JP2007118750A - Method and device for reducing traveling wind under floor of railroad vehicle - Google Patents

Method and device for reducing traveling wind under floor of railroad vehicle Download PDF

Info

Publication number
JP2007118750A
JP2007118750A JP2005312568A JP2005312568A JP2007118750A JP 2007118750 A JP2007118750 A JP 2007118750A JP 2005312568 A JP2005312568 A JP 2005312568A JP 2005312568 A JP2005312568 A JP 2005312568A JP 2007118750 A JP2007118750 A JP 2007118750A
Authority
JP
Japan
Prior art keywords
floor
wind
traveling wind
underfloor
vehicle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005312568A
Other languages
Japanese (ja)
Other versions
JP4749831B2 (en
Inventor
Akihiro Watanabe
章弘 渡辺
Tomonori Michikawa
友規 道川
Yasushi Okamoto
育志 岡本
Takahiro Shimizu
隆宏 清水
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kinki Sharyo Co Ltd
West Japan Railway Co
Original Assignee
Kinki Sharyo Co Ltd
West Japan Railway Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kinki Sharyo Co Ltd, West Japan Railway Co filed Critical Kinki Sharyo Co Ltd
Priority to JP2005312568A priority Critical patent/JP4749831B2/en
Publication of JP2007118750A publication Critical patent/JP2007118750A/en
Application granted granted Critical
Publication of JP4749831B2 publication Critical patent/JP4749831B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T30/00Transportation of goods or passengers via railways, e.g. energy recovery or reducing air resistance

Landscapes

  • Body Structure For Vehicles (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To solve a bad influence on a road bed of the traveling wind under a floor. <P>SOLUTION: Side surface traveling wind toward a rear side along a side surface of a railroad vehicle 1 which is traveling is suppressed so as not to roll into under the floor along a side surface of a vehicle 1, by a bulging portion bulging from a side surface lower portion of the vehicle 1 to a side part. Therefore, the traveling wind 2b under the floor of the railroad vehicle is reduced to attain the above mentioned purpose. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、鉄道車両が走行することにより床下に生じる走行風を低減する鉄道車両の床下走行風の低減方法と装置に関するものである。   The present invention relates to a method and an apparatus for reducing an underfloor traveling wind of a railway vehicle that reduces a traveling wind generated under the floor when the railway vehicle travels.

このような走行風に関する技術としては、道床を乱すなどの道床への悪影響、例えば基準粒度の砕石がそれよりも小さく砕けたものにつき生じることのある浮動などを防止することを意図して、道床の砕石どうしをシリコーンゴム弾性皮膜で固着させる技術(例えば、特許文献1参照。)や、道床の砕石を覆うネットを敷設する技術(例えば、特許文献2参照。)が知られている。
特開平 6−167002号公報 特開平 8−041805号公報
The technology relating to such a traveling wind is intended to prevent adverse effects on the roadbed, such as disturbing the roadbed, such as floating that may occur when a standard-sized crushed stone is broken to a smaller size. A technique (for example, see Patent Document 1) for fixing crushed stones of each other with a silicone rubber elastic film and a technique for laying a net covering the crushed stone on the roadbed (for example, see Patent Document 2) are known.
JP-A-6-167002 JP-A-8-041805

しかし、特許文献1、2に記載の技術は、いずれも、道床の側を床下走行風による風圧によっても悪影響を受けないように改良するもので、効果があるにしても、道床全長に亘って施工する必要があり多大な時間と労力、コストが掛かる。しかも、床下走行風はそのままであるので、騒音の発生や床下機器への影響など他の問題は解消されない。   However, the techniques described in Patent Documents 1 and 2 both improve the side of the roadbed so that it is not adversely affected by wind pressure caused by the underfloor traveling wind. It needs to be constructed and takes a lot of time, labor, and cost. In addition, since the underfloor traveling wind remains as it is, other problems such as generation of noise and influence on the underfloor equipment are not solved.

そこで、本発明者等は、鉄道車両が走行するときの床下走行風そのものを低減して問題を解決すべくコンピュータによるシミュレーション解析を行って種々に検討した。それによると、鉄道車両の表面に沿った走行風の軌跡は図1(a)、図22(a)に示すようになり、この結果は実際の鉄道車両1の表面に付着したオイル類や汚れなどの流れ線とよく一致している。図22(a)では現状の鉄道車両に相当するシミュレーション解析における流れ線2を見ており、走行する鉄道車両1により生じる車両側面に沿った側面走行風が、鉄道車両1の後方に向かいながらも床下に巻き込まれて、床下に沿った床下走行風に合流する挙動が見られ、床下走行風を増量しその勢いを増している様子が窺える。図1(a)は改良した車両1に相当するシミュレーション解析における流れ線2を見ており、床下への巻き込みが緩和し、床下走行風の減量と勢力の低減が窺える。   Therefore, the present inventors conducted various computer simulation analyzes in order to solve the problem by reducing the underfloor traveling wind itself when the railway vehicle travels. According to this, the trajectory of the traveling wind along the surface of the railway vehicle is as shown in FIGS. 1 (a) and 22 (a), and this result indicates that oils and dirt adhering to the surface of the actual railway vehicle 1 are obtained. It matches well with the flow line. In FIG. 22A, the flow line 2 in the simulation analysis corresponding to the current railway vehicle is seen, and the side running wind along the vehicle side surface generated by the traveling railway vehicle 1 is directed toward the rear of the railway vehicle 1. It can be seen that it is caught under the floor and merges with the under-floor traveling wind along the under-floor, increasing the amount of under-floor traveling wind and increasing its momentum. FIG. 1A shows a flow line 2 in a simulation analysis corresponding to the improved vehicle 1, and the entanglement under the floor is relaxed, and the reduction of the underfloor traveling wind and the reduction of the power can be seen.

この解析には図23(a)に示すような1/2両+1両+1/2両の列車モデルを設定し、列車を編成する各車両1は図23(b)に示すように側方が開放部5となった部分に台車4を持ち、台車4が車輪6によって軌条3の上に乗った状態での台車4および車両1の軌条3からの高さが共に200mmとなる台車モデルを設定した。枕木方向には図23(c)に示すように車両1の対称面から外側へ16mの範囲とし、高さ方向には図23(c)に示すような車両1の下部範囲とした。この下部範囲は図22に示す車両1の側面走行風の乱れのない水平な流れ線2の領域を幾分含んだ範囲であり、床下側に引き込まれる流れ線2の範囲が完全に含まれた範囲である。この解析範囲は図24(a)に示すように地上面、車両表面、および2つの外境面で囲われた横断面域を有し、この横断面域に対し、図24(b)に3次元的に示す車両1の走行方向Xにおける一端の流入面11から他端の流出面12へと、83.3m/sでの等分布速度の風を通し、流出面12での圧力が0Pa、走行速度300km/hとなる条件設定にて解析を行い、図23(a)に示す中央の車両1の長さ24,5mを評価範囲とした。なお、以上の条件で解析を行うと図1(a)、図22(a)のように車両1の側から見た走行風の流れが求まるが、地上への走行風の影響を評価するために、地上側から見た流れへの換算を行った。また、圧力分布は観測点の違いによる差はないので、そのままの値を用いた。   For this analysis, a train model of ½ cars + 1 cars + ½ cars as shown in FIG. 23 (a) is set, and each vehicle 1 that forms the train has a side as shown in FIG. 23 (b). Set the bogie model with the bogie 4 in the open part 5 and the bogie 4 on the rail 3 with the wheel 6 on the rail 3 and the height of the vehicle 1 from the rail 3 are both 200 mm. did. In the sleeper direction, as shown in FIG. 23 (c), the range is 16 m outward from the plane of symmetry of the vehicle 1, and in the height direction, the lower range of the vehicle 1 is as shown in FIG. 23 (c). This lower range is a range that includes a region of the horizontal flow line 2 that is not disturbed by the side running wind of the vehicle 1 shown in FIG. 22, and the range of the flow line 2 that is drawn under the floor is completely included. It is a range. This analysis range has a cross-sectional area surrounded by the ground surface, the vehicle surface, and two outer boundary surfaces as shown in FIG. 24 (a). For this cross-sectional area, 3 in FIG. 24 (b). From the inflow surface 11 at one end in the traveling direction X of the vehicle 1 shown in dimension, the wind at the uniform distribution speed at 83.3 m / s is passed from the inflow surface 11 at one end to the outflow surface 12 at the other end, and the pressure at the outflow surface 12 is 0 Pa, Analysis was performed with the condition setting at a traveling speed of 300 km / h, and the length 24,5 m of the central vehicle 1 shown in FIG. If the analysis is performed under the above conditions, the flow of the traveling wind viewed from the vehicle 1 side can be obtained as shown in FIGS. 1A and 22A. In order to evaluate the influence of the traveling wind on the ground. In addition, conversion to the flow seen from the ground side was performed. In addition, the pressure distribution did not differ depending on the observation point, so the value was used as it was.

この結果、代表的にX=10mの位置で見ると図25(a)に示すベクトル図と図25(b)に示す圧力分布図とが得られた。図25(a)の走行風ベクトル図では前記横断面上でのYZ方向の二次元速度ベクトルの大小を長さで示し、3次元速度ベクトルの大小を+側および−側から0への濃淡によって示しており、走行風の速度ベクトルと圧力分布との相関はとれているといえる。次に、床下走行風の道床への影響を見るために地上面から10mm付近で見た、車両1の車端から軌条3の長手方向Xでの走行風の速度値をプロットすると、枕木方向Yの対称面7の位置、つまりY=0mmの位置での速度分布は図26(a)に示す通りとなり、Y=1100mmの位置では図26(b)に示す通りとなり、Y=1300mmの位置では図26(c)に示す通りとなった。具体的には、Y=0mmと、Y=1100mmの位置では前側の台車4の部分に第1のピークP1があり、その後は車端から10m付近にピークP2が見られ、Y=0mmではP1=20m/s、P2=15m/sと大きく、Y=1100mmではP1=10〜14m/s、P2=12m/sとなお大きく、Y=1300mmではそのようなピークは認められず、7m/s程度以下の風速となっている。   As a result, when viewed typically at a position of X = 10 m, a vector diagram shown in FIG. 25A and a pressure distribution diagram shown in FIG. 25B were obtained. In the traveling wind vector diagram of FIG. 25 (a), the magnitude of the two-dimensional velocity vector in the YZ direction on the transverse cross section is shown by length, and the magnitude of the three-dimensional velocity vector is represented by shading from + side and − side to 0. It can be said that there is a correlation between the velocity vector of the traveling wind and the pressure distribution. Next, in order to see the influence of the underfloor traveling wind on the roadbed, the traveling wind speed value in the longitudinal direction X of the rail 3 from the vehicle end of the vehicle 1 viewed from about 10 mm from the ground surface is plotted. The velocity distribution at the position of the symmetry plane 7, i.e., Y = 0 mm, is as shown in FIG. 26A, at Y = 1100 mm, as shown in FIG. 26B, and at Y = 1300 mm. The result is as shown in FIG. Specifically, at the position of Y = 0 mm and Y = 1100 mm, there is a first peak P1 in the front carriage 4 portion, and thereafter, a peak P2 is seen in the vicinity of 10 m from the vehicle end. = 20 m / s, P2 = 15 m / s, and when Y = 1100 mm, P1 = 10 to 14 m / s, and P2 = 12 m / s, and when Y = 1300 mm, such a peak is not observed, and 7 m / s The wind speed is below the level.

ここで、車端から10m付近でのピークP2は側面走行風の床下走行風への巻き込みが影響しているものと考えられる。この巻き込みは図25(a)に示した走行風ベクトルに見られるように、対称面7の付近および軌条3の外側付近で高い負圧を持って勢いよく渦を巻いているのと符合し、Y=0mmおよびY=1100mmの位置で道床に大きな影響を与えかねないことが想定できる。   Here, it is considered that the peak P2 in the vicinity of 10 m from the vehicle end is influenced by the side running wind being involved in the underfloor running wind. As shown in the traveling wind vector shown in FIG. 25 (a), this entrainment coincides with the vigorous vortex having a high negative pressure near the symmetry plane 7 and near the outside of the rail 3, It can be assumed that the position of Y = 0 mm and Y = 1100 mm may greatly affect the roadbed.

さらに、走行風の枕木方向Yで見た分布傾向を明確にするため、Y=0mm、1100mm、1300mm、1500mm、1700mmの各断面域で走行風最大値を求め、プロットすると、図27に示す通りとなった。現状ではY=0mmが最も大きく、Y=1100mm、1300mmと順次小さくなり、Y=1300mm〜1700mmはやや右下がりであるがほぼ同程度の大きさとなっている。   Further, in order to clarify the distribution tendency of the traveling wind viewed in the sleeper direction Y, the traveling wind maximum value is obtained and plotted in each cross-sectional area of Y = 0 mm, 1100 mm, 1300 mm, 1500 mm, and 1700 mm, as shown in FIG. It became. At present, Y = 0 mm is the largest, Y = 1100 mm, and 1300 mm are sequentially reduced, and Y = 1300 mm to 1700 mm are slightly lower right but are almost the same size.

以上から、床下走行風は走行する車両1に随伴して車両1の走行方向に流れながら、側面走行風を巻き込んで負圧をなして強い渦を巻き、その挙動が道床へ悪影響を及ぼす原因になっていると思われる。そこで、車両1の表面における走行風ベクトルを見ると、図22(b)の通りとなり、上記のような傾向を示している。これに対処するのに本発明者は、さらに、種々な条件設定での解析と検討を重ね、側面走行風の床下への巻き込みを抑制することで床下走行風そのものが低減し、道床への悪影響が解消されることを見出した。   From the above, the underfloor traveling wind flows in the traveling direction of the vehicle 1 along with the traveling vehicle 1, and the side traveling wind is engulfed to create a negative vortex, causing a strong vortex, and the behavior adversely affects the roadbed. It seems to have become. Therefore, when the traveling wind vector on the surface of the vehicle 1 is seen, it becomes as shown in FIG. In order to cope with this, the present inventor further conducted analysis and examination under various condition settings, and by suppressing the entanglement of the side running wind under the floor, the underfloor running wind itself is reduced, and the bad influence on the road bed is caused. Has been found to be resolved.

本発明の目的は、そのような新たな知見に基づき、床下走行風の道床への悪影響を解消できる鉄道車両の床下走行風の低減方法と装置を提供することにある。   An object of the present invention is to provide a method and an apparatus for reducing the under-floor traveling wind of a railway vehicle that can eliminate the adverse effects of the under-floor traveling wind on the road bed based on such new knowledge.

上記のような目的を達成するために、本発明の鉄道車両の床下走行風の低減方法は、鉄道車両が走行することにより床下に生じる走行風を低減する鉄道車両の床下走行風の低減方法であって、走行する鉄道車両の側面に沿う側面走行風の、鉄道車両の側面に沿った床下への巻き込みを、鉄道車両の側面下部から側方へ張り出す張り出し部によって抑制することにより、鉄道車両床下の走行風を低減することを特徴としている。   In order to achieve the above object, a method for reducing underfloor traveling wind of a railway vehicle according to the present invention is a method for reducing underfloor traveling wind of a railway vehicle that reduces traveling wind generated under the floor when the railway vehicle travels. The rolling stock is controlled by a projecting portion that protrudes laterally from the lower side of the rail car to the floor under the side running wind along the side of the rail car. It is characterized by reducing the wind under the floor.

このような構成では、鉄道車両が走行するときに生じる側面に沿った側面走行風は水平に流れながら床下に巻き込まれようとするが、車両自体の側面から張り出した張り出し部が車両側面の床下側と反床下側とを仕切る作用および整流作用を発揮して、側面走行風を床下へ巻き込み、また側面走行風が床下に巻き込まれるのを抑制し、側面走行風の水平な、または床下に及ばない流れを多くして、床下側への巻き込み流れを少なくしまたはおよび巻き込み流れの勢力を弱めるので、床下走行風とその勢力および負圧も低減する。   In such a configuration, the side running wind along the side surface generated when the railway vehicle travels tends to be caught under the floor while flowing horizontally, but the projecting portion that projects from the side surface of the vehicle itself is below the floor side of the vehicle side surface. The side running wind is caught under the floor, and the side running wind is restrained from being caught under the floor, and the side running wind does not reach the horizontal or under the floor. Since the flow is increased to reduce the entrainment flow to the underfloor side and / or to reduce the force of the entrainment flow, the underfloor running wind and its force and negative pressure are also reduced.

このような方法を達成する鉄道車両の床下走行風の低減装置は、鉄道車両が走行することにより床下に生じる走行風を低減する鉄道車両の床下走行風の低減装置であって、鉄道車両の側面下部に、側面走行風が床下に巻き込まれる経路を床下側と反床下側とを仕切る側方への張り出し部を有し、この張り出し部はそれを床下側へ越えようとする側面走行風に対する剥離緩和曲面を介して平坦な上面が下面へと続いていることを特徴としている。   An apparatus for reducing an underfloor traveling wind of a railway vehicle that achieves such a method is an apparatus for reducing an underfloor traveling wind of a railway vehicle that reduces traveling wind generated under the floor when the railway vehicle travels. At the bottom, there is a side projecting part that divides the path where the side running wind is caught under the floor into the side below the floor and the other side of the floor, and this projecting part is separated from the side running wind that tries to cross the floor below It is characterized in that a flat upper surface continues to the lower surface via a relaxation curved surface.

このような構成では、鉄道車両が走行する際に生じる車両の側面に沿って水平に流れながら床下に巻き込まれようとする側面走行風につき、車両の側面下部にある側方への張り出し部が床下側と反床下側とを仕切り、また整流することで、床下へ巻き込み、また床下へ巻き込まれるのを抑制して、側面走行風の水平な、または床下に及ばない流れを多くし、床下側へ巻き込み床下走行風に合流する流れを少なくする。また、張り出し部が有している平坦な上面は側面走行風が床下へ巻き込まれようとするのを堰き止め水平な向きに案内しやすいし、床下走行風による床下側からの巻き込み作用力が反床下側に及びにくくするので、側面走行風の床下側への巻き込みを抑制しやすく、しかも、平坦な上面はその張り出し端から剥離緩和曲面を介して下面に繋がったフィン状の張り出し部をなしていて側面走行風が上面を床下側へ越えるときの剥離を緩和し乱れや負圧が生じるのを防止し、床下走行風とその勢力および負圧をより低減する。   In such a configuration, the side projecting portion at the lower side of the side of the side running wind that is about to be caught under the floor while flowing horizontally along the side of the vehicle generated when the railway vehicle travels is By separating and rectifying the side and the opposite side of the floor, it is prevented from being caught under the floor and being caught under the floor, increasing the flow of the side running wind horizontally or below the floor, and moving to the bottom of the floor. Reduce the flow that merges with the wind under the entrainment floor. In addition, the flat upper surface of the overhanging part helps to prevent the side running wind from being caught under the floor and guide it in a horizontal direction, and counteracts the acting force from the under floor caused by the underfloor running wind. Since it is difficult to reach under the floor, it is easy to suppress the side running wind from getting into the under floor, and the flat upper surface forms a fin-like protruding portion that is connected to the lower surface via a peeling relaxation curved surface from the protruding end. Thus, the separation when the side running wind crosses the upper surface to the lower floor side is mitigated to prevent turbulence and negative pressure from being generated, and the underfloor running wind and its power and negative pressure are further reduced.

張り出し部は、鉄道車両の側面下部にある下向きに細った裾細り形状面の下部寄りに設けてある、さらなる構成では、
側面走行風の床下への巻き込みが車両側面の裾細り形状面付近で強まるのを、その位置での張り出し部による床下側および反床下側の仕切り作用、整流作用によって効果的に抑制し、床下走行風とその勢力および負圧を効率よく低減する。また、車両側面の裾細り形状面は車両限界に対して比較的大きな余裕を持っていることによって、十分な張り出し量の張り出し部を車両限界の問題なしに設けられる。
In the further configuration, the overhanging part is provided near the lower part of the bottom-shaped surface that narrows downward on the side part of the railcar,
The underwinding of the side running wind under the floor is effectively suppressed by the partitioning action and the rectifying action of the underside and anti-underfloor side by the overhanging part at the side of the vehicle. Efficiently reduce wind and its power and negative pressure. Further, since the skirt-shaped surface on the side surface of the vehicle has a relatively large margin with respect to the vehicle limit, a protruding portion with a sufficient amount of protrusion can be provided without a problem of the vehicle limit.

張り出し部は、張り出し端から基部に向かって増厚している、さらなる構成では、
張り出し部の上面から剥離緩和曲面を経て下面基部に及ぶ全体が翼形となって、上面を床下側へ越える側面走行風との間の剥離が滑らかになる分だけ剥離の緩和効果も高められる。
The overhang is thickened from the overhang end toward the base,
The entire surface extending from the upper surface of the overhanging portion to the lower surface base through the peeling relaxation curved surface becomes an airfoil, and the peeling mitigation effect is enhanced by the amount of smooth separation with the side running wind that crosses the upper surface to the floor lower side.

張り出し部は、上面がほぼ水平で、下面が張り出し端から基部に向かって斜め下方に向かっている、さらなる構成では、
車両走行時の側面走行風を床下側へ巻き込み、また側面走行風が床下側へ巻き込まれる流れに対して張り出し部の上面が適度な拘束力を持って強力に働くのに併せ、上面から剥離緩和曲面を経て床下側へ越える側面走行風との間にできる剥離空間をさらに狭めるので、その分剥離の緩和効果をさらに高められる。
In the further configuration, the overhanging portion has a substantially horizontal upper surface and a lower surface obliquely downward from the overhanging end toward the base.
Side surface wind during vehicle travel is engulfed below the floor, and the upper surface of the overhanging part works strongly with moderate restraint against the flow of side cruising wind entrapped below the floor, and also eases peeling from the upper surface. Since the separation space formed between the side running wind passing through the curved surface to the lower side of the floor is further narrowed, the effect of relaxing the separation can be further enhanced accordingly.

張り出し部が、上面に続く剥離緩和曲面から下面の基部までほぼ流線形状をなしている、さらなる構成では、
張り出し部の上面から剥離緩和曲面を経て下面基部に及ぶ全体が翼形となって、上面を床下側へ越える側面走行風との間にできる狭い剥離空間での剥離を流線形状によりさらに滑らかにする分だけ剥離の緩和効果をより一層高められる。
In the further configuration in which the overhanging portion has a substantially streamline shape from the peeling relaxation curved surface continuing to the upper surface to the base of the lower surface,
The entire surface that extends from the upper surface of the overhanging part to the lower surface base via the peeling relaxation curved surface becomes an airfoil, and the streamline shape further smoothes the separation in the narrow separation space that can be formed between the upper surface and the side running wind that extends below the floor. Therefore, the peeling relaxation effect can be further enhanced.

張り出し部は、上面が基部から張り出し端に向けやや下向きに傾斜している、さらなる構成では、
車両走行時の側面走行風を床下側へ巻き込み、また側面走行風が床下側へ巻き込まれる流れに対して張り出し部の上面が効果的に働く。
In the further configuration, the overhang part has an upper surface inclined slightly downward from the base toward the overhang end.
The upper surface of the overhanging portion works effectively against the flow in which the side running wind during running of the vehicle is engulfed below the floor and the side running wind is engulfed below the floor.

さらに、張り出し部は、床下側に巻き込まれる側面走行風が速度を増しながら床下とのコーナ部に至るときのピークとなる位置の近傍にて張り出しているのが好適である。   Furthermore, it is preferable that the overhanging portion projects in the vicinity of a peak position when the side running wind wound on the underfloor side reaches the corner portion with the underfloor while increasing the speed.

張り出し部は、複数設ける、さらなる構成では、張り出し部による床下側と反床下側との仕切り作用および整流作用を高められ、側面走行風の床下への巻き込みをより抑制できる。   In the further configuration in which a plurality of overhanging portions are provided, the partitioning action and the rectifying action between the underfloor side and the anti-underfloor side by the overhanging part can be enhanced, and the entrainment of the side running wind under the floor can be further suppressed.

本発明のそれ以上の目的および特徴は、以下の詳細な説明および図面によって明らかになる。本発明の各特徴は、それ単独で、あるいは可能な限りにおいて種々な組合せで複合して採用することができる。   Further objects and features of the present invention will become apparent from the following detailed description and drawings. Each feature of the present invention can be used alone or in combination in various combinations as much as possible.

本発明の、鉄道車両の床下走行風の低減方法と装置によれば、車両自体の簡単かつ安価な改良で床下走行風とその勢力および負圧も低減し、床下走行風による道床を始め床下機器などへの悪影響を防止することができる。   According to the method and apparatus for reducing the underfloor running wind of a railway vehicle according to the present invention, the underfloor running wind, its power and negative pressure are reduced by simple and inexpensive improvement of the vehicle itself, and the underfloor equipment such as the road bed by the underfloor running wind is also reduced. It is possible to prevent adverse effects on the above.

以下、本発明に係る鉄道車両の床下走行風の低減方法と装置の実施の形態について図1〜図21を参照しながら説明し、本発明の理解に供する。なお、以下の説明および図示は、本発明の具体例であって、特許請求の範囲における記載の内容を限定するものではない。なお、本実施の形態では車両が走行するときに車両まわりに発生する車両1または地上に対して生じる空気流を走行風または車両走行風と称している。また、走行風が車両の側面に沿うものを側面走行風と称し、床下、つまり道床との間の走行風を床下走行風と称する。図1(a)では走行風による流れ線2で示す車両の表面に沿った側面走行風2aおよび床下走行風2bで代表して車両1に対する流れの位置や向きを示している。図1(b)は図1(a)に対応して車両1の表面における地上から見た走行風に換算したベクトルを示しており、それが示す流れの向きは図1(a)の場合と逆になっている。   Hereinafter, embodiments of a method and apparatus for reducing underfloor traveling wind of a railway vehicle according to the present invention will be described with reference to FIGS. 1 to 21 to provide an understanding of the present invention. The following description and illustrations are specific examples of the present invention and do not limit the contents described in the claims. In the present embodiment, the airflow generated around the vehicle 1 or the ground generated when the vehicle travels is referred to as traveling wind or vehicle traveling wind. A traveling wind along the side of the vehicle is referred to as a side traveling wind, and a traveling wind below the floor, that is, between the traveling floor and the road is referred to as an underfloor traveling wind. In FIG. 1 (a), the position and direction of the flow with respect to the vehicle 1 are shown representatively by the side running wind 2a and the underfloor running wind 2b along the surface of the vehicle indicated by the flow line 2 by the running wind. FIG. 1 (b) shows a vector converted to traveling wind as seen from the ground on the surface of the vehicle 1 corresponding to FIG. 1 (a), and the direction of the flow shown in FIG. It is reversed.

ところで、側面走行風2aと床下走行風2bとに関する先のシミュレーション結果から、床下走行風2bの道床などへの影響を緩和するには、側面走行風2aの床下への巻き込みを抑え、X=10m付近で生じているピークP2を始め、台車付近全域で低減させる必要がある。そこで、本実施の形態に係る鉄道車両の床下走行風の低減方法は、図1に示すように鉄道車両1が走行することにより生じる車両1まわりの走行風における、特に、床下走行風2bを低減することを意図して、走行する車両1の側面に沿う側面走行風2aの、鉄道車両1の側面に沿った床下への巻き込みを、鉄道車両1の側面下部から側方へ張り出す張り出し部21にて抑制することにより、鉄道車両1の床下走行風2bを低減するようにしている。具体的には、車両1が走行するときに生じる走行風の特に側面走行風2aは、水平に流れながら既述した図22に示すように床下に巻き込まれようとするのを、車両1自体の側面からの張り出し部21が車両側面の床下側と反床下側とを仕切る作用またはおよび整風作用によって、図1に示すように床下走行風2bが側面走行風2aを床下へ巻き込み、また側面走行風2aが床下走行風2bによって床下に巻き込まれるのを抑制する。これにより、図1に示すように側面走行風2aの水平な、または床下に及ばない流れを多くして、床下側への巻き込み床下走行風2bに合流するのを制限するので、床下走行風2bの増量とその勢力および負圧を低減させられる。   By the way, from the above simulation results regarding the side traveling wind 2a and the underfloor traveling wind 2b, in order to reduce the influence of the underfloor traveling wind 2b on the roadbed, the entrainment of the side traveling wind 2a under the floor is suppressed, and X = 10 m It is necessary to reduce the peak P2 occurring in the vicinity and the entire area near the carriage. Therefore, the method for reducing the underfloor traveling wind of the railway vehicle according to the present embodiment reduces especially the underfloor traveling wind 2b in the traveling wind around the vehicle 1 generated by the traveling of the railway vehicle 1 as shown in FIG. The overhanging portion 21 that projects the side wind 2a along the side surface of the traveling vehicle 1 from below the side surface along the side surface of the railway vehicle 1 from the lower portion of the side surface of the railway vehicle 1 to the side. In this way, the underfloor traveling wind 2b of the railway vehicle 1 is reduced. Specifically, particularly the side running wind 2a of the running wind generated when the vehicle 1 travels is caused to be caught under the floor as shown in FIG. As shown in FIG. 1, the underfloor running wind 2 b wraps the side running wind 2 a below the floor, and the side running wind is caused by the action of the overhanging portion 21 from the side partitioning the floor underside and the anti-floor underside of the side of the vehicle and the wind regulation action. 2a is restrained from being caught under the floor by the underfloor traveling wind 2b. As a result, as shown in FIG. 1, the flow of the side traveling wind 2a that is horizontal or below the floor is increased, and the merging into the underfloor side is restricted from joining the underfloor traveling wind 2b. The amount of increase and its power and negative pressure can be reduced.

これを実現する鉄道車両としては、例えば、図1に示すように鉄道車両1の側面下部に、鉄道車両1の側面に沿う側面走行風2aが車両1の側面に沿って床下への巻き込まれようとする経路の途中に、側方へ張り出して床下側と反床下側とを仕切る張り出し部21を有したものとすればよい。従って、車両1自体の簡単かつ安価な改良で床下走行風2bの増量とその勢力および負圧を低減し、床下走行風2bによる道床を始め床下機器などへの悪影響や騒音を防止し、また軽減することができる。   As a railway vehicle that realizes this, for example, as shown in FIG. 1, a side running wind 2 a along the side surface of the railway vehicle 1 is caught under the floor along the side surface of the vehicle 1 at the lower side of the rail vehicle 1. It is sufficient to have an overhanging portion 21 that protrudes to the side and partitions the under floor side and the under floor side in the middle of the path. Therefore, the simple and inexpensive improvement of the vehicle 1 itself increases the amount of underfloor traveling wind 2b and reduces its power and negative pressure, and prevents and reduces adverse effects and noise on the road floor and other underfloor equipment due to the underfloor traveling wind 2b. can do.

ここで、張り出し部21の好適な設置位置を特定するために、先ず、側面走行風2aが床下へ巻き込まれ床下走行風2bに合流する挙動に絞った検証をすべく、巻き込み方向となるYZ方向での2次元の速度成分のみを見たシミュレーション解析を、特に問題となる軌条3の方向での車両1前端からX=10m付近につき、行ったところ、図2に示すような結果が得られた。図2から側面走行風2aが車両1の側面に沿って床下に向かうのに、床下とのコーナ部に向け速度が徐々に増大し、コーナ部の若干手前の位置で10m/s程度以上とピークに達しているのが認められる。そこで、本発明者らはこのピークに達する直前、またはほぼ前となる高さ位置Hのところに前記のような張り出し部21を設ければ、側面走行風2aの床下への巻き込みを有効に抑制できるものと先ず想定した。その側面の高さ位置は床下からほぼ200mm程度の高さである。しかし、これは車両の種類ごとに異なるものと思われる。例えば、新幹線の高速車両では床下高さに高低があり、高速車ほど低床となっていて床下走行風2bは床高タイプよりも高速となっており、車両1まわりの走行風の速度分布は必ずしも一致しないと思われる。本明細書では全体に低床タイプを対象としている。   Here, in order to specify a suitable installation position of the overhanging portion 21, first, the YZ direction which is the entrainment direction is used for verification focusing on the behavior in which the side running wind 2a is caught under the floor and merges with the underfloor running wind 2b. The simulation analysis of only the two-dimensional velocity component in Fig. 2 was performed for the vicinity of X = 10 m from the front end of the vehicle 1 in the direction of the rail 3 in question, and the result shown in Fig. 2 was obtained. . As shown in FIG. 2, the side running wind 2a heads under the floor along the side of the vehicle 1 and the speed gradually increases toward the corner with the floor and peaks at about 10 m / s or more at a position slightly in front of the corner. It is recognized that Therefore, the present inventors can effectively prevent the side running wind 2a from being caught under the floor by providing the above-described overhanging portion 21 at a height position H just before or almost before reaching this peak. I first assumed that I could do it. The height position of the side surface is about 200 mm from the bottom of the floor. However, this seems to be different for each type of vehicle. For example, in a high-speed vehicle on the Shinkansen, the underfloor height is high, the high-speed vehicle has a lower floor, the underfloor traveling wind 2b is faster than the floor height type, and the speed distribution of the traveling wind around the vehicle 1 is It seems that it does not necessarily agree. In this specification, the low floor type is the object.

次いで、張り出し部21の前記好適高さ位置での張り出し向きの好適例として、側面走行風2aが床下走行風2bにより床下に巻き込まれようとする流れ、および床下走行風2bが側面走行風2aを床下に巻き込もうとする流れの双方に対して遮りやすい側方、特に、側面走行風2aが床下に巻き込まれようとする図22に示す流れに対しやや車両1側に拘束しながら遮断ないしは受け止めるように働く図3に示すようなほぼ水平な張り出し向きに選定した。さらに、そのような向きの張り出し部21の形態としては、図3(a)、図4(a)に示す断面が張り出し端に向けほぼ三角形となる厚みを持ったソリッド形態で張り出し量80mmのフィンタイプ、図3(b)、図4(b)に示す板部材よりなる張り出し量80mmのフィンタイプ、図3(c)、図4(c)に示す板部材よりなる張り出し量160mmのフィンタイプ、の3つのモデルを設定した。   Next, as a preferred example of the projecting direction of the overhanging portion 21 at the preferred height position, the side running wind 2a tends to be caught under the floor by the underfloor running wind 2b, and the underfloor running wind 2b changes the side running wind 2a. Sides that are easy to block both of the flows that are to be caught under the floor, in particular, the flow shown in FIG. In this way, it was selected to have a substantially horizontal overhanging direction as shown in FIG. Further, as the form of the overhanging portion 21 in such a direction, the fin shown in FIG. 3 (a) and FIG. 4 (a) is a solid form having a thickness in which the cross section becomes a substantially triangle toward the overhanging end and has an overhanging amount of 80 mm. Type, fin type with an extension amount of 80 mm made of a plate member shown in FIGS. 3B and 4B, fin type with an extension amount of 160 mm made of a plate member shown in FIGS. 3C and 4C, The following three models were set.

そこで、これらにつき、車両1の前端から軌条3方向X=12.25m付近での走行風のYZ方向の2次元速度分布および圧力分布についてシミュレーション解析した。その結果は、図3、図4に示す通りであり、ソリッド形態のフィンをなす張り出し部21の場合では、図4(a)に示すように車両1の側面における張り出し部21の床下側および反床下側での圧力差が解消され、図3(a)に示すように側面走行風2aおよび床下走行風2bのYZ方向の走行風ベクトルの分布はほぼ均等で小さく、渦流はどこにも発生していない。これに対し、短い板状フィンタイプの張り出し部21の場合では、図4(b)に示すように張り出し部21の床下側と反床下側とで、車量の側面に沿った大きな圧力差があり、YZ方向の走行風ベクトルは図3(b)に示すように図3(a)に示す場合の倍以上となり、図3(b)に示すように側面走行風2aは張り出し部21を越えて床下側に及び渦を生じ、渦の中心では風速が高く図4(b)に示す低圧部と対応している。長い板状フィンタイプの場合では、図4(c)に示すように張り出し部21の床下側と反床下側とで、図4(b)の場合に近い大きな圧力差があるが、張り出し部21の床下側での低圧部分が車両1の側面から離れており、張り出し部21の張り出し端部の真下に位置している点で異なり、YZ方向の走行風ベクトルは図3(b)に示す場合と余り変わらないが、図4(c)に示すように側面走行風2aは張り出し部21を越えて床下側に及び車両1の側面から離れた前記低圧位置に渦を形成し、渦の中心では風速が高くなっている。   Therefore, a simulation analysis was performed on the two-dimensional velocity distribution and pressure distribution in the YZ direction of the traveling wind in the vicinity of the rail 3 direction X = 12.25 m from the front end of the vehicle 1. The results are as shown in FIGS. 3 and 4. In the case of the overhanging portion 21 that forms a fin in the form of a solid, as shown in FIG. The pressure difference on the underfloor side is eliminated, and as shown in FIG. 3A, the distribution of the running wind vectors in the YZ direction of the side running wind 2a and the underfloor running wind 2b is almost uniform and eddy currents are generated everywhere. Absent. On the other hand, in the case of the short plate-shaped fin-type overhanging portion 21, as shown in FIG. Yes, the running wind vector in the YZ direction is more than double that shown in FIG. 3A as shown in FIG. 3B, and the side running wind 2a exceeds the overhanging portion 21 as shown in FIG. Thus, a vortex is generated on the floor side, and the wind speed is high at the center of the vortex, which corresponds to the low pressure portion shown in FIG. In the case of a long plate-shaped fin type, as shown in FIG. 4C, there is a large pressure difference between the underfloor side and the non-floor side of the overhanging portion 21 as in FIG. 3 in that the low-pressure part on the underside of the vehicle is away from the side surface of the vehicle 1 and is located directly under the overhanging end portion of the overhanging portion 21, and the traveling wind vector in the YZ direction is as shown in FIG. However, as shown in FIG. 4 (c), the side running wind 2a forms a vortex at the low pressure position that extends beyond the overhanging portion 21 and below the floor and away from the side surface of the vehicle 1, and at the center of the vortex. The wind speed is high.

ここで、図3(a)、図4(a)のソリッドフィンタイプの張り出し部21、図3(b)、図4(b)の短い板状フィンタイプの張り出し部21、図3(c)、図4(c)の長い板状フィンタイプの張り出し部21の各場合における、車両1の軌条方向Xにおける床下走行風2bについての地上10mmでの速度分布を示すと、枕木方向でのY=0mmの車両中心位置では図5(a)に示す通りであり、Y=1100mmの位置では図5(b)に示す通りであり、Y=1300mmの位置では図5(c)に示す通りである。これらから、板状フィンの張り出し部21ではその幅の大小にあまり関係なく、Y=0mmの対称面7の位置、およびY=1100mmの軌条3の外側位置での側面走行風2aの台車4部およびその後方での巻き込みによる床下走行風2bへの影響を低減することができないのに対し、ソリッドフィンタイプの張り出し部21によれば十分低減できている。   Here, the solid fin type overhang portion 21 in FIGS. 3 (a) and 4 (a), the short plate fin type overhang portion 21 in FIGS. 3 (b) and 4 (b), and FIG. 3 (c). In each case of the long plate-shaped fin-type overhanging portion 21 in FIG. 4C, the velocity distribution at 10 mm above the ground for the underfloor traveling wind 2b in the rail direction X of the vehicle 1 is shown as Y = in the sleeper direction. The vehicle center position of 0 mm is as shown in FIG. 5A, the Y = 1100 mm position is as shown in FIG. 5B, and the Y = 1300 mm position is as shown in FIG. 5C. . From these, regardless of the width of the overhanging portion 21 of the plate-like fin, the carriage 4 part of the side running wind 2a at the position of the symmetry plane 7 with Y = 0 mm and the outer position of the rail 3 with Y = 1100 mm. While the influence on the underfloor traveling wind 2b due to the entanglement at the rear thereof cannot be reduced, the solid fin type projecting portion 21 can sufficiently reduce the influence.

また、枕木方向におけるY=0mm、1100mm、1300mm、1500mm、1700mmの位置での各断面における床下走行風2bの最大値をプロットすると、図6に示す通りであり、ソリッドフィンタイプの張り出し部21では床下走行風2bの最大値が10m/sと低く、かつほぼフラットな分布になっているのに対し、板状フィンタイプの張り出し部21ではその幅の大小に関係なくY=0mmからY=1100mm程度まで22m/s〜12、3m/s程度までほぼ連続に右肩下がりとなるがソリッドフィンタイプの張り出し部21に比して高く、1250mm付近以降でようやくソリッドフィンタイプの張り出し部21とほぼ同等になっている。これは既述した図27に示す現状の場合に近い分布であり、張り出し部21の効果は見られない。以上から、側方への張り出し部21はソリッドフィンタイプとするのが好適であるといえる。もっとも、張り出し部21の張り出し量は車両限界による制限内の設定であり、車両限界を超える寸法設定は試していない。   Moreover, when the maximum value of the underfloor traveling wind 2b in each cross section at the positions of Y = 0 mm, 1100 mm, 1300 mm, 1500 mm, and 1700 mm in the sleeper direction is plotted, as shown in FIG. While the maximum value of the underfloor traveling wind 2b is as low as 10 m / s and has a substantially flat distribution, the plate-shaped fin-type overhanging portion 21 has Y = 0 mm to Y = 1100 mm regardless of the width. Up to about 22m / s to 12, 3m / s almost continuously descends to the right, but higher than solid fin type overhanging part 21, and finally almost equal to solid fin type overhanging part 21 after around 1250mm It has become. This is a distribution close to the case of the present situation shown in FIG. 27 described above, and the effect of the overhanging portion 21 is not seen. From the above, it can be said that the laterally extending portion 21 is preferably a solid fin type. However, the amount of overhang of the overhanging portion 21 is set within the limit due to the vehicle limit, and no dimension setting exceeding the vehicle limit has been tried.

一方、板状フィンタイプの張り出し部21については、前記の床下から200mmの高さ位置では好結果が得られなかったことから、80mmの張り出し量にて車両1の側面の最下位置に設けた場合についても同様なシミュレーション解析を行い、Y=0mm位置での軌条3に沿うX方向での風速をプロットしたところ図7に示す通りとなり、台車4の前のピークP3に加え、台車4の後部にもピークP4が生じた。しかし、図 (a)に示す現状の台車前部のピークP1や巻き込み風の影響のあるピークP2に対するよりは大きく低減していることがわかる。また、図7での特異な傾向を呈している例えばピークP4を示したX=6mm付近でのYZ方向の走行風ベクトルを見ると図8(a)に示す通りで、図8(b)に示す現状の場合に比し大きく低減しているし、ほぼ均等になっている。   On the other hand, the plate-like fin-type overhanging portion 21 was provided at the lowest position on the side surface of the vehicle 1 with an overhanging amount of 80 mm because good results were not obtained at a height of 200 mm from the floor below. The same simulation analysis was performed for the case, and the wind speed in the X direction along the rail 3 at the Y = 0 mm position was plotted as shown in FIG. 7. In addition to the peak P 3 before the carriage 4, the rear part of the carriage 4 The peak P4 also occurred. However, it can be seen that there is a significant reduction compared to the peak P1 at the front of the current carriage shown in FIG. Further, for example, when the traveling wind vector in the YZ direction around X = 6 mm showing the peculiar tendency in FIG. 7 is shown in FIG. 8A, it is as shown in FIG. 8B. Compared to the current situation shown, it is greatly reduced and almost uniform.

これを、枕木方向でのY=0mm、1100mm、1300mm、1500mm、1700mmの各断面での走行風の最大値をプロットすると図9に示す通りで、ソリッドフィンタイプの張り出し部21と比べて遜色の無い分布傾向となっている。従って、張り出し部21はその張り出し位置を変えれば、板状フィンタイプのもので効果があるといえるし、製作性が向上するという利点がある。しかし、台車4部の走行風の変化が急激であるのに加えて、車両1まわり流れが他の場合と比べて特異な傾向を示している。   Plotting the maximum values of the traveling wind at each cross section of Y = 0 mm, 1100 mm, 1300 mm, 1500 mm, and 1700 mm in the direction of the sleeper is as shown in FIG. 9, which is inferior to the solid fin type overhanging portion 21. There is no distribution tendency. Therefore, if the overhanging portion 21 is changed in its overhanging position, it can be said that the plate-like fin type is effective, and there is an advantage that the manufacturability is improved. However, in addition to the abrupt change in traveling wind of the four parts of the carriage, the flow around the vehicle 1 shows a unique tendency as compared with other cases.

ここで、張り出し部21の最適な張り出し向きを決定すべく、張り出し部21に床下走行風2bの低減に有利なソリッドフィンタイプのものを採用した上で、それを下向きに設置して比較例とし、同様にシミュレーション解析した。その結果、車両1の前端から軌条3方向でのX=12.25m位置でのYZ方向の走行風ベクトルは図10(a)に示す通りで、図10(b)に示すように床下での軌条3の外側位置に渦が発生している現状の場合に比し、地上付近の渦流が張り出し部21の真下位置から外側に寄っている点で相違している。圧力分布は図11(a)に示す通りで、図11(b)に示す低圧部が車両の側面下端部と軌条の内側との2箇所に生じている現状の場合に比べ、低圧位置が張り出し部21の直ぐ下の車両1の側面に沿う位置と、張り出し部21の真下の位置から外側の2箇所に移動している点で相違している。また、比較例、現状共に負圧域はないが、比較例の方が現状の場合に比し高圧部分が減少しているといえる。   Here, in order to determine the optimum overhanging direction of the overhanging part 21, a solid fin type that is advantageous for reducing the underfloor running wind 2b is adopted for the overhanging part 21, and then it is installed in a downward direction as a comparative example. Similarly, simulation analysis was performed. As a result, the traveling wind vector in the YZ direction at the position of X = 12.55m in the direction of the rail 3 from the front end of the vehicle 1 is as shown in FIG. 10 (a), and as shown in FIG. 10 (b), Compared to the current situation where vortices are generated at the outer position of the rail 3, the vortex near the ground is different from the position immediately below the overhanging portion 21 to the outside. The pressure distribution is as shown in FIG. 11 (a), and the low-pressure position is overhanging compared to the current situation where the low-pressure part shown in FIG. 11 (b) occurs at two locations, the lower end of the side surface of the vehicle and the inside of the rail. The position is different from the position along the side surface of the vehicle 1 immediately below the portion 21 and from the position directly below the overhanging portion 21 to two positions outside. In addition, although there is no negative pressure range in both the comparative example and the current situation, it can be said that the high pressure portion is reduced in the comparative example compared to the current situation.

もっとも、比較例では、張り出し部21の床下側と反床下側とに高い圧力差が生じ、側面走行風2aの張り出し部21を床下側に越えて剥離する流れが車両1側に引かれるために、床下への巻き込みは現状に比べて特に改善されていない。また、地上付近に生じる渦流は車両1の中心から大きく離れたY=1500mm付近を中心として位置しそこでの走行風を増大させているので、なお道床への影響が懸念される。   However, in the comparative example, a high pressure difference is generated between the underfloor side and the non-floor underside of the overhanging portion 21, and the flow that separates the overhanging portion 21 of the side running wind 2 a to the underfloor side is drawn to the vehicle 1 side. In particular, underfloor entrainment has not been improved compared to the current situation. Further, since the vortex generated near the ground is located around Y = 1500 mm, which is far away from the center of the vehicle 1, and the traveling wind there is increased, there is still concern about the influence on the roadbed.

このような比較例と現状とにつき、枕木方向でのY=0m、1100m、1300m、1500mの枕木方向位置での床下走行風2bの軌条3の方向Xでの速度分布をプロットすると、図12(a)〜(b)に示す通り、比較例では床下走行風のX方向での速度分布でみても現状に対して床下走行風の低減効果は大差ない。しかも、比較例では下向きの張り出し部21によって床下側に誘導され、巻き込まれた流れの影響でY=1300m位置では床下走行風を増大させている。   When the velocity distribution in the direction X of the rail 3 of the underfloor traveling wind 2b at the position of the sleeper direction of Y = 0m, 1100m, 1300m, 1500m in the sleeper direction is plotted for such a comparative example and the current situation, FIG. As shown in a) to (b), in the comparative example, even if the speed distribution in the X direction of the underfloor traveling wind is seen, the effect of reducing the underfloor traveling wind is not significantly different from the current state. In addition, in the comparative example, the underfloor traveling wind is increased at the Y = 1300 m position due to the influence of the entrained flow guided to the lower floor side by the downward projecting portion 21.

また、比較例および現状の枕木方向でのY=0m、1100m、1300m、1500、1700mの各断面の走行風最大値をプロットすると、図13のようになる。これから、下向きの張り出し部21を設けてもY=0m、1100m位置では現状と比べて走行風は低減されていず、Y=1300m〜1700mでは逆に大幅に増加している。   Moreover, when the traveling wind maximum value of each cross section of Y = 0m, 1100m, 1300m, 1500, and 1700m in the comparative example and the current sleeper direction is plotted, it is as shown in FIG. From this, even if the downward projecting portion 21 is provided, the traveling wind is not reduced at the position of Y = 0 m and 1100 m compared to the current state, and on the other hand, it increases significantly at Y = 1300 m to 1700 m.

そこで、本発明者は横向きのソリッドフィンタイプの張り出し部21が最適と考え、これにつき現状の場合と比較しながらさらに詳述する。図1、図3(a)、図4(a)に示す横向きの張り出し部21では、車両1の前端からの軌条3方向でのX=6m、10m、12.25mの各断面での走行風ベクトルが図14(a)〜(c)に示すようになり、X=6mでは側面走行風2aの床下走行風2bへの巻き込みとそれによる床下での渦が見られるが、X=10mでは側面走行風2aは張り出し部21を床下側に越えてはいるが、車両1の床下への巻き込みが大きく緩和され、床下走行風2bのベクトルおよび風速が十分に低減され、渦流も生じていない。X=12.25mになれば側面走行風2aの床下走行風2bへの巻き込みは解消されていることがわかる。これに対し、図15(a)〜(c)に示す現状の場合では、X=6mでは横向きの張り出し部21の場合とほとんど変わらないが、X=10mでも側面走行風2aの床下走行風2bへの強い巻き込みが見られ床下走行風2bの勢いはまだ強い。X=12.25mでも側面走行風2aの床下走行風2bへの巻き込みは解消されず、なお、床下の1箇所で渦が生じ、床下走行風2bはまだ十分に低減していない。   Therefore, the present inventor considers the laterally-oriented solid fin-type overhanging portion 21 to be optimal, and will be described in more detail in comparison with the current case. In the laterally extending portion 21 shown in FIGS. 1, 3 (a), and 4 (a), traveling wind in each cross section of X = 6 m, 10 m, and 12.25 m in the direction of the rail 3 from the front end of the vehicle 1. The vectors are as shown in FIGS. 14A to 14C. When X = 6 m, the side running wind 2a is engulfed in the underfloor running wind 2b and the resulting vortex under the floor is observed. Although the traveling wind 2a crosses the overhanging portion 21 to the lower floor side, the entanglement of the vehicle 1 under the floor is greatly relaxed, the vector and the wind speed of the underfloor traveling wind 2b are sufficiently reduced, and no eddy current is generated. When X = 12.25 m, it can be seen that the side running wind 2a is not caught in the underfloor running wind 2b. On the other hand, in the case of the current situation shown in FIGS. 15A to 15C, X = 6 m is almost the same as the case of the laterally extending portion 21, but the underside traveling wind 2 b of the side running wind 2 a is even when X = 10 m. A strong entanglement of the underfloor wind 2b is still observed. Even when X = 12.55 m, the side running wind 2a is not engulfed in the underfloor running wind 2b, and a vortex is generated in one place under the floor, and the underfloor running wind 2b is not yet sufficiently reduced.

この関係を車両1の前端からの軌条3方向で見たX=6m、10m、12.25mでの圧力分布で見ると、横向きの張り出し部21についでは図16に示す通りであり、現状は図17に示す通りである。図から分かるように横向きの張り出し部21の場合、X=12.25mで車両1の側面および床下の圧力が一定になっていて、側面走行風2aの床下走行風2bへの巻き込みが抑えられていることを示している。これに対し、現状では車両1の側面の圧力に対し床下の圧力がなお局部的に低く圧力差が解消されず側面走行風2aの床下走行風2bへの巻き込みが生じていることを示している。   When this relationship is seen in the pressure distribution at X = 6 m, 10 m, and 12.25 m as viewed in the direction of the rail 3 from the front end of the vehicle 1, the laterally extending portion 21 is as shown in FIG. As shown in FIG. As can be seen from the figure, in the case of the laterally projecting portion 21, the pressure on the side surface and under the floor of the vehicle 1 is constant at X = 12.55 m, and the entrainment of the side traveling wind 2a into the underfloor traveling wind 2b is suppressed. It shows that. On the other hand, under the present situation, the pressure under the floor is still locally lower than the pressure on the side surface of the vehicle 1, and the pressure difference is not eliminated, indicating that the side running wind 2a is involved in the underfloor running wind 2b. .

次に、枕木方向Y=0mm、1100mm、1300mmの各位置での床下走行風2bの軌条3の方向でみた速度分布を横向きの張り出し部21と現状とで比較すると、図18(a)〜(c)に示す通りである。図から横向き張り出し部21では地上付近の床下走行風2bを小さくする効果が見られ、特に、車両1の中心Y=0mmに近い断面ではそのような効果が顕著に現れている。Y=1300mmでは現状でも床下走行風2aの影響は比較的小さくなっている。一方、台車4の部分の床下走行風2bを低減するには台車4を設ける部分の車両1の側の開放部5を覆うカバーを設けてこの部分でも張り出し部21が連続するようにすれば有効である。   Next, when comparing the speed distribution in the direction of the rail 3 of the underfloor traveling wind 2b at each position of the sleeper direction Y = 0 mm, 1100 mm, and 1300 mm with the laterally extending portion 21 and the current state, FIG. As shown in c). From the figure, the laterally projecting portion 21 has an effect of reducing the underfloor traveling wind 2b near the ground. In particular, such an effect is conspicuous in a cross section near the center Y = 0 mm of the vehicle 1. Even when Y = 1300 mm, the influence of the underfloor traveling wind 2a is relatively small. On the other hand, in order to reduce the underfloor traveling wind 2b in the portion of the carriage 4, it is effective to provide a cover that covers the opening portion 5 on the vehicle 1 side of the portion where the carriage 4 is provided so that the overhanging portion 21 continues in this portion. It is.

ここで、横向きの張り出し部21を用いることで車両1における台車4の部分における床下走行風2bのピークを下げられることにつき、既述のシミュレーション解析での評価領域を広げて現状と比較し出力した図19に示す床下走行風2bについてのグラフを用いて説明する。図19(a)で示す現状では台車3号付近で見ると側面走行風の巻き込みによる影響は台車3号の中心から4.5m後のA部で大きくなり始めている。このとき、台車2号による影響は台車3号まで及んでいないと考えられるので、同様な現象は台車1号でも生じていると推測される。同様な現象が台車1号でも生じた場合、台車1号の影響によってB部で床下走行風2bが増加し始め、ピークは台車2号の影響と重なってしまう。このため、現状の場合、評価対象車両1の前側の台車2号付近に客室部よりも大きなピークが現れる。   Here, regarding the fact that the peak of the underfloor traveling wind 2b in the portion of the carriage 4 in the vehicle 1 can be lowered by using the laterally extending portion 21, the evaluation area in the above-described simulation analysis is expanded and output compared with the current state. This will be described with reference to the graph for the underfloor traveling wind 2b shown in FIG. In the present situation shown in FIG. 19 (a), when viewed in the vicinity of the trolley 3, the influence of the side running wind is beginning to increase at the A part 4.5 m after the center of the trolley 3. At this time, since it is considered that the influence of the carriage 2 does not reach the carriage 3 as well, it is estimated that the same phenomenon occurs in the carriage 1 as well. When the same phenomenon occurs in the trolley 1, the underfloor traveling wind 2b starts to increase in the portion B due to the influence of the trolley 1, and the peak overlaps with the influence of the trolley 2. For this reason, in the case of the present condition, a peak larger than the cabin portion appears near the carriage 2 on the front side of the vehicle 1 to be evaluated.

これに対し、横向きの張り出し部21の場合では、図19(b)に示すように台車3号の後のC部に明確なピークは現れない。これは横向きの張り出し部21によって側面走行風2aの巻き込みが抑えられているからである。従って、台車1号でも同様な状況が考えられ、台車1号の影響が台車2号の影響と重なり合うことはない。台車1号、2号でそれぞれ独立した波形になっていて、台車部の床下走行風2bの最大値も台車単位での特性から増大することはない。以上から、横向きの張り出し部21を設けると、現状の場合よりも台車4部の床下走行風2bを大きく低減できる。   On the other hand, in the case of the laterally projecting portion 21, a clear peak does not appear in the C portion after the carriage 3 as shown in FIG. This is because the side running wind 2a is prevented from being caught by the laterally projecting portion 21. Therefore, the same situation can be considered for the truck 1 and the influence of the carriage 1 does not overlap with the influence of the carriage 2. The trolleys 1 and 2 have independent waveforms, and the maximum value of the underfloor traveling wind 2b of the trolley part does not increase due to the characteristics of the trolley unit. From the above, when the laterally projecting portion 21 is provided, the underfloor traveling wind 2b of the carriage 4 can be greatly reduced as compared with the current case.

また、枕木方向のY=0mm、1100mm、1300mm、1500mm、1700mmでの床下走行風2bの最大値をプロットすると、図20に示す通りである。図から横向きの張り出し部21を設けると、台車4部の影響および側面走行風2bの床下走行風への巻き込みの影響が抑えられるため、Y=0mm、1100mmでの床下走行風2bが低減される。この結果、枕木方向の速度分布は現状の最小値レベルでフラットになる。   Moreover, when the maximum value of the underfloor traveling wind 2b at Y = 0 mm, 1100 mm, 1300 mm, 1500 mm, and 1700 mm in the sleeper direction is plotted, it is as shown in FIG. If the laterally projecting portion 21 is provided from the figure, the influence of the four parts of the carriage and the influence of the side running wind 2b involving the underfloor running wind are suppressed, so that the underfloor running wind 2b at Y = 0 mm and 1100 mm is reduced. . As a result, the velocity distribution in the sleeper direction becomes flat at the current minimum value level.

さらに詳述すると、本実施の形態の張り出し部21は、鉄道車両1の側面下部にある下方への裾細り形状面の下部寄りに位置している。これにより、側面走行風2aの床下への巻き込みが車両側面の裾細り形状面付近で強まるのを、その位置での張り出し部21による床下側および反床下側の仕切り作用、整流作用によって効果的に抑制し、床下走行風とその勢力および負圧を効果的に低減する。また、車両側面の裾細り形状面は車両限界に対して比較的大きな余裕を持っていることによって、十分な張り出し量の張り出し部を車両限界の問題なしに設けられる。   More specifically, the overhanging portion 21 of the present embodiment is located near the lower part of the downwardly skirted surface in the lower part of the side surface of the railway vehicle 1. As a result, the underwind of the side running wind 2a is strengthened in the vicinity of the skirt-shaped surface on the side of the vehicle, effectively by the partitioning action and the rectifying action of the underfloor side and the anti-underfloor side by the overhanging portion 21 at that position. Suppressing and effectively reducing the underfloor wind and its power and negative pressure. Further, since the skirt-shaped surface on the side surface of the vehicle has a relatively large margin with respect to the vehicle limit, a protruding portion with a sufficient amount of protrusion can be provided without a problem of the vehicle limit.

また、裾細り形状面は、図21(a)に示すように車両1の側スカート壁22で形成してあり、この側スカート壁22が存在する長手方向ほぼ全域に張り出し部21を設けるようにする。また、側スカート壁22は、車両1の床下機器設置域の側を防風および外装するものであって、車両1の長手方向のできる限りの範囲に亘って設けられる。場合によって側スカート壁22自体の隆起部として一体形成できる。   Further, as shown in FIG. 21A, the skirt-shaped surface is formed by the side skirt wall 22 of the vehicle 1, and the overhanging portion 21 is provided in almost the entire longitudinal direction where the side skirt wall 22 exists. To do. Further, the side skirt wall 22 windproofs and externally covers the side of the underfloor equipment installation area of the vehicle 1 and is provided over as long as possible in the longitudinal direction of the vehicle 1. In some cases, it can be integrally formed as a raised portion of the side skirt wall 22 itself.

ソリッドフィンタイプの張り出し部21は、また、図21(b)に示すように張り出し端から基部に向かって増厚した翼形をなし、張り出し部21の上面21aから剥離緩和曲面21bを経て下面基部に及ぶ全体が翼形となって、対煽り強度が向上し、上面21aを床下側へ越える側面走行風2aに対する剥離が滑らかになる分剥離緩和効果も高められる。   As shown in FIG. 21 (b), the solid fin type bulge portion 21 has an airfoil shape that is thickened from the bulge end toward the base portion, and the lower surface base portion from the upper surface 21a of the bulge portion 21 through the peeling relaxation curved surface 21b. As a result, the anti-peeling effect is enhanced by the fact that the wing shape is improved and the anti-strength strength is improved, and the side running wind 2a that crosses the upper surface 21a toward the lower floor becomes smoother.

しかも、張り出し部21は、上面21aがほぼ水平で、下面21cが張り出し端から基部に向かって斜め下方に傾斜していることにより、車両走行時の側面走行風2aを床下側へ巻き込み、また側面走行風2aが床下側へ巻き込まれる流れに対して張り出し部21の上面21aが適度な拘束力を持って強力に働くのに併せ、上面21aから剥離緩和曲面21bを経て床下側へ越える側面走行風2aに対する下面21cの近づき度がさらに高くなって剥離の緩和効果をさらに高められる。さらに、張り出し21部が、上面21aの張り出し端部から下面21cの基部までほぼ流線形状をなしていることにより、張り出し部21の上面21aから剥離緩和曲面21bを経て下面21cの基部に及ぶ全体が翼形となって、上面21aを床下側へ越える側面走行風2aとの間にできる狭い剥離空間での剥離を流線形状によりさらに滑らかにする分だけ剥離の緩和効果をより一層高められる。また、張り出し部21は、上面21aが基部から張り出し端に向けやや下向きに傾斜していることにより、車両走行時の側面走行風2aを床下側へ巻き込み、また側面走行風2aが床下側へ巻き込まれる流れに対して効果的に働いた。ここで、張り出し部21の1つの実施例を示せば、図21(b)(c)に示す寸法関係としている。   In addition, the overhanging portion 21 has the upper surface 21a substantially horizontal, and the lower surface 21c is inclined obliquely downward from the overhanging end toward the base, so that the side running wind 2a during vehicle running can be wound under the floor. A side running wind that extends from the upper surface 21a to the lower floor side through the peeling relaxation curved surface 21b while the upper surface 21a of the overhanging portion 21 works strongly with an appropriate restraining force against the flow of the traveling wind 2a entangled to the lower floor side. The degree of approach of the lower surface 21c to 2a is further increased, and the peeling mitigating effect can be further enhanced. Further, since the overhang 21 portion has a substantially streamline shape from the overhang end portion of the upper surface 21a to the base portion of the lower surface 21c, the entire surface extends from the upper surface 21a of the overhang portion 21 to the base portion of the lower surface 21c via the peeling relaxation curved surface 21b. Becomes an airfoil, and the peeling mitigating effect can be further enhanced by further smoothing the separation in the narrow separation space formed between the upper surface 21a and the side running wind 2a that extends below the floor by the streamline shape. Further, the overhanging portion 21 has the upper surface 21a inclined slightly downward from the base toward the overhanging end, so that the side running wind 2a during vehicle running is caught under the floor, and the side running wind 2a is caught under the floor. Worked effectively against the flow. Here, if one embodiment of the overhanging portion 21 is shown, the dimensional relationship shown in FIGS.

なお、張り出し部21は必要に応じて図21(c)に仮想線で示すように複数枚設けることもできる。張り出し部21の枚数が増えると、それによる床下側と反床下側との仕切り作用および整流作用を高められ、側面走行風2aの床下への巻き込みをより抑制できる。従って、1枚では床下走行風を十分に低減できない場合や、十分に低減するには必要張り出し量が車両限界を越えるような場合に有効である。この場合、張り出し部21は車両限界を超えない範囲で同じ張り出し量とすることができるし、図21(c)に示すように上側から下側のものへ張り出し量を小さくしたり、どのようにもできる。   It should be noted that a plurality of overhanging portions 21 may be provided as indicated by phantom lines in FIG. When the number of the overhanging portions 21 is increased, the partitioning action and the rectifying action between the underfloor side and the anti-underfloor side can be enhanced, and it is possible to further suppress the side running wind 2a from being caught under the floor. Accordingly, it is effective when the underfloor traveling wind cannot be sufficiently reduced with a single sheet, or when the amount of overhang required to sufficiently reduce the vehicle exceeds the vehicle limit. In this case, the overhanging portion 21 can have the same overhanging range as long as it does not exceed the vehicle limit, and the overhanging amount can be reduced from the upper side to the lower side as shown in FIG. You can also.

本発明は、鉄道車両に実用されるもので、車両走行時の床下走行風自体を低減して道床などに悪影響するのを抑えられる。   INDUSTRIAL APPLICABILITY The present invention is practically used for a railway vehicle, and can reduce an underfloor traveling wind itself during traveling of the vehicle and prevent adverse effects on the roadbed and the like.

本発明の実施の形態に係る鉄道車両の車両に対する走行風の流れと、地上で見た走行風の車両表面および地上表面で見てシミュレーション解析した走行風ベクトルとの関係を示す斜視図である。It is a perspective view which shows the relationship between the flow of the driving | running | working wind with respect to the vehicle of the railway vehicle which concerns on embodiment of this invention, and the driving | running | working wind vector which carried out the simulation analysis by seeing on the vehicle surface of the running wind seen on the ground and the ground surface. 側面走行風と床下走行風の車両まわりの速度分布を示すシミュレーション解析図である。It is a simulation analysis figure which shows the speed distribution around the vehicle of a side running wind and an underfloor running wind. 床下走行風を低減するために横向きに設ける張り出し部を、ソリッドフィンタイプ、短い板状フィンタイプ、長い板状フィンタイプとしたときの2次元速度ベクトルの分布を示すシミュレーション解析図である。It is a simulation analysis figure which shows distribution of a two-dimensional velocity vector when the overhang | projection part provided sideways in order to reduce underfloor running wind is made into a solid fin type, a short plate fin type, and a long plate fin type. 図3に対応する圧力分布に関してのシミュレーション解析図である。It is a simulation analysis figure regarding the pressure distribution corresponding to FIG. 図3、4に対応した床下走行風の軌条方向複数箇所での速度分布を示すグラフである。It is a graph which shows the speed distribution in the rail direction several places of the underfloor running wind corresponding to FIG. 図5に対応した枕木方向各部での最大速度の分布を示すグラフである。It is a graph which shows distribution of the maximum speed in each part of the sleeper direction corresponding to FIG. 張り出し部を板状フィンタイプとして車両側面の最下位置に設けたときの、図5(a)に対応する軌条方向で見た床下走行風の速度分布を示すグラフである。It is a graph which shows the velocity distribution of the underfloor traveling wind seen in the rail direction corresponding to Fig.5 (a) when an overhang | projection part is provided in the lowest position of the vehicle side surface as a plate-like fin type. 図7に対応する2次元の走行風ベクトルと、現状のものとを比較して示すシミュレーション解析図である。FIG. 8 is a simulation analysis diagram comparing the two-dimensional traveling wind vector corresponding to FIG. 7 and the current one. 図8に対応した枕木方向各部での最大速度の分布を示すグラフである。It is a graph which shows distribution of the maximum speed in each part of the sleeper direction corresponding to FIG. 張り出し部を下向きに設ける比較例での2次元の走行風ベクトルと、現状のものとを比較して示すシミュレーション解析図である。It is a simulation analysis figure which compares and compares the two-dimensional driving | running | working wind vector in the comparative example which provides an overhang part downward, and the present thing. 図10に対応した圧力分布のシミュレーション解析図である。It is a simulation analysis figure of the pressure distribution corresponding to FIG. 図10の比較例と現状との枕木方向各部で見た軌条方向での速度分布を示すグラフである。It is a graph which shows the velocity distribution in the rail direction seen in each part of the sleeper direction with the comparative example of FIG. 10, and the present condition. 図12に対応した枕木方向各部での最大速度の分布を示すグラフである。It is a graph which shows distribution of the maximum speed in each part of the sleeper direction corresponding to FIG. ソリッドフィンタイプの横向き張り出し部についての、軌条方向各部での2次元の走行風ベクトル分布を示すシミュレーション解析図である。It is a simulation analysis figure which shows the two-dimensional traveling wind vector distribution in each part of a rail direction about a solid fin type sideways overhang | projection part. 図14に対応する現状での、軌条方向各部での2次元の走行風ベクトル分布を示すシミュレーション解析図である。It is a simulation analysis figure which shows the two-dimensional running wind vector distribution in each part of a rail direction in the present condition corresponding to FIG. 図14に対応する圧力分布を示すシミュレーション解析図である。It is a simulation analysis figure which shows the pressure distribution corresponding to FIG. 図15に対応する圧力分布を示すシミュレーション解析図である。It is a simulation analysis figure which shows the pressure distribution corresponding to FIG. 図14、図15に対応する横向きソリッドフィンタイプと現状との、枕木方向各部で見た軌条方向での床下走行風の速度分布を示すグラフである。It is a graph which shows the velocity distribution of the underfloor traveling wind in the rail direction seen in each part of the sleeper direction between the horizontal solid fin type corresponding to FIGS. 14 and 15 and the current state. 横向きのソリッドフィンタイプと現状とにつき、シミュレーション解析での評価領域を広げて比較出力した軌条方向の速度分布を示すグラフである。It is a graph which shows the speed distribution of the rail direction which expanded the evaluation area | region in simulation analysis and compared and output about the horizontal solid fin type and the present condition. 図18に対応した枕木方向各部での最大速度の分布を示すグラフである。It is a graph which shows distribution of the maximum speed in each part of the sleeper direction corresponding to FIG. ソリッドフィンタイプの横向き張り出し部の実施例を示す車両側面図、張り出し部形状図、張り出し部を含む車両下部の断面図である。FIG. 4 is a side view of a vehicle, an overhang portion shape diagram, and a cross-sectional view of the lower part of the vehicle including the overhang portion showing an example of a solid fin type lateral overhang portion. 現状での鉄道車両の車両に対する走行風の流れと、地上で見た走行風の車両表面および地上表面で見てシミュレーション解析した走行風ベクトルとの関係を示す斜視図である。It is a perspective view which shows the relationship between the flow of the driving | running | working wind with respect to the vehicle of the railway vehicle in the present condition, and the driving | running | working wind vector which carried out the simulation analysis by seeing on the vehicle surface of the running wind seen on the ground, and the ground surface. 車両走行風のシミュレーション解析の条件を示す説明図である。It is explanatory drawing which shows the conditions of the simulation analysis of a vehicle driving | running | working wind. 車両走行風のシミュレーション解析範囲を示す横断面図、斜視図である。It is the cross-sectional view and perspective view which show the simulation analysis range of a vehicle running wind. 現状での車両前端から軌条方向10m位置での2次元走行風ベクトルと圧力との分布を示すシミュレーション解析図である。It is a simulation analysis figure which shows distribution of the two-dimensional traveling wind vector and pressure in the rail direction 10m position from the vehicle front end in the present condition. 図25に対応した現状の枕木方向各部で見た軌条方向での速度分布を示すグラフである。It is a graph which shows the velocity distribution in the rail direction seen in each part of the present sleeper direction corresponding to FIG. 図26に対応した現状での枕木方向各部での最大速度の分布を示すグラフである。It is a graph which shows distribution of the maximum speed in each part of the sleeper direction in the present condition corresponding to FIG.

符号の説明Explanation of symbols

1 車両
2a 側面走行風
2b 床下走行風
3 軌条
4 台車
5 開放部
6 車輪
21 張り出し部
21a 上面
21b 剥離緩和曲面
21c 下面
22 側スカート壁
DESCRIPTION OF SYMBOLS 1 Vehicle 2a Side running wind 2b Underfloor running wind 3 Rail 4 Bogie 5 Opening part 6 Wheel 21 Overhanging part 21a Upper surface 21b Peeling relaxation curved surface 21c Lower surface 22 Side skirt wall

Claims (9)

鉄道車両が走行することにより床下に生じる走行風を低減する鉄道車両の床下走行風の低減方法であって、
走行する鉄道車両の側面に沿う側面走行風の、鉄道車両の側面に沿った床下への巻き込みを、鉄道車両の側面下部から側方へ張り出す張り出し部によって抑制することにより、鉄道車両床下の走行風を低減することを特徴とする鉄道車両の床下走行風の低減方法。
A method for reducing under-floor traveling wind of a railway vehicle that reduces traveling wind generated under the floor by traveling of the railway vehicle,
Traveling under the railroad car floor by suppressing the rolling of the side running wind along the side face of the railroad car that travels under the floor along the side face of the railcar by the overhanging part that projects sideways from the lower part of the side surface of the railcar. A method for reducing under-floor traveling wind of a railway vehicle, characterized by reducing wind.
鉄道車両が走行することにより床下に生じる走行風を低減する鉄道車両の床下走行風の低減装置であって、
鉄道車両の側面下部に、側面走行風が床下に巻き込まれる経路を床下側と反床下側とを仕切る側方への張り出し部を有し、この張り出し部はそれを床下側へ越えようとする側面走行風に対する剥離緩和曲面を介して平坦な上面が下面へと続いていることを特徴とする鉄道車両の床下走行風の低減装置。
An apparatus for reducing under-floor traveling wind of a railway vehicle that reduces traveling wind generated under the floor when the railway vehicle travels,
The side of the railroad car has a laterally extending part that divides the path where the side running wind is caught under the floor into the underside and the anti-underfloor side. An apparatus for reducing under-floor traveling wind of a railway vehicle, wherein a flat upper surface continues to a lower surface through a peeling mitigation curved surface for traveling wind.
張り出し部は、鉄道車両の側面下部にある裾細り形状面の下部寄りに設けてある請求項2に記載の鉄道車両の床下走行風の低減装置。 The apparatus according to claim 2, wherein the overhanging portion is provided near a lower portion of a bottom-shaped surface at a lower side of the side surface of the railway vehicle. 張り出し部は、張り出し端から基部に向かって増厚している請求項2、3のいずれか1項に記載の鉄道車両の床下走行風の低減装置。 The apparatus for reducing under-floor traveling wind of a railway vehicle according to any one of claims 2 and 3, wherein the overhang portion is thickened from the overhang end toward the base portion. 張り出し部は、上面がほぼ水平で、下面が張り出し端から基部に向かって斜め下方に向かっている請求項4に記載の鉄道車両の床下走行風の低減装置。 The apparatus for reducing underfloor traveling wind of a railway vehicle according to claim 4, wherein the overhanging portion has a substantially horizontal upper surface and a lower surface obliquely downward from the overhanging end toward the base. 張り出し部は、上面に続く剥離緩和曲面から下面の基部までほぼ流線形状をなしている請求項5に記載の鉄道車両の床下走行風の低減装置。 The apparatus according to claim 5, wherein the overhanging portion has a substantially streamline shape from a peeling relaxation curved surface following the upper surface to a base portion of the lower surface. 張り出し部は、上面が基部から張り出し端に向けやや下向きに傾斜している請求項2〜6のいずれか1項に記載の鉄道車両の床下走行風の低減装置。 The apparatus for reducing underfloor traveling wind of a railway vehicle according to any one of claims 2 to 6, wherein the projecting portion has an upper surface inclined slightly downward from the base portion toward the projecting end. 張り出し部は、床下側に巻き込まれる側面走行風が速度を増しながら床下とのコーナ部に至るときのピークとなる位置の近傍にて張り出している請求項2〜7のいずれか1項に記載の鉄道車両の床下走行風の低減装置。 8. The overhang portion according to claim 2, wherein the overhang portion overhangs in the vicinity of a peak position when the side running wind caught in the underfloor reaches the corner portion with the underfloor while increasing the speed. A device for reducing the wind under the floor of railway vehicles. 張り出し部は、複数設ける請求項2〜8のいずれか1項に記載の鉄道車両の床下走行風の低減装置。 The apparatus according to claim 2, wherein a plurality of projecting portions are provided.
JP2005312568A 2005-10-27 2005-10-27 Method and apparatus for reducing underfloor wind of railway vehicles Expired - Fee Related JP4749831B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005312568A JP4749831B2 (en) 2005-10-27 2005-10-27 Method and apparatus for reducing underfloor wind of railway vehicles

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005312568A JP4749831B2 (en) 2005-10-27 2005-10-27 Method and apparatus for reducing underfloor wind of railway vehicles

Publications (2)

Publication Number Publication Date
JP2007118750A true JP2007118750A (en) 2007-05-17
JP4749831B2 JP4749831B2 (en) 2011-08-17

Family

ID=38143067

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005312568A Expired - Fee Related JP4749831B2 (en) 2005-10-27 2005-10-27 Method and apparatus for reducing underfloor wind of railway vehicles

Country Status (1)

Country Link
JP (1) JP4749831B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012135344A (en) * 2010-12-24 2012-07-19 Bridgestone Sports Co Ltd Simulation method for evaluating golf club head
FR3116785A1 (en) * 2020-12-02 2022-06-03 Speedinnov Car for railway vehicle with aerodynamic stabilizing element

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51141107A (en) * 1975-05-30 1976-12-04 Hitachi Ltd Sound proof device for railroad vehicle
JPS51146013A (en) * 1975-06-11 1976-12-15 Hitachi Ltd Means for preventing noise of railway train
JPS62227853A (en) * 1986-03-31 1987-10-06 財団法人鉄道総合技術研究所 Underfloor structure of railway rolling stock
JPH05139298A (en) * 1991-11-25 1993-06-08 Hitachi Ltd Rolling stock body
JPH08268274A (en) * 1995-02-28 1996-10-15 Stefano Ughi Acoustic barrier particularly for railway upper structure
JP2002053037A (en) * 2000-08-09 2002-02-19 Railway Technical Res Inst Oscillation suppressing method of railway rolling stock, and railway rolling stock
JP2006248355A (en) * 2005-03-10 2006-09-21 Mitsubishi Motors Corp Lift reduction device

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51141107A (en) * 1975-05-30 1976-12-04 Hitachi Ltd Sound proof device for railroad vehicle
JPS51146013A (en) * 1975-06-11 1976-12-15 Hitachi Ltd Means for preventing noise of railway train
JPS62227853A (en) * 1986-03-31 1987-10-06 財団法人鉄道総合技術研究所 Underfloor structure of railway rolling stock
JPH05139298A (en) * 1991-11-25 1993-06-08 Hitachi Ltd Rolling stock body
JPH08268274A (en) * 1995-02-28 1996-10-15 Stefano Ughi Acoustic barrier particularly for railway upper structure
JP2002053037A (en) * 2000-08-09 2002-02-19 Railway Technical Res Inst Oscillation suppressing method of railway rolling stock, and railway rolling stock
JP2006248355A (en) * 2005-03-10 2006-09-21 Mitsubishi Motors Corp Lift reduction device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012135344A (en) * 2010-12-24 2012-07-19 Bridgestone Sports Co Ltd Simulation method for evaluating golf club head
FR3116785A1 (en) * 2020-12-02 2022-06-03 Speedinnov Car for railway vehicle with aerodynamic stabilizing element
EP4008597A1 (en) * 2020-12-02 2022-06-08 SpeedInnov Car for railway vehicle with aerodynamic stabilising element

Also Published As

Publication number Publication date
JP4749831B2 (en) 2011-08-17

Similar Documents

Publication Publication Date Title
CN111071272B (en) Obstacle deflector with pit arranged at rear end of bottom and application thereof
JP4784950B2 (en) Elevator equipment
JP6534717B2 (en) Body structure
US20140238261A1 (en) Vehicle Vibration Suppression Device
JP4749831B2 (en) Method and apparatus for reducing underfloor wind of railway vehicles
KR101997819B1 (en) Commercial vehicle including superstructure and chassis
JP6824683B2 (en) Rail car
JP2010116075A (en) Multiple-car train
JP6488255B2 (en) Vehicle rectifier
CN106853940A (en) Lift appliance
JP6328007B2 (en) Air resistance reducing member for railway vehicles
JP3182428U (en) Current guiding structure
JP4222826B2 (en) Railway vehicle
CN109911037A (en) Air director part for motor vehicles
KR101524010B1 (en) Bogie air dam
JP3685816B2 (en) Top shape of the leading vehicle that forms a high-speed train
EP3272615B1 (en) Vehicle body structure for a railroad vehicle
JP6615598B2 (en) High speed train
JP6831761B2 (en) Noise reduction device
JP4430880B2 (en) Projection for electrostatic antenna of high-speed traveling vehicle
JP6254510B2 (en) Method for reducing meandering flow generated under railcar floor
JP5833217B1 (en) Railway vehicle
JP2018065414A (en) Railway vehicle
JP3671016B2 (en) Railway vehicle
CN108162804B (en) Method for determining reflection coefficient and tension of contact net of full-frequency-domain high-speed railway

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20081002

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110127

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110208

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110315

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20110315

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20110315

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110510

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110518

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4749831

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140527

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees