JP2007120997A - Method and device for scanning x-ray beam - Google Patents

Method and device for scanning x-ray beam Download PDF

Info

Publication number
JP2007120997A
JP2007120997A JP2005310535A JP2005310535A JP2007120997A JP 2007120997 A JP2007120997 A JP 2007120997A JP 2005310535 A JP2005310535 A JP 2005310535A JP 2005310535 A JP2005310535 A JP 2005310535A JP 2007120997 A JP2007120997 A JP 2007120997A
Authority
JP
Japan
Prior art keywords
ray
scanning
ray beam
wedges
rays
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005310535A
Other languages
Japanese (ja)
Other versions
JP4724885B2 (en
Inventor
Hiroyuki Fujimoto
弘之 藤本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute of Advanced Industrial Science and Technology AIST filed Critical National Institute of Advanced Industrial Science and Technology AIST
Priority to JP2005310535A priority Critical patent/JP4724885B2/en
Publication of JP2007120997A publication Critical patent/JP2007120997A/en
Application granted granted Critical
Publication of JP4724885B2 publication Critical patent/JP4724885B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21KTECHNIQUES FOR HANDLING PARTICLES OR IONISING RADIATION NOT OTHERWISE PROVIDED FOR; IRRADIATION DEVICES; GAMMA RAY OR X-RAY MICROSCOPES
    • G21K1/00Arrangements for handling particles or ionising radiation, e.g. focusing or moderating
    • G21K1/06Arrangements for handling particles or ionising radiation, e.g. focusing or moderating using diffraction, refraction or reflection, e.g. monochromators

Abstract

<P>PROBLEM TO BE SOLVED: To enable the detection of minute structural changes that have never been observed through higher resolution to improve reliability in spite of the significant limitation on the area of a handleable X-ray beam, the difficulty in handling short wavelengths (shorter than hard X rays) and the defect of a very small range of acceptance angles when an X-ray reflector is used as a means for changing the direction of X rays. <P>SOLUTION: The beam direction is scanned along symmetrical axes by inserting an even number of objects shaped like wedges which are laid out symmetrically into the X-ray beam and two rotary wedges at a time in opposite directions on the beam direction as the axis. This scanning method scarcely causes the displacement orthogonal to the scanning direction. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本願発明は、きわめて簡単な装置により、X線ビームを一定の方向に走査することができるが、走査方向と直行する方向にはずれを生じないX線ビームの走査方法及び装置に関する。   The present invention relates to an X-ray beam scanning method and apparatus that can scan an X-ray beam in a certain direction with a very simple apparatus, but that does not deviate in a direction perpendicular to the scanning direction.

従来、X線の屈折率が通常きわめて1に近いため、光と異なり、屈折を利用してX線の方向を変えることは、きわめて困難であると考えられていた。そこで、X線の方向を変更するには、反射鏡を利用したX線の反射を利用していた。しかしながら、反射を利用する場合には、反射鏡のわずかなブレでも焦点位置が離れてしまうという欠点があった。このため、屈折を利用することが考えられている(例えば、特許文献1,2参照)。   Conventionally, since the refractive index of X-rays is usually very close to 1, it has been considered that it is very difficult to change the direction of X-rays using refraction unlike light. Therefore, in order to change the X-ray direction, X-ray reflection using a reflecting mirror has been used. However, in the case of using reflection, there is a drawback that the focal position is separated even if the reflector is slightly shaken. For this reason, it is considered to use refraction (see, for example, Patent Documents 1 and 2).

この場合も、焦点は固定位置であり、走査することは考えられていない。光線における走査の技術が必ずしも利用できるわけでもない。
特開平3−160400号公報 特開2001−4795号公報
In this case as well, the focal point is a fixed position and scanning is not considered. Scanning techniques with light rays are not always available.
Japanese Patent Laid-Open No. 3-160400 JP 2001-4795 A

X線反射鏡を用いる場合、扱えるX線ビームの面積に著しい制限がある。また、波長が短い(硬X線以上)と取り扱いが困難であり、受入角度範囲も非常に狭いという欠点があった。   When an X-ray reflector is used, there is a significant limitation on the area of the X-ray beam that can be handled. In addition, when the wavelength is short (more than hard X-ray), it is difficult to handle, and the acceptance angle range is very narrow.

対称に配置された複数の楔形の物体をX線ビームに挿入し、ビーム方向を軸に2つずつの楔を反対向きに回転させることにより対称軸に沿って、ビーム方向を走査する。   A plurality of wedge-shaped objects arranged symmetrically are inserted into the X-ray beam, and the beam direction is scanned along the symmetry axis by rotating two wedges in opposite directions around the beam direction.

第1に、放射光施設のビーム方向安定化により、データの質が飛躍的に向上し、第2に、X線による構造解析等の現場において、より高い分解能による今まで観察できなかったような、微小な構造変化の検出を可能にし、信頼性の向上が期待できるという効果を奏する。   First, the stabilization of the beam direction of the synchrotron radiation facility has dramatically improved the quality of the data. Second, it has not been possible to observe with higher resolution in the field such as X-ray structural analysis. This makes it possible to detect minute structural changes and to improve reliability.

以下に、図面を用いて本願発明を実施するための最良の形態を詳細に説明する。   Hereinafter, the best mode for carrying out the present invention will be described in detail with reference to the drawings.

X線に対する物質の屈折率nの1との差(n−1)は−10−5程度である。吸収の小さい軽元素で作った楔形のパーツをX線のビームに挿入するとスネルの法則に従って、ビームの方向が曲げられる。 The difference (n−1) of the refractive index n of the substance with respect to X-rays is about −10 −5 . When a wedge-shaped part made of light elements with low absorption is inserted into an X-ray beam, the beam direction is bent according to Snell's law.

図1において、くさび1枚にX線ビームが入射したときの、基本的な作用を示している。楔形の材料としては、軽い元素である、ベリリウム、リチウム、アクリル及びカーボン等が適している。例えば、アクリルを材質として用いた45°のくさびにおいては、0.86pmの波長のX線に対して0.3”の角度偏差である。   FIG. 1 shows a basic operation when an X-ray beam is incident on one wedge. As the wedge-shaped material, light elements such as beryllium, lithium, acrylic and carbon are suitable. For example, a 45 ° wedge using acrylic as a material has an angle deviation of 0.3 ″ with respect to an X-ray having a wavelength of 0.86 pm.

図2において、基本素子を組み合わせ、実際に使用するユニットを形作ったときの動作を説明している。左側は、ユニットの側面図、右側は、上面図である。   FIG. 2 illustrates the operation when the basic elements are combined to form a unit that is actually used. The left side is a side view of the unit, and the right side is a top view.

ユニットに、左側からX線ビームが入射している。上から下に向かって、くさびを45°づつ入射ビーム方向を軸に回転した場合のビームの挙動を図示した。θは角度を表す記号、δは”(秒)程度以下の非常に小さい角度である。従って、図中のX線の航跡の角度はすべて強調してある。   An X-ray beam is incident on the unit from the left side. From the top to the bottom, the behavior of the beam when the wedge is rotated 45 degrees around the incident beam direction is shown. θ is a symbol representing an angle, and δ is a very small angle of about “(seconds) or less. Therefore, all X-ray wake angles in the figure are emphasized.

X線(の方向)を走査するときには、4個のくさび形のユニットを入射X線の進む方向を軸として回転させる。X線の入射方向上流から見て、くさび1、2、3、4と呼ぶ。
(1)くさびすべてが、上を向いている。
(2)くさび1、4が反時計方向に45°、くさび2、3が時計方向に45°回転している。
(3)くさび1、4が反時計方向に90°、くさび2、3が時計方向に90°回転している。
(4)くさび1、4が反時計方向に135°、くさび2、3が時計方向に135°回転している。
(5)くさび1、4が反時計方向に180°、くさび2、3が時計方向に180°回転している。すなわち、すべてのくさびが下を向いている。
When scanning the X-ray (in the direction), four wedge-shaped units are rotated about the direction in which the incident X-rays travel. They are called wedges 1, 2, 3, and 4 when viewed from the upstream in the X-ray incident direction.
(1) All the wedges are facing up.
(2) The wedges 1 and 4 are rotated 45 ° counterclockwise, and the wedges 2 and 3 are rotated 45 ° clockwise.
(3) The wedges 1 and 4 are rotated 90 ° counterclockwise, and the wedges 2 and 3 are rotated 90 ° clockwise.
(4) The wedges 1 and 4 are rotated 135 ° counterclockwise, and the wedges 2 and 3 are rotated 135 ° clockwise.
(5) The wedges 1 and 4 are rotated 180 ° counterclockwise, and the wedges 2 and 3 are rotated 180 ° clockwise. That is, all the wedges face down.

図2のように楔形のパーツ4個一組を直線上に並べ、対称に回転させると、1軸方向のみの角度スキャンを行うことができ、直行する方向のビームずれを引き起こさずに実現することができる。   As shown in Fig. 2, when a set of four wedge-shaped parts are arranged on a straight line and rotated symmetrically, angle scanning in only one axis direction can be performed, and this is achieved without causing beam deviation in the orthogonal direction. Can do.

X線の波長、材質に対する屈折率、吸収係数が知られているので、必要な角度、スキャン範囲、使用するX線の波長に応じて、連ねるユニット数、材質を決定することができる。   Since the X-ray wavelength, the refractive index for the material, and the absorption coefficient are known, the number of connected units and the material can be determined according to the required angle, scan range, and X-ray wavelength to be used.

高分解能のX線回折実験等において、試料の角度スキャン分解能が高くなると、安定なスキャンが困難になるが、本発明を用いると、試料を動かすかわりにX線の入射角をスキャンすることにより微小な角度を安定にスキャンすることと同等の方法が実現できる。   In high-resolution X-ray diffraction experiments and the like, if the angular scan resolution of the sample is increased, stable scanning becomes difficult. However, when the present invention is used, the X-ray incident angle is scanned instead of moving the sample. A method equivalent to stable scanning of an appropriate angle can be realized.

また、放射光施設等におけるビーム方向の揺らぎを相殺するために用いることができる。ビーム角度検出メカニズムを実験装置等の直前に設置し、そこからの出力をこのユニットの回転へフィードバックすることにより実現することができる。   Further, it can be used to cancel out fluctuations in the beam direction in a synchrotron radiation facility or the like. It can be realized by installing a beam angle detection mechanism immediately before the experimental apparatus and feeding back the output from this unit to the rotation of this unit.

また、ビームに対して試料をスキャンするような分析法にも応用できる。本操作装置から離れた距離に試料を置き角度をスキャンを行う。10メートルの位置で、100”のスキャンで、5mmのビーム移動を実現することができる。   It can also be applied to analytical methods such as scanning a sample against the beam. The sample is placed at a distance away from the operation device and the angle is scanned. A 5mm beam movement can be realized at a position of 10 meters with a 100 "scan.

本願発明の基礎となる事項を説明する図The figure explaining the matter used as the foundation of this invention 本願発明を説明する図The figure explaining this invention

Claims (3)

X線ビームの走査装置において、楔形の部材を偶数個直線状に配置し、該部材のうちの一の半数とその他の半数を互いに反対方向に回転自在にしたことを特徴とするX線ビームの走査装置。 In an X-ray beam scanning apparatus, an even number of wedge-shaped members are linearly arranged, and one half of the members and the other half are rotatable in opposite directions. Scanning device. 上記部材の材料は、アクリルであることを特徴とする請求項1に記載のX線ビームの走査装置。 The X-ray beam scanning apparatus according to claim 1, wherein the material of the member is acrylic. X線ビームの方向走査方法において、楔形の部材を偶数個直線状に配置し、該部材のうちの一の半数とその他の半数を互いに反対方向に回転させることにより、一軸方向には一定角度の走査を可能とするが、該軸と直交する方向にはずれを起こさないようにしたことを特徴とするX線ビームの走査方法。

In the X-ray beam direction scanning method, an even number of wedge-shaped members are arranged in a straight line, and one half of the members and the other half are rotated in directions opposite to each other, whereby a certain angle is obtained in one axis direction. An X-ray beam scanning method characterized in that scanning is possible, but no deviation occurs in a direction perpendicular to the axis.

JP2005310535A 2005-10-25 2005-10-25 X-ray beam scanning method and apparatus Expired - Fee Related JP4724885B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005310535A JP4724885B2 (en) 2005-10-25 2005-10-25 X-ray beam scanning method and apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005310535A JP4724885B2 (en) 2005-10-25 2005-10-25 X-ray beam scanning method and apparatus

Publications (2)

Publication Number Publication Date
JP2007120997A true JP2007120997A (en) 2007-05-17
JP4724885B2 JP4724885B2 (en) 2011-07-13

Family

ID=38145014

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005310535A Expired - Fee Related JP4724885B2 (en) 2005-10-25 2005-10-25 X-ray beam scanning method and apparatus

Country Status (1)

Country Link
JP (1) JP4724885B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7970102B2 (en) 2008-07-24 2011-06-28 Inspx Llc Apparatus and method for detecting foreign materials in a container

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58170614A (en) * 1982-03-30 1983-10-07 Nissan Motor Co Ltd Air conditioner for car
JPH03160400A (en) * 1989-11-17 1991-07-10 Shoji Suehiro X-ray imaging element
JPH05165991A (en) * 1991-12-13 1993-07-02 Fuji Electric Co Ltd Beam deflector
JPH07230000A (en) * 1994-02-18 1995-08-29 Agency Of Ind Science & Technol X-ray lens
JPH10172883A (en) * 1996-12-09 1998-06-26 Sumitomo Heavy Ind Ltd Synchrotron radiator and x-ray exposure apparatus
JPH11231232A (en) * 1997-12-05 1999-08-27 Lucent Technol Inc Free space optical signal switching device
JP2001004795A (en) * 1999-06-16 2001-01-12 Ricoh Co Ltd X-ray waveguide
JP2003505677A (en) * 1999-07-19 2003-02-12 マメア イメイジング アクチボラゲット Refractive X-ray device
JP2003121764A (en) * 2001-10-18 2003-04-23 Nippon Telegr & Teleph Corp <Ntt> Optical switch using rotary wedge prism and optical switch module
JP2004136307A (en) * 2002-10-16 2004-05-13 Toshiba Corp Method and device of laser beam machining
JP2004343078A (en) * 2003-04-04 2004-12-02 Asml Netherlands Bv Lithographic apparatus and device manufacturing method

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58170614U (en) * 1982-05-11 1983-11-14 日本電気株式会社 Optical axis adjustment device
DE9117302U1 (en) * 1990-10-31 1999-10-21 X Ray Optical Sys Inc Device for controlling rays of particles, X-rays and gamma rays and applications thereof

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58170614A (en) * 1982-03-30 1983-10-07 Nissan Motor Co Ltd Air conditioner for car
JPH03160400A (en) * 1989-11-17 1991-07-10 Shoji Suehiro X-ray imaging element
JPH05165991A (en) * 1991-12-13 1993-07-02 Fuji Electric Co Ltd Beam deflector
JPH07230000A (en) * 1994-02-18 1995-08-29 Agency Of Ind Science & Technol X-ray lens
JPH10172883A (en) * 1996-12-09 1998-06-26 Sumitomo Heavy Ind Ltd Synchrotron radiator and x-ray exposure apparatus
JPH11231232A (en) * 1997-12-05 1999-08-27 Lucent Technol Inc Free space optical signal switching device
JP2001004795A (en) * 1999-06-16 2001-01-12 Ricoh Co Ltd X-ray waveguide
JP2003505677A (en) * 1999-07-19 2003-02-12 マメア イメイジング アクチボラゲット Refractive X-ray device
JP2003121764A (en) * 2001-10-18 2003-04-23 Nippon Telegr & Teleph Corp <Ntt> Optical switch using rotary wedge prism and optical switch module
JP2004136307A (en) * 2002-10-16 2004-05-13 Toshiba Corp Method and device of laser beam machining
JP2004343078A (en) * 2003-04-04 2004-12-02 Asml Netherlands Bv Lithographic apparatus and device manufacturing method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7970102B2 (en) 2008-07-24 2011-06-28 Inspx Llc Apparatus and method for detecting foreign materials in a container

Also Published As

Publication number Publication date
JP4724885B2 (en) 2011-07-13

Similar Documents

Publication Publication Date Title
US5259013A (en) Hard x-ray magnification apparatus and method with submicrometer spatial resolution of images in more than one dimension
Grünzweig et al. Highly absorbing gadolinium test device to characterize the performance of neutron imaging detector systems
CN104062007B (en) Mobile phone spectrometer module and there is the mobile phone spectrometer of this mobile phone spectrometer module
CN102116747B (en) Scanning device for ray bundle for backscatter imaging-used ray bundle and method
Liu et al. Demonstration of achromatic cold-neutron microscope utilizing axisymmetric focusing mirrors
KR20120027262A (en) X-ray scattering measurement device and x-ray scattering measurement method
Wilson et al. Ellipsoidal plasma mirror focusing of high power laser pulses to ultra-high intensities
JP6392850B2 (en) Beam generating unit and X-ray small angle scattering apparatus
WO2008134378A1 (en) Optical gain approach for enhancement of overlay and alignment systems performance
Yan et al. On the intersection of grating truncation rods with the Ewald sphere studied by grazing-incidence small-angle X-ray scattering
Wilson et al. Development of focusing plasma mirrors for ultraintense laser-driven particle and radiation sources
JP4991582B2 (en) Deflection device and imaging device
Underwood et al. Calibration and standards beamline 6.3. 2 at the ALS
JP4724885B2 (en) X-ray beam scanning method and apparatus
Li et al. Resolution-enhanced x-ray ghost imaging with polycapillary optics
Spiga et al. An expanded x-ray beam facility (BEaTriX) to test the modular elements of the ATHENA optics
JP2009128073A (en) Optical unit
Klimova et al. Suppressing diffraction-related intensity losses in transmissive single-crystal X-ray optics
Song et al. Characterizing profile tilt of nanoscale deep-etched gratings via x-ray diffraction
Pereira et al. On evaluating x-ray imaging crystals with synchrotron radiation
Tanner et al. Quantitative imaging of the stress/strain fields and generation of macroscopic cracks from indents in silicon
JP2010286346A (en) Spectroscope
Jarre et al. X-ray waveguide nanostructures: Design, fabrication, and characterization
Sasaki et al. Observations of x-ray radiation pressure force on individual gold nanocrystals
Artemiev et al. Sagittal focusing of synchrotron radiation diffracted on the walls of a longitudinal hole drilled into a single-crystal monochromator

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080530

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101213

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101221

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110218

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110322

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110325

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140422

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140422

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees