JP2007118578A - Polylactic acid resin foamed sheet molded article and its manufacturing method - Google Patents

Polylactic acid resin foamed sheet molded article and its manufacturing method Download PDF

Info

Publication number
JP2007118578A
JP2007118578A JP2006249898A JP2006249898A JP2007118578A JP 2007118578 A JP2007118578 A JP 2007118578A JP 2006249898 A JP2006249898 A JP 2006249898A JP 2006249898 A JP2006249898 A JP 2006249898A JP 2007118578 A JP2007118578 A JP 2007118578A
Authority
JP
Japan
Prior art keywords
mold
molded body
polylactic acid
foamed sheet
acid resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006249898A
Other languages
Japanese (ja)
Other versions
JP4842745B2 (en
Inventor
Kazuhiko Morita
和彦 森田
Takashi Muroi
崇 室井
Teruyuki Akiyama
照幸 秋山
Akira Tanaka
章 田中
Yoshiro Watanabe
美郎 渡辺
Akira Iwamoto
晃 岩本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JSP Corp
Original Assignee
JSP Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JSP Corp filed Critical JSP Corp
Priority to JP2006249898A priority Critical patent/JP4842745B2/en
Publication of JP2007118578A publication Critical patent/JP2007118578A/en
Application granted granted Critical
Publication of JP4842745B2 publication Critical patent/JP4842745B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Processing And Handling Of Plastics And Other Materials For Molding In General (AREA)
  • Blow-Moulding Or Thermoforming Of Plastics Or The Like (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a polylactic acid resin foamed sheet molded article which is be manufactured by a shortened molding cycle time, and which has practical heat resistance, excellent appearance, and excellent environmental suitability, and to provide the manufacturing method of the molded article in which the thermoforming of a polylactic acid resin is carried out by pinching it with a pair of molds, the deformation of a foamed sheet molded article is inhibited when releasing in carrying out the crystallization treatment, and too long shaping cycle time can be shortened. <P>SOLUTION: This polylactic acid resin foamed sheet molded article is obtained by carrying out the thermoforming of a crystalline polylactic acid resin foamed sheet, wherein the difference of the degrees of crystallinity between one split body and the other split body which are obtained by partitioning the molded article in the center section of the thickness of the molded article is 5% or more, the degree of crystallinity of one split body is ≥25% and ≤70% and the degree of crystallinity of the other split body is ≥0% and <25%. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、耐熱性および外観に優れたポリ乳酸樹脂発泡シート成形体およびその熱成形による製造方法に関する。   The present invention relates to a polylactic acid resin foam sheet molded article having excellent heat resistance and appearance, and a production method thereof by thermoforming.

近年、地球環境に対する意識が高まっており、石油資源の枯渇などの環境問題がクローズアップされる中、 従来の石油資源を原料とするポリスチレン樹脂等の汎用樹脂に代わって植物由来のポリ乳酸樹脂が注目されている。その中でもポリ乳酸樹脂発泡シートは、非発泡のポリ乳酸樹脂シートに比べ、軽量で断熱性が高くなるため、今後広く使用されることが期待されている。   In recent years, awareness of the global environment has increased, and environmental problems such as depletion of petroleum resources have been highlighted. Plant-derived polylactic acid resins have been replaced by conventional resins such as polystyrene resins that use petroleum resources as raw materials. Attention has been paid. Among them, the polylactic acid resin foam sheet is expected to be widely used in the future because it is lighter and has higher heat insulation than a non-foamed polylactic acid resin sheet.

しかし、ポリ乳酸樹脂発泡シートは、耐熱性が低く、実用上の使用には耐えることができないものである。例えば、ポリ乳酸樹脂発泡シートから熱成形により工業部品トレーを形成して、その部品トレーを船舶で輸送した場合、海洋上のコンテナー内では60℃近辺まで温度が上昇するために、部品トレーの変形が起きてしまう問題がある。また、ポリ乳酸樹脂発泡シート成形体を食品容器として使用して熱い食材を収納した場合、容器が大きく変形してしまう問題がある。   However, the polylactic acid resin foam sheet has low heat resistance and cannot withstand practical use. For example, when an industrial component tray is formed from a polylactic acid resin foam sheet by thermoforming, and the component tray is transported by ship, the temperature rises to around 60 ° C in a container on the ocean. There is a problem that happens. Moreover, when a hot foodstuff is accommodated using a polylactic acid resin foamed sheet molding as a food container, there is a problem that the container is greatly deformed.

ポリ乳酸樹脂発泡シート成形体の耐熱性の課題を改善する技術が、例えば、特許文献1や特許文献2に開示されている。特許文献1や特許文献2に開示された発泡シートは、結晶性ポリ乳酸樹脂、或いは、結晶性ポリ乳酸樹脂と非晶性ポリ乳酸樹脂との混合物を押出発泡することにより形成された発泡シートであって、ポリ乳酸樹脂の結晶状態を調整することにより、熱成形性と耐熱性を両立させたものである。即ち、結晶化度が低いポリ乳酸樹脂発泡シートは成形性には優れるが耐熱性に劣るものである。一方、結晶化度の高いポリ乳酸樹脂発泡シートは耐熱性に優れるものである。この知見に基づいて、特許文献1や特許文献2では、ポリ乳酸樹脂の結晶化度を低く抑えた状態の発泡シートを製造することにより熱成形性に優れたものに調整して、続いて、その発泡シートの熱成形中、或いは、熱成形後にポリ乳酸樹脂のガラス転移温度以上、融点未満の温度範囲に保持することによりポリ乳酸樹脂の結晶化を進行させて結晶化度を高めて発泡シート成形体の耐熱性を向上させる方法が記載されている。   For example, Patent Literature 1 and Patent Literature 2 disclose a technique for improving the heat resistance problem of a polylactic acid resin foam sheet molded body. The foam sheet disclosed in Patent Document 1 or Patent Document 2 is a foam sheet formed by extrusion foaming a crystalline polylactic acid resin or a mixture of a crystalline polylactic acid resin and an amorphous polylactic acid resin. Thus, by adjusting the crystal state of the polylactic acid resin, both thermoformability and heat resistance are achieved. That is, a polylactic acid resin foam sheet having a low crystallinity is excellent in moldability but inferior in heat resistance. On the other hand, a polylactic acid resin foamed sheet having a high degree of crystallinity is excellent in heat resistance. Based on this knowledge, in Patent Document 1 and Patent Document 2, by adjusting the foamed sheet in a state in which the degree of crystallinity of the polylactic acid resin is kept low, it is adjusted to one excellent in thermoformability, During or after thermoforming of the foamed sheet, the crystallized degree of the polylactic acid resin is promoted by maintaining the temperature within the range of the glass transition temperature of the polylactic acid resin and below the melting point to increase the degree of crystallinity. A method for improving the heat resistance of the molded body is described.

しかしながら、特許文献1や特許文献2に示されている方法は、改善すべき課題を有するものであった。通常、熱可塑性樹脂発泡シートから発泡シート成形体を得るためには、軟化状態の熱可塑性樹脂発泡シートを一対の金型の間に挟んで成形する、所謂マッチドモールド成形が採用される。ところが、マッチドモールド成形でポリ乳酸樹脂発泡シートを熱成形すると、結晶化処理するために高温の設定温度に調整されている金型と、高温で熱処理された発泡シート成形体とを、十分に冷却してからでないと発泡シート成形体を金型から取り出すことができないので、成形サイクルタイムが長くなってしまい生産性が向上しない。敢えて、発泡シート成形体が十分に冷却される前に金型を開いて発泡シート成形体を取り出そうとすると、該成形体が金型に貼り付いてスムースに離型できず、無理に離型すると該成形体が大きく変形してしまう。   However, the methods disclosed in Patent Document 1 and Patent Document 2 have problems to be improved. Usually, in order to obtain a foamed sheet molded body from a thermoplastic resin foamed sheet, so-called matched mold molding is employed in which a softened thermoplastic resin foamed sheet is sandwiched between a pair of molds. However, when a polylactic acid resin foam sheet is thermoformed by matched molding, the mold that has been adjusted to a high set temperature for crystallization treatment and the foam sheet molded body that has been heat-treated at a high temperature are sufficiently cooled. Otherwise, the foamed sheet molded body cannot be taken out from the mold, so that the molding cycle time becomes long and the productivity is not improved. Dare to open the mold before the foam sheet molded body is sufficiently cooled, if you try to take out the foam sheet molded body, the molded body sticks to the mold and can not be released smoothly, if you forcibly release The molded body is greatly deformed.

このように、ポリ乳酸樹脂発泡シートのマッチドモールド成形においては、金型の加熱と冷却を繰り返す必要があったため、成形サイクルタイムは約30分かかっていた。従って、通常の熱可塑性樹脂シートの成形サイクルタイムは30秒以内であることを鑑みれば、ポリ乳酸樹脂発泡シートのマッチドモールド成形を行なう上で、成形サイクルタイムの短縮が望まれる。   Thus, in the matched mold molding of the polylactic acid resin foamed sheet, it was necessary to repeat heating and cooling of the mold, so that the molding cycle time took about 30 minutes. Accordingly, in view of the fact that the molding cycle time of a normal thermoplastic resin sheet is within 30 seconds, it is desired to shorten the molding cycle time in performing matched mold molding of a polylactic acid resin foamed sheet.

さらに、上記の成形方法により熱処理および熱成形されたポリ乳酸樹脂発泡シート成形体は、成形体表面が凹凸になり外観に劣るものであった。   Furthermore, the polylactic acid resin foamed sheet molded body heat-treated and thermoformed by the molding method described above was inferior in appearance because the surface of the molded body became uneven.

特開2005−145058号公報JP 2005-145058 A 特開2004−217288号公報の実施例Examples of JP 2004-217288 A

本発明は、上記課題に鑑みなされたもので、短縮化された成形サイクルタイムで製造することができ、実用的な耐熱性を有し、かつ優れた外観を有する、環境適性に優れたポリ乳酸樹脂発泡シート成形体を提供することを目的とする。また、本発明は、ポリ乳酸樹脂発泡シートを一対の金型に挟んで熱成形すると共に、結晶化処理するにあたって、離型時における発泡シート成形体の変形を防止すると共に、過度に長い成形サイクルタイムを短縮しうる該成形体の製造方法を提供することを目的とする。   The present invention has been made in view of the above problems, and can be produced with a shortened molding cycle time, has practical heat resistance, has an excellent appearance, and is excellent in environmental suitability. It aims at providing the resin foam sheet molding. In addition, the present invention is to thermoform a polylactic acid resin foam sheet sandwiched between a pair of molds and prevent deformation of the foamed sheet molded body at the time of mold release, and an excessively long molding cycle. It aims at providing the manufacturing method of this molded object which can shorten time.

本発明によれば、以下に示すポリ乳酸樹脂発泡シート成形体およびその熱成形方法が提供される。
〔1〕 結晶性ポリ乳酸樹脂発泡シートを熱成形して得られる成形体であって、該成形体を成形体厚さの中央部で分割して得られる一方の分割体と他方の分割体との結晶化度の差が5%以上であり、且つ一方の分割体の結晶化度が25%以上70%以下、他方の分割体の結晶化度が0%以上25%未満であることを特徴とするポリ乳酸樹脂発泡シート成形体。
〔2〕 前記一方の分割体と前記他方の分割体との結晶化度の差が6%以上20%以下であり、前記一方の分割体の結晶化度が25%以上35%以下、前記他方の分割体の結晶化度が15%以上25%未満であることを特徴とする前記〔1〕に記載のポリ乳酸樹脂発泡シート成形体。
〔3〕 結晶性ポリ乳酸樹脂発泡シートを、一対の金型の間に挟んで熱成形する成形体の製造方法において、一方の金型の温度を[発泡シートのガラス転移温度+20℃]以上[発泡シートのガラス転移温度+70℃]以下に設定し、他方の金型を[発泡シートのガラス転移温度−40℃]以上発泡シートのガラス転移温度以下に設定し、一方の金型と他方の金型の間に発泡シートを挟んで熱成形すると共に結晶化処理を行い、次いで成形体を前記他方の金型に保持させた状態で、成形体を前記一方の金型から離型した後、成形体を前記他方の金型から離型することを特徴とするポリ乳酸樹脂発泡シート成形体の製造方法。
〔4〕 熱成形に使用される結晶性ポリ乳酸樹脂発泡シートの結晶化度が0%以上20%以下であることを特徴とする前記〔3〕に記載のポリ乳酸樹脂発泡シート成形体の製造方法。
According to the present invention, the following polylactic acid resin foamed sheet molded body and a thermoforming method thereof are provided.
[1] A molded body obtained by thermoforming a crystalline polylactic acid resin foamed sheet, wherein one divided body and the other divided body obtained by dividing the molded body at the center of the molded body thickness The difference in crystallinity between the two divided bodies is 5% or more, the degree of crystallinity of one divided body is 25% or more and 70% or less, and the degree of crystallinity of the other divided body is 0% or more and less than 25%. Polylactic acid resin foam sheet molded product.
[2] The difference in crystallinity between the one divided body and the other divided body is 6% to 20%, the crystallinity of the one divided body is 25% to 35%, and the other The polylactic acid resin foamed sheet molded article according to [1] above, wherein the crystallinity of the divided product is 15% or more and less than 25%.
[3] In a method for producing a molded body in which a crystalline polylactic acid resin foam sheet is sandwiched between a pair of molds and thermoformed, the temperature of one mold is equal to or higher than the glass transition temperature of the foam sheet + 20 ° C. The glass transition temperature of the foamed sheet + 70 ° C. or lower is set, and the other mold is set to [glass transition temperature of the foamed sheet−40 ° C.] or higher and lower than the glass transition temperature of the foamed sheet. Thermoforming with a foam sheet sandwiched between molds, performing crystallization treatment, and then releasing the molded body from the one mold while holding the molded body on the other mold, then molding A method for producing a molded body of a polylactic acid resin foamed sheet, wherein the body is released from the other mold.
[4] The production of a polylactic acid resin foam sheet according to [3], wherein the crystalline polylactic acid resin foam sheet used for thermoforming has a crystallinity of 0% or more and 20% or less. Method.

本発明のポリ乳酸樹脂発泡シート成形体は、短縮化された成形サイクルタイムで製造可能なものであるにもかかわらず、一方の分割体が高い結晶化度を有することにより、耐熱性に優れるものである。また、本発明のポリ乳酸樹脂発泡シート成形体は、一方の分割体と他方の分割体との結晶化度の差が特定範囲内であり、他方の分割体が低い結晶化度であることにより、結晶化度の低い他方の分割体側の成形体面が、表面平滑性などの外観に優れたものである。
一方、本発明のポリ乳酸樹脂発泡シート成形体の製造方法によれば、結晶性ポリ乳酸樹脂発泡シートを、特定の高い温度に設定された一方の金型と特定の低い温度に設定された他方の金型との間に挟んで熱成形すると共に結晶化処理を行い、得られる発泡シート成形体を前記一方の金型から先に離型することにより、耐熱性に優れる発泡シート成形体を、変形させることがなく金型から取り出すことができる。また、本発明方法によれば、成形サイクルタイムが飛躍的に短縮できる。
The polylactic acid resin foamed sheet molded body of the present invention is excellent in heat resistance because one of the divided bodies has a high degree of crystallinity even though it can be produced with a shortened molding cycle time. It is. In addition, the polylactic acid resin foamed sheet molded body of the present invention has a crystallinity difference between one divided body and the other divided body within a specific range, and the other divided body has a low crystallinity. The molded body surface on the other divided body side having a low degree of crystallinity is excellent in appearance such as surface smoothness.
On the other hand, according to the method for producing a polylactic acid resin foamed sheet molding of the present invention, the crystalline polylactic acid resin foamed sheet has one mold set at a specific high temperature and the other set at a specific low temperature. A foamed sheet molded article having excellent heat resistance is obtained by performing thermocrystallization while sandwiching between the molds of the mold and releasing the foamed sheet molded article obtained from the one mold first. It can be taken out from the mold without being deformed. Further, according to the method of the present invention, the molding cycle time can be remarkably shortened.

以下、本発明のポリ乳酸樹脂発泡シート成形体の熱成形方法について説明する。
本発明のポリ乳酸樹脂発泡シート成形体(以下、単に成形体ともいう。)の製造方法においては、結晶性ポリ乳酸樹脂からなるポリ乳酸樹脂発泡シート(以下、単に発泡シートともいう。)を適正な温度に加熱して軟化させてから、一対の金型の間に挟んで成形体を製造する熱成形方法により、ポリ乳酸樹脂発泡シートを成形する。通常、前記一対の金型は上下に配置され、上の金型が凸型として、下の金型が凹型とされる。但し、本発明方法はこれに限定するものではなく、上の金型を凹型に、下の金型を凸型にしても良く、一対の金型を水平に配置しても良い。
尚、以下の説明では、一方の金型を凸型形状の上型とし、他方の金型を凹型形状の下型とする。但し、本発明は上記した通り、これに限定されるものではなく、例えば一方の金型を凹型形状の上型とし、他方の金型を凸型形状の下型にしてもよい。
Hereinafter, the thermoforming method of the polylactic acid resin foamed sheet molding of the present invention will be described.
In the method for producing a polylactic acid resin foamed sheet molded body (hereinafter also simply referred to as a molded body) of the present invention, a polylactic acid resin foamed sheet (hereinafter also simply referred to as a foamed sheet) made of a crystalline polylactic acid resin is appropriate. The polylactic acid resin foamed sheet is molded by a thermoforming method in which a molded body is manufactured by being heated between various temperatures and softened and then sandwiched between a pair of molds. Usually, the pair of molds are arranged one above the other, with the upper mold being a convex mold and the lower mold being a concave mold. However, the method of the present invention is not limited to this, and the upper mold may be a concave mold, the lower mold may be a convex mold, and a pair of molds may be arranged horizontally.
In the following description, one mold is an upper mold having a convex shape, and the other mold is a lower mold having a concave shape. However, as described above, the present invention is not limited to this. For example, one mold may be a concave upper mold and the other mold may be a convex lower mold.

上記したようなマッチドモールド成形は従来公知の熱成形方法であるが、本発明方法の特徴は、後述するように、高温に設定された一方の金型と低温に設定された他方の金型とからなる一対の金型を使用することと、成形体を一方の金型から離型し、一方の金型から離型した後に成形体を他方の金型から離型することにある。このように発泡シートを熱成形することにより、結晶化処理後の成形体は金型に貼り付くことなく離型できるので、成形体を変形させることなく、短いサイクルタイムで熱成形することが可能になる。   Matched molding as described above is a conventionally known thermoforming method, but the feature of the method of the present invention is that, as will be described later, one mold set at a high temperature and the other mold set at a low temperature Using a pair of molds, and releasing a molded body from one mold, and then releasing the molded body from the other mold after releasing from one mold. By thermoforming the foam sheet in this way, the molded body after the crystallization treatment can be released without sticking to the mold, so that it can be thermoformed in a short cycle time without deforming the molded body. become.

先ず、本発明方法の各工程を詳しく説明する。
本発明方法においては、発泡シートを金型の間に挟んで熱成形する前に、発泡シートを加熱する。この際の発泡シートを加熱する温度は、発泡シートのガラス転移温度(以下、単にTgともいう。)を基準として、通常は発泡シートの表面温度が[Tg−10℃]以上[Tg+10℃]以下の範囲となるように、好ましくは発泡シートの表面温度が[Tg−5℃]以上[Tg+5℃]以下の範囲とする。
First, each step of the method of the present invention will be described in detail.
In the method of the present invention, the foamed sheet is heated before thermoforming by sandwiching the foamed sheet between molds. The temperature at which the foamed sheet is heated is usually [Tg-10 ° C.] or more and [Tg + 10 ° C.] or less based on the glass transition temperature of the foam sheet (hereinafter also simply referred to as Tg). Preferably, the surface temperature of the foamed sheet is in the range of [Tg−5 ° C.] or more and [Tg + 5 ° C.] or less.

次に、前記加熱された発泡シートを、一方の金型と他方の金型との間に導き、次いで両金型にて挟んで、熱成形すると共に結晶化処理を施す。このとき本発明方法においては、高温に設定される一方の金型の温度を[発泡シートのTg+20℃]以上[発泡シートのTg+70℃]以下に設定し、低温に設定される他方の金型を[発泡シートのTg−40℃]以上発泡シートのTg以下に設定する。このように、一方の金型を上記温度範囲に設定することにより、発泡シートを成形すると共にポリ乳酸樹脂発泡シート成形体の結晶化処理を行い、他方の金型を上記温度範囲に設定することにより、発泡シートを成形すると共に得られるポリ乳酸樹脂発泡シート成形体の冷却固化が促進される。   Next, the heated foamed sheet is guided between one mold and the other mold, and then sandwiched between the two molds to be thermoformed and subjected to a crystallization treatment. At this time, in the method of the present invention, the temperature of one mold set to a high temperature is set to [Tg + 20 ° C. of the foam sheet] or more and [Tg + 70 ° C. of the foam sheet] or less and the other mold set to a low temperature is set. [Tg of foamed sheet −40 ° C.] is set to be equal to or higher than the Tg of the foamed sheet. Thus, by setting one mold to the above temperature range, the foam sheet is molded and the polylactic acid resin foam sheet molded body is crystallized, and the other mold is set to the above temperature range. As a result, the solidification of the foamed polylactic acid resin foamed sheet is promoted by cooling and solidifying the foamed sheet.

尚、発泡シートのマッチドモールド成形における凹型と凸型は、発泡シートの両面と完全に密着できるように設計されており、凹型と凸型とのクリアランス(間隔)は成形体の目的とする厚みに設定される。   In addition, the concave mold and the convex mold in the matched mold molding of the foam sheet are designed so that they can be completely adhered to both surfaces of the foam sheet, and the clearance (interval) between the concave mold and the convex mold is set to the desired thickness of the molded body. Is set.

前記の通り、一方の金型の温度は、[発泡シートのTg+20℃]以上[発泡シートのTg+70℃]以下に設定される。このような温度範囲に設定することにより、発泡シート成形体の一方の金型側から成形体の結晶化を進めることができ、得られる成形体は耐熱性の良好なものとなる。一方の金型の設定温度が「発泡シートのTg+20℃」未満では、ポリ乳酸樹脂の結晶化が進みにくくなる。一方の金型の設定温度の上限は、[発泡シートの融解温度−10℃]が目安となり、本発明においては上記の通りである。一方の金型の設定温度が高すぎる場合には、発泡シートの見かけ密度にもよるが、得られる成形体の表面が溶融する等、成形体の外観が劣るものとなる。かかる観点から、一方の金型の設定温度は、好ましくは「発泡シートのTg+25℃」以上「発泡シートのTg+60℃」以下、さらに好ましくは「発泡シートのTg+35℃」以上「発泡シートのTg+50℃」以下である。   As described above, the temperature of one mold is set to [Tg + 20 ° C. of foam sheet] or more and [Tg + 70 ° C. of foam sheet] or less. By setting to such a temperature range, crystallization of the molded body can proceed from one mold side of the foamed sheet molded body, and the resulting molded body has good heat resistance. If the set temperature of one mold is less than “Tg of the foamed sheet + 20 ° C.”, the crystallization of the polylactic acid resin is difficult to proceed. The upper limit of the set temperature of one mold is [fusing sheet melting temperature−10 ° C.] as a guide, and is as described above in the present invention. When the set temperature of one mold is too high, depending on the apparent density of the foamed sheet, the appearance of the molded body is inferior, for example, the surface of the resulting molded body is melted. From this viewpoint, the set temperature of one mold is preferably “Tg of foamed sheet + 25 ° C.” or more and “Tg of foamed sheet + 60 ° C.” or less, more preferably “Tg of foamed sheet + 35 ° C.” or more and “Tg of foamed sheet + 50 ° C.” It is as follows.

他方の金型の温度は、[発泡シートのTg−40℃]以上発泡シートのTg以下に設定される。このような温度に設定することにより、発泡シート成形体の他方の金型側から成形体の冷却固化が促進されるため、成形サイクルタイムの短縮に繋がる。
他方の金型の設定温度が、Tgを超えると、成形体の冷却固化が促進されないので、一方の金型から成形体を離型するのに長時間かかり、成形サイクルタイムを短くするという目的が達成されなくなる。他方の金型の設定温度が低すぎると、一方の金型による成形体の結晶化の妨げとなり、成形体の耐熱性が低下する。かかる観点から、他方の金型の設定温度は、好ましくは[発泡シートのTg−30℃]以上[発泡シートのTg−5℃]以下、さらに好ましくは[発泡シートのTg−25℃]以上[発泡シートのTg−10℃]以下である。
The temperature of the other mold is set to [Tg of foamed sheet −40 ° C.] or more and Tg of the foamed sheet or less. By setting such a temperature, cooling and solidification of the molded body is promoted from the other mold side of the foamed sheet molded body, which leads to a reduction in molding cycle time.
When the set temperature of the other mold exceeds Tg, cooling and solidification of the molded body is not promoted, so it takes a long time to release the molded body from one mold, and the purpose of shortening the molding cycle time is It will not be achieved. If the set temperature of the other mold is too low, crystallization of the molded body by one mold is hindered, and the heat resistance of the molded body is lowered. From this viewpoint, the set temperature of the other mold is preferably [Tg-30 ° C. of foam sheet] or more and [Tg-5 ° C. of foam sheet] or less, more preferably [Tg-25 ° C. of foam sheet] or more [ It is below Tg-10 degreeC of a foam sheet.

本明細書において、発泡シートのガラス転移温度とは、発泡シートから切り出された1〜4mgの試験片について、JIS K7121−1987により熱流束示差走査熱量測定にて得られるDSC曲線の中間点ガラス転移温度として求められる値をいう。
ガラス転移温度を求めるための試験片としては、JIS K7121−1987の3.試験片の状態調節(3)記載の『一定の熱処理を行った後、ガラス転移温度を測定する場合』に準拠したものを用いる。即ち、発泡シートから切り出された1〜4mgの試験片を、DSC装置の容器に入れ、200℃まで10℃/分にて昇温して加熱溶融させ、この温度に10分間保持した後に、0℃まで急冷する状態調整を行ったものを用いる。この際の急冷は、測定装置の冷却能力を加味して、200℃から50℃までは40℃/分のスピードで冷却し、50から0℃までは30℃/分のスピードで冷却することにより実施される。
In this specification, the glass transition temperature of the foamed sheet is the midpoint glass transition of the DSC curve obtained by heat flux differential scanning calorimetry according to JIS K7121-1987 for 1 to 4 mg test pieces cut out from the foamed sheet. The value obtained as temperature.
As a test piece for obtaining the glass transition temperature, JIS K7121-1987 3. Use the test piece conforming to “When measuring the glass transition temperature after performing a certain heat treatment” described in (3) Conditioning of test piece. That is, 1 to 4 mg of a test piece cut out from a foamed sheet was put in a container of a DSC apparatus, heated to 200 ° C. at a rate of 10 ° C./minute, heated and melted, and kept at this temperature for 10 minutes. Use the one that has been conditioned to be rapidly cooled to ° C. In this case, the rapid cooling is performed by cooling at a speed of 40 ° C./min from 200 ° C. to 50 ° C. and at a speed of 30 ° C./min from 50 ° C. to 0 ° C. To be implemented.

また、発泡シートの融解温度は、発泡シートから切り出された1〜4mgの試験片について、JIS K7121−1987に準拠して、熱流束示差走査熱量測定により求められる値である。測定条件は、上記したガラス転移温度と同様であり、得られた融解ピークの頂点の温度を融解温度とする。但し、試験片の状態調節における加熱速度は10℃/分、冷却速度は10℃/分、融解温度測定時の加熱速度は10℃/分であり、融解ピークが2つ以上現れる場合には、最も面積の大きな融解ピークの頂点の温度を融解温度とする。   Moreover, the melting temperature of a foam sheet is a value calculated | required by heat flux differential scanning calorimetry based on JISK7121-1987 about the test piece of 1-4 mg cut out from the foam sheet. The measurement conditions are the same as the glass transition temperature described above, and the temperature at the top of the obtained melting peak is taken as the melting temperature. However, the heating rate in the condition adjustment of the test piece is 10 ° C./min, the cooling rate is 10 ° C./min, the heating rate at the time of measuring the melting temperature is 10 ° C./min, and when two or more melting peaks appear, The temperature at the top of the melting peak with the largest area is taken as the melting temperature.

本発明方法においては、前記のように成形し結晶化処理を施した成形体を、[発泡シートのTg−40℃]以上発泡シートのTg以下に設定した他方の金型に保持させた状態で、[発泡シートのTg+20℃]以上[発泡シートのTg+70℃]以下に設定した一方の金型から離型し、次に成形体を他方の金型から離型する。
このように、成形された成形体を低温に設定された他方の金型に保持させることにより、高温に設定された一方の金型から成形体を変形させることなく離型することができる。この場合の離型は、通常、他方の金型に成形体を吸引した状態で保持することにより他方の金型に成形体を固定したまま、一方の金型を成形体から離れる方向に移動させることにより行われる。この時、成形体を変形させるなどの悪影響を与えない程度に、一方の金型から成形体に向けて空気や窒素等のガスを噴出させて成形体を離型することが好ましい。このようにすると、成形体の一方の金型からの離型が容易に行えると共に成形体の一方の金型面側の冷却を促進させることができる。
In the method of the present invention, the molded body which has been molded and crystallized as described above is held in the other mold set to [Tg of the foamed sheet −40 ° C.] or more and Tg of the foamed sheet or less. The mold is released from one mold set to [Tg + 20 ° C. of foam sheet] or more and [Tg + 70 ° C. of foam sheet] or less, and then the molded body is released from the other mold.
In this way, by holding the molded body in the other mold set at a low temperature, the molded body can be released from the one mold set at a high temperature without deforming. In this case, the mold release is usually performed by moving one mold away from the molded body while holding the molded body fixed to the other mold by holding the molded body in the other mold. Is done. At this time, it is preferable to release the molded body by ejecting a gas such as air or nitrogen from one mold toward the molded body so as not to adversely affect the molded body. If it does in this way, mold release from one metal mold | die can be performed easily, and cooling of the one metal mold | die surface side of a molded object can be accelerated | stimulated.

尚、成形体を、[発泡シートのTg−40℃]以上発泡シートのTg以下に設定した他方の金型から先に離型しようとしても、或いは、一方の金型と他方の金型とを同時に離型しようとしても、成形体が上記一方の金型に貼り付いてしまい、無理に成形体の離型を行うと、得られる成形体が変形してしまうという不具合が発生する。   In addition, even if it tries to release the molded body first from the other mold set to [Tg−40 ° C. of foam sheet] or more and Tg or less of the foam sheet, or one mold and the other mold are separated. At the same time, even if trying to release the mold, the molded body sticks to the one mold, and if the molded body is forcibly released, the resulting molded body is deformed.

発泡シートを金型の間に挟んで熱成形、結晶化処理を開始してから、一方の金型から成形体の離型を開始するまでの保持時間は、得ようとする成形体の厚み、高温に設定されている一方の金型の温度及び一方の金型の内面に接する側の成形体の結晶化度をどの程度高くするかにもよるが、実用的な耐熱性付与と成形サイクルタイム短縮の観点から、通常10秒以上150秒以下であり、好ましくは15秒以上100秒以下であり、より好ましくは15秒以上45秒以下である。   The holding time from the start of mold forming from one mold after thermoforming and crystallization treatment with the foam sheet sandwiched between the molds is the thickness of the molded body to be obtained, Depending on the temperature of one mold set at a high temperature and the degree of crystallinity of the molded body on the side in contact with the inner surface of one mold, practical heat resistance and molding cycle time are required. From the viewpoint of shortening, it is usually 10 seconds or longer and 150 seconds or shorter, preferably 15 seconds or longer and 100 seconds or shorter, and more preferably 15 seconds or longer and 45 seconds or shorter.

また、成形体を一方の金型から離型してから、低温に設定されている他方の金型から成形体の離型を開始するまでの保持時間は、成形体の十分な冷却と成形サイクルタイム短縮の観点から、通常0.5秒以上50秒以下であり、好ましくは1秒以上40秒以下であり、より好ましくは2秒以上30秒以下であり、特に好ましくは5秒以上25秒以下である。
次いで、他方の金型から成形体を離型するには、成形体を変形させるなどの悪影響を与えない程度に、他方の金型から成形体に向けて空気や窒素等のガスを噴出させつつ、他方の金型を成形体から離れる方向に移動させればよい。
In addition, the holding time from when the molded body is released from one mold to when the molded body starts to be released from the other mold set at a low temperature is sufficient for cooling the molded body and the molding cycle. From the viewpoint of time reduction, it is usually 0.5 seconds or more and 50 seconds or less, preferably 1 second or more and 40 seconds or less, more preferably 2 seconds or more and 30 seconds or less, and particularly preferably 5 seconds or more and 25 seconds or less. It is.
Next, in order to release the molded body from the other mold, gas such as air or nitrogen is jetted from the other mold toward the molded body to such an extent that the molded body is not adversely affected. The other mold may be moved away from the molded body.

次に、本発明方法で用いる発泡シートについて説明する。
本発明の結晶性ポリ乳酸樹脂発泡シートは、吸熱量(ΔHendo:raw)が10J/g以上65J/g以下の結晶性ポリ乳酸樹脂、或いは、吸熱量(ΔHendo:raw)が10J/g以上65J/g以下の結晶性ポリ乳酸樹脂と吸熱量(ΔHendo:raw)が0J/g以上2J/g以下の非晶性ポリ乳酸樹脂との混合物から構成され、かつ下記熱流束示差走査熱量測定によって求められる吸熱量(ΔHendo:raw)が10J/gを超えるポリ乳酸樹脂からなる発泡シートである。
Next, the foam sheet used in the method of the present invention will be described.
The crystalline polylactic acid resin foamed sheet of the present invention has an endothermic amount (ΔH endo: raw ) of 10 J / g or more and 65 J / g or less, or an endothermic amount (ΔH endo: raw ) of 10 J / g. It is composed of a mixture of a crystalline polylactic acid resin of 65 J / g or less and an amorphous polylactic acid resin having an endotherm (ΔH endo: raw ) of 0 J / g or more and 2 J / g or less, and the following heat flux differential scanning calorific value It is a foamed sheet made of a polylactic acid resin having an endothermic amount (ΔH endo: raw ) determined by measurement exceeding 10 J / g.

更に、本発明方法で用いる発泡シートを構成する結晶性ポリ乳酸樹脂としては、吸熱量(ΔHendo:raw)が好ましくは20J/g以上65J/g以下、更に好ましくは30J/g以上65J/g以下のものである。 Furthermore, as the crystalline polylactic acid resin constituting the foamed sheet used in the method of the present invention, the endothermic amount (ΔH endo: raw ) is preferably 20 J / g or more and 65 J / g or less, more preferably 30 J / g or more and 65 J / g. It is as follows.

また、本明細書におけるポリ乳酸樹脂とは、乳酸単独重合体または乳酸成分比率が50重量%以上の共重合体のことである。具体的には、(1)乳酸の重合体、(2)乳酸と他の脂肪族ヒドロキシカルボン酸とのコポリマー、(3)乳酸と脂肪族多価アルコールと脂肪族多価カルボン酸とのコポリマー、(4)乳酸と脂肪族多価カルボン酸とのコポリマー、(5)乳酸と脂肪族多価アルコールとのコポリマー、(6)前記(1)〜(5)の何れか2以上の組み合わせによる混合物等が包含される。
尚、上記乳酸の具体例としては、L−乳酸;D−乳酸;DL−乳酸;又はそれらの環状2量体であるL−ラクチド、D−ラクチド、DL−ラクチド;又はそれらの混合物を挙げることができる。
Moreover, the polylactic acid resin in this specification is a lactic acid homopolymer or a copolymer having a lactic acid component ratio of 50% by weight or more. Specifically, (1) a polymer of lactic acid, (2) a copolymer of lactic acid and another aliphatic hydroxycarboxylic acid, (3) a copolymer of lactic acid, an aliphatic polyhydric alcohol, and an aliphatic polycarboxylic acid, (4) Copolymer of lactic acid and aliphatic polyhydric carboxylic acid, (5) Copolymer of lactic acid and aliphatic polyhydric alcohol, (6) Mixture of two or more combinations of (1) to (5) Is included.
Specific examples of the lactic acid include L-lactic acid; D-lactic acid; DL-lactic acid; or their cyclic dimer L-lactide, D-lactide, DL-lactide; or a mixture thereof. Can do.

上記ポリ乳酸樹脂の吸熱量(ΔHendo:raw)は、ポリ乳酸樹脂1〜4mgを試験片とし、試験片の状態調節およびDSC曲線における熱量の測定は以下の手順にて行う以外は、JIS K7122−1987に記載される熱流束示差走査熱量測定に従って求められる値とする。
試験片の状態調節およびDSC曲線における熱量の測定は、次のように行なわれる。試験片をDSC装置の容器に入れ、200℃まで加熱溶融させる。その温度に10分間保った後、125℃まで2℃/分の冷却速度にて冷却させる。その温度に120分間保った後、40℃まで2℃/分の冷却速度にて冷却する熱処理後、再度、2℃/分の加熱速度にて融解ピーク終了時より約30℃高い温度まで加熱溶融させる際にDSC曲線を得る。尚、図1に示すように、該DSC曲線の吸熱ピークの低温側のベースラインから吸熱ピークが離れる点を点aとし、吸熱ピークが高温側のベースラインへ戻る点を点bとする。そして、ポリ乳酸樹脂の吸熱量(ΔHendo:raw)は、点aと点bとを結ぶ直線と、DSC曲線に囲まれる部分の面積から求められる値とする。また、ベースラインはできるだけ直線になるように装置を調節することとする。どうしてもベースラインが湾曲してしまう場合には、図2に示すように、湾曲した低温側のベースラインから吸熱ピークが離れる点を点a、湾曲した高温側のベースラインへ吸熱ピークが戻る点を点bとする。
The endothermic amount (ΔH endo: raw ) of the polylactic acid resin is JIS K7122, except that the polylactic acid resin is 1 to 4 mg as a test piece, and the condition adjustment of the test piece and the measurement of the calorific value in the DSC curve are performed according to the following procedure. The value obtained according to the heat flux differential scanning calorimetry described in -1987.
Conditioning of the test piece and measurement of heat quantity in the DSC curve are carried out as follows. The test piece is put in a container of a DSC apparatus and heated and melted to 200 ° C. The temperature is maintained for 10 minutes and then cooled to 125 ° C. at a cooling rate of 2 ° C./min. After maintaining at that temperature for 120 minutes, after heat treatment to cool down to 40 ° C. at a cooling rate of 2 ° C./minute, heat and melt again at a heating rate of 2 ° C./minute to a temperature about 30 ° C. higher than the end of the melting peak. To obtain a DSC curve. As shown in FIG. 1, a point where the endothermic peak departs from the low temperature side baseline of the endothermic peak of the DSC curve is a point a, and a point where the endothermic peak returns to the high temperature side baseline is a point b. The endothermic amount (ΔH endo: raw ) of the polylactic acid resin is a value obtained from the straight line connecting the points a and b and the area of the portion surrounded by the DSC curve. The device should be adjusted so that the baseline is as straight as possible. If the baseline is inevitably curved, as shown in FIG. 2, the point where the endothermic peak is separated from the curved low-temperature base line is point a, and the point where the endothermic peak is returned to the curved high-temperature base line. Let it be point b.

なお、上記した試験片の状態調節およびDSC曲線の測定条件として、125℃での120分間の保持、2℃/分の冷却速度および2℃/分の加熱速度を採用する理由は、ポリ乳酸樹脂試験片の結晶化度をできるだけ高めて、完全に結晶化した状態、或いは、それに近い状態に調整されたものの吸熱量(ΔHendo:raw)を該測定にて求めることを目的としている為である。 The reason for adopting the 120-minute holding at 125 ° C., the cooling rate of 2 ° C./min, and the heating rate of 2 ° C./min as the condition adjustment of the test piece and the measurement condition of the DSC curve is as follows. This is because the crystallinity of the test piece is increased as much as possible, and the endothermic amount (ΔH endo: raw ) of a completely crystallized state or a state close to that is determined by this measurement. .

なお、本発明において発泡シートを構成する上記ポリ乳酸樹脂には、本発明の目的、効果を達成できる範囲においてポリ乳酸樹脂以外の熱可塑性樹脂を50重量%以下の割合で混合、或いは共重合したものを使用することもできる。
ポリ乳酸樹脂以外の熱可塑性樹脂としては、ポリエチレン樹脂;ポリプロピレン樹脂;ポリスチレン樹脂;ポリエステル樹脂等が挙げられる。中でも脂肪族エステル成分単位を少なくとも35モル%含む脂肪族ポリエステル樹脂が好ましい。この場合の脂肪族ポリエステル樹脂には、上記ポリ乳酸樹脂以外のヒドロキシ酸重縮合物;ポリカプロラクトン等のラクトンの開環重合物;ポリブチレンサクシネート,ポリブチレンアジペート,ポリブチレンサクシネートアジペート等の脂肪族ポリエステルや脂肪族コポリエステル;ポリブチレンアジペートテレフタレート等の脂肪族芳香族コポリエステルが包含される。
In the present invention, the above-mentioned polylactic acid resin constituting the foamed sheet was mixed or copolymerized with a thermoplastic resin other than polylactic acid resin in a proportion of 50% by weight or less within a range where the object and effect of the present invention can be achieved. Things can also be used.
Examples of the thermoplastic resin other than the polylactic acid resin include polyethylene resin; polypropylene resin; polystyrene resin; polyester resin. Of these, aliphatic polyester resins containing at least 35 mol% of aliphatic ester component units are preferred. Examples of the aliphatic polyester resin include hydroxy acid polycondensates other than the above polylactic acid resins; ring-opening polymerization products of lactones such as polycaprolactone; fats such as polybutylene succinate, polybutylene adipate, and polybutylene succinate adipate. Aliphatic polyesters and aliphatic copolyesters; and aliphatic aromatic copolyesters such as polybutylene adipate terephthalate.

本発明の発泡シートは、結晶化処理前にあっては熱成形性に優れると共に、結晶化処理を行うことによって耐熱性が向上するものである。具体的には、発泡シートについて熱流束示差走査熱量測定(加熱速度2℃/分)によって求められる、吸熱量(ΔHendo:2℃/分)と発熱量(ΔHexo:2℃/分)との差(ΔHendo:2℃/分−ΔHexo:2℃/分)が40J/g未満であると共に、該吸熱量(ΔHendo:2℃/分)が10J/g以上、該発熱量(ΔHexo:2℃/分)が3J/g以上の発泡シートが好ましい。
このような発泡シートは、従来公知の押出発泡法により製造することができる。
The foamed sheet of the present invention is excellent in thermoformability before crystallization treatment, and heat resistance is improved by performing crystallization treatment. Specifically, an endothermic amount (ΔH endo: 2 ° C./min ) and a calorific value (ΔH exo: 2 ° C./min ) determined by heat flux differential scanning calorimetry (heating rate 2 ° C./min) for the foamed sheet Difference (ΔH endo: 2 ° C./min−ΔH exo: 2 ° C./min ) is less than 40 J / g, the endotherm (ΔH endo: 2 ° C./min ) is 10 J / g or more, and the calorific value ( A foamed sheet having a ΔH exo (2 ° C./min ) of 3 J / g or more is preferable.
Such a foam sheet can be produced by a conventionally known extrusion foaming method.

例えば、前記ポリ乳酸樹脂とタルク等の気泡調整剤を押出機に供給し、加熱溶融混練した後、ノルマルブタン、イソブタン、二酸化炭素等の物理発泡剤を押出機内に圧入して混練する。次いで樹脂温度を発泡適正温度に調整して環状ダイから押出して発泡させる。得られた発泡体を円柱状の冷却装置の側面に沿わせて引き取り、押出方向に刃物などで切り開けば発泡シートを得ることができる。結晶状態の調整は、押出された直後の円筒状の発泡シートの表面に空気またはミストを吹き付けるなどして急冷することにより行うことができる。
但し、本発明方法で用いる発泡シートの製造方法は、この方法に限定されるものではない。
For example, the polylactic acid resin and an air conditioner such as talc are supplied to an extruder, heated and melt-kneaded, and then a physical foaming agent such as normal butane, isobutane, carbon dioxide or the like is injected into the extruder and kneaded. Next, the resin temperature is adjusted to an appropriate foaming temperature and extruded from an annular die for foaming. A foamed sheet can be obtained by taking up the obtained foam along the side surface of the cylindrical cooling device and cutting it with a blade in the extrusion direction. The adjustment of the crystal state can be performed by rapidly cooling the surface of the cylindrical foamed sheet immediately after being extruded, for example, by blowing air or mist.
However, the manufacturing method of the foam sheet used by this invention method is not limited to this method.

上記発泡シートの発熱量(ΔHexo:2℃/分)とは、加熱速度2℃/分での熱流束示差走査熱量測定により試験片の結晶化が促進され、それに伴って放出される熱量であり、発熱量(ΔHexo:2℃/分)の値が大きいほど、試験片を切り出した発泡シートは、結晶化が進んでいないことを意味する。また、発泡シートの吸熱量(ΔHendo:2℃/分)とは、加熱速度2℃/分での熱流束示差走査熱量測定により試験片の結晶が溶融する際の融解熱量であり、吸熱量(ΔHendo:2℃/分)の値が大きいほど試験片を切り出した発泡シートは、熱処理により高い結晶化度のものが得られることを意味する。該吸熱量と該発熱量との差(ΔHendo:2℃/分−ΔHexo:2℃/分)の値は、熱流束示差走査熱量測定に使用される試験片が該測定装置にセットされる時点で有していた分の結晶が溶融するために必要な融解熱量に相当し、該値が小さいほど発泡シートの結晶化が進んでいないことを意味する。
従って、(ΔHendo:2℃/分−ΔHexo:2℃/分)が40J/g未満である発泡シートは、発泡シートの結晶化が大きく進んでおらず、熱成形性など二次加工性に優れるものであることを意味し、(ΔHendo:2℃/分)が10J/g以上であることは、後工程の熱処理により発泡シートの結晶化度を高めてやると、発泡シートが剛性、耐熱性の優れたものとなることを意味する。
The calorific value of the foam sheet (ΔH exo: 2 ° C./min ) is the amount of heat released along with the accelerated crystallization of the test piece by heat flux differential scanning calorimetry at a heating rate of 2 ° C./min. Yes , the larger the value of the calorific value (ΔH exo: 2 ° C./min ), the more the foamed sheet from which the test piece was cut out means that crystallization has not progressed. Further, the endothermic amount of the foam sheet (ΔH endo: 2 ° C./min ) is the amount of heat of fusion when the crystal of the test piece is melted by the heat flux differential scanning calorimetry at the heating rate of 2 ° C./min. A larger value of (ΔH endo: 2 ° C./min ) means that a foamed sheet from which a test piece has been cut out has a higher crystallinity by heat treatment. The difference between the endothermic amount and the exothermic amount (ΔH endo: 2 ° C./min−ΔH exo: 2 ° C./min ) is determined by setting a test piece used for heat flux differential scanning calorimetry in the measuring device. This corresponds to the amount of heat of fusion required for melting the amount of crystals that had been present at the time, and the smaller the value, the less the crystallization of the foam sheet.
Accordingly, the foamed sheet having (ΔH endo: 2 ° C./min−ΔH exo: 2 ° C./min ) of less than 40 J / g does not significantly progress in crystallization of the foamed sheet, and secondary processability such as thermoformability. The (ΔH endo: 2 ° C./min ) is 10 J / g or more. If the crystallization degree of the foamed sheet is increased by a heat treatment in the subsequent process, the foamed sheet becomes rigid. It means that the heat resistance is excellent.

該発泡シートにおいて、(ΔHendo:2℃/分−ΔHexo:2℃/分)の値は0J/g以上40J/g以下が好ましく、より好ましくは0J/g以上30J/g以下であり、より好ましくは0J/g以上20J/g以下であり、更に好ましくは1J/g以上20J/g以下であり、特に好ましくは2J/g以上19J/g以下である。差(ΔHendo:2℃/分−ΔHexo:2℃/分)の値が大きすぎる場合には、発泡シートの熱成形性が悪くなり、特に展開倍率(成形部分の発泡シート面積を(A)とし、該成形部分の発泡シート面積(A)に対応する部分の成形後の成形体面積を(B)とした場合の(B)と(A)との比:(B)/(A))が1.5以上、特に2.0以上の深絞り熱成形性が悪くなる。 In the foamed sheet, the value of (ΔH endo: 2 ° C./min-ΔH exo: 2 ° C./min ) is preferably 0 J / g or more and 40 J / g or less, more preferably 0 J / g or more and 30 J / g or less. More preferably, they are 0 J / g or more and 20 J / g or less, More preferably, they are 1 J / g or more and 20 J / g or less, Especially preferably, they are 2 J / g or more and 19 J / g or less. When the value of the difference (ΔH endo: 2 ° C./min−ΔH exo: 2 ° C./min ) is too large, the thermoformability of the foamed sheet is deteriorated. ) And the ratio of (B) to (A) when the area of the molded article after molding of the part corresponding to the foamed sheet area (A) of the molded part is (B): (B) / (A) ) Is 1.5 or more, particularly 2.0 or more, deep drawing thermoformability is deteriorated.

更に、該発泡シートでは、その吸熱量(ΔHendo:2℃/分)が10J/g以上であることが好ましく、より好ましくは20J/g以上であり、更に好ましくは25J/g以上、特に好ましくは30J/g以上である。発泡シートの吸熱量(ΔHendo:2℃/分)が小さすぎる場合、得られる成形体を熱処理により結晶化させても、好ましい剛性や耐熱性が得られない。尚、発泡シートの吸熱量(ΔHendo:2℃/分)の上限は、特に限定されるものではないが概ね65J/gである。 Further, in the foamed sheet, the endothermic amount (ΔH endo: 2 ° C./min ) is preferably 10 J / g or more, more preferably 20 J / g or more, still more preferably 25 J / g or more, particularly preferably. Is 30 J / g or more. When the endothermic amount (ΔH endo: 2 ° C./min ) of the foamed sheet is too small, preferable rigidity and heat resistance cannot be obtained even if the obtained molded body is crystallized by heat treatment. The upper limit of the endothermic amount (ΔH endo: 2 ° C./min ) of the foam sheet is not particularly limited, but is generally 65 J / g.

また、本発明方法で用いる発泡シートでは、上記発熱量(ΔHexo:2℃/分)が3J/g以上であることが好ましく、より好ましくは5J/g以上であり、更に好ましくは15J/g以上、特に好ましくは20J/g以上である。発泡シートの発熱量(ΔHexo:2℃/分)が小さすぎる場合、得られる成形体を熱処理により結晶化させようとしても結晶化が十分に進まず、好ましい剛性、耐熱性が得られない。尚、発泡シートの発熱量(ΔHexo:2℃/分)の上限は、特に限定されるものではないが概ね65J/gである。また、当然のことながら発泡シートの発熱量(ΔHexo:2℃/分)は発泡シートの吸熱量(ΔHendo:2℃/分)を超えることはない。 Further, in the foamed sheet used in the method of the present invention, the calorific value (ΔH exo: 2 ° C./min ) is preferably 3 J / g or more, more preferably 5 J / g or more, and further preferably 15 J / g. As described above, it is particularly preferably 20 J / g or more. When the calorific value (ΔH exo: 2 ° C./min ) of the foamed sheet is too small, even if an attempt is made to crystallize the resulting molded body by heat treatment, crystallization does not proceed sufficiently, and preferable rigidity and heat resistance cannot be obtained. In addition, although the upper limit of the calorific value (ΔH exo: 2 ° C./min ) of the foam sheet is not particularly limited, it is approximately 65 J / g. Naturally, the heat generation amount of the foam sheet (ΔH exo: 2 ° C./min ) does not exceed the heat absorption amount of the foam sheet (ΔH endo: 2 ° C./min ).

本発明方法で用いる熱成形前の発泡シートの結晶化度は20%以下が好ましく、より好ましくは18%以下であり、更に好ましくは16%以下である。熱成形前のシートの結晶化度が高すぎると成形する際に伸びが低下し、成形性が悪化する要因となる。発泡シートの結晶化度が20%以下であれば、成形時の伸びが低下しすぎるということがない。一方、該発泡シートの結晶化度は2%以上、更に10%以上であることが、後工程の熱成形時の結晶化のための熱処理時間の短縮の観点から好ましい。なお、該発泡シートの結晶化度は低くてもかまわないため、下限は0%である。該発泡シートの結晶化度をコントロールする方法としては、押出発泡時にシートをマンドレルに接触させて引取る際に急冷する方法が挙げられる。   The degree of crystallinity of the foamed sheet before thermoforming used in the method of the present invention is preferably 20% or less, more preferably 18% or less, and still more preferably 16% or less. If the degree of crystallinity of the sheet before thermoforming is too high, the elongation is lowered during forming, which causes deterioration of formability. If the crystallinity of the foamed sheet is 20% or less, the elongation during molding will not be too low. On the other hand, the degree of crystallinity of the foamed sheet is preferably 2% or more, more preferably 10% or more, from the viewpoint of shortening the heat treatment time for crystallization during the subsequent thermoforming. In addition, since the crystallinity of the foamed sheet may be low, the lower limit is 0%. Examples of a method for controlling the crystallinity of the foamed sheet include a method in which the sheet is rapidly cooled when the sheet is brought into contact with a mandrel during extrusion foaming.

本発明書において、発泡シートの結晶化度とは、加熱速度2℃/分での熱流束示差走査熱量測定による発泡シートの発熱量(ΔHexo:2℃/分)と発泡シートの吸熱量(ΔHendo:2℃/分)により定まる吸熱量と該発熱量との差(ΔHendo:2℃/分−ΔHexo:2℃/分)から、下記(1)式により求められる値である。

結晶化度(%)=[(ΔHendo:2℃/分−ΔHexo:2℃/分)/93]×100 (1)
上記(1)式中、「93」は、公知の文献で示されているポリ乳酸樹脂が100%結晶化した場合の結晶融解熱(93J/g)を意味する。
In the present invention, the degree of crystallinity of the foam sheet refers to the heat generation amount of the foam sheet (ΔH exo: 2 ° C./min ) by the heat flux differential scanning calorimetry at the heating rate of 2 ° C./min and the heat absorption amount of the foam sheet ( It is a value obtained by the following equation (1) from the difference between the endothermic amount determined by ΔH endo: 2 ° C./min and the exothermic amount (ΔH endo: 2 ° C./min−ΔH exo: 2 ° C./min ).

Crystallinity (%) = [(ΔH endo: 2 ° C./min−ΔH exo: 2 ° C./min)/93]×100 (1)
In the above formula (1), “93” means the heat of crystal melting (93 J / g) when the polylactic acid resin shown in the known literature is crystallized 100%.

前記発泡シートの発熱量(ΔHexo:2℃/分)および吸熱量(ΔHendo:2℃/分)の測定は、発泡シートの一方の表面と他方の表面を上下面とする円柱又は角柱に切出した1〜4mgの発泡体片を試験片とし、該試験片の状態調節およびDSC曲線における熱量の測定は以下の手順にて行う以外は、JIS K7122−1987に記載される熱流束示差走査熱量測定に従って求められる値とする。
試験片の状態調節およびDSC曲線における熱量の測定は、試験片をDSC装置の容器に入れ、熱処理を行わず(JIS K7122−1987の試験片の状態調節として「標準状態で調整し転移温度を測定する場合」を採用)、2℃/分の加熱速度にて融解ピーク終了時より約30℃高い温度まで加熱溶融させる際のDSC曲線を得ることにより行われる。
The measurement of the calorific value (ΔH exo: 2 ° C./min ) and the endothermic amount (ΔH endo: 2 ° C./min ) of the foamed sheet is performed on a cylinder or prism with the one surface and the other surface of the foam sheet as upper and lower surfaces. The heat flux differential scanning calorific value described in JIS K7122-1987, except that 1 to 4 mg of the foam piece cut out was used as a test piece, and the condition adjustment of the test piece and the measurement of the calorific value in the DSC curve were performed according to the following procedure. The value obtained according to the measurement.
The test piece condition adjustment and the calorific value in the DSC curve were measured by placing the test piece in a DSC apparatus container and not performing heat treatment (as described in JIS K7122-1987, as the condition adjustment of the test piece “adjusted in the standard state and measured the transition temperature. This is carried out by obtaining a DSC curve when heating and melting to a temperature about 30 ° C. higher than the end of the melting peak at a heating rate of 2 ° C./min.

尚、該DSC曲線の発熱ピークの低温側のベースラインから発熱ピークが離れる点を点cとし、発熱ピークが高温側のベースラインへ戻る点を点dとして、発泡シートの発熱量(ΔHexo:2℃/分)は点cと点dとを結ぶ直線とDSC曲線に囲まれる部分の面積から求められる値とする。また、発泡シートの吸熱量(ΔHendo:2℃/分)は、該DSC曲線の吸熱ピークの低温側のベースラインから吸熱ピークが離れる点を点eとし、吸熱ピークが高温側のベースラインへ戻る点を点fとして、点eと点fとを結ぶ直線とDSC曲線に囲まれる部分の面積から求められる値とする。尚、該DSC曲線におけるベースラインはできるだけ直線になるように装置を調節することとする。また、どうしてもベースラインが湾曲してしまう場合には、湾曲した低温側のベースラインから発熱ピークが離れる点を点c、湾曲した高温側のベースラインへ発熱ピークが戻る点を点dとし、或いは、湾曲した低温側のベースラインから吸熱ピークが離れる点を点e、湾曲した高温側のベースラインへ吸熱ピークが戻る点を点fとする。 Note that the point at which the exothermic peak departs from the low-temperature base line of the DSC curve's exothermic peak is designated as point c, and the point at which the exothermic peak returns to the high-temperature base line is designated as point d, where ΔH exo: (2 ° C./min ) is a value obtained from the area of the portion surrounded by the straight line connecting the points c and d and the DSC curve. The endothermic amount of the foam sheet (ΔH endo: 2 ° C./min ) is defined as a point e where the endothermic peak departs from the low-temperature base line of the endothermic peak of the DSC curve, and the endothermic peak reaches the high-temperature base line. The return point is defined as a point f, and a value obtained from the area of the portion surrounded by the straight line connecting the point e and the point f and the DSC curve. Note that the apparatus is adjusted so that the baseline in the DSC curve is as straight as possible. If the baseline is inevitably curved, a point where the exothermic peak is separated from the curved low-temperature side baseline is point c, and a point where the exothermic peak returns to the curved high-temperature side baseline is point d, or A point where the endothermic peak departs from the curved low temperature side baseline is a point e, and a point where the endothermic peak returns to the curved high temperature side baseline is a point f.

例えば、図3に示すような場合には、上記の通り定められる点cと点dとを結ぶ直線とDSC曲線に囲まれる部分の面積から発泡シートの発熱量(ΔHexo:2℃/分)を求め、上記の通り定められる点eと点fとを結ぶ直線とDSC曲線に囲まれる部分の面積から発泡シートの吸熱量(ΔHendo:2℃/分)を求める。また、図4に示すような場合には、上記の方法では点dと点eを定めることが困難である為、上記の通り定められる点cと点fとを結ぶ直線とDSC曲線との交点を点d(点e)と定めることにより、発泡シートの発熱量(ΔHexo:2℃/分)及び吸熱量(ΔHendo:2℃/分)を求める。また、図5に示すように、吸熱ピークの低温側に小さな発熱ピークが発生するような場合には、発泡シートの発熱量(ΔHexo:2℃/分)は図5中の第1の発熱ピークの面積Aと第2の発熱ピークの面積Bとの和から求められる。即ち、該面積Aは第1の発熱ピークの低温側のベースラインから発熱ピークが離れる点を点cとし、第1の発熱ピークが高温側のベースラインへ戻る点を点dとして、点cと点dとを結ぶ直線とDSC曲線に囲まれる部分の面積Aとする。そして、該面積Bは第2の発熱ピークの低温側のベースラインから第2の発熱ピークが離れる点を点gとし、吸熱ピークが高温側のベースラインへ戻る点を点fとして、点gと点fとを結ぶ直線とDSC曲線との交点を点eと定め、点gと点eとを結ぶ直線とDSC曲線に囲まれる部分の面積Bとする。一方、図5において、発泡シートの吸熱量(ΔHendo:2℃/分)は点eと点fとを結ぶ直線とDSC曲線に囲まれる部分の面積から求められる値とする。 For example, in the case shown in FIG. 3, the heat generation amount of the foamed sheet (ΔH exo: 2 ° C./min ) from the area surrounded by the straight line connecting the points c and d defined as described above and the DSC curve. The endothermic amount (ΔH endo: 2 ° C./min ) of the foam sheet is determined from the area surrounded by the straight line connecting the points e and f and the DSC curve defined as described above. In the case shown in FIG. 4, since it is difficult to determine the point d and the point e by the above method, the intersection of the line connecting the point c and the point f determined as described above and the DSC curve. Is determined as a point d (point e) to determine the calorific value (ΔH exo: 2 ° C./min ) and the endothermic amount (ΔH endo: 2 ° C./min ) of the foam sheet. Also, as shown in FIG. 5, when a small exothermic peak occurs on the low temperature side of the endothermic peak, the heat generation amount of the foam sheet (ΔH exo: 2 ° C./min ) is the first exothermic in FIG. It is obtained from the sum of the area A of the peak and the area B of the second exothermic peak. That is, the area A is defined as a point c where the exothermic peak moves away from the low temperature side baseline of the first exothermic peak, and a point d where the first exothermic peak returns to the high temperature side baseline. It is assumed that the area A is a portion surrounded by a straight line connecting the point d and the DSC curve. The area B is defined as a point g where the second exothermic peak is separated from the low temperature side baseline of the second exothermic peak, a point f where the endothermic peak returns to the high temperature side baseline, and a point g. The intersection of the straight line connecting the point f and the DSC curve is defined as a point e, and the area B of the portion surrounded by the straight line connecting the point g and the point e and the DSC curve is defined. On the other hand, in FIG. 5, the endothermic amount (ΔH endo: 2 ° C./min ) of the foamed sheet is a value obtained from the area of the portion surrounded by the straight line connecting point e and point f and the DSC curve.

なお、上記発熱量(ΔHexo:2℃/分)および吸熱量(ΔHendo:2℃/分)の測定において、DSC曲線の測定条件として、2℃/分の加熱速度を採用する理由は、発熱ピークと吸熱ピークとをなるべく分離し、正確な発熱量(ΔHexo:2℃/分)および正確な吸熱量(ΔHendo:2℃/分)を熱流束示差走査熱量測定にて求める際に、2℃/分の加熱速度が好適であるという知見に基づくものである。 In addition, in the measurement of the calorific value (ΔH exo: 2 ° C./min ) and the endothermic amount (ΔH endo: 2 ° C./min ), the reason for adopting the heating rate of 2 ° C./min as the measurement condition of the DSC curve is as follows: When the exothermic peak and the endothermic peak are separated as much as possible, and an accurate exothermic amount (ΔH exo: 2 ° C./min ) and an accurate endothermic amount (ΔH endo: 2 ° C./min ) are obtained by heat flux differential scanning calorimetry. This is based on the finding that a heating rate of 2 ° C./min is suitable.

本発明方法で用いられる発泡シートにおいては、該発泡シートの冷却速度10℃/分での熱流束示差走査熱量測定によって求められる発熱量(ΔHexo:10℃/分)が20J/g以上45J/g以下であることが好ましく、より好ましくは25J/g以上40J/g以下であり、更に好ましくは30J/g以上38J/g以下である。 In the foam sheet used in the method of the present invention, the calorific value (ΔH exo: 10 ° C./min ) determined by heat flux differential scanning calorimetry at a cooling rate of 10 ° C./min of the foam sheet is 20 J / g or more and 45 J / g. g is preferably 25 J / g or more and 40 J / g or less, and more preferably 30 J / g or more and 38 J / g or less.

発泡シートの発熱量(ΔHexo:10℃/分)が20J/g以上45J/g以下である場合、結晶化速度が速すぎることもなければ遅すぎることもない。従って、結晶性が低い状態の発泡シートの生産がしやすく、熱成形時の熱処理により結晶化度が高い成形体の生産がしやすい。これら双方に適した最適な結晶化速度を有する発泡シートであることを意味する。なお、冷却速度2℃/分のような冷却速度が遅い条件下での熱流束示差走査熱量測定では、結晶化速度の遅いポリ乳酸樹脂からなる発泡シートであっても該測定により結晶化が促進され明確な発熱ピークが確認される。これに対し、冷却速度10℃/分という冷却速度が速い条件下での熱流束示差走査熱量測定では、結晶化速度の遅いポリ乳酸樹脂からなる発泡シートは該測定により結晶化が殆ど或いは全く促進されず、殆ど或いは全く発熱ピークが確認されない。このように発泡シートの熱流束示差走査熱量測定において、冷却速度2℃/分の場合には結晶化が進む。しかし、冷却速度10℃/分の場合には結晶化が殆ど或いは全く進まない発泡シートは、熱成形は容易であるが、結晶化を促進するための熱処理に必要な時間が長くなるので、耐熱性等に優れる成形体の生産性が低くなる虞がある。従って、冷却速度10℃/分の条件下における熱流束示差走査熱量測定でも発熱量(ΔHexo:10℃/分)が20J/g以上45J/g以下を示す発泡シートは、熱成形時の熱処理にて結晶化が速く進むと言えることから、耐熱性に優れる成形体を高い生産性で熱成形するのに適したものである。 When the heat generation amount (ΔH exo: 10 ° C./min ) of the foamed sheet is 20 J / g or more and 45 J / g or less, the crystallization rate is neither too fast nor too slow. Accordingly, it is easy to produce a foam sheet having a low crystallinity, and it is easy to produce a molded body having a high degree of crystallinity by heat treatment during thermoforming. It means that the foam sheet has an optimum crystallization speed suitable for both of them. In heat flux differential scanning calorimetry under conditions where the cooling rate is slow, such as 2 ° C./min, crystallization is accelerated by the measurement even for foamed sheets made of polylactic acid resin with a slow crystallization rate. A clear exothermic peak is confirmed. On the other hand, in the heat flux differential scanning calorimetry under the fast cooling rate of 10 ° C./min, the foamed sheet made of polylactic acid resin having a low crystallization rate accelerates the crystallization almost or not at all. And little or no exothermic peak is observed. Thus, in the heat flux differential scanning calorimetry of the foam sheet, crystallization proceeds at a cooling rate of 2 ° C./min. However, when the cooling rate is 10 ° C./min, the foamed sheet that does not progress crystallization little or not can be easily thermoformed, but the time required for heat treatment to promote crystallization becomes longer. There is a possibility that the productivity of a molded article having excellent properties and the like may be lowered. Therefore, a foam sheet having a calorific value (ΔH exo: 10 ° C./min ) of 20 J / g or more and 45 J / g or less in heat flux differential scanning calorimetry under a cooling rate of 10 ° C./min is a heat treatment during thermoforming. Since it can be said that crystallization proceeds at a high speed, it is suitable for thermoforming a molded article having excellent heat resistance with high productivity.

尚、上記発泡シートの発熱量(ΔHexo:10℃/分)の測定は、発泡シートから切出した1〜4mgの発泡体片を試験片とし、該試験片の状態調節およびDSC曲線における熱量の測定は以下の手順にて行う以外は、JIS K7122−1987に記載される熱流束示差走査熱量測定に従うものとする。
試験片の状態調節およびDSC曲線における熱量の測定は、試験片をDSC装置の容器に入れ、200℃まで加熱して溶融させ、その温度に10分間保った後、10℃まで10℃/分の冷却速度にて冷却する際のDSC曲線を得ることにより行われる。尚、発泡シートの発熱量(ΔHexo:10℃/分)は、特に図示はしないが、該DSC曲線の発熱ピークの高温側のベースラインから発熱ピークが離れる点を点hとし、発熱ピークが低温側のベースラインへ戻る点を点iとして、点hと点iとを結ぶ直線と、DSC曲線に囲まれる部分の面積から求められる値とする。尚、ベースラインはできるだけ直線になるように装置を調節することとし、どうしてもベースラインが湾曲してしまう場合には、湾曲した高温側のベースラインから発熱ピークが離れる点を点h、湾曲した低温側のベースラインへ発熱ピークが戻る点を点iとする。
In addition, the calorific value (ΔH exo: 10 ° C./min ) of the foamed sheet was measured using 1 to 4 mg foam pieces cut out from the foamed sheet as test pieces, and adjusting the state of the test pieces and the calorific value in the DSC curve. The measurement is performed according to the heat flux differential scanning calorimetry described in JIS K7122-1987 except that the measurement is performed according to the following procedure.
Conditioning of the test piece and measurement of the amount of heat in the DSC curve were carried out by placing the test piece in a DSC apparatus container, heating to 200 ° C. to melt and keeping at that temperature for 10 minutes, then 10 ° C./min to 10 ° C. This is done by obtaining a DSC curve when cooling at the cooling rate. The heating value of the foamed sheet (ΔH exo: 10 ° C./min ) is not particularly shown, but the point at which the exothermic peak departs from the high temperature side base line of the exothermic peak of the DSC curve is point h, and the exothermic peak is A point returning to the low-temperature base line is a point i, and a value obtained from a straight line connecting the point h and the point i and an area of a portion surrounded by the DSC curve. It should be noted that the apparatus should be adjusted so that the baseline is as straight as possible, and if the baseline is inevitably curved, the point where the exothermic peak leaves the curved base line on the high temperature side is point h, and the curved low temperature The point where the exothermic peak returns to the base line on the side is defined as point i.

本発明の成形方法では、厚さ0.5mm以上の発泡シートを用いることが好ましい。厚さが0.5mm以上であれば、得られる成形体を金型に挟むことにより、その表面と裏面の結晶化度をコントロールすることが容易である。更に、得られる成形体の曲げ、圧縮等の機械的強度が優れたものとなる。かかる観点から、発泡シートの厚さは、好ましくは、0.6mm以上、更に好ましくは0.7mm以上である。一方、発泡シートが厚すぎると熱成形しにくくなることから、成形する金型にもよるが、好ましくは6mm以下、更に好ましくは4mm以下である。なお、発泡シートの厚さの上限は、概ね8mm程度である。   In the molding method of the present invention, it is preferable to use a foam sheet having a thickness of 0.5 mm or more. If the thickness is 0.5 mm or more, it is easy to control the crystallinity of the front surface and the back surface by sandwiching the obtained molded body between molds. Furthermore, the obtained molded article has excellent mechanical strength such as bending and compression. From this viewpoint, the thickness of the foamed sheet is preferably 0.6 mm or more, and more preferably 0.7 mm or more. On the other hand, if the foamed sheet is too thick, it is difficult to thermoform, and therefore it is preferably 6 mm or less, more preferably 4 mm or less, although it depends on the mold to be molded. In addition, the upper limit of the thickness of a foam sheet is about 8 mm in general.

該発泡シートの見かけ密度は、63kg/m以上630kg/m以下が好ましい。見かけ密度が小さすぎる場合には、得られる成形体の曲げ、圧縮等の機械的強度が不足する虞がある。一方、見かけ密度が大きすぎる場合には、成形体の断熱性、緩衝性が不足し、軽量性が不十分となる虞がある。 The apparent density of the foamed sheet is preferably 63 kg / m 3 or more and 630 kg / m 3 or less. If the apparent density is too small, the resulting molded article may lack mechanical strength such as bending and compression. On the other hand, when the apparent density is too large, the heat insulating property and buffering property of the molded body are insufficient, and the lightness may be insufficient.

本発明では、本発明の目的を阻害しない範囲で、ポリ乳酸樹脂からなる発泡シートの片面又は両面に熱可塑性樹脂層(以下、単に樹脂層ともいう。)を形成することができる。上記樹脂層の厚みに特に制限はないが、0.5μm以上500μm以下が好ましく、3μm以上300μm以下がより好ましく、10μm以上180μm以下が更に好ましい。なお、上記樹脂層の厚みは、接着層を介して樹脂層が発泡シートに積層されている場合には、接着層と樹脂層との合計厚みとする。また、多層構成の樹脂層が発泡シートに形成されている場合には、各樹脂層の合計厚み、即ち多層樹脂層の厚みとする。更に、多層樹脂層が接着層を介して発泡シートに積層されている場合には、多層樹脂層と樹脂層との合計厚みを上記樹脂層の厚みとする。   In the present invention, a thermoplastic resin layer (hereinafter also simply referred to as a resin layer) can be formed on one side or both sides of a foamed sheet made of polylactic acid resin as long as the object of the present invention is not impaired. Although there is no restriction | limiting in particular in the thickness of the said resin layer, 0.5 to 500 micrometers is preferable, 3 to 300 micrometers is more preferable, 10 to 180 micrometers is still more preferable. In addition, the thickness of the said resin layer is taken as the total thickness of an adhesive layer and a resin layer, when the resin layer is laminated | stacked on the foamed sheet via the adhesive layer. Moreover, when the resin layer of a multilayer structure is formed in the foamed sheet, it is set as the total thickness of each resin layer, ie, the thickness of a multilayer resin layer. Furthermore, when the multilayer resin layer is laminated | stacked on the foamed sheet via the contact bonding layer, let the total thickness of a multilayer resin layer and a resin layer be the thickness of the said resin layer.

上記樹脂層を構成する合成樹脂としては、ポリ乳酸樹脂;ポリオレフィン樹脂;ポリエステル樹脂;ポリスチレン樹脂;ナイロン−6やナイロン−6,6等のポリアミド樹脂;ポリメチルメタクリレートやポリアクリレート等のポリアクリル樹脂;ポリカーボネート樹脂等;更にこれらの混合物が挙げられる。   Synthetic resins constituting the resin layer include polylactic acid resin; polyolefin resin; polyester resin; polystyrene resin; polyamide resin such as nylon-6 and nylon-6, 6; polyacrylic resin such as polymethyl methacrylate and polyacrylate; Polycarbonate resins and the like; and further mixtures thereof.

以下、本発明のポリ乳酸樹脂発泡シート成形体について説明する。
本発明の成形体は、厚さ0.5mm以上のポリ乳酸樹脂発泡シートから得られる成形体であることが好ましい。発泡シートの厚さが0.5mm以上であれば前述したように、得られる成形体の曲げ、圧縮等の機械的強度が特に優れたものとなる。
また、本発明の成形体は、成形体の機械的強度などに優れたものとなるという理由から、成形体の厚さが0.5mm以上、更に0.7mm以上であることが好ましい。
Hereinafter, the polylactic acid resin foamed sheet molding of the present invention will be described.
The molded article of the present invention is preferably a molded article obtained from a polylactic acid resin foam sheet having a thickness of 0.5 mm or more. If the thickness of the foamed sheet is 0.5 mm or more, as described above, mechanical strength such as bending and compression of the obtained molded body is particularly excellent.
In addition, the molded body of the present invention preferably has a thickness of 0.5 mm or more, more preferably 0.7 mm or more, because the molded body has excellent mechanical strength and the like.

尚、成形体の厚さが0.5mm以上とは、成形体にフランジがある場合には、その部分は厚みの測定対象からは除いて考え、フランジ以外の他の部分について成形体の表面積の60%以上の部分が0.5mm以上であるものをいう。成形体の厚みは、フランジ以外の他の部分について成形体の表面積の60%以上(好ましくは該表面積の70%以上、更に好ましくは80%以上、特に好ましくは90%以上)の部分が0.5mm以上7mm以下であることが好ましく、0.7mm以上3mm以下であることがより好ましい。   Note that the thickness of the molded body is 0.5 mm or more, when the molded body has a flange, that part is excluded from the thickness measurement object, and the surface area of the molded body is determined for other parts other than the flange. The part where 60% or more is 0.5 mm or more. The thickness of the molded body is such that the portion other than the flange is 60% or more of the surface area of the molded body (preferably 70% or more, more preferably 80% or more, particularly preferably 90% or more) of the surface area. It is preferably 5 mm or more and 7 mm or less, and more preferably 0.7 mm or more and 3 mm or less.

本発明の成形体においては、成形体を成形体の厚さ中央部で分割して得られる一方の分割体と他方の分割体との結晶化度の差が5%以上であり、且つ結晶化度が高い一方の分割体の結晶化度が25%以上70%以下であり、結晶化度の低い他方の分割体の結晶化度が0%以上25%未満である。本発明の成形体は、一方の分割体の結晶化度が25%以上70%以下であり、この部分の結晶化が十分に促進されていることから、耐熱性が向上し、曲げ、圧縮等の機械的強度が向上した成形体である。これに対し、一方の分割体の結晶化度が25%未満であれば、この部分の結晶化が不十分であることを意味し、このような成形体は、耐熱性が不十分で、曲げ、圧縮等の機械的強度も不十分となる。また、一方の分割体の結晶化度が70%を超える場合には、この部分の結晶化は十分なもので成形体の耐熱性において優れたものであるが、成形体を得る為の成形サイクルタイムが長いという生産性の課題を有する。
また、他方の分割体の結晶化度が0%以上25%未満であり、この部分の結晶化は殆ど促進されていないことから、表面平滑性に優れ外観が良好な成形体となる。即ち、他方の分割体の結晶化度が25%未満であれば、他方の分割体の表面に凹凸は殆ど発生しないので、成形体の他方の分割体側表面は外観に優れる。
In the molded body of the present invention, the difference in crystallinity between one divided body obtained by dividing the molded body at the central portion of the molded body and the other divided body is 5% or more, and crystallization The degree of crystallinity of one divided body having a high degree is 25% or more and 70% or less, and the degree of crystallinity of the other divided body having a low degree of crystallinity is 0% or more and less than 25%. In the molded body of the present invention, the crystallinity of one of the divided bodies is 25% or more and 70% or less, and the crystallization of this portion is sufficiently promoted, so that the heat resistance is improved, bending, compression, etc. This is a molded article with improved mechanical strength. On the other hand, if the degree of crystallinity of one divided body is less than 25%, it means that the crystallization of this portion is insufficient, and such a molded body has insufficient heat resistance and is not bent. Also, the mechanical strength such as compression becomes insufficient. Further, when the crystallinity of one of the divided bodies exceeds 70%, the crystallization of this part is sufficient and excellent in the heat resistance of the molded body, but the molding cycle for obtaining the molded body It has a productivity problem of long time.
Further, the crystallinity of the other divided body is 0% or more and less than 25%, and the crystallization of this portion is hardly promoted, so that the molded body has excellent surface smoothness and good appearance. That is, if the degree of crystallinity of the other divided body is less than 25%, the surface of the other divided body is hardly uneven, so that the surface of the other divided body side of the molded body is excellent in appearance.

上記の一方の分割体と他方の分割体との結晶化度の差は5%以上である。従って、他方の分割体の結晶化度が、一方の分割体の結晶化度より低いので、一方の分割体の耐熱性が向上していると同時に、他方の分割体の表面に凹凸が発生する現象を抑え易くなり、外観に優れた成形体となる。また、成形体が外観に優れることにより、成形体に明確な刻印や印刷を施すこともできる。かかる観点から、一方の分割体と他方の分割体との結晶化度の差は、5%以上70%以下が好ましく、6%以上20%以下が更に好ましく、9%以上15%以下が特に好ましい。   The difference in crystallinity between the one divided body and the other divided body is 5% or more. Accordingly, since the crystallinity of the other divided body is lower than the crystallinity of one of the divided bodies, the heat resistance of one of the divided bodies is improved, and at the same time, irregularities are generated on the surface of the other divided body. It becomes easy to suppress the phenomenon and becomes a molded article having an excellent appearance. In addition, since the molded body is excellent in appearance, it is possible to give clear marking or printing to the molded body. From this viewpoint, the difference in crystallinity between one divided body and the other divided body is preferably 5% or more and 70% or less, more preferably 6% or more and 20% or less, and particularly preferably 9% or more and 15% or less. .

尚、前記のように、一方の金型が凸型形状の高温の上型で、他方の金型が凹型形状の低温の下型とする場合、上型には一方の分割体が接触し、下型には他方の分割体が接触することが好ましい。更に、得られる成形体がトレーであれば、一方の分割体の表面がトレーの内面となり、他方の分割体の表面がトレーの外面となることが好ましい。この場合には、内面が耐熱性を有し、外面が外観に優れているトレーとすることができる。但し、本発明は、このような態様に限定されるものではなく、一方の分割体の表面が成形体の外面となり、他方の分割体の表面が成形体の内面であってもよい。   In addition, as described above, when one mold is a convex-shaped high-temperature upper mold and the other mold is a concave-shaped low-temperature lower mold, one divided body is in contact with the upper mold, The other divided body is preferably in contact with the lower mold. Furthermore, if the molded body to be obtained is a tray, it is preferable that the surface of one divided body is the inner surface of the tray and the surface of the other divided body is the outer surface of the tray. In this case, a tray having an inner surface having heat resistance and an outer surface having an excellent appearance can be obtained. However, the present invention is not limited to such an embodiment, and the surface of one divided body may be the outer surface of the molded body, and the surface of the other divided body may be the inner surface of the molded body.

更に、一方の分割体の結晶化度は25%以上35%以下であることが好ましい。
一方の分割体の結晶化度が25%以上であれば、結晶化が十分に促進されていることから、優れた耐熱性を有し、優れた機械的強度を有する成形体が得られる。また、一方の分割体の結晶化度の目標値を35%以下とすれば、熱成形時の結晶化のための熱処理を短時間で終えることができる。かかる観点から、一方の分割体の結晶化度は、より好ましくは26%以上34%以下、更に好ましくは27%以上33%以下である。
Furthermore, the crystallinity of one of the divided bodies is preferably 25% or more and 35% or less.
If the crystallinity of one of the divided bodies is 25% or more, crystallization is sufficiently promoted, and thus a molded body having excellent heat resistance and excellent mechanical strength can be obtained. Moreover, if the target value of the crystallinity of one divided body is set to 35% or less, the heat treatment for crystallization at the time of thermoforming can be completed in a short time. From this viewpoint, the crystallinity of one of the divided bodies is more preferably 26% or more and 34% or less, and further preferably 27% or more and 33% or less.

そして、他方の分割体の結晶化度は15%以上25%未満であることが好ましい。
他方の分割体の結晶化度が15%以上であれば、成形体の耐熱性の向上にも寄与する。また、他方の分割体の結晶化度が25%未満であれば、他方の分割体側表面は外観に優れる。かかる観点から、他方の分割体の結晶化度は、より好ましくは15%以上24%以下、更に好ましくは16%以上23%以下である。
And it is preferable that the crystallinity of the other divided body is 15% or more and less than 25%.
If the crystallinity of the other divided body is 15% or more, it contributes to the improvement of the heat resistance of the molded body. Moreover, if the crystallinity of the other divided body is less than 25%, the surface of the other divided body is excellent in appearance. From such a viewpoint, the crystallinity of the other divided body is more preferably 15% or more and 24% or less, and further preferably 16% or more and 23% or less.

成形体を成形体厚さの中央部で分割して得られる一方の分割体と他方の分割体との結晶化度の測定方法は次のように行う。
成形体の底部の比較的平らなところを選び、成形体の底部の内側表面と外側表面を上下面とする円柱又は角柱に切出す。切出された成形体の厚みの中央位置で切断することで一方の分割体と他方の分割体に分ける(各分割体の重量は1mg以上4mg以下とする。)。得られる各分割体を試験片として使用し、発泡シートの結晶化度を測定するのと同様にして測定することで、一方の分割体と他方の分割体との結晶化度が求められる。
A method for measuring the degree of crystallinity between one divided body and the other divided body obtained by dividing the molded body at the center of the molded body thickness is as follows.
A relatively flat portion of the bottom of the molded body is selected and cut into a cylinder or prism having upper and lower inner and outer surfaces of the bottom of the molded body. By cutting at the center position of the thickness of the cut molded body, it is divided into one divided body and the other divided body (the weight of each divided body is 1 mg or more and 4 mg or less). Each obtained divided body is used as a test piece, and the degree of crystallinity between one divided body and the other divided body is determined by measuring in the same manner as measuring the crystallinity of the foam sheet.

尚、成形体の厚みが2mmを越えるようになると厚みの中央位置で切断された各分割体の厚みは1mmを越えるようになる。各分割体の厚みが厚くなりすぎと成形体の厚み方向中央部の結晶化度の低い部分が多く含まれる傾向にあり、一方の分割体の結晶化度が相対的に小さくなりやすい。従って、成形体の厚みが2mmを越える場合には、結晶化度を測定するための各分割体としては、成形体の厚み方向の中央部側を削ることにより各分割体の厚みを約1mm(0.95mm以上1.05mm以下)に調整することが好ましい。   When the thickness of the molded body exceeds 2 mm, the thickness of each divided body cut at the central position of the thickness exceeds 1 mm. When the thickness of each divided body becomes too thick, there is a tendency that many portions having a low degree of crystallinity in the central portion in the thickness direction of the molded body are included, and the crystallinity of one divided body tends to be relatively small. Therefore, when the thickness of the molded body exceeds 2 mm, each divided body for measuring the degree of crystallinity has a thickness of each divided body of about 1 mm (by cutting the central portion in the thickness direction of the molded body). It is preferable to adjust to 0.95 mm or more and 1.05 mm or less.

尚、本明細書においては、DSC測定は、いずれも、米国のTA Instruments社の「DSC Q1000」を使用して測定された値である。使用されたDSC Q1000のデータ解析用プログラムは、「Windows 2000/XP版ユニバーサルアナリシス2000 バージョン4.0C ビルド4.0.0.103」である。   In addition, in this specification, all DSC measurement is a value measured using "DSC Q1000" of TA Instruments, USA. The DSC Q1000 data analysis program used is “Windows 2000 / XP version Universal Analysis 2000 Version 4.0C Build 4.0.0.103”.

本発明のポリ乳酸樹脂発泡シート成形体は、耐熱性および外観に優れるものであり工業部品トレー、食品容器等として利用できる。また、本発明のポリ乳酸樹脂発泡シート成形体の製造方法によれば、耐熱性、外観の良好なポリ乳酸樹脂発泡シート成形体を短い成形サイクルタイムで生産することができる。   The molded body of the polylactic acid resin foamed sheet of the present invention is excellent in heat resistance and appearance, and can be used as an industrial component tray, a food container or the like. Moreover, according to the manufacturing method of the polylactic acid resin foamed sheet molding of the present invention, a polylactic acid resin foamed sheet molded article having good heat resistance and appearance can be produced in a short molding cycle time.

以下、実施例により本発明について詳細に説明する。但し、本発明は実施例に限定されるものではない。   Hereinafter, the present invention will be described in detail by way of examples. However, the present invention is not limited to the examples.

発泡シートの作製
ポリ乳酸樹脂としてガラス転移温度が60℃のユニチカ株式会社の商品名「HV−6200」を使用した。ポリ乳酸樹脂に、核剤としてタルクを該ポリ乳酸樹脂100重量部当たり1.3重量部の割合で混合し、内径90mmの押出機に供給し、押出機を200℃に加熱し、それらを混練した。続いて、発泡剤としてブタンをポリ乳酸樹脂100重量部当たり0.8重量部の割合で押出機の下流側に設けられた発泡剤注入口から押出機中に圧入し、更に混練した。前記のようにして得られた混練物を、該押出機の先端に連結している内径120mmの第二押出機へ供給し、冷却することにより発泡性溶融樹脂を製造した。続いて、ブレーカープレート部通過時の温度が171℃に冷却調整された該発泡性溶融樹脂を、第二押出機の先端に取付けた環状ダイに供給し、ダイ出口のリップ径が90mmでリップ間隙が0.5mmの環状ダイから該発泡性溶融樹脂を筒状に押出して、筒状発泡体を形成した。なお、筒状発泡体は、押出発泡直後から冷却用の空気を筒状発泡体の内外両表面に吹き付けることにより急冷した。次いで筒状発泡体の内面を円柱状の冷却装置の側面に接触させながら引取り、その後、筒状発泡体の一端をカッターにて押出方向に切り開いてポリ乳酸樹脂発泡シートを製造した。得られたポリ乳酸樹脂発泡シートは、幅720mm、厚み1.7mm、坪量450g/m、見かけ密度266kg/m(発泡倍率4.7倍)であった。得られた発泡シートの発熱量(ΔHexo:2℃/分)は22J/g、吸熱量(ΔHendo:2℃/分)は38J/g、結晶化度は17%、発熱量(ΔHexo:10℃/分)は35J/g、ガラス転移温度(Tg)は60℃であった。尚、本例で使用したポリ乳酸樹脂の吸熱量(ΔHendo:raw)は38J/gであった。
Production of Foam Sheet A product name “HV-6200” of Unitika Ltd. having a glass transition temperature of 60 ° C. was used as a polylactic acid resin. Talc as a nucleating agent is mixed with polylactic acid resin at a ratio of 1.3 parts by weight per 100 parts by weight of the polylactic acid resin, supplied to an extruder having an inner diameter of 90 mm, the extruder is heated to 200 ° C., and they are kneaded. did. Subsequently, butane as a blowing agent was pressed into the extruder from a blowing agent injection port provided on the downstream side of the extruder at a ratio of 0.8 part by weight per 100 parts by weight of the polylactic acid resin, and further kneaded. The kneaded product obtained as described above was supplied to a second extruder having an inner diameter of 120 mm connected to the tip of the extruder and cooled to produce a foamable molten resin. Subsequently, the foamable molten resin whose cooling temperature is adjusted to 171 ° C. when passing through the breaker plate portion is supplied to an annular die attached to the tip of the second extruder, the lip diameter at the die outlet is 90 mm, and the lip gap The foamable molten resin was extruded into a cylindrical shape from an annular die having a thickness of 0.5 mm to form a cylindrical foam. The cylindrical foam was rapidly cooled by blowing cooling air onto both the inner and outer surfaces of the cylindrical foam immediately after extrusion foaming. Next, the tubular foam was taken up while contacting the inner surface of the cylindrical cooling device, and then one end of the tubular foam was cut in the extrusion direction with a cutter to produce a polylactic acid resin foam sheet. The obtained polylactic acid resin foamed sheet had a width of 720 mm, a thickness of 1.7 mm, a basis weight of 450 g / m 2 , and an apparent density of 266 kg / m 3 (expanding ratio of 4.7 times). The heat generation amount (ΔH exo: 2 ° C./min ) of the obtained foamed sheet was 22 J / g, the heat absorption amount (ΔH endo: 2 ° C./min ) was 38 J / g, the crystallinity was 17%, and the heat generation amount (ΔH exo : 10 ° C / min ) was 35 J / g, and the glass transition temperature (Tg) was 60 ° C. The endothermic amount (ΔH endo: raw ) of the polylactic acid resin used in this example was 38 J / g.

実施例1乃至4、比較例1乃至5
得られた発泡シートを連続成形機にて熱成形し、平面視円形状のパスタ用トレーを得た。該トレーの開口部の内径は180mm、底部の外径は135mm、高さは29mm、底部の厚みは2mm±0.1mm、側壁の厚みは2mm±0.1mmであった。連続成形機に使用された金型は、上型(凹型)と下型(凸型)からなり、一度に、発泡シートの幅方向に3個、発泡シートの長手方向に4個の計12個のトレーを得ることのできる金型を用いた。
Examples 1 to 4 and Comparative Examples 1 to 5
The obtained foamed sheet was thermoformed with a continuous molding machine to obtain a pasta tray having a circular shape in plan view. The inner diameter of the opening of the tray was 180 mm, the outer diameter of the bottom was 135 mm, the height was 29 mm, the thickness of the bottom was 2 mm ± 0.1 mm, and the thickness of the side wall was 2 mm ± 0.1 mm. The mold used in the continuous molding machine consists of an upper mold (concave mold) and a lower mold (convex mold), 12 in total, 3 in the width direction of the foam sheet and 4 in the longitudinal direction of the foam sheet at a time. A mold capable of obtaining a tray was used.

上記熱成形の手順としては、次の通りである。
加熱ヒーターで発泡シートを軟化させ発泡シートの表面温度を60℃付近に調整した後、発泡シートを金型の上型と下型の間に搬送してから、上型と下型の間に挟み、熱成形すると共に結晶化処理を行った。次いで成形体を上型に吸引しながら付着させた状態を維持しつつ下型を成形体から離型した。上型(比較例4では下型)に成形体を吸引した状態を表1に示す時間維持(表1では「片側金型保持」と表記)することにより成形体の冷却を促進させ、続いて成形体を上型(比較例4では下型)から離型した。尚、比較例1については、上型、下型を型締めした後に、型締め状態のまま金型温度が50℃になるまで冷却し、上型と下型を同時に離型した後に、次の発泡シートを熱成形するため、上型と下型の温度を95℃まで昇温した。また、比較例5では、結晶化処理後、上型と下型を同時に離型した。
The thermoforming procedure is as follows.
After the foam sheet is softened with a heater and the surface temperature of the foam sheet is adjusted to around 60 ° C., the foam sheet is transported between the upper mold and the lower mold of the mold and then sandwiched between the upper mold and the lower mold. Then, thermoforming and crystallization treatment were performed. Next, the lower mold was released from the molded body while maintaining the state where the molded body was adhered to the upper mold while being sucked. The state in which the molded body is sucked into the upper mold (lower mold in Comparative Example 4) is maintained for the time shown in Table 1 (indicated as “one-side mold holding” in Table 1), thereby promoting cooling of the molded body. The molded body was released from the upper mold (lower mold in Comparative Example 4). For Comparative Example 1, after the upper mold and the lower mold were clamped, the mold was cooled in the mold clamped state until the mold temperature reached 50 ° C., and the upper mold and the lower mold were released at the same time. In order to thermoform the foamed sheet, the temperature of the upper mold and the lower mold was raised to 95 ° C. In Comparative Example 5, after the crystallization treatment, the upper mold and the lower mold were released at the same time.

表1に、熱成形手順および各工程の時間、成形サイクルタイムを示す。成形サイクルタイムは発泡シートの搬送に2秒要しているため、表1の熱成形手順の欄に記載された秒数の総和よりも2秒長くなる。また、表1に上型、下型、それぞれの成形金型の温度、離型時における成形体の変形、成形体の一方の分割体、および他方の分割体のそれぞれの結晶化度、両分割体の結晶化度の差、成形体の耐熱性、成形体の他方の分割体側表面の平滑性を示す。   Table 1 shows the thermoforming procedure, the time for each step, and the molding cycle time. Since the molding cycle time takes 2 seconds to convey the foam sheet, the molding cycle time is 2 seconds longer than the total number of seconds described in the column of thermoforming procedure in Table 1. Table 1 also shows the temperature of the upper mold, the lower mold, and the respective molding dies, the deformation of the molded body at the time of mold release, the crystallinity of each of the one divided body and the other divided body, It shows the difference in crystallinity of the body, the heat resistance of the molded body, and the smoothness of the other surface of the molded body.

Figure 2007118578
Figure 2007118578

成形体離型時の変形の評価基準
○・・・変形なし又は実質的な変形なし
×・・・大きな変形有り
Evaluation criteria for deformation at the time of mold release ○ ・ ・ ・ No deformation or substantial deformation × ・ ・ ・ There is large deformation

分割体の結晶化度
成形体を、厚さ中央部で分割して、一方の分割体(トレーの内面側)と他方分割体(トレーの外面側)を採取し、発泡シートの結晶化度を測定する方法と同様にしてDSC装置を用いて2℃/分の加熱速度にて発熱量(ΔHexo:2℃/分)および吸熱量(ΔHendo:2℃/分)を測定し、その測定値を前記(1)式に代入して各分割体の結晶化度を求めた。
Crystallinity of the divided body The molded body is divided at the center of the thickness, and one of the divided bodies (the inner surface side of the tray) and the other divided body (the outer surface side of the tray) are collected. The calorific value (ΔH exo: 2 ° C./min ) and endothermic amount (ΔH endo: 2 ° C./min ) were measured at a heating rate of 2 ° C./min using a DSC apparatus in the same manner as the measurement method, and the measurement The crystallinity of each divided body was determined by substituting the value into the equation (1).

成形体の耐熱性の評価基準
成形体に内容積の80%になるように90℃のお湯を入れ、3分後にお湯を取り出し、外観の変化を観察した。下記は評価基準である。
◎・・・・全く変形なし
○・・・・ほとんど変形なし
×・・・・変形有り
Evaluation Criteria for Heat Resistance of Molded Body Hot water at 90 ° C. was put into the molded body so that the inner volume was 80%, and the hot water was taken out after 3 minutes, and changes in appearance were observed. The following are the evaluation criteria.
◎ ・ ・ ・ ・ No deformation ○ ・ ・ ・ ・ No deformation × ・ ・ ・ ・ With deformation

成形体の他方の分割体側の表面平滑性の評価基準
他方の分割体側表面を目視で観察し、次の通り評価した
◎・・・・非常に平滑
○・・・・多少凹凸あるが全体としては平滑
×・・・・凹凸が大きい
Evaluation criteria of surface smoothness on the other divided body side of the molded product The surface on the other divided body side was visually observed and evaluated as follows: ◎ ... very smooth ○ ... Smooth × ··· Large irregularities

図1は熱流束示差走査熱量測定により求められるポリ乳酸樹脂のΔHendo:rawを示すDSC曲線の説明図である。FIG. 1 is an explanatory diagram of a DSC curve showing ΔH endo: raw of a polylactic acid resin determined by heat flux differential scanning calorimetry. 図2は熱流束示差走査熱量測定により求められるポリ乳酸樹脂のΔHendo:rawを示すDSC曲線の他の説明図である。FIG. 2 is another explanatory diagram of a DSC curve showing ΔH endo: raw of the polylactic acid resin obtained by heat flux differential scanning calorimetry. 図3は熱流束示差走査熱量測定により求められる発泡シートのΔHexo:2℃/分及びΔHendo:2℃/分を示すDSC曲線の説明図である。FIG. 3 is an explanatory diagram of a DSC curve showing ΔH exo: 2 ° C./min and ΔH endo: 2 ° C./min of the foamed sheet obtained by heat flux differential scanning calorimetry. 図4は熱流束示差走査熱量測定により求められる発泡シートのΔHexo:2℃/分及びΔHendo:2℃/分を示すDSC曲線の他の説明図である。FIG. 4 is another explanatory diagram of a DSC curve showing ΔH exo: 2 ° C./min and ΔH endo: 2 ° C./min of the foam sheet obtained by heat flux differential scanning calorimetry. 図5は熱流束示差走査熱量測定により求められる発泡シートのΔHexo:2℃/分及びΔHendo:2℃/分を示すDSC曲線の更に他の説明図である。FIG. 5 is still another explanatory diagram of a DSC curve showing ΔH exo: 2 ° C./min and ΔH endo: 2 ° C./min of the foam sheet obtained by heat flux differential scanning calorimetry.

Claims (4)

結晶性ポリ乳酸樹脂発泡シートを熱成形して得られる成形体であって、該成形体を成形体厚さの中央部で分割して得られる一方の分割体と他方の分割体との結晶化度の差が5%以上であり、且つ一方の分割体の結晶化度が25%以上70%以下、他方の分割体の結晶化度が0%以上25%未満であることを特徴とするポリ乳酸樹脂発泡シート成形体。   A molded body obtained by thermoforming a crystalline polylactic acid resin foamed sheet, wherein the molded body is crystallized from one divided body and the other divided body obtained by dividing the molded body at the center of the molded body thickness. The degree difference is 5% or more, the crystallinity of one divided body is 25% or more and 70% or less, and the crystallinity of the other divided body is 0% or more and less than 25%. Lactic acid resin foam sheet molding. 前記一方の分割体と前記他方の分割体との結晶化度の差が6%以上20%以下であり、前記一方の分割体の結晶化度が25%以上35%以下、前記他方の分割体の結晶化度が15%以上25%未満であることを特徴とする請求項1に記載のポリ乳酸樹脂発泡シート成形体。   The difference in crystallinity between the one divided body and the other divided body is 6% or more and 20% or less, and the degree of crystallinity of the one divided body is 25% or more and 35% or less, and the other divided body. 2. The polylactic acid resin foamed sheet molded article according to claim 1, wherein the degree of crystallinity is 15% or more and less than 25%. 結晶性ポリ乳酸樹脂発泡シートを、一対の金型の間に挟んで熱成形する成形体の製造方法において、一方の金型の温度を[発泡シートのガラス転移温度+20℃]以上[発泡シートのガラス転移温度+70℃]以下に設定し、他方の金型を[発泡シートのガラス転移温度−40℃]以上発泡シートのガラス転移温度以下に設定し、一方の金型と他方の金型の間に発泡シートを挟んで熱成形すると共に結晶化処理を行い、次いで成形体を前記他方の金型に保持させた状態で、成形体を前記一方の金型から離型した後、成形体を前記他方の金型から離型することを特徴とするポリ乳酸樹脂発泡シート成形体の製造方法。   In a method for producing a molded body in which a crystalline polylactic acid resin foam sheet is sandwiched between a pair of molds and thermoformed, the temperature of one mold is equal to or higher than the glass transition temperature of the foam sheet + 20 ° C. [Glass transition temperature + 70 ° C.] or lower, and the other mold is set to [Glass transition temperature of foamed sheet −40 ° C.] or higher and lower than the glass transition temperature of the foamed sheet, between one mold and the other mold In the state where the foamed sheet is sandwiched between the mold and thermoformed, and then the molded body is held in the other mold, the molded body is released from the one mold, and then the molded body is A method for producing a molded body of a polylactic acid resin foam sheet, wherein the mold is released from the other mold. 熱成形に使用される結晶性ポリ乳酸樹脂発泡シートの結晶化度が0%以上20%以下であることを特徴とする請求項3に記載のポリ乳酸樹脂発泡シート成形体の製造方法。   The method for producing a polylactic acid resin foam sheet molded article according to claim 3, wherein the crystallinity of the crystalline polylactic acid resin foam sheet used for thermoforming is 0% or more and 20% or less.
JP2006249898A 2005-09-27 2006-09-14 Polylactic acid resin foam sheet molded body and method for producing the same Active JP4842745B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006249898A JP4842745B2 (en) 2005-09-27 2006-09-14 Polylactic acid resin foam sheet molded body and method for producing the same

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2005279883 2005-09-27
JP2005279883 2005-09-27
JP2006249898A JP4842745B2 (en) 2005-09-27 2006-09-14 Polylactic acid resin foam sheet molded body and method for producing the same

Publications (2)

Publication Number Publication Date
JP2007118578A true JP2007118578A (en) 2007-05-17
JP4842745B2 JP4842745B2 (en) 2011-12-21

Family

ID=38142926

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006249898A Active JP4842745B2 (en) 2005-09-27 2006-09-14 Polylactic acid resin foam sheet molded body and method for producing the same

Country Status (1)

Country Link
JP (1) JP4842745B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014139333A (en) * 2014-05-08 2014-07-31 Sekisui Plastics Co Ltd Polylactic acid-based resin-foamed sheet molding, and method for producing the same
JP2017193668A (en) * 2016-04-21 2017-10-26 積水化成品工業株式会社 Thermoplastic polyester-based resin foam container
CN111040403A (en) * 2019-12-31 2020-04-21 恒天生物基材料工程技术(宁波)有限公司 Heat-resistant polylactic acid foaming thermal forming body and preparation method thereof
CN111867799A (en) * 2018-12-18 2020-10-30 株式会社Huvis Double-side heating type foaming sheet forming device and forming method using same

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2024017675A (en) 2022-07-28 2024-02-08 株式会社リコー Manufacturing method for molding and manufacturing apparatus for molding

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06179239A (en) * 1992-12-14 1994-06-28 Sekisui Plastics Co Ltd Forming method of polyethylene terephthalate sheet and mold therefor
JP2004359910A (en) * 2003-06-06 2004-12-24 Jsp Corp Polylactic acid resin foamed sheet for thermal forming and polylactic acid resin formed foam
JP2005125765A (en) * 2003-10-01 2005-05-19 Mitsubishi Plastics Ind Ltd Biodegradable laminated sheet

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06179239A (en) * 1992-12-14 1994-06-28 Sekisui Plastics Co Ltd Forming method of polyethylene terephthalate sheet and mold therefor
JP2004359910A (en) * 2003-06-06 2004-12-24 Jsp Corp Polylactic acid resin foamed sheet for thermal forming and polylactic acid resin formed foam
JP2005125765A (en) * 2003-10-01 2005-05-19 Mitsubishi Plastics Ind Ltd Biodegradable laminated sheet

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014139333A (en) * 2014-05-08 2014-07-31 Sekisui Plastics Co Ltd Polylactic acid-based resin-foamed sheet molding, and method for producing the same
JP2017193668A (en) * 2016-04-21 2017-10-26 積水化成品工業株式会社 Thermoplastic polyester-based resin foam container
CN111867799A (en) * 2018-12-18 2020-10-30 株式会社Huvis Double-side heating type foaming sheet forming device and forming method using same
JP2021512805A (en) * 2018-12-18 2021-05-20 ヒューヴィス コーポレーションHuvis Corporation Double-sided heating type foam sheet molding device and molding method using this
JP7354120B2 (en) 2018-12-18 2023-10-02 ヒューヴィス コーポレーション Double-sided heating foam sheet molding device and molding method using the same
CN111040403A (en) * 2019-12-31 2020-04-21 恒天生物基材料工程技术(宁波)有限公司 Heat-resistant polylactic acid foaming thermal forming body and preparation method thereof
CN111040403B (en) * 2019-12-31 2022-05-06 恒天生物基材料工程技术(宁波)有限公司 Heat-resistant polylactic acid foaming thermal forming body and preparation method thereof

Also Published As

Publication number Publication date
JP4842745B2 (en) 2011-12-21

Similar Documents

Publication Publication Date Title
JP4307254B2 (en) Method for producing semi-crystalline polylactic acid article
JP2006103098A (en) Foamed multi-layer polylactic acid resin and foamed multi-layer polylactic acid resin molding
JP4842745B2 (en) Polylactic acid resin foam sheet molded body and method for producing the same
US7645810B2 (en) Foamed sheet of polylactic acid resin, foam molding of polylactic acid resin and method of preparing foam molding
CN101337416B (en) Manufacture method of heat-tolerance poly-lactic resin ejection formed piece
JP5478310B2 (en) Polystyrene resin heat resistant foam sheet and container
JP4258758B2 (en) Polylactic acid resin foam sheet for thermoforming
JP5732208B2 (en) Manufacturing method of polyester resin foam molding
CN101412288A (en) Method of preparing fire-resistant polylactic resin molding article
JP5883900B2 (en) Polylactic acid-based resin foam sheet molded body and method for producing polylactic acid-based resin foam sheet molded body
JP4784149B2 (en) Container preform and plastic container
JP2007125830A (en) Laminated expanded sheet of polystyrene-based resin with excellent deep draw forming properties
TWI453113B (en) Polylactic acid resin foamed sheet formed body and manufacturing method thereof
KR101780794B1 (en) Expandable-molded polylactide article having heat resistance and biodegradable container using the same
JP2009068021A (en) Polylactic acid-based resin foam
JP5795926B2 (en) Polylactic acid resin foam sheet and method for producing polylactic acid resin foam sheet
KR101438032B1 (en) Polylactic acid based-biodegradable polymer blends with excellent compatibility, manufacturing method of heat resistant foamed sheet thereof and foam-molding product thereby
JP4570033B2 (en) Method for producing polylactic acid resin foamed molded article and polylactic acid resin foamed sheet for thermoforming
JP2022027384A (en) Thermoplastic resin foam sheet, thermoplastic resin foam sheet molding and method for producing them
JP2011093982A (en) Polylactic acid-based resin foamed sheet molding and method for producing the same
JP2011046005A (en) Poly(lactic acid)-based heat-resistant container and method for manufacturing the same
US11739190B2 (en) Process for forming polylactide expanded bead foam
JPH11130897A (en) Polycarbonate resin foam
JP2022010543A (en) Resin sheet for thermoforming, method for producing the same, and method for producing molding
JPH09169865A (en) Foamed polyester resin sheet

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090806

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110831

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110929

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111006

R150 Certificate of patent or registration of utility model

Ref document number: 4842745

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141014

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250