JP2007123153A - Illumination system - Google Patents

Illumination system Download PDF

Info

Publication number
JP2007123153A
JP2007123153A JP2005316163A JP2005316163A JP2007123153A JP 2007123153 A JP2007123153 A JP 2007123153A JP 2005316163 A JP2005316163 A JP 2005316163A JP 2005316163 A JP2005316163 A JP 2005316163A JP 2007123153 A JP2007123153 A JP 2007123153A
Authority
JP
Japan
Prior art keywords
light
illumination system
detection device
light emission
led
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005316163A
Other languages
Japanese (ja)
Other versions
JP4944424B2 (en
JP2007123153A5 (en
Inventor
Shuri Sekiguchi
関口修利
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Agilent Technologies Inc
Original Assignee
Agilent Technologies Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agilent Technologies Inc filed Critical Agilent Technologies Inc
Priority to JP2005316163A priority Critical patent/JP4944424B2/en
Publication of JP2007123153A publication Critical patent/JP2007123153A/en
Publication of JP2007123153A5 publication Critical patent/JP2007123153A5/ja
Application granted granted Critical
Publication of JP4944424B2 publication Critical patent/JP4944424B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Led Devices (AREA)
  • Photo Coupler, Interrupter, Optical-To-Optical Conversion Devices (AREA)
  • Circuit Arrangement For Electric Light Sources In General (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a simple illumination system with high accuracy for obtaining intended illumination light. <P>SOLUTION: The illumination system is composed of a light-emitting device capable of emitting three kinds of light separately, a control device controlling light emission of the light-emitting device, a light detection device capable of selectively detecting the light, and a feedback means generating feedback signals based on an output from the light detection device and supplying it to the control device. The feedback means generates d<SB>xy</SB>=(y<SB>0</SB>/x<SB>0</SB>)*X-Y, and d<SB>yz</SB>=Y-(y<SB>0</SB>/(1-x<SB>0</SB>-y<SB>0</SB>))*Z based on prescribed chromaticities x<SB>0</SB>, y<SB>0</SB>, from tristimulus values X, Y, Z based on the output of the light detection device to be supplied to the control device, and the control device controls light emission of the light emission device so that both differential mode signals d<SB>xy</SB>and d<SB>yz</SB>turn as near to zero as possible. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は相異なる発光波長特性を有する複数のLEDを用いた発光体を備えた照明システムに関し、特に、LEDの順方向電流を制御して照明システムの照明光の色と輝度とを調整する技術に関する。   The present invention relates to an illumination system including a light emitter using a plurality of LEDs having different emission wavelength characteristics, and in particular, a technique for adjusting the color and brightness of illumination light of an illumination system by controlling the forward current of the LED. About.

従来、赤、緑及び青(RGB)LED(発光ダイオード)を用いた発光体(以降、本明細書では「LEDベース発光体」と称する。)は、照明システムとして、LCD(液晶表示装置)のバックライトや屋内、屋外などの照明に広く使用されてきた。しかしながら、LEDの光学特性は、製造ロットなどによる違いに加え、温度や順方向電流や経年の変化で変動し、LEDベースの発光体の広汎な使用を困難にしていた。そのため、従来、所定品質の照明光を得るため発光体の発する光の輝度と色とを制御する帰還システムが用いられてきた。   2. Description of the Related Art Conventionally, a light emitter using red, green, and blue (RGB) LEDs (light emitting diodes) (hereinafter referred to as “LED base light emitter” in this specification) is an LCD (liquid crystal display device) as an illumination system. It has been widely used for backlight, indoor and outdoor lighting. However, the optical characteristics of LEDs fluctuate due to changes in temperature, forward current and aging in addition to differences depending on manufacturing lots, making it difficult to use LED-based light emitters extensively. Therefore, conventionally, a feedback system that controls the luminance and color of light emitted from a light emitter has been used in order to obtain illumination light of a predetermined quality.

照明システムとしての特許文献1に記載のRGBベースLED発光体用システムでは、それぞれ複数のLEDからなる赤、緑及び青(RGB)のLED光源からの光を混合して白色光を照明光として出力している。照明光の一部がフィルタ前置フォトダイオードで検出されRGB信号に変換される、該RGB信号はCIE1931標準の3刺激値X,Y,Z信号に線形変換された後基準3刺激値信号(使用者が入力した輝度と色度から変換された)と比較されて差分信号が求められる。ついで、該差分信号は各LED光源へとフィードバックされ、該差がゼロとなるように各LED光源のLEDの順方向電流が制御される。このようなシステムを採用すると、個別LEDや個別LED光源の測定が不要となり、LED駆動回路の応答特性への要求も緩和される。
特開2004−52516号公報
In the RGB-based LED luminous body system described in Patent Document 1 as an illumination system, light from red, green, and blue (RGB) LED light sources each composed of a plurality of LEDs is mixed and output as white light as illumination light. is doing. A part of the illumination light is detected by a pre-filter photodiode and converted into an RGB signal. The RGB signal is linearly converted into a CIE 1931 standard tristimulus value X, Y, Z signal and then used as a reference tristimulus value signal (use The difference signal is obtained by comparison with the brightness and chromaticity input by the user. Subsequently, the difference signal is fed back to each LED light source, and the forward current of the LED of each LED light source is controlled so that the difference becomes zero. When such a system is adopted, measurement of individual LEDs and individual LED light sources is not required, and the demand for response characteristics of the LED drive circuit is eased.
JP 2004-52516 A

上記特許文献1に記載の照明システムおいては、それ以前の同様な照明システムにおける問題点のいくつかを解決しているが、RGB信号を3刺激値X,Y,Z信号に線形変換する際の変換精度や前記差分を求める際の比較精度が照明システムの性能を左右するにもかかわらずそれらの精度を確保することが難しい、という問題がある。   In the illumination system described in Patent Document 1, some of the problems in the similar illumination system before that are solved. However, when the RGB signal is linearly converted to the tristimulus values X, Y, and Z signals. There is a problem that it is difficult to ensure the accuracy of the conversion even though the conversion accuracy and the comparison accuracy when obtaining the difference affect the performance of the illumination system.

