JP2007120842A - Method and its device for treating ash melting furnace granulation water - Google Patents

Method and its device for treating ash melting furnace granulation water Download PDF

Info

Publication number
JP2007120842A
JP2007120842A JP2005312459A JP2005312459A JP2007120842A JP 2007120842 A JP2007120842 A JP 2007120842A JP 2005312459 A JP2005312459 A JP 2005312459A JP 2005312459 A JP2005312459 A JP 2005312459A JP 2007120842 A JP2007120842 A JP 2007120842A
Authority
JP
Japan
Prior art keywords
water
slag
tank
granulated water
particle size
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005312459A
Other languages
Japanese (ja)
Inventor
Katsumi Tani
克己 谷
Yoshimasa Kawami
佳正 川見
Yoshito Ogawa
義人 小川
Toshiaki Obara
聡明 小原
Shinsuke Kanayama
真介 金山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP2005312459A priority Critical patent/JP2007120842A/en
Publication of JP2007120842A publication Critical patent/JP2007120842A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/20Waste processing or separation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/52Mechanical processing of waste for the recovery of materials, e.g. crushing, shredding, separation or disassembly

Landscapes

  • Gasification And Melting Of Waste (AREA)
  • Heat Treatment Of Water, Waste Water Or Sewage (AREA)
  • Separation Of Solids By Using Liquids Or Pneumatic Power (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for treating granulation water without enlarging waste water treatment equipment since waste water treatment equipment is not used, without raising salt concentration of recycled water since the granulation water is not recycled, and without lowering combustion energy. <P>SOLUTION: The granulation water being slag cooling water is treated by carrying out particle size separation via a sedimentation tank, and spraying it on a temperature reducing tower or a melting temperature reducing tower of an incinerator to evaporate it. By carrying out particle size separation and removal of particles with a particle diameter of 0.01mm or more in the sedimentation tank, blocking of a nozzle carrying out spraying to the temperature reducing tower is prevented. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、ごみ等を焼却した際に生じる灰を灰溶融設備にて溶融処理した後のスラグを冷却するための水砕水の処理方法に関する。   The present invention relates to a method for treating granulated water for cooling slag after ash produced when incineration of trash and the like is performed in an ash melting facility.

ごみ等を焼却した際に生じる焼却灰を溶融してスラグ化する灰溶融設備は、焼却灰の減容化及び資源化を目的として、従来より広く用いられている。灰溶融設備では、焼却灰を1200℃以上の高温で溶融した後に水で急冷することによって水砕スラグとよばれるSiO、CaO及びAlを主成分とするガラス質の固化物が得られる。また、灰溶融設備での溶融時に、灰に含まれるダイオキシン類は熱分解され、焼却灰中の重金属の大半は高温により揮発除去されるが、残留する微量の重金属類は前記ガラス質のスラグ内に封じ込められるため、水砕スラグは安全な物質であり、路盤材、コンクリート用骨材、アスファルト混合用骨材等として再生利用が可能である。 2. Description of the Related Art Ash melting equipment that melts incineration ash generated when incineration of trash and the like into slag has been widely used for the purpose of reducing incineration ash volume and resources. In the ash melting facility, the incinerated ash is melted at a high temperature of 1200 ° C. or higher and then rapidly cooled with water to obtain a vitreous solidified product mainly composed of SiO 2 , CaO and Al 2 O 3 called granulated slag. It is done. In addition, dioxins contained in the ash are pyrolyzed during melting at the ash melting facility, and most of the heavy metals in the incinerated ash are volatilized and removed by high temperatures, but the remaining traces of heavy metals are contained in the glassy slag. Granulated slag is a safe substance and can be recycled as roadbed materials, concrete aggregates, asphalt mixing aggregates, and the like.

水砕スラグを得るためには、焼却灰を溶融したスラグを水で急冷する工程が必要であり、その急冷するための水は、水砕水とよばれる。水砕水には、溶融飛灰、溶融排ガスからの塩類が混入するため、水砕水の塩濃度は高く、金属配管を腐食させやすいため、再利用水として使用することは困難である。そのため、水砕水は排水処理を実施し、放流する方法がとられていた。   In order to obtain the granulated slag, a process of quenching the slag in which the incinerated ash is melted with water is necessary, and the water for quenching is called granulated water. Since the granulated water contains molten fly ash and salts from the molten exhaust gas, the salt concentration of the granulated water is high and the metal piping is easily corroded, so that it is difficult to use as recycled water. For this reason, granulated water was treated by drainage and discharged.

しかしながら、昨今ごみ焼却設備周辺の環境保全のために排水の無放流化が求められており、焼却設備内で処理して再利用水として場内循環使用を余儀なくされていた。そのため、再利用水の塩濃度が上昇し、機器の腐食や、機器の腐食を防ぐために高級材質を使用することによる設備費の増大という問題があった。また、排水処理装置で排水処理を行う必要があるため、排水処理装置が大型化するという問題もあった。   However, in recent years, there has been a demand for non-discharge of wastewater for environmental protection around the waste incineration facility, and it has been forced to use it in the field as reused water after being treated in the incineration facility. For this reason, the salt concentration of reused water has increased, and there has been a problem that equipment costs increase due to the use of high-grade materials in order to prevent equipment corrosion and equipment corrosion. Moreover, since it is necessary to perform a waste water treatment with a waste water treatment apparatus, there also existed a problem that a waste water treatment apparatus enlarged.

そのため、水砕水を焼却炉へ噴霧し蒸発させて処理する方法が従来より行われている。また、特許文献1には、水砕水を灰溶融炉の溶融排ガスを完全に燃焼させる二次燃焼室へ噴霧させて処理する方法が開示されている。
特開2005−95749号公報
Therefore, the method of spraying and evaporating crushed water to an incinerator has been conventionally performed. Further, Patent Document 1 discloses a method in which pulverized water is sprayed to a secondary combustion chamber that completely burns molten exhaust gas from an ash melting furnace.
JP 2005-95749 A

しかしながら、前記水砕水を焼却炉へ噴霧し蒸発させて処理する方法は、燃焼炉へ水砕水を吹き込むことで、焼却炉の燃焼エネルギーが下がるという問題があった。また、特許文献1に開示した方法も同様に二次燃焼室の燃焼エネルギーが下がるという問題があった。   However, the method of spraying and evaporating the granulated water to the incinerator has a problem that the combustion energy of the incinerator is lowered by blowing the granulated water into the combustion furnace. The method disclosed in Patent Document 1 also has a problem in that the combustion energy in the secondary combustion chamber is lowered.

従って、本発明はかかる従来技術の問題に鑑み、排水処理装置を使用しないため排水処理装置の大型化の必要がなく、水砕水を再利用しないために再利用水の塩濃度が上昇することもなく、また、燃焼エネルギーを下げることなく、水砕水を処理する方法を提供することを目的とする。   Accordingly, in view of the problems of the prior art, the present invention does not require the use of a waste water treatment device, so that it is not necessary to increase the size of the waste water treatment device, and the salt concentration of reused water is increased in order not to reuse the granulated water. It is another object of the present invention to provide a method for treating granulated water without reducing combustion energy.

上記課題を解決するため本発明は、灰溶融炉より排出されたスラグを冷却した後の水砕水をスラグ沈殿槽に導いて所定粒径以上のスラグ粒子を粒度分離し、該粒度分離された後の水砕水を、焼却炉または溶融炉の排ガス経路に設けた減温塔に噴霧し蒸発させて処理することを特徴とする。
尚、前記スラグ沈殿槽におけるスラグの粒度分離は液体サイクロンや濾過を用いてもよいが、好ましくは沈降処理がよく、該沈降処理により粒子径が0.01mm以上の粒子を粒度分離して取り除くのがよい。
そして本発明に好適に用いる装置は、灰溶融炉より排出されたスラグを冷却した後の水砕水中のスラグを沈殿させる沈殿槽と、焼却炉または溶融炉の排ガス経路に設けた減温塔と、前記沈殿槽で所定粒径以上のスラグ粒子を粒度分離し、該粒度分離された後の水砕水を、前記減温塔に導く水砕水導入ラインと、該ラインを介して前記減温塔に噴霧する手段からなることを特徴とする。
本装置においても、前記スラグ沈殿槽が沈降処理によりスラグの粒度分離を行う沈殿槽であり、該沈殿槽より水砕水導入ラインに導かれる水砕水が粒子径が実質的に0.01mm以上のスラグ粒子のみを含む水砕水であることがよく、更に前記スラグ沈殿槽への水砕水の注入量をA(t/h)、沈殿槽の水砕水の流れと交差する方向の槽幅がX(m)であるとき、水砕水の流れ方向の槽長さがY(m)以上である沈殿槽を用いるのがよい。
In order to solve the above problems, the present invention is directed to the granulated water after cooling the slag discharged from the ash melting furnace to the slag settling tank to separate the slag particles having a predetermined particle size or more, and the particle size separation is performed. It is characterized by spraying the later granulated water to a temperature reducing tower provided in the exhaust gas path of the incinerator or melting furnace and evaporating it.
The slag particle size separation in the slag sedimentation tank may be performed using a hydrocyclone or filtration, but preferably a sedimentation process is performed, and particles having a particle diameter of 0.01 mm or more are separated by particle size separation and removed by the sedimentation process. Is good.
And the apparatus suitably used in the present invention includes a precipitation tank for precipitating slag in the granulated water after cooling the slag discharged from the ash melting furnace, a temperature reducing tower provided in the exhaust gas path of the incinerator or melting furnace, The slag particles having a predetermined particle size or more are separated in the sedimentation tank by a particle size separation, and the granulated water introduced after the particle size separation is led to the temperature-decreasing tower, and the temperature reduction is performed via the line. It is characterized by comprising means for spraying on the tower.
Also in this apparatus, the slag settling tank is a settling tank that performs slag particle size separation by settling treatment, and the granulated water guided from the settling tank to the granulated water introduction line has a particle diameter of substantially 0.01 mm or more. It is preferable that the crushed water contains only slag particles, and the amount of the crushed water injected into the slag sedimentation tank is A (t / h), and the tank intersects the flow of the granulated water in the precipitation tank. When the width is X (m), it is preferable to use a sedimentation tank whose tank length in the flow direction of the granulated water is Y (m) or more.

本発明によれば、水砕水を減温塔へ噴霧して処理するため、排水処理装置は使用せず、大型化する必要はなく、排水の塩濃度も上昇しない。また、廃熱を回収したボイラ出口以降の排ガスへ水を噴霧して温度を下げる工程である減温塔に水砕水を噴霧するため、発電量を下げることがなく効率的である。
したがって本発明により、排水処理装置を使用しないため排水処理装置の大型化の必要がなく、水砕水を再利用しないために再利用水の塩濃度が上昇することもなく、また、燃焼エネルギーの回収率を下げることなく、水砕水を処理する方法を提供できる。
また、本発明を実用する際、燃焼炉と比べると温度の低い減温塔へ噴霧して水砕水を処理するため、噴霧する際に細かいノズル径の噴霧ノズルを使用する必要があり、このことにより、水砕水中に含まれるスラグの破片の粒子(以下「スラグのSS」とよぶ)が噴霧ノズルを閉塞させるという問題があるため、粒子径0.01mm以上の粒子を粒度分離して取り除くことによって、ノズルを閉塞させることなく、水砕水を処理することができる。粒度分離には、水砕水処理量の変動の影響を受けずに粒度分離装置を安定して運転することができ、粒度分離装置のつまりもなく、所要動力も少ないため、沈降処理を用いることが最適である。
そして、沈殿槽への水砕水の注入量、沈殿槽の水砕水の流れと交差する方向の槽幅から最適な水砕水の流れ方向の槽長さを求めた沈殿槽を用いることによって、最も効率的に粒子径0.01mm以上の粒子を粒度分離して取り除くことができる。
According to the present invention, since the crushed water is sprayed and processed on the temperature reducing tower, the waste water treatment device is not used, it is not necessary to increase the size, and the salt concentration of the waste water does not increase. Further, since the water is sprayed onto the temperature reducing tower, which is a process for lowering the temperature by spraying water on the exhaust gas after the boiler exit from which the waste heat has been recovered, it is efficient without reducing the amount of power generation.
Therefore, according to the present invention, since the waste water treatment device is not used, it is not necessary to increase the size of the waste water treatment device, the reused water is not reused, the salt concentration of reused water does not increase, and the combustion energy is reduced. A method for treating crushed water can be provided without reducing the recovery rate.
Further, when the present invention is put into practical use, it is necessary to use a spray nozzle with a fine nozzle diameter when spraying, because it is sprayed to a temperature-decreasing tower having a temperature lower than that of a combustion furnace to treat the crushed water. As a result, there is a problem that particles of slag fragments (hereinafter referred to as “SS of slag”) contained in the granulated water clog the spray nozzle. Therefore, particles having a particle diameter of 0.01 mm or more are separated and removed. By doing so, it is possible to treat the granulated water without blocking the nozzle. For particle size separation, it is possible to operate the particle size separation device stably without being affected by fluctuations in the amount of granulated water treatment. Is the best.
And by using the settling tank which calculated | required the optimal tank length of the flow direction of granulated water from the injection amount of the granulated water to the settling tank, and the tank width of the direction crossing the flow of the granulated water of the settling tank The particles having a particle diameter of 0.01 mm or more can be separated and removed most efficiently.

以下、図面を参照して本発明の好適な実施例を例示的に詳しく説明する。但しこの実施例に記載されている構成部品の寸法、材質、形状、その相対的配置等は特に特定的な記載がない限りは、この発明の範囲をそれに限定する趣旨ではなく、単なる説明例に過ぎない。   Hereinafter, exemplary embodiments of the present invention will be described in detail with reference to the drawings. However, the dimensions, materials, shapes, relative arrangements, and the like of the components described in this embodiment are not intended to limit the scope of the present invention unless otherwise specified, but are merely illustrative examples. Not too much.

図1は、水砕水を減温塔へ噴霧した本発明の処理方法を用いたフロー図である。ごみ等は焼却炉1で焼却され、焼却の際に生じた主灰は灰溶融炉5へ送られ、排ガスはボイラ2へ送られる。ボイラ2へ送られた排ガスはボイラ2で冷却され、減温塔3で水を噴霧することによりさらに冷却され、バグフィルタ4へ送られる。バグフィルタ4では、排ガスに含まれる煤塵及び吹き込まれた反応薬品により、HCl、SO等を吸着除去した飛灰として灰溶融炉5へ送られる。灰溶融炉5へ送られた前記主灰及び飛灰は、灰溶融炉5で約1400〜1700℃(好ましくは1550〜1650℃)のスラグ温度で溶融される。溶融されて得られた溶融スラグは、灰溶融炉5を出て水砕槽7へ落下する。溶融スラグは、例えば水砕槽7での水砕水との接触に伴う水蒸気爆発を防止するために、水砕水槽7へ落下途中に、水砕水を噴射されることにより急冷され、水砕スラグとして水砕槽7に回収される。溶融スラグへ噴射された水砕水は溶融スラグと共に水砕槽7へ落下する。 FIG. 1 is a flow diagram using the treatment method of the present invention in which crushed water is sprayed onto a temperature reducing tower. Garbage and the like are incinerated in the incinerator 1, main ash generated during incineration is sent to the ash melting furnace 5, and exhaust gas is sent to the boiler 2. The exhaust gas sent to the boiler 2 is cooled by the boiler 2, further cooled by spraying water in the temperature reducing tower 3, and sent to the bag filter 4. The bag filter 4 is sent to the ash melting furnace 5 as fly ash from which HCl, SO x and the like are adsorbed and removed by the dust contained in the exhaust gas and the reactive chemicals blown in. The main ash and fly ash sent to the ash melting furnace 5 are melted in the ash melting furnace 5 at a slag temperature of about 1400 to 1700 ° C. (preferably 1550 to 1650 ° C.). The molten slag obtained by melting leaves the ash melting furnace 5 and falls into the granulation tank 7. For example, in order to prevent a steam explosion associated with contact with the granulated water in the granulating tank 7, the molten slag is rapidly cooled by spraying the granulated water while dropping into the granulated water tank 7, It is collected in the granulation tank 7 as slag. The granulated water sprayed to the molten slag falls into the granulated tank 7 together with the molten slag.

水砕水槽7から流出する水砕水は、水砕水温水槽8に受け入れて一時貯留の後に、水砕水ポンプ9から送り出されて水砕水熱交換器17を経て冷却後、再度急冷する水砕水として循環し使用している。水砕水を循環使用すると溶融飛灰、溶融排ガスからの塩類が混入するため、水砕水の塩濃度は高く濃縮されるので、一定以上の塩濃度とならないように、水砕水の一部を水砕水排水ポンプ10にてスラグ沈殿槽11に抜き出す。抜き出した水砕水はスラグ沈殿槽11にて粒度分離し、粒子径が0.01mm以上の粒子はスラグピット12へ、粒子径が0.01mm以上の粒子を取り除かれた水砕水は堰18より水砕水減温水送水槽13、水砕水減温水送水ポンプ14、減温水槽15、減温水ポンプ16を経て減温塔3へ噴霧され、蒸発処理される。   The crushed water flowing out from the crushed water tank 7 is received in the crushed water hot water tank 8 and temporarily stored, then sent from the crushed water pump 9, cooled through the crushed water heat exchanger 17, and then rapidly cooled again. It is circulated and used as crushed water. When the granulated water is circulated, molten fly ash and salt from the molten exhaust gas are mixed, so the salt concentration of the granulated water is concentrated to a high level. Is extracted to the slag settling tank 11 by the granulated water drainage pump 10. The extracted crushed water is subjected to particle size separation in the slag settling tank 11, particles having a particle diameter of 0.01 mm or more are transferred to the slag pit 12, and the granulated water from which particles having a particle diameter of 0.01 mm or more are removed is the weir 18. Further, the water is sprayed to the temperature reducing tower 3 through the crushed water dewarmed water tank 13, the crushed water dewarmed water pump 14, the dewarmed water tank 15, and the dewarmed water pump 16, and is evaporated.

本発明は、燃焼炉と比べると温度の低い減温塔へ噴霧して水砕水を処理するため、噴霧する際に細かいノズル径の噴霧ノズルを使用する必要があり、本実施例においてはノズルの開孔が0.4mmであるノズルを使用した。しかし、細かな噴霧ノズルを使用すると水砕水中に含まれるスラグのSSが噴霧ノズルを閉塞させるという問題があるため、スラグ沈殿槽11で大きな粒子を取り除いた。
図4は、スラグ沈殿槽11のスラッジの粒度分布のグラフである。縦軸は相対粒子量(%)、横軸は粒子径(μm)である。グラフより、10μm(=0.01mm)の粒子が約90%であることがわかる。また、図5はスラグ沈殿槽11のスラッジの電子顕微鏡写真である。図中矢印は10μm(=0.01mm)を表している。図4、図5から、取り除く粒子は粒子径が0.01mm以上である粒子とした。
Since the present invention treats the crushed water by spraying to a temperature-decreasing tower having a temperature lower than that of the combustion furnace, it is necessary to use a spray nozzle having a fine nozzle diameter when spraying. A nozzle with an aperture of 0.4 mm was used. However, when a fine spray nozzle is used, there is a problem that the SS of the slag contained in the granulated water clogs the spray nozzle. Therefore, large particles were removed in the slag settling tank 11.
FIG. 4 is a graph of the particle size distribution of the sludge in the slag settling tank 11. The vertical axis represents the relative particle amount (%), and the horizontal axis represents the particle diameter (μm). From the graph, it can be seen that 10 μm (= 0.01 mm) particles are about 90%. FIG. 5 is an electron micrograph of sludge in the slag settling tank 11. The arrow in the figure represents 10 μm (= 0.01 mm). From FIG. 4 and FIG. 5, the particles to be removed were particles having a particle diameter of 0.01 mm or more.

0.01mm以上の粒子を取り除くために必要な沈殿槽の大きさは以下の根拠を元に設置した。
図6は、比重2.8の粒子の沈降速度と粒径の関係のグラフである。縦軸は沈降速度(mm/min)、横軸は粒子の粒径(mm)を表している。グラフから粒径0.01mmの粒子の沈降速度は3.3mm/min(=0.0033m/min)であることがわかる。
そこで、スラグ沈殿槽11への水砕水の注入量をA(t/h)、沈殿槽の水砕水の流れと交差する方向の槽幅がX(m)であるとき、水砕水の流れ方向の槽長さをY(m)以上である沈殿槽が必要となる。ここで、前記A、X、Yの関係は、沈殿槽から流出する水頭が0.05m程度であることを考慮すると、
Y=(A/60)×(1/0.05X)×(0.05/0.0033)
である。
The size of the sedimentation tank necessary for removing particles of 0.01 mm or more was set based on the following grounds.
FIG. 6 is a graph showing the relationship between the sedimentation rate and particle size of particles having a specific gravity of 2.8. The vertical axis represents the sedimentation rate (mm / min), and the horizontal axis represents the particle size (mm). From the graph, it can be seen that the sedimentation rate of particles having a particle size of 0.01 mm is 3.3 mm / min (= 0.0034 m / min).
Therefore, when the amount of granulated water injected into the slag sedimentation tank 11 is A (t / h) and the tank width in the direction intersecting the flow of the granulated water in the sedimentation tank is X (m), A sedimentation tank having a tank length in the flow direction of Y (m) or more is required. Here, considering the relationship between A, X, and Y, the water head flowing out from the settling tank is about 0.05 m.
Y = (A / 60) × (1 / 0.05X) × (0.05 / 0.0033)
It is.

図2は、水砕水を溶融減温塔へ噴霧した本発明の処理方法を用いたフロー図である。水砕水を噴霧して蒸発処理する箇所を溶融減温塔にした他は実施例1と同じフロー、構成とした。   FIG. 2 is a flow diagram using the treatment method of the present invention in which crushed water is sprayed onto a melting and decooling tower. The flow and configuration were the same as in Example 1 except that the portion to be evaporated by spraying water with crushed water was used as a melting and cooling tower.

灰溶融炉5で灰を溶融させた際に発生した排ガスは、二次燃焼室6へ送られ完全に燃焼される。二次燃焼室6で発生した排ガスは、溶融減温塔21へ送られ水を噴霧されることによって冷却され、溶融バグフィルタ22を通して処理される。また、スラグ沈殿槽11へ送られた処分する水砕水は、スラグ沈殿槽11で粒度分離される。粒子径が0.01mm以上の粒子はスラグピット12へ、粒子径が0.01mm以上の粒子を取り除かれた水砕水は堰18より水砕水減温水送水槽13、水砕水減温水送水ポンプ14、減温水槽15、減温水ポンプ16を経て溶融減温塔21へ噴霧され、蒸発処理される。   The exhaust gas generated when ash is melted in the ash melting furnace 5 is sent to the secondary combustion chamber 6 and completely burned. The exhaust gas generated in the secondary combustion chamber 6 is cooled by being sent to the melting temperature reducing tower 21 and sprayed with water, and is processed through the melting bag filter 22. Further, the granulated water to be disposed sent to the slag settling tank 11 is subjected to particle size separation in the slag settling tank 11. Particles having a particle diameter of 0.01 mm or more are supplied to the slag pit 12, and granulated water from which particles having a particle diameter of 0.01 mm or more have been removed is the granulated water dewarmed water tank 13, granulated water dewarmed water The water is sprayed to the melting and temperature reducing tower 21 through the pump 14, the temperature-reducing water tank 15, and the temperature-reducing water pump 16, and is evaporated.

なお、溶融減温塔も実施例1と同じく焼却炉よりも温度が低いため、溶融減温塔へ噴霧するためには細かいノズル径の噴霧ノズルを使用する必要がある。そのため実施例1と同じく噴霧ノズルの閉塞の問題があるため、噴霧ノズル、スラグ沈殿槽11、スラグ沈殿槽11で取り除く粒子径(0.01mm以上)は実施例1と同じとした。   In addition, since the temperature of the melting and cooling tower is lower than that of the incinerator as in the first embodiment, it is necessary to use a spray nozzle having a fine nozzle diameter in order to spray the melting and cooling tower. Therefore, since there is a problem of blockage of the spray nozzle as in Example 1, the particle diameter (0.01 mm or more) removed by the spray nozzle, the slag precipitation tank 11 and the slag precipitation tank 11 is the same as in Example 1.

(比較例1)
水砕水を排水処理装置で処理し、再利用水として利用する従来の方法で、水砕水の処理を行った。
(Comparative Example 1)
The crushed water was treated by a conventional method in which the crushed water was treated with a wastewater treatment device and used as reused water.

(比較例2)
図3は水砕水を焼却炉へ噴霧した従来の処理方法を用いたフロー図である。水砕水を噴霧して蒸発処理する箇所を焼却炉にしたことと、減温水槽15及び減温水ポンプ16を設けなかったこと以外は実施例1、2と同じフローとした。
(Comparative Example 2)
FIG. 3 is a flow diagram using a conventional processing method in which crushed water is sprayed onto an incinerator. The flow was the same as in Examples 1 and 2 except that the portion to be subjected to the evaporation treatment by spraying the crushed water was an incinerator and the temperature-reducing water tank 15 and the temperature-reducing water pump 16 were not provided.

また、スラグ沈殿槽11へ送られた処分する水砕水は堰18より水砕水減温水送水槽13、水砕水減温水送水ポンプ14を経て焼却炉1へ噴霧され、蒸発処理される。スラグ沈殿槽11で取り除く粒子径は特に決めなかった。また、スラグ沈殿槽11はスラグ沈殿槽11へ投入される水砕水を処理できる大きさであれば何でもよい。   Further, the crushed water to be disposed sent to the slag settling tank 11 is sprayed from the weir 18 to the incinerator 1 through the crushed water dewarmed water tank 13 and the crushed water dewarmed water pump 14 and evaporated. The particle size to be removed in the slag settling tank 11 was not particularly determined. The slag settling tank 11 may have any size as long as it can process the crushed water charged into the slag settling tank 11.

〔排水処理装置〕
実施例1、実施例2、比較例2においては排水処理装置は不要であったが、比較例1においては排水処理装置が必要であり、排水処理装置の大型化が必要であった。
図7は実施例1、実施例2及び比較例2、つまり排水処理装置が不要である場合の水バランスであり、図8は比較例1、つまり排水処理装置が必要である場合の水バランスである。図7及び図8からわかるように実施例1、実施例2、比較例2においては排水処理量は80t/dayであったが、比較例1では130t/dayであり、排水処理装置の大型化が必要であった。
[Wastewater treatment equipment]
In Example 1, Example 2, and Comparative Example 2, the waste water treatment apparatus was unnecessary, but in Comparative Example 1, the waste water treatment apparatus was necessary, and the waste water treatment apparatus was required to be enlarged.
FIG. 7 shows the water balance when Example 1, Example 2 and Comparative Example 2, that is, a waste water treatment device is not required, and FIG. 8 shows the water balance when Comparative Example 1, ie, the waste water treatment device is required. is there. As can be seen from FIGS. 7 and 8, in Example 1, Example 2 and Comparative Example 2, the wastewater treatment amount was 80 t / day, but in Comparative Example 1, it was 130 t / day, and the wastewater treatment apparatus was enlarged. Was necessary.

〔再利用水塩濃度〕
比較例1においては塩濃度の高い水砕水を再利用水として循環利用するため水砕水及び再利用水の塩濃度が高く、実施例1、実施例2、比較例2においては塩濃度の高い水砕水を再利用水としないため、水砕水及び再利用水の塩濃度は比較例1と比べると低いため、機器の腐食の可能性は低く、また機器の腐食を防ぐために高級材質を使用する必要もない。
図9は比較例1実施時の水砕水及び再利用水の塩濃度を約7ヶ月に亘って測定した測定値である。縦軸は塩素(Cl)濃度(mg/l)、横軸は測定月日を参考的に表している。図9から水砕水の塩素(Cl)濃度は5000〜7000mg/lであり、再利用水は3000〜4200mg/lであることがわかる。この水砕水及び再利用水の塩素濃度は、実施例1、実施例2及び比較例2においては、水砕水塩素濃度が3000〜5000mg/l、再利用水塩素濃度が1000〜2200mg/lに低下した。
[Reuse water salt concentration]
In Comparative Example 1, since the crushed water having a high salt concentration is recycled as reused water, the salt concentration of the crushed water and the reused water is high. In Examples 1, 2 and 2, the salt concentration is high. Since high crushed water is not reused, the salt concentration of crushed water and reused water is lower than that of Comparative Example 1, so the possibility of equipment corrosion is low, and high-grade materials are used to prevent equipment corrosion. There is no need to use.
FIG. 9 shows measured values obtained by measuring the salt concentration of the crushed water and reused water during the execution of Comparative Example 1 over about 7 months. The vertical axis represents the chlorine (Cl) concentration (mg / l), and the horizontal axis represents the measurement date. From FIG. 9, it can be seen that the chlorine (Cl) concentration of the granulated water is 5000 to 7000 mg / l, and the reused water is 3000 to 4200 mg / l. The chlorine concentration of the crushed water and reused water in Example 1, Example 2 and Comparative Example 2 is 5,000 to 5000 mg / l of crushed water chlorine concentration and 1000 to 2200 mg / l of reused water chlorine concentration. Declined.

〔燃焼エネルギー〕
比較例2においては、燃焼炉に水砕水を噴霧して蒸発処理するため、燃焼炉の燃焼エネルギーの低下という問題が発生した。しかし、実施例1、実施例2においては、温度を下げる工程である減温塔へ噴霧して処理するため、燃焼エネルギーの低下という問題は発生しなかった。また、比較例1は蒸発処理を行わないので、燃焼エネルギー低下の問題は発生しなかった。
[Combustion energy]
In Comparative Example 2, the problem of a reduction in combustion energy of the combustion furnace occurred because of the spraying of granulated water to the combustion furnace and evaporation. However, in Example 1 and Example 2, since it processed by spraying to the temperature-reduction tower which is the process of reducing temperature, the problem of the reduction of combustion energy did not generate | occur | produce. Moreover, since the comparative example 1 does not perform an evaporation process, the problem of a combustion energy fall did not generate | occur | produce.

表1に、実施例1、実施例2、比較例1及び比較例2の課題毎の結果をまとめた。実施例1、実施例2ともに比較例1、比較例2で問題であった点をすべて解決している。   Table 1 summarizes the results for each task of Example 1, Example 2, Comparative Example 1 and Comparative Example 2. Both Example 1 and Example 2 have solved all the problems in Comparative Example 1 and Comparative Example 2.

Figure 2007120842
Figure 2007120842

本発明によれば、排水処理装置を使用しないため排水処理装置の大型化の必要がなく、水砕水を再利用しないために再利用水の塩濃度が上昇することもなく、また、燃焼エネルギーを下げることなく、水砕水を処理する方法を提供することができる。   According to the present invention, since the waste water treatment device is not used, it is not necessary to increase the size of the waste water treatment device, and the salt concentration of the reused water does not increase because the ground water is not reused. It is possible to provide a method for treating granulated water without lowering.

水砕水を減温塔へ噴霧した本発明の処理方法を用いたフロー図である。It is a flowchart using the processing method of this invention which sprayed the granulated water to the temperature-reduction tower. 水砕水を溶融減温塔へ噴霧した本発明の処理方法を用いたフロー図である。It is a flow figure using the processing method of the present invention which sprayed granulated water on the melting temperature-decreasing tower. 水砕水を焼却炉へ噴霧した従来の処理方法を用いたフロー図である。It is a flowchart using the conventional processing method which sprayed the granulated water to the incinerator. スラグ沈殿槽11のスラッジの粒度分布のグラフである。It is a graph of the particle size distribution of the sludge of the slag sedimentation tank. スラグ沈殿槽11のスラッジの電子顕微鏡写真である。3 is an electron micrograph of sludge in a slag settling tank 11. 比重2.8の粒子の沈降速度と粒径の関係のグラフである。It is a graph of the relationship between the sedimentation rate and particle size of particles having a specific gravity of 2.8. 排水処理装置が不要である場合の水バランスである。It is a water balance when a waste water treatment apparatus is unnecessary. 排水処理装置が必要である場合の水バランスである。This is the water balance when a wastewater treatment device is required. 水砕水を排水処理装置で処理し、再利用水として利用する従来の方法で、水砕水の処理を行った時の水砕水及び再利用水の塩濃度を約7ヶ月に亘って測定した測定値である。Measures the salt concentration of crushed water and reused water over about 7 months when the crushed water is treated with wastewater treatment equipment and used as reused water. Measured value.

符号の説明Explanation of symbols

1 焼却炉
2 ボイラ
3 減温塔
4 バグフィルタ
5 灰溶融炉
6 二次燃焼室
7 水砕水槽
8 水砕水温水槽
9 水砕水ポンプ
10 水砕水排水ポンプ
11 スラグ沈殿槽
12 スラグピット
13 水砕水減温水送水槽
14 水砕水減温水送水ポンプ
15 減温水槽
16 減温水ポンプ
DESCRIPTION OF SYMBOLS 1 Incinerator 2 Boiler 3 Temperature reduction tower 4 Bag filter 5 Ash melting furnace 6 Secondary combustion chamber 7 Granulated water tank 8 Granulated water hot water tank 9 Granulated water pump 10 Granulated water drainage pump 11 Slag sedimentation tank 12 Slag pit 13 Water Crushed water dewarmed water tank 14 Crushed water dewarmed water pump 15 Dewarmed water tank 16 Dewarmed water pump

Claims (6)

灰溶融炉より排出されたスラグを冷却した後の水砕水をスラグ沈殿槽に導いて所定粒径以上のスラグ粒子を粒度分離し、該粒度分離された後の水砕水を、焼却炉または溶融炉の排ガス経路に設けた減温塔に噴霧し蒸発させて処理することを特徴とする水砕水の処理方法。   The crushed water after cooling the slag discharged from the ash melting furnace is guided to a slag settling tank to separate slag particles of a predetermined particle size or more, and the crushed water after the particle size separation is separated into an incinerator or A method for treating granulated water, characterized by spraying and evaporating a temperature reducing tower provided in an exhaust gas path of a melting furnace. 前記スラグ沈殿槽におけるスラグの粒度分離が沈降処理であり、該沈降処理により粒子径が0.01mm以上の粒子を粒度分離して取り除くことを特徴とする請求項1記載の水砕水の処理方法。   The method for treating granulated water according to claim 1, wherein the slag particle size separation in the slag sedimentation tank is a sedimentation treatment, and particles having a particle diameter of 0.01 mm or more are separated by particle size separation and removed by the sedimentation treatment. . 前記スラグ沈殿槽への水砕水の注入量をA(t/h)、沈殿槽の水砕水の流れと交差する方向の槽幅がX(m)であるとき、水砕水の流れ方向の槽長さがY(m)以上である沈殿槽を用いることを特徴とする請求項1又は2記載の水砕水の処理方法。
Y:以下の式で計算される値
Y=(A/60)×(1/0.05X)×(0.05/0.0033)
The flow rate of the granulated water when the amount of the granulated water injected into the slag sedimentation tank is A (t / h) and the tank width in the direction intersecting the flow of the granulated water in the sedimentation tank is X (m) The processing method of the granulated water of Claim 1 or 2 using the sedimentation tank whose tank length is more than Y (m).
Y: Value calculated by the following equation Y = (A / 60) × (1 / 0.05X) × (0.05 / 0.0033)
灰溶融炉より排出されたスラグを冷却した後の水砕水中のスラグを沈殿させる沈殿槽と、焼却炉または溶融炉の排ガス経路に設けた減温塔と、前記沈殿槽で所定粒径以上のスラグ粒子を粒度分離し、該粒度分離された後の水砕水を、前記減温塔に導く水砕水導入ラインと、該ラインを介して前記減温塔に噴霧する手段からなることを特徴とする水砕水の処理装置。   A settling tank for precipitating slag in the granulated water after cooling the slag discharged from the ash melting furnace, a temperature reducing tower provided in the exhaust gas path of the incinerator or melting furnace, and a set particle size or more in the settling tank The slag particles are separated by particle size, and the granulated water after the particle size separation is composed of a granulated water introduction line that leads to the temperature-decreasing tower, and means for spraying the temperature-decreasing tower via the line. An apparatus for treating granulated water. 前記スラグ沈殿槽が沈降処理によりスラグの粒度分離を行う沈殿槽であり、該沈殿槽より水砕水導入ラインに導かれる水砕水が粒子径が実質的に0.01mm以上のスラグ粒子のみを含む水砕水であることを特徴とする請求項4記載の水砕水の処理装置。   The slag settling tank is a settling tank that performs slag particle size separation by settling treatment, and the granulated water guided from the settling tank to the granulated water introduction line contains only slag particles having a particle diameter of substantially 0.01 mm or more. The apparatus for treating granulated water according to claim 4, wherein the apparatus comprises granulated water. 前記スラグ沈殿槽が、沈殿槽への水砕水の注入量をA(t/h)、沈殿槽の水砕水の流れと交差する方向の槽幅がX(m)であるとき、水砕水の流れ方向の槽長さがY(m)以上である沈殿槽であることを特徴とする請求項5記載の水砕水の処理装置。
Y:以下の式で計算される値
Y=(A/60)×(1/0.05X)×(0.05/0.0033)
When the slag settling tank has an injection amount of granulated water into the settling tank of A (t / h) and the tank width in the direction crossing the flow of the granulated water of the settling tank is X (m), 6. The apparatus for treating granulated water according to claim 5, wherein the tank length in the water flow direction is a precipitation tank having a length of Y (m) or more.
Y: Value calculated by the following equation Y = (A / 60) × (1 / 0.05X) × (0.05 / 0.0033)
JP2005312459A 2005-10-27 2005-10-27 Method and its device for treating ash melting furnace granulation water Pending JP2007120842A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005312459A JP2007120842A (en) 2005-10-27 2005-10-27 Method and its device for treating ash melting furnace granulation water

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005312459A JP2007120842A (en) 2005-10-27 2005-10-27 Method and its device for treating ash melting furnace granulation water

Publications (1)

Publication Number Publication Date
JP2007120842A true JP2007120842A (en) 2007-05-17

Family

ID=38144881

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005312459A Pending JP2007120842A (en) 2005-10-27 2005-10-27 Method and its device for treating ash melting furnace granulation water

Country Status (1)

Country Link
JP (1) JP2007120842A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011169005A (en) * 2010-02-17 2011-09-01 Nippon Steel Engineering Co Ltd Ground surface water discharge structure and method for constructing the same
CN102287835A (en) * 2010-06-18 2011-12-21 中国电力工程顾问集团华东电力设计院 Boiler wet-type slag removal system
CN105627339A (en) * 2016-03-16 2016-06-01 神华集团有限责任公司 Cyclic deslagging system
CN107935083A (en) * 2017-11-13 2018-04-20 北京国电富通科技发展有限责任公司 Power plant desulfurization wastewater treatment system
CN108408985A (en) * 2018-04-27 2018-08-17 南通神马线业有限公司 A kind of waste water from dyestuff cleaning equipment and purification method
CN109282661A (en) * 2018-09-04 2019-01-29 鞍钢股份有限公司 Method for treating household garbage by hot blast furnace slag

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0959046A (en) * 1995-08-23 1997-03-04 Nippon Steel Corp Treating apparatus of molten slag as waste material
JPH0959047A (en) * 1995-08-23 1997-03-04 Nippon Steel Corp Treating apparatus of molten slag as waste material
JPH09243047A (en) * 1996-03-05 1997-09-16 Takuma Co Ltd Waste fusing facility equipped with slag cleaner, and manufacture of granulated slag
JP2002210447A (en) * 2001-01-23 2002-07-30 Kurimoto Ltd Treatment of discharged material from melting furnace

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0959046A (en) * 1995-08-23 1997-03-04 Nippon Steel Corp Treating apparatus of molten slag as waste material
JPH0959047A (en) * 1995-08-23 1997-03-04 Nippon Steel Corp Treating apparatus of molten slag as waste material
JPH09243047A (en) * 1996-03-05 1997-09-16 Takuma Co Ltd Waste fusing facility equipped with slag cleaner, and manufacture of granulated slag
JP2002210447A (en) * 2001-01-23 2002-07-30 Kurimoto Ltd Treatment of discharged material from melting furnace

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011169005A (en) * 2010-02-17 2011-09-01 Nippon Steel Engineering Co Ltd Ground surface water discharge structure and method for constructing the same
CN102287835A (en) * 2010-06-18 2011-12-21 中国电力工程顾问集团华东电力设计院 Boiler wet-type slag removal system
CN105627339A (en) * 2016-03-16 2016-06-01 神华集团有限责任公司 Cyclic deslagging system
CN107935083A (en) * 2017-11-13 2018-04-20 北京国电富通科技发展有限责任公司 Power plant desulfurization wastewater treatment system
CN107935083B (en) * 2017-11-13 2021-02-09 北京国电富通科技发展有限责任公司 Desulfurization wastewater treatment system for power plant
CN108408985A (en) * 2018-04-27 2018-08-17 南通神马线业有限公司 A kind of waste water from dyestuff cleaning equipment and purification method
CN109282661A (en) * 2018-09-04 2019-01-29 鞍钢股份有限公司 Method for treating household garbage by hot blast furnace slag

Similar Documents

Publication Publication Date Title
CN211247720U (en) Plasma fusion vitrification device and waste incineration fly ash treatment system
JP2007120842A (en) Method and its device for treating ash melting furnace granulation water
JP5640307B2 (en) Blasting abrasive and method for producing blasting abrasive.
JP6521482B2 (en) Incineration ash treatment apparatus, waste incineration apparatus, incineration ash treatment method and waste incineration method
WO2022105355A1 (en) Waste incineration ash treatment system and method based on large coal-fired power station solid-state slag removal boiler
JPH10238725A (en) Waste treatment method and device
WO1994020791A1 (en) Plasma fusion furnace and method of its operation
JP2008070040A (en) Processing method for industrial waste and processing facility for industrial waste
JPH06265134A (en) Apparatus and method for recovering value in plasma melting furnace
JP4515214B2 (en) Method for processing molten slag.
JP2010236787A (en) Method of crushing biomass, method of melting biomass, and melting device
JP4179122B2 (en) Method and apparatus for processing molten slag water
JP3549135B2 (en) Waste melting treatment equipment with slag cleaning device and method for producing granulated slag
JP2001300470A (en) Process and device for treating fly ash in waste melt treatment equipment
JP3546108B2 (en) Exhaust gas treatment method and apparatus in ash melting furnace
JP2006183998A (en) Method of improving properties of incineration residues produced in incineration plant, and method of treating the residues
JP3704351B2 (en) Improvements in the process for heat treatment of residues from cleanup of fumes and industrial processes that emit fumes.
JP2004188414A (en) Heavy metal recovering apparatus, heavy metal recovering method and waste treating apparatus
JP3049170B2 (en) Swirling flow melting furnace
JP3374020B2 (en) Waste pyrolysis melting system
JP3965564B2 (en) Treatment method of ash melting furnace output gas
JP3405951B2 (en) How to treat incinerated ash
JPS5830382A (en) Treatment for dust
TW202348321A (en) Process for treatment of fly ash generated from melting furnace
JPH10151428A (en) Treatment for incineration ash of waste

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080222

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20080602

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080716

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090407

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090710

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090907

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100129

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20100215

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100604