description
A977 Report on retrieval

Effective date: 20090812

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Effective date: 20090825

Free format text: JAPANESE INTERMEDIATE CODE: A131

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100104