従って、本発明の目的は上記の課題を解決あるいは軽減することにあり、所望の照明光を得るための、精度の高い簡易な照明システムを提供することである。   Accordingly, an object of the present invention is to solve or alleviate the above-described problems, and to provide a simple illumination system with high accuracy for obtaining desired illumination light.

上記課題を解決するための照明システムは、主要な発光波長域がそれぞれ赤(R)、緑(G)、青(B)にある3種の光を個別に発光できる発光装置と、該発光装置の発光を制御する制御装置と、前記発光波長域のそれぞれにある光を選択的に検出できる光検出装置と、該光検出装置からの出力を基に前記発光装置の発光を制御するためのフィードバック信号を生成し前記制御装置に提供するフィードバック手段とを備える照明システムであり。前記フィードバック手段は、前記光検出装置の出力に基づく3刺激値X,Y,Zから、所定の色度x0、y0を基に生成された重みを伴う差分信号、すなわち、dxy=(y0/x0)*X−Y、およびdyz=Y−(y0/(1−x0−y0))*Zを生成して前記制御装置に提供し、該制御装置は、前記差分信号dxy、およびdyzがともに可及的にゼロとなるように前記発光装置の発光を制御するように構成される。 An illumination system for solving the above-described problems includes a light-emitting device capable of individually emitting three types of light whose main light emission wavelength ranges are red (R), green (G), and blue (B), and the light-emitting device. A control device for controlling the emission of light, a light detection device capable of selectively detecting light in each of the light emission wavelength ranges, and a feedback for controlling light emission of the light emission device based on an output from the light detection device And a feedback means for generating a signal and providing it to the control device. The feedback means is a differential signal with a weight generated based on predetermined chromaticity x 0 , y 0 from tristimulus values X, Y, Z based on the output of the light detection device, that is, d xy = ( y 0 / x 0 ) * X−Y and d yz = Y− (y 0 / (1−x 0 −y 0 )) * Z are generated and provided to the control device, The light emission of the light emitting device is controlled so that the difference signals d xy and d yz are both zero as much as possible.

また、前記所定の色度x0、y0は、操作者の入力に応じて変更可能であるようにしてもよい。 The predetermined chromaticities x 0 and y 0 may be changeable according to an operator input.

本発明の照明システムでは、差分信号を生成することにより共通モードの雑音などに対する対雑音特性が改善され、また零位法の採用により測定感度が向上して、色度の調整が高精度でおこなえる、使用に便利で、精度の高い簡易な照明システムを提供することが出来る。その他の本発明の特徴、効果の詳細については、以下の説明から明瞭となる。   In the illumination system of the present invention, by generating a differential signal, the noise-to-noise characteristics with respect to common mode noise and the like are improved, and by adopting a null method, measurement sensitivity is improved and chromaticity can be adjusted with high accuracy. It is possible to provide a simple lighting system that is convenient to use and highly accurate. The details of other features and effects of the present invention will become clear from the following description.

以下に記載する本発明の実施形態は、本発明を理解するためのものであり、本発明を実施形態に限定するためのものではない。そのため、装置やその要素の寸法や形状は実際に製造される装置や要素との寸法や形状と特定の幾何学的関係を持つことを意図していない。また、完全に一致するものではないが、本発明の理解に支障がないと考えられる範囲で、同様の機能を発揮する装置やその構成要素には同じ参照番号を付してある。また、以下の実施例の説明では、構成要素を接続する配線や電気,機械的作用要素は発明の理解に必要な範囲のみを記載している。又、従来技術に属する部分の説明は省略されるか簡略化されている。   The embodiments of the present invention described below are for understanding the present invention and are not intended to limit the present invention to the embodiments. Therefore, the size and shape of the device and its elements are not intended to have a specific geometric relationship with the size or shape of the device or element that is actually manufactured. In addition, devices that exhibit similar functions and components thereof are given the same reference numerals as long as they do not completely coincide, but are considered to have no problem in understanding the present invention. In the following description of the embodiments, only the range necessary for understanding the invention is described for the wiring, electrical, and mechanical elements that connect the components. Further, the description of the parts belonging to the prior art is omitted or simplified.

図1は本発明の1実施例の照明システム100の概略ブロック図である。照明システム100はLED発光体部10、光混合部20、カラーセンサ部30、3刺激値変換部40、輝度・色度値生成部50、差分信号生成部60、LED駆動制御部70を備える。   FIG. 1 is a schematic block diagram of an illumination system 100 according to an embodiment of the present invention. The illumination system 100 includes an LED light emitter unit 10, a light mixing unit 20, a color sensor unit 30, a tristimulus value conversion unit 40, a luminance / chromaticity value generation unit 50, a difference signal generation unit 60, and an LED drive control unit 70.

LED発光体部10は、混合されて所望の色光を与える相異なる複数種(通常3種であり、以下の実施例では3種の場合について説明する。)のLED(発光ダイオード) D1、D2,D3と、それらに駆動(順方向)電流をそれぞれ供給するLEDドライバであるR(赤)−LEDドライバ12,G(緑)−LEDドライバ14,B(青)−LEDドライバ16からなる。なお、LED D1、D2,D3のそれぞれは一個のLEDから構成されてもよいし、複数のLEDを直列、並列あるいはそれらを混合接続して組合せた複合LEDでもよい。   The LED light emitter section 10 is a plurality of different types of LEDs (generally three types, which will be described in the following examples), which are mixed to give a desired color light. D3 and R (red) -LED driver 12, G (green) -LED driver 14, and B (blue) -LED driver 16 which are LED drivers respectively supplying driving (forward) currents to D3. Each of the LEDs D1, D2, and D3 may be composed of a single LED, or may be a composite LED in which a plurality of LEDs are combined in series, in parallel, or mixed and connected.

光混合部20は、LED発光体部10のLED D1、D2,D3から発せられた光を混合して所望の色光を得るためのものであり、該色光の輝度及び色度を空間的に均一にするための部材で構成されている。光混合部20に適する部材には、各種の拡散板、反射板、ライトトンネル、ライトパイプ、楔形導光板、タンデム型導光板などがある。   The light mixing unit 20 is for obtaining the desired color light by mixing the light emitted from the LEDs D1, D2, and D3 of the LED light emitter unit 10, and spatially uniform the luminance and chromaticity of the color light. It is comprised with the member for making. Examples of members suitable for the light mixing unit 20 include various diffusers, reflectors, light tunnels, light pipes, wedge-shaped light guide plates, and tandem light guide plates.

カラーセンサ部30は、光混合部20からの色光の一部を導入して分光分析して3刺激値を与えるものであり、相異なる複数種(本説明では3種:赤(R)、緑(G)、青(B)とする。)の分光特性を有するセンサ装置32,34,36を備える。各センサ装置32,34,36はそれぞれのフォトダイオードP1,P2,P3とその出力を検出し3刺激値(RGB)を出力するそれぞれのセンサRセンサ、Gセンサ、Bセンサをそなえる。フォトダイオードP1,P2,P3は、一個のフォトダイオードから構成されてもよいし、複数のフォトダイオードを直列、並列あるいはそれらを混合接続して組合せた複合フォトダイオードでもよい。本願実施例で採用するCIE1931に準拠した色度を導出する場合には、カラーセンサ部30の分光特性もCIE1931の等色関数を近似したものが好ましい。   The color sensor unit 30 introduces a part of the color light from the light mixing unit 20 and performs spectroscopic analysis to give tristimulus values. A plurality of different types (in this description, three types: red (R), green) (G) and blue (B).) Sensor devices 32, 34, and 36 having spectral characteristics. Each of the sensor devices 32, 34, and 36 includes a photodiode R1, a G sensor, and a B sensor that detect the outputs of the photodiodes P1, P2, and P3 and output tristimulus values (RGB). The photodiodes P1, P2, and P3 may be configured by a single photodiode, or may be a composite photodiode in which a plurality of photodiodes are combined in series, in parallel, or in combination. When deriving chromaticity based on CIE1931 employed in the embodiment of the present application, it is preferable that the spectral characteristics of the color sensor unit 30 approximate the color matching function of CIE1931.

3刺激値変換部40は、カラーセンサ部30の各センサ装置の出力値(RGB)を入力してCIE3刺激値X、Y、Zに変換するためのものであり,カラーセンサ部30の出力値がCIE3刺激値を与えるようにされる本発明の別実施例では、3刺激値変換部40は不要であって省略あるいは側路されて、カラーセンサ部30の出力値が直接差分信号生成部60に入力される。カラーセンサ部30がCIE1931の3刺激値X、Y、Zを与えることが困難な場合においては、カラーセンサ部30の出力値(本説明では図1に示すようにR、G、B)を変換するための3行3列の行列〔T〕により〔X Y Z〕=[R G B〕*〔T〕として求められる。ただし”*”は本明細書において混同なき場合、乗算記号としても用いられる。行列〔T〕のi行j列要素Tijにより〔T〕=〔Tij〕と表記する。 The tristimulus value conversion unit 40 is for inputting the output values (RGB) of each sensor device of the color sensor unit 30 and converting them into CIE tristimulus values X, Y, and Z. The output value of the color sensor unit 30 In another embodiment of the present invention in which the CIE tristimulus value is provided, the tristimulus value conversion unit 40 is unnecessary and is omitted or bypassed, and the output value of the color sensor unit 30 is directly compared with the difference signal generation unit 60. Is input. When it is difficult for the color sensor unit 30 to provide the CIE 1931 tristimulus values X, Y, and Z, the output values of the color sensor unit 30 (R, G, and B as shown in FIG. 1 in this description) are converted. [X Y Z] = [R G B] * [T] is obtained from a 3 × 3 matrix [T]. However, “*” is also used as a multiplication symbol when not confused in this specification. [T] = [T ij ] is expressed by the i-th row and j-th column element T ij of the matrix [T].

3種類のLED D1、D2,D3の発光光の光強度S1,S2,S3、カラーセンサ部30の出力値R,G,B、CIE1931の3刺激値X,Y,Zをそれぞれベクトル〔DLED〕,〔DSENS〕,〔DCIE〕で表す。即ち、〔DLED〕=〔S1,S2,S3〕、〔DSENS〕=〔R,G,B〕、〔DCIE〕=〔X,Y,Z〕である。また、各LED D1、D2,D3と各センサ装置32,34,36の分光特性をそれぞれ3つの列ベクトルを有する行列〔BLED〕,〔BSENS〕,で表し、CIE1931の等色関数(x(CIE)、y(CIE)、z(CIE))もまとめて3つの列ベクトル〔x(CIE)〕、〔y(CIE)〕、〔z(CIE)〕からなる行列〔BCIE〕で表せば、つぎのとおり(ただし上付き添え字”T”は転置を表し、上付き”−1”は逆行列を表す。)。(なお、通常、CIE1931の等色関数はオーバーラインつきのx、y、zで表されるが、本明細書では、上付き添え字(CIE)を有するx(CIE)、y(CIE)、z(CIE)が対応して用いられる。)
〔DSENS〕=〔DLED〕*(〔BLEDT*〔BSENS〕)
〔DCIE〕=〔DLED〕*(〔BLEDT*〔BCIE〕)
=〔DSENS〕*(〔BLEDT*〔BSENS〕)-1*(〔BLEDT*〔BCIE〕)
=〔DSENS〕*〔T〕
∴ 〔T〕=(〔BLEDT*〔BSENS〕)-1*(〔BLEDT*〔BCIE〕)
図2は、〔T〕=〔Tij〕と要素表示した場合の、3刺激値変換部40の変換操作を示すものである。図2において、一実施例では、アナログ信号としてR,G,B入力を受信してアナログ演算を施して刺激値X,Y,Zを得る。要素Tijの乗算は反転、非反転の増幅器の増幅度を可変することや、単に抵抗値を設定することでも実現できる。また、その実現は、アナログ的でもディジタル的でも良い。また、R,G,B入力がディジタル化されている場合は、デジタル信号処理装置や、マイクロプロセッサを含む装置の一タスクとして該変換をおこなっても良い。
The light intensity S1, S2, S3 of the light emitted from the three kinds of LEDs D1, D2, D3, the output values R, G, B of the color sensor unit 30, and the tristimulus values X, Y, Z of CIE 1931 are respectively represented by vectors [D LED ], [D SENS ], [D CIE ]. That is, [D LED ] = [S1, S2, S3], [D SENS ] = [R, G, B], [D CIE ] = [X, Y, Z]. The spectral characteristics of the LEDs D1, D2, D3 and the sensor devices 32, 34, 36 are represented by matrices [B LED ], [B SENS ] having three column vectors, respectively, and the CIE 1931 color matching function (x (CIE) , y (CIE) , z (CIE) ) can also be expressed as a matrix [B CIE ] consisting of three column vectors [x (CIE) ], [y (CIE) ], [z (CIE) ]. For example, the superscript “T” indicates transposition, and the superscript “−1” indicates an inverse matrix. (Normally, the color matching function of CIE 1931 is represented by x, y, and z with overline. In this specification, x (CIE) , y (CIE) , z having superscript (CIE) . (CIE) is used correspondingly.)
[D SENS ] = [D LED ] * ([B LED ] T * [B SENS ])
[D CIE ] = [D LED ] * ([B LED ] T * [B CIE ])
= [D SENS ] * ([B LED ] T * [B SENS ]) -1 * ([B LED ] T * [B CIE ])
= [D SENS ] * [T]
∴ [T] = ([B LED ] T * [B SENS ]) -1 * ([B LED ] T * [B CIE ])
FIG. 2 shows the conversion operation of the tristimulus value conversion unit 40 when the element is displayed as [T] = [T ij ]. In FIG. 2, in one embodiment, R, G, and B inputs are received as analog signals, and analog calculations are performed to obtain stimulus values X, Y, and Z. The multiplication of the element T ij can be realized by changing the amplification degree of the inverting and non-inverting amplifiers or simply setting the resistance value. The realization may be analog or digital. When the R, G, and B inputs are digitized, the conversion may be performed as one task of a digital signal processing device or a device including a microprocessor.

輝度・色度値生成部50は、使用者がキーボードやつまみ、ボタンを操作して設定した輝度と色度値(入力値)や、照明システム内外から転送された輝度と色度値をCIE1931に準拠した輝度L0、色度値x0、y0として差分信号生成部60に転送する。 The luminance / chromaticity value generation unit 50 sends the luminance and chromaticity values (input values) set by the user by operating the keyboard, knobs, and buttons, and the luminance and chromaticity values transferred from inside and outside the lighting system to the CIE 1931. The compliant luminance L 0 and chromaticity values x 0 and y 0 are transferred to the differential signal generation unit 60.

差分信号生成部60では、図2を参照すると容易に理解できるように、3刺激値変換部40から入力されたCIE1931の3刺激値X,Y,Zと輝度・色度値生成部50から転送され所望の輝度L0、色度値x0、y0とにより差分を求め、差分信号dxy、dyzをLED駆動制御部70に出力する。まず、CIE1931の刺激値X,Y,Zと輝度L,色度値x、yの周知の関係は、k=683(lm/W)として、
L=683*Y=k*Y
X=(x/y)*Y
Z=((1−x−y)/y)*Y
である。そこで、所望の色度値x0、y0と所望の輝度Loで上式が成り立てば、所望の色光が照明システムから供給されるわけである。上式が成り立たない程度としての差分をとれば以下の下3式がえられる。
The difference signal generation unit 60 transfers the CIE 1931 tristimulus values X, Y, and Z input from the tristimulus value conversion unit 40 and the luminance / chromaticity value generation unit 50, as can be easily understood with reference to FIG. Then, a difference is obtained from the desired luminance L 0 and chromaticity values x 0 and y 0, and difference signals d xy and d yz are output to the LED drive control unit 70. First, the well-known relationship between the CIE 1931 stimulus values X, Y, Z and the luminance L, chromaticity values x, y is k = 683 (lm / W).
L = 683 * Y = k * Y
X = (x / y) * Y
Z = ((1-xy) / y) * Y
It is. Therefore, if the above equation is established by the desired chromaticity values x 0 and y 0 and the desired luminance L o , the desired color light is supplied from the illumination system. Taking the difference as the extent that the above equation does not hold, the following three equations are obtained.

xy=(y0/x0)*X−Y=α0X−Y、
yz=Y−(y0/(1−x0−y0))*Z=Y−β0Z、および
L=L−Lo=kY−Lo
そして、dxy=dyz=dL=0を満たす刺激値X、Y、Zが得られるようにLED D1,D2,D3を制御して、所望の色度の色光が照明システムから供給されるようにする。図2において(y0/x0)=α0や(y0/(1−x0−y0)=β0やkの乗算は、上記Tijの乗算と同様におこなってよい。
d xy = (y 0 / x 0 ) * X−Y = α 0 XY,
d yz = Y− (y 0 / (1−x 0 −y 0 )) * Z = Y−β 0 Z, and
d L = L−L o = kY−L o
Then, the LEDs D1, D2, and D3 are controlled so that stimulus values X, Y, and Z satisfying d xy = d yz = d L = 0 are obtained, and colored light having a desired chromaticity is supplied from the illumination system. Like that. In FIG. 2, the multiplication of (y 0 / x 0 ) = α 0 or (y 0 / (1−x 0 −y 0 ) = β 0 or k may be performed in the same manner as the multiplication of T ij described above.

LED駆動制御部70は、R、G、B発光ダイオードD1、D2、D3のそれぞれの出射光の特性を表す後述の行列〔A〕を〔A〕記憶部72より取り出し、該〔A〕と差分信号生成部60からの差分信号dxy、dyz、dLの値に基づいて各LEDの発光強度を制御する。光強度の制御は、LED D1,D2,D3の順方向電流の増減する方法(AM法)や、順方向電流を一定として点灯時間を制御する方法(PWM法)があり、照明システムにより適宜選択できる。 The LED drive control unit 70 extracts a matrix [A], which will be described later, representing the characteristics of the emitted light of each of the R, G, and B light emitting diodes D1, D2, and D3 from the [A] storage unit 72, and the difference from the [A] Based on the values of the differential signals d xy , d yz , and d L from the signal generator 60, the light emission intensity of each LED is controlled. Light intensity control includes a method for increasing or decreasing the forward current of LEDs D1, D2, and D3 (AM method) and a method for controlling lighting time with a constant forward current (PWM method). it can.

次に、本発明の実施例の動作をさらに詳細に述べる。   Next, the operation of the embodiment of the present invention will be described in more detail.

任意の適正な等色関数は別の適正な等色関数の線形変換であるので、以下においては、本発明の趣旨の理解に十分な範囲で、R、G、B発光ダイオードD1、D2、D3のそれぞれの出射光が直接CIE1931-3刺激値X,Y、Zで表されるとして、説明をわかりやすくする。   Since any appropriate color matching function is a linear transformation of another appropriate color matching function, in the following, R, G, B light emitting diodes D1, D2, D3 within a range sufficient to understand the spirit of the present invention. It is assumed that each of the emitted lights is directly represented by CIE 1931-3 stimulation values X, Y, and Z, so that the explanation is easy to understand.

LED発光体部10において、R、G、B発光ダイオードD1、D2、D3のそれぞれの出射光の分光エネルギー分布をそれぞれER(λ)、EG(λ)、EB(λ)とする。各出射光は光混合部20を経てカラーセンサ部30のフォトダイオードP1、P2、P3に受信され検出され3刺激値変換部40で必要に応じてCIE1931-3刺激値に変換出力されるので、光混合部20から3刺激値変換部40の入力端までの校正された等色関数に応じたCIE1931-3刺激値が該出力端にえられる。ここで、一般的に、独立な3等色関数〔x(CIE)〕、〔y(CIE)〕、〔z(CIE)〕に応じて、可視波長域で検出された各出射光の前記3刺激値を、ER(λ)については(ARx、ARy、ARz)、EG(λ)については(AGx、AGy、AGz)、EB(λ)については(ABx、ABy、ABz)と表せる。 In the LED light emitter section 10, let R, G, B light emitting diodes D1, D2, D3 have spectral energy distributions E R (λ), E G (λ), and E B (λ), respectively. Each outgoing light is received and detected by the photodiodes P1, P2, and P3 of the color sensor unit 30 via the light mixing unit 20, and is converted and output to CIE 1931-3 stimulation values as necessary by the tristimulus value conversion unit 40. The CIE 1931-3 stimulus value corresponding to the calibrated color matching function from the light mixing unit 20 to the input end of the tristimulus value conversion unit 40 is obtained at the output end. Here, in general, the 3 of the outgoing lights detected in the visible wavelength range according to the independent trichromatic functions [x (CIE) ], [y (CIE) ], [z (CIE) ]. the stimulus value, E for R (λ) (a Rx, a Ry, a Rz), for E G (λ) (a Gx , a Gy, a Gz), E for B (λ) (a Bx , A By , A Bz ).

ところで、LED制御部70の指令に応じて、LED発光体部10において各発光ダイオードD1、D2、D3の発光強度を制御するため、順方向電流を増減(振幅変調に対応)したり、発光衝撃比を増減(パルス幅変調に対応)したりするので、ある基準値に対してR、G、B発光ダイオードD1、D2、D3のそれぞれの出射光には変調係数PR、PG、PB(以下まとめて(PR、PG、PB)と行ベクトル表示も採用する。)が乗ぜられ、分光エネルギー分布は、それぞれPRER(λ)、PG EG(λ)、PB EB(λ)となる。したがって、混合光の分光エネルギーM(λ)はM(λ)=PRER(λ)+PGEG(λ)+PBEB(λ)となり、前記3等色関数に応じて、3刺激値X、Y、Zは行ベクトル表示して〔X Y Z〕=〔PRARx+PGAGx+PBABx PRARy+PGAGy+PBABy PRARz+PGAGz+PBABz〕となる。行列表示すれば、下記のとおり。ここで、〔W〕=〔X Y Z〕T、〔P〕=〔PR PG PBTで、〔A〕=〔Aij〕=〔〔ARx AGx ABx〕 〔ARy AGy ABy〕 〔ARz AGz ABz〕〕Tである。 By the way, in order to control the light emission intensity of each of the light emitting diodes D1, D2, and D3 in the LED light emitter unit 10 in accordance with a command from the LED control unit 70, the forward current is increased or decreased (corresponding to amplitude modulation) Since the ratio is increased or decreased (corresponding to pulse width modulation), the modulation coefficients P R , P G , P B are applied to the emitted lights of the R, G, B light emitting diodes D1, D2, D3 with respect to a certain reference value (Hereinafter collectively (P R , P G , P B ) and row vector display are also adopted), and the spectral energy distributions are P R E R (λ), P G E G (λ), P B E B (λ). Therefore, the spectral energy M (λ) of the mixed light is M (λ) = P R E R (λ) + P G E G (λ) + P B E B (λ), and 3 according to the three color matching functions. Stimulus values X, Y, and Z are displayed as row vectors, and [XYZ] = [P R A Rx + P G A Gx + P B A Bx P R A Ry + P G A Gy + P B A By P R A Rz + P G A Gz + P B A Bz ]. If displayed in matrix, it is as follows. Here, [W] = [X Y Z] T, (P) = In [P R P G P B] T, [A] = [A ij] = [[A Rx A Gx A Bx] [A Ry A Gy A By ] [A Rz A Gz A Bz ]] T.

Figure 2007123153
Figure 2007123153

差分信号dxyとdyzとdLは、実現すべき所定の色度値をx0、y0、所定の輝度値をL0とすれば、前述のとおり(ただし“*”を乗算記号(明瞭である場合は省略することもある)として)、dxy=α0*X−Y、dyz=Y−β0*Z、dL=L−L0となる(ただし、α0=y0/x0、および、β0=y0/(1−x0−y0)である)。また、各出射光の混合光である照明光の輝度Lは定数k=683(lm/W)を取って、L=kYとなる。これらを行列表示すれば、以下のとおり。 The difference signals d xy , d yz, and d L are as described above (provided that “*” is a multiplication symbol (x), where x 0 and y 0 are predetermined chromaticity values to be realized and L 0 is a predetermined luminance value). D xy = α 0 * X−Y, d yz = Y−β 0 * Z, d L = L−L 0 (where α 0 = y) 0 / x 0 and β 0 = y 0 / (1−x 0 −y 0 )). Further, the luminance L of the illumination light, which is a mixed light of each outgoing light, takes a constant k = 683 (lm / W) and becomes L = kY. If these are displayed in matrix, they are as follows.

Figure 2007123153
Figure 2007123153

上記の式を変形すれば、下式が得られる。   If the above equation is modified, the following equation is obtained.

Figure 2007123153
Figure 2007123153

ここで、所望輝度値L0と色度値x0、y0が実現される条件として、L−L0=kY−L0=dL=dxy=dyz=0を与えると帰還ループの収束安定点で変調係数ベクトル〔P〕T=〔PR PG PB〕は〔P0T=〔PR0 PG0 PB0〕に収束する。もし、現在変調係数ベクトル〔P〕Tが〔P0Tと異なるときは、変調係数ベクトルの差分〔ΔP〕T=〔P〕T-〔P0T=〔PR−PR0 PG−PG0 PB−PB0〕が下式のように与えられる。LED駆動制御部70は、R、G、B発光ダイオードD1、D2、D3のそれぞれの出射光の特性を表す行列〔A〕を〔A〕記憶部72より取り出して差分〔ΔP〕Tを算出して、新しい変調係数ベクトル〔PNT=〔P〕T-〔ΔP〕Tに更新する。以下、図示しないコントローラ等により、逐次変調係数ベクトルを更新し続けるわけである。また、実際に設定する〔PNTはさらに雑音の除去を行なうために時間積分して平滑化した〔ΔP〕Tを使用してもよいことは当業者には容易に理解できよう。 Here, as a condition for realizing the desired luminance value L 0 and the chromaticity values x 0 and y 0 , if L−L 0 = kY−L 0 = d L = d xy = d yz = 0, the feedback loop modulation coefficient vector convergence stabilization point (P) T = [P R P G P B] converges to [P 0] T = [P R0 P G0 P B0]. If the current modulation coefficient vector [P] T is different from [P 0 ] T , the difference [ΔP] T = [P] T- [P 0 ] T = [P R −P R0 P G −P G0 P B −P B0 ] is given by the following equation. The LED drive control unit 70 extracts the matrix [A] representing the characteristics of the emitted light of each of the R, G, and B light emitting diodes D1, D2, and D3 from the [A] storage unit 72 and calculates the difference [ΔP] T. Thus, the new modulation coefficient vector [P N ] T = [P] T− [ΔP] T is updated. Thereafter, the sequential modulation coefficient vector is continuously updated by a controller or the like (not shown). It will be readily understood by those skilled in the art that [P N ] T actually set may use [ΔP] T smoothed by time integration in order to further remove noise.

Figure 2007123153
Figure 2007123153

以上は、一般にマイクロプロセッサを含むデジタル回路により計算して制御するデジタル制御を仮定しているが、アナログ的に近似制御することも可能であることは当業者には理解できよう。   Although the above assumes digital control that is generally calculated and controlled by a digital circuit including a microprocessor, those skilled in the art will understand that approximate control can be performed in an analog manner.

また、本発明の制御においては、LED発光体部10におけるR、G、B発光ダイオードD1、D2、D3のそれぞれの出射光の分光エネルギー分布ER(λ)、EG(λ)、EB(λ)のそれぞれの変化が、変調係数ベクトル〔P〕Tの要素PR、PG、PBのそれぞれの変化として検出されることに注意を要する。すなわち、変調係数ベクトル〔P〕Tが安定であっても、温度の変化や物理的外乱その他で変調係数ベクトル〔P〕Tの調整が必要になるわけである。そのため、dxy、dyzの検出を採用すると、差分信号生成部での入力X、Y、Z信号に重畳する共通モードの雑音を相殺する傾向があり、検出精度が高められる利点を備える。特に混合光である照明光を白色光とする場合には、色度値をx0=y0=1−x0―y0=1/3とすべく設定するので、設定誤差が含まれるとしても、dxyとdyzの検出における前記雑音の影響の相殺効果は特に高い。 Further, in the control of the present invention, the spectral energy distributions E R (λ), E G (λ), E B of the respective emitted lights of the R, G, B light emitting diodes D1, D2, D3 in the LED light emitter section 10 are used. Note that each change in (λ) is detected as a change in each of the elements P R , P G , P B of the modulation coefficient vector [P] T. That is, even if the modulation coefficient vector [P] T is stable, it is necessary to adjust the modulation coefficient vector [P] T due to a change in temperature, physical disturbance, or the like. Therefore, if the detection of d xy and d yz is employed, there is a tendency to cancel the common mode noise superimposed on the input X, Y, and Z signals in the differential signal generation unit, and this has the advantage that the detection accuracy is improved. In particular, when the illumination light that is mixed light is white light, the chromaticity value is set to x 0 = y 0 = 1−x 0 −y 0 = 1/3, so that setting errors are included. However, the effect of canceling the influence of the noise in the detection of d xy and d yz is particularly high.

本発明の1実施例の照明システムの概略ブロック図である。It is a schematic block diagram of the illumination system of one Example of this invention. 照明システムの3刺激値変換部と輝度・色度値生成部と差信号生成部の動作を説明するための図である。It is a figure for demonstrating operation | movement of the tristimulus value conversion part of a lighting system, a brightness | luminance and chromaticity value generation part, and a difference signal generation part.

符号の説明Explanation of symbols

10 LED発光体部
20 光混合部
30 カラーセンサ部
40 3刺激値変換部
50 輝度・色度値生成部
60 差信号生成部
70 LED駆動制御部
100 照明システム
DESCRIPTION OF SYMBOLS 10 LED light-emitting part 20 Light mixing part 30 Color sensor part 40 3 Stimulus value conversion part 50 Luminance and chromaticity value generation part 60 Difference signal generation part 70 LED drive control part 100 Illumination system

Claims (7)

主要な発光波長域がそれぞれ赤(R)、緑(G)、青(B)にある3種の光を個別に発光できる発光装置と、該発光装置の発光を制御する制御装置と、前記発光波長域のそれぞれにある光を選択的に検出できる光検出装置と、該光検出装置からの出力を基に前記発光装置の発光を制御するためのフィードバック信号を生成し前記制御装置に提供するフィードバック手段とを備える照明システムにおいて、
前記フィードバック手段は、前記光検出装置の出力に基づく3刺激値X,Y,Zから、所定の色度x0、y0を基に生成された重みを伴う差分信号:
xy=(y0/x0)*X−Y、および
yz=Y−(y0/(1−x0−y0))*Z
を生成して前記制御装置に提供し、該制御装置は、前記差分信号dxy、およびdyzがともに可及的にゼロとなるように前記発光装置の発光を制御するように構成されることを特徴とする照明システム。
A light emitting device capable of individually emitting three types of light having main light emission wavelength ranges of red (R), green (G), and blue (B), a control device for controlling light emission of the light emitting device, and the light emission A photodetection device that can selectively detect light in each wavelength range, and a feedback that generates and provides a feedback signal for controlling the light emission of the light-emitting device based on the output from the photodetection device. A lighting system comprising:
The feedback means is a differential signal with a weight generated based on predetermined chromaticity x 0 , y 0 from tristimulus values X, Y, Z based on the output of the light detection device:
d xy = (y 0 / x 0 ) * XY, and d yz = Y- (y 0 / (1−x 0 −y 0 )) * Z
Is generated and provided to the control device, and the control device is configured to control light emission of the light-emitting device so that the difference signals d xy and d yz are both as zero as possible. Lighting system characterized by
前記所定の色度x0、y0は、操作者の入力に応じて変更可能であることを特徴とする請求項1に記載の照明システム。 The illumination system according to claim 1, wherein the predetermined chromaticities x 0 and y 0 can be changed according to an input by an operator. 前記所定の色度x0、y0は、書き換え可能にあるいは書き換え不可能にして、メモリICに格納されることを特徴とする請求項2に記載の照明システム。 The illumination system according to claim 2, wherein the predetermined chromaticities x 0 and y 0 are stored in a memory IC in a rewritable or non-rewritable manner. 前記フィードバック手段は、前記光検出装置からの前記出力を受けて前記3刺激値を生成する3刺激値変換手段と、前記照射発光素子は前記3刺激値変換手段からの前記3刺激値を受けて前記差分信号を生成する差分信号生成手段とを含み、前記3刺激値変換手段及び前記差分信号生成手段はともに前記光検出装置に近接配置されることを特徴とする請求項1に記載の照明システム。   The feedback means receives the output from the light detection device and generates the tristimulus value, and the irradiation light emitting element receives the tristimulus value from the tristimulus value conversion means. 2. The illumination system according to claim 1, further comprising a difference signal generation unit configured to generate the difference signal, wherein the tristimulus value conversion unit and the difference signal generation unit are both disposed in proximity to the light detection device. . 前記3刺激値変換手段及び前記差分信号生成手段は、前記光検出装置と共通の基板上に実装されることを特徴とする請求項4に記載の照明システム。   The illumination system according to claim 4, wherein the tristimulus value conversion unit and the differential signal generation unit are mounted on a common substrate with the light detection device. 前記発光装置は、異なる波長域で発光する複数の発光ダイオード素子を含むことを特徴とする請求項1に記載の照明システム。   The illumination system according to claim 1, wherein the light emitting device includes a plurality of light emitting diode elements that emit light in different wavelength ranges. 前記光検出装置は、一体をなすカラーセンサにより構成されることを特徴とする請求項1に記載の照明システム。   The illumination system according to claim 1, wherein the light detection device includes an integrated color sensor.
JP2005316163A 2005-10-31 2005-10-31 Lighting system Expired - Fee Related JP4944424B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005316163A JP4944424B2 (en) 2005-10-31 2005-10-31 Lighting system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005316163A JP4944424B2 (en) 2005-10-31 2005-10-31 Lighting system

Publications (3)

Publication Number Publication Date
JP2007123153A true JP2007123153A (en) 2007-05-17
JP2007123153A5 JP2007123153A5 (en) 2008-11-27
JP4944424B2 JP4944424B2 (en) 2012-05-30

Family

ID=38146763

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005316163A Expired - Fee Related JP4944424B2 (en) 2005-10-31 2005-10-31 Lighting system

Country Status (1)

Country Link
JP (1) JP4944424B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2012164638A1 (en) * 2011-05-27 2014-07-31 Necディスプレイソリューションズ株式会社 Backlight device and backlight control method
US10359667B2 (en) 2014-02-13 2019-07-23 Nlt Technologies, Ltd. Backlight unit and liquid crystal display device

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004517445A (en) * 2000-12-27 2004-06-10 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ LED lighting device for adjusting color balance electrically
JP2004525516A (en) * 2001-03-29 2004-08-19 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ RGB based LED light emitter system
JP2005507546A (en) * 2001-10-22 2005-03-17 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ LED controller
JP2005513724A (en) * 2001-12-19 2005-05-12 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ Color control for LED-based light emitters

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004517445A (en) * 2000-12-27 2004-06-10 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ LED lighting device for adjusting color balance electrically
JP2004525516A (en) * 2001-03-29 2004-08-19 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ RGB based LED light emitter system
JP2005507546A (en) * 2001-10-22 2005-03-17 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ LED controller
JP2005513724A (en) * 2001-12-19 2005-05-12 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ Color control for LED-based light emitters

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2012164638A1 (en) * 2011-05-27 2014-07-31 Necディスプレイソリューションズ株式会社 Backlight device and backlight control method
JP5888789B2 (en) * 2011-05-27 2016-03-22 Necディスプレイソリューションズ株式会社 Backlight device and backlight control method
US10359667B2 (en) 2014-02-13 2019-07-23 Nlt Technologies, Ltd. Backlight unit and liquid crystal display device

Also Published As

Publication number Publication date
JP4944424B2 (en) 2012-05-30

Similar Documents

Publication Publication Date Title
US20080297066A1 (en) Illumination Device and Method for Controlling an Illumination Device
US8569974B2 (en) Systems and methods for controlling solid state lighting devices and lighting apparatus incorporating such systems and/or methods
US8120276B2 (en) Light source emitting mixed-colored light and method for controlling the color locus of such a light source
KR100734465B1 (en) Illumination brightness and color control system and method therefor
KR100968451B1 (en) Display apparatus and control method thereof
US9055622B2 (en) Calibration method and apparatus for lighting fixtures using multiple spectrum light sources and light mixing
US20200413514A1 (en) Dim-to-warm led circuit
US8258709B2 (en) LED control using modulation frequency detection techniques
KR20090019766A (en) Light source intensity control system and method
US7638956B2 (en) Method of calibrating monochromatic light beams outputted by light emitting diodes and related light emitting diode control system
JP2006019263A (en) Light source calibration
JP2005340809A (en) Light emitting device, light emitting system, and control method therefor
US20090078852A1 (en) Chrominance compensation method and panel lightening method in a display apparatus
JP2006147171A (en) Light source device
JPH11295689A (en) Liquid crystal display device
KR101388977B1 (en) Method and apparatus for driving back light of liquid crystal display
US7948499B2 (en) Color control algorithm for use in display systems
US20120293078A1 (en) LED Driver Including Color Monitoring
JP4944424B2 (en) Lighting system
JP2010514128A (en) Driving signal adjustment for solid-state lighting devices
JP4988525B2 (en) Light-emitting diode luminaire
US20230262855A1 (en) Illuminant device for emitting light of a continuously adjustable colour, in particular for individualizing and/or illuminating an interior space
KR101921690B1 (en) Lighting control method and apparatus for controlling multiple LED spectrum combinations
KR20160103300A (en) Lighting apparatus controlling light flux ratio and method for controlling same
JP2015119447A (en) Display device and control method of the same

Legal Events

Date Code Title Description
RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20070323

RD07 Notification of extinguishment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7427

Effective date: 20070330

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20070419

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081010

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20081010

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20090414

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110525

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110531

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110829

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120228

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120302

R150 Certificate of patent or registration of utility model

Ref document number: 4944424

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150309

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees