JP2007121281A5 - - Google Patents

Download PDF

Info

Publication number
JP2007121281A5
JP2007121281A5 JP2006269656A JP2006269656A JP2007121281A5 JP 2007121281 A5 JP2007121281 A5 JP 2007121281A5 JP 2006269656 A JP2006269656 A JP 2006269656A JP 2006269656 A JP2006269656 A JP 2006269656A JP 2007121281 A5 JP2007121281 A5 JP 2007121281A5
Authority
JP
Japan
Prior art keywords
enzyme
electrode
metal particles
metal
producing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006269656A
Other languages
Japanese (ja)
Other versions
JP5022657B2 (en
JP2007121281A (en
Filing date
Publication date
Application filed filed Critical
Priority to JP2006269656A priority Critical patent/JP5022657B2/en
Priority claimed from JP2006269656A external-priority patent/JP5022657B2/en
Publication of JP2007121281A publication Critical patent/JP2007121281A/en
Publication of JP2007121281A5 publication Critical patent/JP2007121281A5/ja
Application granted granted Critical
Publication of JP5022657B2 publication Critical patent/JP5022657B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

第1の本発明に係る、導電性部材と酵素とを有する酵素電極は、前記酵素が、その内部に金属粒子を含むことを特徴とする。第2の本発明に係る燃料電池は、アノード電極とカソード電極との間に電解液を保持し得る領域が設けられており、該アノード電極とカソード電極の少なくとも一方は、前記第1の本発明における酵素電極で構成されていることを特徴とする。 The enzyme electrode having a conductive member and an enzyme according to the first aspect of the present invention is characterized in that the enzyme contains metal particles therein. Fuel cell according to a second aspect of the present invention, at least one of the anode electrode and the cathode electrode region capable of retaining the electrolyte solution is provided between, the anode electrode and the cathode electrode, the first of the It is comprised by the enzyme electrode in invention.

第4の本発明に係る酵素電極の製造方法は、酵素と金属粒子を有する酵素電極の製造方法であって、
酵素を用意する工程と、
前記酵素と該酵素の基質との反応によって金属を形成し得る金属前駆体の存在下、前記酵素と前記基質とを反応させることにより、前記酵素内に金属粒子を備えている、酵素/金属粒子複合体を得る工程と、
を有することを特徴とする酵素電極の製造方法である。
The method for producing an enzyme electrode according to the fourth aspect of the present invention is a method for producing an enzyme electrode having an enzyme and metal particles,
Preparing an enzyme;
The presence of the metal precursor capable of forming a metal by reaction with a substrate for the enzyme and the enzyme, by reacting the said enzyme substrate, and a metal particle in said enzyme, enzyme / metal particles Obtaining a complex;
It is a manufacturing method of the enzyme electrode characterized by having.

Claims (3)

導電性部材と酵素と金属粒子を有する酵素電極において、
前記酵素は、該酵素の内部に金属粒子を含むことを特徴とする酵素電極。
In an enzyme electrode having a conductive member, an enzyme, and metal particles,
The enzyme electrode, wherein the enzyme includes the metal particles inside the enzyme.
前記導電性部材が多孔質構造を有し、該多孔質構造の細孔中に前記酵素と前記金属粒子の複合体が形成されている請求項1乃至3のいずれかに記載の酵素電極。 The conductive member has a porous structure, the porous said enzyme and enzyme electrode according to any one of claims 1 to 3 complex is formed of the metal particles in the pores of the structure. 酵素と金属粒子を有する酵素電極の製造方法であって、
酵素を用意する工程と、
前記酵素と該酵素の基質との反応によって金属を形成し得る金属前駆体の存在下、前記酵素と前記基質とを反応させることにより、前記酵素内に金属粒子を備えている、酵素/金属粒子複合体を得る工程と、
を有することを特徴とする酵素電極の製造方法。
A method for producing an enzyme electrode having an enzyme and metal particles,
Preparing an enzyme;
The presence of the metal precursor capable of forming a metal by reaction with a substrate for the enzyme and the enzyme, by reacting the said enzyme substrate, and a metal particle in said enzyme, enzyme / metal particles Obtaining a complex;
A method for producing an enzyme electrode, comprising:
JP2006269656A 2005-09-30 2006-09-29 Enzyme electrode and manufacturing method thereof Expired - Fee Related JP5022657B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006269656A JP5022657B2 (en) 2005-09-30 2006-09-29 Enzyme electrode and manufacturing method thereof

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2005289102 2005-09-30
JP2005289102 2005-09-30
JP2006269656A JP5022657B2 (en) 2005-09-30 2006-09-29 Enzyme electrode and manufacturing method thereof

Publications (3)

Publication Number Publication Date
JP2007121281A JP2007121281A (en) 2007-05-17
JP2007121281A5 true JP2007121281A5 (en) 2009-11-26
JP5022657B2 JP5022657B2 (en) 2012-09-12

Family

ID=38145258

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006269656A Expired - Fee Related JP5022657B2 (en) 2005-09-30 2006-09-29 Enzyme electrode and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP5022657B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI301541B (en) * 2005-11-01 2008-10-01 Dev Center Biotechnology Method for detecting pesticides ,bio-microsensor,and metood for reducing current noise
JP5481822B2 (en) * 2008-10-06 2014-04-23 ソニー株式会社 Enzyme electrode and fuel cell using the enzyme electrode
JP6356170B2 (en) * 2016-03-04 2018-07-11 国立研究開発法人農業・食品産業技術総合研究機構 Bioelectrochemical system and electrode for bioelectrochemical system
JP6991528B2 (en) * 2016-08-24 2022-02-15 国立研究開発法人産業技術総合研究所 Complex of heterologous enzyme and mesoporous silica

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0816665B2 (en) * 1990-04-16 1996-02-21 日機装株式会社 Enzyme sensor
JP4632437B2 (en) * 2004-07-23 2011-02-16 キヤノン株式会社 Enzyme electrode, device having enzyme electrode, sensor, fuel cell, electrochemical reaction device
JP2006058289A (en) * 2004-07-23 2006-03-02 Canon Inc Enzyme electrode, sensor, fuel cell, electrochemical reactor

Similar Documents

Publication Publication Date Title
Wang et al. Nanoframes of Co3O4–Mo2N heterointerfaces enable high‐performance bifunctionality toward both electrocatalytic HER and OER
Park et al. Ultra-low loading of IrO2 with an inverse-opal structure in a polymer-exchange membrane water electrolysis
Tong et al. Ni3S2 nanosheets in situ epitaxially grown on nanorods as high active and stable homojunction electrocatalyst for hydrogen evolution reaction
Zhao et al. A High‐Performance Binary Ni–Co Hydroxide‐based Water Oxidation Electrode with Three‐Dimensional Coaxial Nanotube Array Structure
JP5181413B2 (en) Electrode for electrochemical device, solid electrolyte / electrode assembly and method for producing the same
Ma et al. Promoting bifunctional water splitting by modification of the electronic structure at the interface of NiFe layered double hydroxide and Ag
Menzel et al. Electrocatalysis using porous nanostructured materials
NO20073872L (en) Process for Preparing a Reversible Solid Oxide Fuel Cell
JP2009521579A5 (en)
WO2011062998A3 (en) Anodes for lithium ion batteries
Rao et al. Integrated N-Co/carbon nanofiber cathode for highly efficient zinc–air batteries
KR101438891B1 (en) Manufacturing method of fuel cell anode
JP2010529638A5 (en)
WO2010126767A8 (en) Single wall carbon nanotube based air cathodes
CA2619237A1 (en) Electrolyte membrane-electrode assembly and production method thereof
Hausmann et al. In‐Liquid Plasma Modified Nickel Foam: NiOOH/NiFeOOH Active Site Multiplication for Electrocatalytic Alcohol, Aldehyde, and Water Oxidation
TW200737246A (en) Solid electrolyte capacitor and production method thereof
JP6025230B2 (en) Inverse opal structure metal catalyst electrode for fuel cell and manufacturing method thereof
JP2007173225A5 (en)
Datta et al. Enhanced catalytic activity of palladium nanoparticles confined inside porous carbon in methanol electro-oxidation
JP2007121281A5 (en)
Müller-Hülstede et al. Incorporation of activated biomasses in Fe-NC catalysts for oxygen reduction reaction with enhanced stability in acidic media
CA2577047A1 (en) Fuel cell production method and fuel cell
Zheng et al. Mimicking hydrazine dehydrogenase for efficient electrocatalytic oxidation of N2H4 by Fe–NC
Sun et al. Interface Engineering Induced Electron Redistribution at PtNs/NiTe‐Ns Interfaces for Promoting pH‐Universal and Chloride‐Tolerant Hydrogen Evolution Reaction