JP2007116086A - Thermoelectric generator - Google Patents

Thermoelectric generator Download PDF

Info

Publication number
JP2007116086A
JP2007116086A JP2006141897A JP2006141897A JP2007116086A JP 2007116086 A JP2007116086 A JP 2007116086A JP 2006141897 A JP2006141897 A JP 2006141897A JP 2006141897 A JP2006141897 A JP 2006141897A JP 2007116086 A JP2007116086 A JP 2007116086A
Authority
JP
Japan
Prior art keywords
thermoelectric
point metal
heat
power generation
metal body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006141897A
Other languages
Japanese (ja)
Other versions
JP5166705B2 (en
Inventor
Yoshiki Fukada
善樹 深田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2006141897A priority Critical patent/JP5166705B2/en
Publication of JP2007116086A publication Critical patent/JP2007116086A/en
Application granted granted Critical
Publication of JP5166705B2 publication Critical patent/JP5166705B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a thermoelectric generator in which a contact surface between a heat recovering member and a heat receiver of a thermoelectric generating module is finished as a surface with high flatness, and heat can be extremely efficiently transmitted to the heat receiver of the thermoelectric generating module without pressurizing the contact surface. <P>SOLUTION: When a fin member 2 is heated to a high temperature together with a fin 2B during using the thermoelectric generator, a low melting point metallic body 5 filled in the recess 2C of the fin member 2 is melted and a high melting point metallic film (oxidation inhibiting film) 4 covering the surface of the rising part 5A of the low melting point metallic body 5 is closely stuck to the heat receiving surface 1A1 of the thermoelectric generating module 1 by the flexibility of the melted low melting point metallic body 5. Consequently, heat transmission from the fin member 2 to the heat receiving substrate 1A of the thermoelectric generating module 1 can be extremely efficiently performed. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、熱エネルギーを電気エネルギーに直接変換する熱電発電モジュールを備えた熱電発電装置に関するものである。   The present invention relates to a thermoelectric power generation apparatus including a thermoelectric power generation module that directly converts thermal energy into electric energy.

熱電発電モジュールは、ゼーベック効果により温度差に応じた熱起電力を発生するn型熱電発電素子およびp型熱電発電素子が高温側の受熱部と低温側の放熱部との間に複数個設置された構造を有し、熱エネルギーを電気エネルギーに直接変換することができる。そして、このような熱電発電モジュールの受熱部に高温熱源である適宜の熱回収部材を接触させ、その放熱部に適宜の熱放出部材を接触させることで熱電発電装置が構成される。   In the thermoelectric power generation module, a plurality of n-type thermoelectric power generation elements and p-type thermoelectric power generation elements that generate a thermoelectromotive force according to a temperature difference by the Seebeck effect are installed between a high-temperature side heat receiving part and a low-temperature side heat dissipation part. And can directly convert heat energy into electrical energy. Then, an appropriate heat recovery member, which is a high-temperature heat source, is brought into contact with the heat receiving portion of such a thermoelectric power generation module, and an appropriate heat release member is brought into contact with the heat radiating portion, thereby forming a thermoelectric generator.

この種の熱電発電モジュールを備えた熱電発電装置においては、熱回収部材から熱電発電モジュールの受熱部への熱伝導性が発電性能に大きく影響するため、一般には、熱回収部材と熱電発電モジュールの受熱部との接触面を高い平面度に仕上げ、あるいは、両者に圧力を掛けてその接触面を均一に圧接させている。   In a thermoelectric generator equipped with this type of thermoelectric power generation module, the heat conductivity from the heat recovery member to the heat receiving part of the thermoelectric power generation module greatly affects the power generation performance. The contact surface with the heat receiving part is finished with high flatness, or pressure is applied to both to bring the contact surface into uniform pressure contact.

この種の熱電発電装置として、特許文献1には、熱回収部材としてのインナシェルの集熱面と熱電発電モジュールの受熱部としての高温側の端面との間に緩衝部材を挟持した例が開示されている。そして、この特許文献1には、ステンレスなどの金属ワイヤをメッシュ状に編み込んだ金属織布を積層ないし折り畳んだものや、波板形状の金属板、金属コイルなどが緩衝部材として使用できると記載されている。
特開平10−234194号公報(段落番号45、46)
As this type of thermoelectric generator, Patent Document 1 discloses an example in which a buffer member is sandwiched between a heat collecting surface of an inner shell as a heat recovery member and an end surface on a high temperature side as a heat receiving portion of a thermoelectric generator module. Has been. And in this patent document 1, it describes that what laminated | stacked or folded the metal woven fabric which woven metal wires, such as stainless steel, in mesh shape, a corrugated metal plate, a metal coil, etc. can be used as a buffer member. ing.
JP-A-10-234194 (paragraph numbers 45 and 46)

ところで、特許文献1に記載された熱電発電装置においては、高温の熱がインナシェルの集熱面から金属メッシュ等で構成された緩衝部材を介して熱電発電モジュールの高温側の端面に伝導されるため、その熱伝導性が大きく損なわれて発電性能が低下する恐れがある。   By the way, in the thermoelectric power generation device described in Patent Document 1, high-temperature heat is conducted from the heat collecting surface of the inner shell to the end surface on the high-temperature side of the thermoelectric power generation module through a buffer member made of a metal mesh or the like. For this reason, the thermal conductivity is greatly impaired, and the power generation performance may be reduced.

そこで、本発明は、熱回収部材と熱電発電モジュールの受熱部との接触面を高い平面度に仕上げ、あるいはその接触面を均一に圧接させることなく、熱電発電モジュールの受熱部へ極めて良好に熱伝導できる熱電発電装置を提供することを課題とする。   Therefore, the present invention provides a very good heat treatment to the heat receiving part of the thermoelectric power generation module without finishing the contact surface between the heat recovery member and the heat receiving part of the thermoelectric power generation module with high flatness or evenly pressing the contact surface. It is an object to provide a thermoelectric generator that can conduct electricity.

本発明に係る熱電発電装置は、熱回収手段に接触する受熱部と熱放出手段に接触する放熱部との間に複数の熱電発電素子が配置された熱電発電モジュールを備え、この熱電発電モジュールの受熱部が酸化防止皮膜で覆われた低融点金属体を介して前記熱回収手段に接触していることを特徴とする。   A thermoelectric power generation apparatus according to the present invention includes a thermoelectric power generation module in which a plurality of thermoelectric power generation elements are arranged between a heat receiving portion that contacts the heat recovery means and a heat dissipation portion that contacts the heat release means. The heat receiving part is in contact with the heat recovery means through a low melting point metal body covered with an antioxidant film.

本発明に係る熱電発電装置では、使用状態において熱回収手段が高温となると、酸化防止皮膜で覆われた低融点金属体が溶融し、この溶融した低融点金属体の柔軟性により酸化防止皮膜が熱電発電モジュールの受熱部に均一な面圧で密着する。その結果、熱回収手段から熱電発電モジュールの受熱部への熱伝導が極めて良好に行われる。   In the thermoelectric generator according to the present invention, when the heat recovery means becomes high temperature in use, the low-melting point metal body covered with the anti-oxidation film is melted, and the anti-oxidation film is formed by the flexibility of the melted low-melting point metal body. It adheres to the heat receiving part of the thermoelectric generator module with a uniform surface pressure. As a result, heat conduction from the heat recovery means to the heat receiving portion of the thermoelectric power generation module is performed extremely well.

本発明の熱電発電装置は、熱電発電モジュールの受熱部外面の受熱面に対面する熱回収手段の対向面に低融点金属体を収容する凹部が形成され、この凹部に充填された低融点金属体の表面およびその周囲の対向面が酸化防止皮膜で覆われた構造とすることができる。この構造の熱電発電装置では、低融点金属体が熱回収手段の凹部内で良好に溶融すると共に、溶融した低融点金属体の柔軟性が酸化防止皮膜に確実に付与されて酸化防止皮膜が熱電発電モジュールの受熱面に均一な面圧で確実に密着するので好ましい。   The thermoelectric power generation device of the present invention has a recess for accommodating a low melting point metal body formed on the opposing surface of the heat recovery means facing the heat receiving surface of the heat receiving portion of the thermoelectric power generation module, and the low melting point metal body filled in the recess. It is possible to have a structure in which the surface and the surrounding opposing surface are covered with an antioxidant film. In the thermoelectric generator having this structure, the low-melting-point metal body is melted well in the recess of the heat recovery means, and the flexibility of the melted low-melting-point metal body is surely imparted to the anti-oxidation film so that the anti-oxidation film is This is preferable because it is firmly adhered to the heat receiving surface of the power generation module with uniform surface pressure.

ここで、熱回収手段の凹部に充填された低融点金属体の表面が凹部から盛り上がっていると、低融点金属体の溶融により酸化防止皮膜が熱電発電モジュールの受熱面に均一な面圧で一層確実に密着するので好ましい。また、低融点金属体の表面の盛上り部が熱電発電モジュールの受熱部外面の受熱面における周縁部を除いた内側の領域に対面していると、低融点金属体の溶融により酸化防止皮膜が熱電発電モジュールの受熱面に均一な面圧でさらに一層確実に密着するので好ましい。   Here, when the surface of the low melting point metal body filled in the recess of the heat recovery means rises from the recess, the anti-oxidation film is further applied to the heat receiving surface of the thermoelectric power generation module at a uniform surface pressure by melting of the low melting point metal body. This is preferable because it adheres securely. In addition, when the rising portion of the surface of the low melting point metal body faces the inner region excluding the peripheral portion of the heat receiving surface of the heat receiving portion of the thermoelectric power generation module, the antioxidant film is formed by melting of the low melting point metal body. This is preferable because it is more reliably adhered to the heat receiving surface of the thermoelectric power generation module with a uniform surface pressure.

さらに、熱回収手段の凹部の周囲に酸化防止皮膜の面方向への移動を規制する係止手段が設けられていると、熱電発電モジュールの受熱面との接触圧で酸化防止皮膜が面方向に位置ずれして剥離するのが防止されるので好ましい。この係止手段は、溝、突条、突起、段差および止ネジの少なくとも1つで構成することができる。   Furthermore, when a locking means for restricting the movement of the antioxidant film in the surface direction is provided around the recess of the heat recovery means, the antioxidant film is moved in the surface direction by the contact pressure with the heat receiving surface of the thermoelectric generator module. This is preferable because it is prevented from being displaced and separated. This locking means can be composed of at least one of a groove, a protrusion, a protrusion, a step, and a set screw.

また、熱電発電モジュールの受熱面に接触する部分の酸化防止皮膜の厚さがその周囲の部分より厚く形成されていると、酸化防止皮膜が熱電発電モジュールの受熱面に均一な面圧で確実に密着するので好ましい。   In addition, if the thickness of the antioxidant coating in the portion that contacts the heat receiving surface of the thermoelectric power module is thicker than the surrounding portion, the antioxidant coating is surely applied to the heat receiving surface of the thermoelectric power generation module with a uniform surface pressure. It is preferable because it adheres closely.

さらに、本発明の熱電発電装置は、低融点金属体の全面が酸化防止皮膜で被覆された構造としてもよい。また、酸化防止皮膜は、メッキ、蒸着、溶射などの手段で形成することができ、厚膜に形成できる点で金属メッキが好ましい。   Furthermore, the thermoelectric generator of the present invention may have a structure in which the entire surface of the low-melting-point metal body is covered with an antioxidant film. Further, the antioxidant coating can be formed by means such as plating, vapor deposition, or thermal spraying, and metal plating is preferable because it can be formed into a thick film.

また、本発明の熱電発電装置は、低融点金属体が多孔質弾性体に含浸された構造とすることができる。ここで、多孔質弾性体は、例えばスチールウール、金属メッシュ、炭素繊維の織布または不織布などで構成することができる。   The thermoelectric generator of the present invention can have a structure in which a low melting point metal body is impregnated in a porous elastic body. Here, the porous elastic body can be composed of, for example, steel wool, metal mesh, carbon fiber woven fabric or non-woven fabric.

このような構造の熱電発電装置では、使用状態において低融点金属体が溶融すると、多孔質弾性体が弾性を発現して酸化防止皮膜を均一な面圧で押圧するため、酸化防止皮膜が熱電発電モジュールの受熱部に均一な面圧で密着し、熱回収手段から熱電発電モジュールの受熱部への熱伝導が極めて良好に行われる。その際、熱電発電モジュールからの反力は多孔質弾性体が受けるため、溶融した低融点金属体から酸化防止皮膜に高い圧力が局所的に作用することがなく、酸化防止皮膜の破損が未然に防止される。   In the thermoelectric generator having such a structure, when the low melting point metal body is melted in use, the porous elastic body exhibits elasticity and presses the antioxidant film with a uniform surface pressure. The module is in close contact with the heat receiving portion of the module with a uniform surface pressure, and heat conduction from the heat recovery means to the heat receiving portion of the thermoelectric power generation module is performed extremely well. At that time, since the porous elastic body receives reaction force from the thermoelectric power generation module, high pressure does not act locally on the antioxidant film from the molten low melting point metal body, and the antioxidant film is damaged in advance. Is prevented.

ここで、酸化防止皮膜には、多孔質弾性体に含浸された低融点金属体の溶融に伴う局部的な体積変化を吸収する伸縮構造部が形成されているのが好ましい。この場合、低融点金属体の溶融に伴い多孔質弾性体が弾性変形して低融点金属体の体積が局部的に変化する際、その低融点金属体の局部的な体積変化を伸縮構造部が吸収するため、酸化防止皮膜の破損が確実に防止される。   Here, the anti-oxidation film is preferably formed with a stretchable structure portion that absorbs a local volume change accompanying melting of the low melting point metal body impregnated in the porous elastic body. In this case, when the porous elastic body is elastically deformed as the low melting point metal body melts and the volume of the low melting point metal body changes locally, the expansion structure part causes a local volume change of the low melting point metal body. Since it absorbs, damage to the antioxidant coating is reliably prevented.

このような伸縮構造部は、多孔質弾性体と共に低融点金属体を覆う酸化防止皮膜の周辺に連続する形態で形成することができる。この場合、伸縮構造部が熱回収手段における酸化防止皮膜が配置される部位よりも高温側の部位に配置されていると、熱電発電装置の作動停止に伴い低融点金属体が徐々に固化する際には、酸化防止皮膜内の低融点金属体が先に固化し、伸縮構造部内の低融点金属体が最後に固化することとなり、その時点まで伸縮構造部の伸縮機能が維持されるので好ましい。   Such a stretchable structure part can be formed in a continuous form around the antioxidant film covering the low melting point metal body together with the porous elastic body. In this case, when the expansion / contraction structure portion is disposed at a portion on the higher temperature side than the portion where the antioxidant film is disposed in the heat recovery means, the low melting point metal body gradually solidifies as the thermoelectric generator is stopped. In this case, the low melting point metal body in the antioxidant film is solidified first, and the low melting point metal body in the stretch structure part is solidified last, and the stretch function of the stretch structure part is maintained until that point, which is preferable.

本発明に係る熱電発電装置によれば、使用状態において溶融した低融点金属体の柔軟性により酸化防止皮膜が熱電発電モジュールの受熱部に均一な面圧で密着するため、熱回収手段から熱電発電モジュールの受熱部へ極めて良好に熱伝導できる。その結果、高い発電性能を発揮することができる。   According to the thermoelectric generator according to the present invention, since the anti-oxidation film adheres to the heat receiving portion of the thermoelectric power module with a uniform surface pressure due to the flexibility of the low melting point metal body melted in the use state, Very good heat conduction to the heat receiving part of the module. As a result, high power generation performance can be exhibited.

本発明の熱電発電装置において、熱電発電モジュールの受熱部外面の受熱面に対面する熱回収手段の対向面に低融点金属体を収容する凹部が形成され、この凹部に充填された低融点金属体の表面およびその周囲の対向面が酸化防止皮膜で覆われている場合、低融点金属体が熱回収手段の凹部内で良好に溶融すると共に、溶融した低融点金属体の柔軟性が酸化防止皮膜に確実に付与されるため、酸化防止皮膜を熱電発電モジュールの受熱面に均一な面圧で確実に密着させることができる。   In the thermoelectric generator of the present invention, a recess for housing the low melting point metal body is formed on the opposite surface of the heat recovery means facing the heat receiving surface of the outer surface of the heat receiving portion of the thermoelectric power generation module, and the low melting point metal body filled in the recess When the surface of the metal and its surrounding opposing surface are covered with an anti-oxidation film, the low melting point metal body melts well in the recesses of the heat recovery means, and the flexibility of the molten low melting point metal body is an antioxidation film. Therefore, the antioxidant coating can be reliably adhered to the heat receiving surface of the thermoelectric power generation module with a uniform surface pressure.

ここで、熱回収手段の凹部に充填された低融点金属体の表面が凹部から盛り上がっている場合、低融点金属体の溶融により酸化防止皮膜を熱電発電モジュールの受熱面に均一な面圧で一層確実に密着させることができる。また、低融点金属体の表面の盛上り部が熱電発電モジュールの受熱部外面の受熱面における周縁部を除いた内側の領域に対面している場合、低融点金属体の溶融により酸化防止皮膜を熱電発電モジュールの受熱面に均一な面圧でさらに一層確実に密着させることができる。   Here, when the surface of the low-melting-point metal body filled in the recess of the heat recovery means rises from the recess, the anti-oxidation film is further applied to the heat-receiving surface of the thermoelectric power generation module with a uniform surface pressure by melting the low-melting-point metal body. It is possible to ensure close contact. In addition, when the rising part of the surface of the low melting point metal body faces the inner region excluding the peripheral edge of the heat receiving surface of the heat receiving part of the thermoelectric power generation module, the anti-oxidation film is formed by melting the low melting point metal body. It can be made to adhere more reliably to the heat receiving surface of the thermoelectric power generation module with a uniform surface pressure.

さらに、熱回収手段の凹部の周囲に酸化防止皮膜の面方向の移動を規制する溝、突条、突起、段差および止ねじ等の係止手段が設けられている場合、熱電発電モジュールの受熱面との接触圧で酸化防止皮膜が面方向に位置ずれして剥離するのを防止することができる。   Further, when there are provided locking means such as grooves, ridges, protrusions, steps, and set screws for restricting the movement of the antioxidant film in the surface direction around the recesses of the heat recovery means, the heat receiving surface of the thermoelectric generator module It is possible to prevent the anti-oxidation film from being displaced in the surface direction and peeled off by the contact pressure.

また、熱電発電モジュールの受熱面に接触する部分の酸化防止皮膜の厚さがその周囲の部分より厚く形成されている場合、酸化防止皮膜を熱電発電モジュールの受熱面に均一な面圧で確実に密着させることができる。   In addition, when the thickness of the antioxidant film in contact with the heat receiving surface of the thermoelectric power module is thicker than the surrounding area, ensure that the antioxidant film is applied to the heat receiving surface of the thermoelectric module with a uniform surface pressure. It can be adhered.

本発明の熱電発電装置において、低融点金属体の全面が酸化防止皮膜で被覆された構造を有する場合にも、使用状態において溶融した低融点金属体の柔軟性により酸化防止皮膜が熱電発電モジュールの受熱部に均一な面圧で密着するため、熱回収手段から熱電発電モジュールの受熱部へ極めて良好に熱伝導でき、その結果、高い発電性能を発揮することができる。   In the thermoelectric power generation device of the present invention, even when the entire surface of the low-melting-point metal body is coated with an anti-oxidation film, the anti-oxidation film is formed by the flexibility of the low-melting-point metal body melted in the use state. Since it adheres to the heat receiving part with a uniform surface pressure, it can conduct heat very well from the heat recovery means to the heat receiving part of the thermoelectric power generation module. As a result, high power generation performance can be exhibited.

また、本発明の熱電発電装置において、低融点金属体が多孔質弾性体に含浸されている場合にも、使用状態において低融点金属体が溶融すると、多孔質弾性体が弾性を発現して酸化防止皮膜を均一な面圧で押圧するため、酸化防止皮膜が熱電発電モジュールの受熱部に均一な面圧で密着する。従って、熱回収手段から熱電発電モジュールの受熱部へ極めて良好に熱伝導でき、その結果、高い発電性能を発揮することができる。そして、この場合、熱電発電モジュールからの反力は多孔質弾性体が受けるため、溶融した低融点金属体から酸化防止皮膜に高い圧力が局所的に作用することがなく、酸化防止皮膜の破損を未然に防止することができる。   Further, in the thermoelectric generator of the present invention, even when the low melting point metal body is impregnated in the porous elastic body, if the low melting point metal body melts in the use state, the porous elastic body develops elasticity and oxidizes. In order to press the prevention film with a uniform surface pressure, the oxidation prevention film adheres to the heat receiving portion of the thermoelectric power generation module with a uniform surface pressure. Therefore, heat can be conducted very well from the heat recovery means to the heat receiving portion of the thermoelectric power generation module, and as a result, high power generation performance can be exhibited. In this case, since the reaction force from the thermoelectric power generation module is received by the porous elastic body, high pressure does not act locally on the antioxidant film from the molten low melting point metal body, and the antioxidant film is damaged. It can be prevented in advance.

ここで、多孔質弾性体に含浸された低融点金属体の溶融に伴う局部的な体積変化を吸収する伸縮構造部が酸化防止皮膜に形成されている場合には、低融点金属体の溶融に伴い多孔質弾性体が弾性変形して低融点金属体の体積が局部的に変化する際、その低融点金属体の局部的な体積変化を伸縮構造部で吸収することができ、酸化防止皮膜の破損を確実に防止することができる。   Here, when the anti-shrinkable film is formed on the anti-oxidation film to absorb the local volume change accompanying the melting of the low melting point metal body impregnated in the porous elastic body, the low melting point metal body is melted. When the porous elastic body is elastically deformed and the volume of the low melting point metal body changes locally, the local volume change of the low melting point metal body can be absorbed by the stretchable structure, Damage can be reliably prevented.

また、伸縮構造部が酸化防止皮膜の周辺に連続する形態で形成されており、この伸縮構造部が熱回収手段における酸化防止皮膜が配置される部位よりも高温側の部位に配置されている場合、熱電発電装置の作動停止に伴い低融点金属体が徐々に固化する際には、酸化防止皮膜内の低融点金属体が先に固化し、伸縮構造部内の低融点金属体が最後に固化することとなり、その時点まで伸縮構造部の伸縮機能を維持することができる。   Also, when the stretchable structure part is formed in a continuous form around the antioxidant film, and the stretchable structure part is arranged at a higher temperature side than the part where the antioxidant film in the heat recovery means is arranged When the low melting point metal body gradually solidifies as the thermoelectric generator is stopped, the low melting point metal body in the antioxidant coating solidifies first, and the low melting point metal body in the stretchable structure part solidifies last. That is, the expansion / contraction function of the expansion / contraction structure part can be maintained up to that point.

以下、図面を参照して本発明に係る熱電発電装置の実施の形態を説明する。参照する図面において、図1は第1実施形態に係る熱電発電装置を構成する熱電発電モジュールの概略構造を示す斜視図、図2は第1実施形態に係る熱電発電装置の概略構造を示す縦断面図である。   Embodiments of a thermoelectric generator according to the present invention will be described below with reference to the drawings. In the drawings to be referred to, FIG. 1 is a perspective view showing a schematic structure of a thermoelectric power generation module constituting the thermoelectric power generation apparatus according to the first embodiment, and FIG. 2 is a longitudinal section showing a schematic structure of the thermoelectric power generation apparatus according to the first embodiment. FIG.

第1実施形態に係る熱電発電装置は、例えば図1に示すような構造の熱電発電モジュール1を備えている。この熱電発電モジュール1は、ゼーベック効果により温度差に応じた熱起電力を発生するn型熱電発電素子Nおよびp型熱電発電素子Pが高温側の受熱部を構成する絶縁セラミックス製の受熱基板1Aと、低温側の放熱部を構成する絶縁セラミックス製の放熱基板1Bとの間に複数個設置され、これらのn型熱電発電素子Nおよびp型熱電発電素子Pが電極板1Cを介して交互に直列に接続された基本構造を有する。   The thermoelectric generator according to the first embodiment includes a thermoelectric generator module 1 having a structure as shown in FIG. 1, for example. This thermoelectric power generation module 1 is a heat receiving substrate 1A made of insulating ceramics in which an n-type thermoelectric power generation element N and a p-type thermoelectric power generation element P that generate a thermoelectromotive force according to a temperature difference by the Seebeck effect constitute a high-temperature side heat receiving portion. And a plurality of insulating ceramics radiating substrates 1B constituting the low-temperature side radiating portion, and these n-type thermoelectric power generation elements N and p-type thermoelectric power generation elements P are alternately arranged via electrode plates 1C. It has a basic structure connected in series.

このような構造の熱電発電モジュール1は、図2に示すように、熱回収手段としてのフィン部材2と熱放出手段としての放熱ブロック3との間に配置される。ここで、熱電発電モジュール1は、受熱部である受熱基板1Aの外面の受熱面1A1が高融点金属皮膜4で覆われた低融点金属体5を介してフィン部材2に接触し、放熱部である放熱基板1Bの外面が放熱ブロック3に直接接触している。   As shown in FIG. 2, the thermoelectric power generation module 1 having such a structure is disposed between a fin member 2 as heat recovery means and a heat dissipation block 3 as heat release means. Here, the thermoelectric generator module 1 is in contact with the fin member 2 through the low melting point metal body 5 in which the heat receiving surface 1A1 of the outer surface of the heat receiving substrate 1A that is the heat receiving unit is covered with the high melting point metal film 4, The outer surface of a certain heat radiating board 1B is in direct contact with the heat radiating block 3.

フィン部材2は、例えば熱伝導性の高いアルミニウム合金の押出し型材からなり、熱電発電モジュール1の受熱面1A1に対面する対向面2Aの反対側には、熱回収用の複数のフィン2Bが一体に突出成形されている。そして、このフィン部材2の対向面2Aには、低融点金属体5を充填する凹部2Cおよび凹部2Cの周囲を取り囲む溝2Dが形成されている。凹部2Cは、熱電発電モジュール1の受熱面1A1より大きい例えば四角形の開口面を有する。この凹部2Cを囲む溝2Dは、高融点金属皮膜4の面方向への移動を規制する係止手段を構成するものであり、例えばV字形断面の深さ0.5mm程度の連続溝として形成されている。   The fin member 2 is made of, for example, an extruded material of an aluminum alloy having high thermal conductivity, and a plurality of fins 2B for heat recovery are integrally formed on the opposite side of the facing surface 2A facing the heat receiving surface 1A1 of the thermoelectric power generation module 1. Protrusion molding. The opposing surface 2A of the fin member 2 is formed with a recess 2C filled with the low melting point metal body 5 and a groove 2D surrounding the periphery of the recess 2C. The recess 2 </ b> C has, for example, a rectangular opening surface larger than the heat receiving surface 1 </ b> A <b> 1 of the thermoelectric power generation module 1. The groove 2D surrounding the recess 2C constitutes a locking means for restricting the movement of the refractory metal film 4 in the surface direction, and is formed as a continuous groove having a V-shaped cross section with a depth of about 0.5 mm, for example. ing.

放熱ブロック3は、熱電発電モジュール1の放熱基板1Bとの間の熱交換により放熱基板1Bから吸熱できるように、熱伝導性の高いアルミニウム合金製の本体内部(図示省略)に冷却水の流通路が形成されている。   The heat dissipating block 3 is a flow path of cooling water inside the main body (not shown) made of aluminum alloy having high thermal conductivity so that heat can be absorbed from the heat dissipating substrate 1B by heat exchange with the heat dissipating substrate 1B of the thermoelectric power generation module 1. Is formed.

ここで、低融点金属体5は、錫(Sn)、鉛(Pb)、亜鉛(Zn)などの金属材料からなり、例えば第1実施形態の熱電発電装置においては、フィン部材2が250℃以上の温度雰囲気に晒される使用状態において確実に溶融する錫(Sn)が使用されている。この低融点金属体5は、フィン部材2の対向面2Aに形成された凹部2Cに充填されており、その表面は低い台形をなして凹部2Cの開口面から盛り上がっている。この盛上り部5Aは、熱電発電モジュール1の受熱面1A1の周縁部を除いた内側の領域に対面している。   Here, the low melting point metal body 5 is made of a metal material such as tin (Sn), lead (Pb), or zinc (Zn). For example, in the thermoelectric generator of the first embodiment, the fin member 2 is 250 ° C. or higher. Tin (Sn) that melts reliably in a use state exposed to a temperature atmosphere of is used. The low-melting-point metal body 5 is filled in the recess 2C formed on the opposing surface 2A of the fin member 2, and the surface thereof forms a low trapezoid and rises from the opening surface of the recess 2C. The swelled portion 5A faces the inner region excluding the peripheral edge portion of the heat receiving surface 1A1 of the thermoelectric power generation module 1.

高融点金属皮膜4は、モリブデン(Mo)やニッケル(Ni)などの高融点金属をメッキ、蒸着、溶射などの適宜の手段で形成した酸化防止皮膜であり、例えばメッキにより200μm程度の厚さに形成される。この高融点金属皮膜4は、フィン部材2の凹部2Cに収容された低融点金属体5を密封するように、低融点金属体5の盛上り部5Aの表面およびその周囲のフィン部材2の対向面2Aに形成されている。そして、この高融点金属皮膜4は、面方向への移動が規制されるように、その周縁部が凹部2Cの周囲に連続して形成されたV字形断面の溝2D内に喰い込んでいる。   The refractory metal film 4 is an anti-oxidation film formed by an appropriate means such as plating, vapor deposition, or thermal spraying of a refractory metal such as molybdenum (Mo) or nickel (Ni), and has a thickness of about 200 μm by plating, for example. It is formed. The refractory metal film 4 faces the surface of the raised portion 5A of the low melting point metal body 5 and the surrounding fin members 2 so as to seal the low melting point metal body 5 accommodated in the recess 2C of the fin member 2. It is formed on the surface 2A. The refractory metal film 4 is bitten into a groove 2D having a V-shaped cross section whose peripheral edge is continuously formed around the recess 2C so that movement in the surface direction is restricted.

図3は、図2に示した断面構造のフィン部材2の製造工程の一例を示している。まず、図3(a)に示す工程では、フィン2Bが一体に形成されたフィン部材2を熱電発電モジュール1の大きさに対応した所定の大きさのブロック状に切断する。そして、熱電発電モジュール1の受熱面1A1(図2参照)に対面するフィン部材2の対向面2Aに受熱面1A1より大きい開口面積の凹部2Cを機械加工などにより形成する。   FIG. 3 shows an example of a manufacturing process of the fin member 2 having the cross-sectional structure shown in FIG. First, in the process shown in FIG. 3A, the fin member 2 in which the fins 2 </ b> B are integrally formed is cut into a block shape having a predetermined size corresponding to the size of the thermoelectric power generation module 1. Then, a recess 2C having an opening area larger than the heat receiving surface 1A1 is formed on the opposing surface 2A of the fin member 2 facing the heat receiving surface 1A1 (see FIG. 2) of the thermoelectric power generation module 1 by machining or the like.

図3(b)に示す工程では、フィン部材2の凹部2Cに溶融した低融点金属体5を盛り上がり状態で充填し、これを冷却して固化させる。   In the step shown in FIG. 3B, the melted low melting point metal body 5 is filled in the recess 2C of the fin member 2 and is cooled and solidified.

図3(c)に示す工程では、フィン部材2の凹部2Cに充填された低融点金属体5の表面を機械加工して低い台形状の盛上り部5Aを形成する。そして、フィン部材2の対向面2Aに凹部2Cの周囲を取り囲む溝2Dを機械加工する。   In the step shown in FIG. 3C, the surface of the low melting point metal body 5 filled in the concave portion 2C of the fin member 2 is machined to form a low trapezoidal raised portion 5A. And the groove | channel 2D surrounding the circumference | surroundings of the recessed part 2C in the opposing surface 2A of the fin member 2 is machined.

図3(d)に示す工程では、低融点金属体5の盛上り部5Aの表面およびその周囲の溝2Dを含むフィン部材2の対向面2Aに例えばモリブデン(Mo)をメッキして高融点金属皮膜4を形成する。   In the step shown in FIG. 3D, for example, molybdenum (Mo) is plated on the surface 2A of the fin member 2 including the surface of the raised portion 5A of the low-melting-point metal body 5 and the surrounding groove 2D, thereby refractory metal. A film 4 is formed.

以上の工程により、凹部2Cに低融点金属体5が充填され、その盛上り部5Aの表面が高融点金属皮膜4で覆われたフィン部材2が製造される。そして、このフィン部材2が放熱ブロック3との間に熱電発電モジュール1を挟持することで(図2参照)、熱電発電モジュール1の受熱面1A1が高融点金属皮膜4で覆われた低融点金属体5を介してフィン部材2に接触している。   Through the above steps, the fin member 2 is manufactured in which the recess 2C is filled with the low melting point metal body 5 and the surface of the raised portion 5A is covered with the high melting point metal film 4. The fin member 2 sandwiches the thermoelectric power generation module 1 between the heat dissipation block 3 (see FIG. 2), so that the heat receiving surface 1A1 of the thermoelectric power generation module 1 is covered with the refractory metal coating 4. The fin member 2 is in contact with the body 5.

このような構造の図2に示す第1実施形態の熱電発電装置は、例えば自動車の排気系の熱を回収して発電するように、フィン部材2のフィン2Bが図示しない排気ガスの流通経路に臨んで設置される。そして、フィン2Bにより回収された排気ガスの熱がフィン部材2から熱電発電モジュール1の受熱基板1Aに伝熱され、熱電発電モジュール1の放熱基板1Bから放熱ブロック3へ放熱されることにより、熱電発電モジュール1の各n型熱電発電素子Nおよびp型熱電発電素子P(図1参照)が起電力を発生して発電する。   In the thermoelectric generator of the first embodiment shown in FIG. 2 having such a structure, for example, the fin 2B of the fin member 2 is provided in an exhaust gas distribution path (not shown) so as to recover heat from the exhaust system of the automobile and generate power. It will be installed. The heat of the exhaust gas collected by the fins 2B is transferred from the fin member 2 to the heat receiving board 1A of the thermoelectric power generation module 1, and is radiated from the heat dissipation board 1B of the thermoelectric power generation module 1 to the heat dissipation block 3, thereby Each n-type thermoelectric power generation element N and p-type thermoelectric power generation element P (see FIG. 1) of the power generation module 1 generates electromotive force to generate power.

このような第1実施形態の熱電発電装置の使用状態において、フィン部材2のフィン2Bが排気ガスの熱を吸収して例えば250℃以上の高温になると、例えば錫(Sn)を成分とする低融点金属体5がフィン部材2の凹部2C内で良好に溶融し、この溶融した低融点金属体4の柔軟性により、例えばモリブデン(Mo)を成分とする高融点金属皮膜4が熱電発電モジュール1の受熱基板1Aの受熱面1A1に密着する。   In such a state of use of the thermoelectric generator of the first embodiment, when the fin 2B of the fin member 2 absorbs the heat of the exhaust gas and reaches a high temperature of, for example, 250 ° C. or higher, for example, a low content of tin (Sn) as a component. The melting point metal body 5 is melted well in the recess 2C of the fin member 2, and due to the flexibility of the melted low melting point metal body 4, for example, the high melting point metal film 4 containing molybdenum (Mo) as a component becomes the thermoelectric power generation module 1. The heat receiving substrate 1A is in close contact with the heat receiving surface 1A1.

この場合、高融点金属皮膜4の中央部は、受熱基板1Aの受熱面1A1における周縁部を除いた内側の領域に対面する低融点金属体5の盛上り部5Aに沿って盛り上がっている。すなわち、高融点金属皮膜4の中央部は、受熱面1A1の外周より若干内側の領域に対面しているため、受熱基板1Aの受熱面1A1に均一な面圧で確実に密着する。その際、高融点金属皮膜4にはその面方向に張力が作用するが、高融点金属皮膜4の周縁部はフィン部材2の対向面2Aに形成された溝2Dに喰い込んでいるため、高融点金属皮膜4が面方向に位置ずれして不用意に剥離することはない。   In this case, the central portion of the refractory metal coating 4 swells along the raised portion 5A of the low-melting-point metal body 5 facing the inner region excluding the peripheral edge portion of the heat receiving surface 1A1 of the heat receiving substrate 1A. That is, since the central portion of the refractory metal film 4 faces a region slightly inside the outer periphery of the heat receiving surface 1A1, it reliably adheres to the heat receiving surface 1A1 of the heat receiving substrate 1A with a uniform surface pressure. At that time, tension acts on the refractory metal film 4 in the surface direction, but since the peripheral edge of the refractory metal film 4 bites into the grooves 2D formed on the opposing surface 2A of the fin member 2, The melting point metal film 4 is not inadvertently peeled off due to a positional shift in the surface direction.

その結果、フィン部材2から熱電発電モジュール1の受熱基板1Aへの熱伝導が極めて良好に行われるようになり、第1実施形態の熱電発電装置は、高い発電性能を発揮する。   As a result, heat conduction from the fin member 2 to the heat receiving substrate 1A of the thermoelectric power generation module 1 is performed extremely well, and the thermoelectric power generation device of the first embodiment exhibits high power generation performance.

図4は、本発明の第2実施形態に係る熱電発電装置の概略構造を示している。この熱電発電装置は、図2に示した第1実施形態の熱電発電装置と略同様に構成されているため、同様の構造部分については同一符号を付して詳細な説明を省略する。   FIG. 4 shows a schematic structure of a thermoelectric generator according to the second embodiment of the present invention. Since this thermoelectric generator is configured in substantially the same manner as the thermoelectric generator of the first embodiment shown in FIG. 2, the same reference numerals are given to the same structural parts, and detailed description thereof is omitted.

ここで、第2実施形態の熱電発電装置において、フィン部材2の対向面2Aには、図2に示した溝2Dに代る山形断面の高さ0.5mm程度の連続した突条2Eが形成されている。また、低融点金属体5は、フィン部材2の対向面2Aと略同一面をなして凹部2Cに充填されている。さらに、低融点金属体5の表面を覆う高融点金属皮膜4の周縁部は、凹部2Cの周囲に連続して形成された山形断面の突条2Eを覆っている。そして、高融点金属皮膜4の中央部には膜厚部4Aが形成されている。この膜厚部4Aは、熱電発電モジュール1の受熱面1A1の周縁部を除いた内側の領域に対面している。   Here, in the thermoelectric generator of the second embodiment, on the opposing surface 2A of the fin member 2, a continuous protrusion 2E having a chevron-shaped cross section height of about 0.5 mm is formed instead of the groove 2D shown in FIG. Has been. Further, the low melting point metal body 5 is filled in the recess 2 </ b> C so as to be substantially flush with the facing surface 2 </ b> A of the fin member 2. Further, the peripheral edge portion of the refractory metal film 4 covering the surface of the low-melting-point metal body 5 covers the ridge 2E having an angled cross section continuously formed around the recess 2C. A film thickness portion 4 </ b> A is formed at the center of the refractory metal film 4. This film thickness portion 4 </ b> A faces an inner region excluding the peripheral edge portion of the heat receiving surface 1 </ b> A <b> 1 of the thermoelectric power generation module 1.

図5は、図4に示した断面構造のフィン部材2の製造工程の一例を示している。まず、図5(a)に示す工程では、フィン2Bが一体に形成されたフィン部材2を熱電発電モジュール1(図4参照)の大きさに対応した所定の大きさのブロック状に切断する。そして、熱電発電モジュール1の受熱面1A1に対面するフィン部材2の対向面2Aに、受熱面1A1より大きい開口面積の凹部2Cおよびその周囲を取り囲む突条2Eを機械加工などにより形成する。   FIG. 5 shows an example of a manufacturing process of the fin member 2 having the cross-sectional structure shown in FIG. First, in the step shown in FIG. 5A, the fin member 2 in which the fins 2B are integrally formed is cut into blocks having a predetermined size corresponding to the size of the thermoelectric power generation module 1 (see FIG. 4). Then, on the facing surface 2A of the fin member 2 facing the heat receiving surface 1A1 of the thermoelectric power generation module 1, a recess 2C having an opening area larger than the heat receiving surface 1A1 and a ridge 2E surrounding the periphery are formed by machining or the like.

図5(b)に示す工程では、フィン部材2の凹部2Cに溶融した低融点金属体5を対向面2Aと略同一面まで充填し、これを冷却して固化させる。   In the step shown in FIG. 5B, the melted low melting point metal body 5 is filled in the recess 2C of the fin member 2 up to substantially the same surface as the facing surface 2A, and is cooled and solidified.

図5(c)に示す工程では、固化した低融点金属体5の表面およびその周囲の突条2Eを含むフィン部材2の対向面2Aに、例えばモリブデン(Mo)をメッキして高融点金属皮膜4を形成する。   In the step shown in FIG. 5 (c), for example, molybdenum (Mo) is plated on the opposing surface 2A of the fin member 2 including the solidified low-melting-point metal body 5 and the surrounding ridges 2E to form a high-melting-point metal film. 4 is formed.

図5(d)に示す工程では、高融点金属皮膜4の周縁部の上面に型枠Fをセットし、その内側の高融点金属皮膜4の中央部にモリブデン(Mo)を更に重ねてメッキすることで高融点金属皮膜4の膜厚部4Aを形成する。そして、型枠Fを取り外すことにより、凹部2Cに充填された低融点金属体5が膜厚部4Aを有する高融点金属皮膜4で覆われたフィン部材2が製造される。   In the step shown in FIG. 5D, the mold F is set on the upper surface of the peripheral edge of the refractory metal film 4, and molybdenum (Mo) is further overlapped and plated on the center of the refractory metal film 4 inside. Thus, the film thickness portion 4A of the refractory metal film 4 is formed. And the fin member 2 by which the low melting metal body 5 with which the recessed part 2C was filled was covered with the refractory metal membrane | film | coat 4 which has the film thickness part 4A by manufacturing the mold F is manufactured.

このようなフィン部材2を備えた図4に示す第2実施形態の熱電発電装置においても、フィン部材2のフィン2Bが例えば250℃以上の高温になると、錫(Sn)を成分とする低融点金属体5がフィン部材2の凹部2C内で良好に溶融し、この溶融した低融点金属体4の柔軟性により、モリブデン(Mo)を成分とする高融点金属皮膜4が熱電発電モジュール1の受熱基板1Aの受熱面1A1に密着する。   Also in the thermoelectric generator of the second embodiment shown in FIG. 4 provided with such a fin member 2, when the fin 2B of the fin member 2 reaches a high temperature of, for example, 250 ° C. or higher, a low melting point containing tin (Sn) as a component. The metal body 5 is melted well in the recess 2C of the fin member 2, and due to the flexibility of the melted low-melting-point metal body 4, the high-melting-point metal film 4 containing molybdenum (Mo) as a component is received by the thermoelectric power generation module 1. The substrate 1A is in close contact with the heat receiving surface 1A1.

この場合、高融点金属皮膜4の中央部には、受熱基板1Aの受熱面1A1における周縁部を除いた内側の領域に対面する膜厚部4Aが形成されているため、この膜厚部4Aが受熱基板1Aの受熱面1A1に均一な面圧で確実に密着する。その際、高融点金属皮膜4にはその面方向に張力が作用するが、高融点金属皮膜4の周縁部はフィン部材2の対向面2Aに形成された突条2Eを覆っているため、高融点金属皮膜4が面方向に位置ずれして不用意に剥離することはない。   In this case, since the film thickness portion 4A facing the inner region excluding the peripheral edge portion of the heat receiving surface 1A1 of the heat receiving substrate 1A is formed in the central portion of the refractory metal film 4, the film thickness portion 4A is The heat-receiving substrate 1A is securely adhered to the heat-receiving surface 1A1 with a uniform surface pressure. At that time, tension acts on the refractory metal coating 4 in the surface direction, but the peripheral portion of the refractory metal coating 4 covers the ridges 2E formed on the opposing surface 2A of the fin member 2. The melting point metal film 4 is not inadvertently peeled off due to a positional shift in the surface direction.

その結果、第2実施形態の熱電発電装置においても、フィン部材2から熱電発電モジュール1の受熱基板1Aへの熱伝導が極めて良好に行われるようになり、高い発電性能を発揮する   As a result, also in the thermoelectric generator of the second embodiment, heat conduction from the fin member 2 to the heat receiving substrate 1A of the thermoelectric generator module 1 is performed extremely well, and high power generation performance is exhibited.

図6は、本発明の第3実施形態に係る熱電発電装置の概略構造を示している。この熱電発電装置は、図4に示した第2実施形態の熱電発電装置と略同様に構成されているため、同様の構造部分については同一符号を付して詳細な説明を省略する。ここで、第3実施形態の熱電発電装置において、フィン部材2の対向面2Aには、凹部2Cの周囲を取り囲む連続した段差部2Fが図4に示した突条2Eに代わって形成されている。そして、この段差部2Fを高融点金属皮膜4の周縁部が覆っている。   FIG. 6 shows a schematic structure of a thermoelectric generator according to the third embodiment of the present invention. Since this thermoelectric generator is configured in substantially the same manner as the thermoelectric generator of the second embodiment shown in FIG. 4, the same structural parts are denoted by the same reference numerals and detailed description thereof is omitted. Here, in the thermoelectric generator of the third embodiment, on the opposing surface 2A of the fin member 2, a continuous step portion 2F that surrounds the periphery of the recess 2C is formed instead of the protrusion 2E shown in FIG. . The step portion 2 </ b> F is covered with the peripheral portion of the refractory metal film 4.

第3実施形態の熱電発電装置においては、フィン部材2の凹部2Cの周囲を取り囲む段差部2Fが高融点金属皮膜4の面方向に張力に抗して高融点金属皮膜4の周縁部を係止するため、高融点金属皮膜4が面方向に位置ずれして不用意に剥離することはない。従って、第3実施形態の熱電発電装置においても第2実施形態の熱電発電装置と同様に、フィン部材2から熱電発電モジュール1の受熱基板1Aへの熱伝導が極めて良好に行われるようになり、高い発電性能を発揮する。   In the thermoelectric generator of the third embodiment, the step portion 2F surrounding the periphery of the recess 2C of the fin member 2 locks the peripheral portion of the refractory metal coating 4 against the tension in the surface direction of the refractory metal coating 4. Therefore, the refractory metal film 4 is not displaced in the surface direction and is not carelessly peeled off. Therefore, in the thermoelectric generator of the third embodiment, as in the thermoelectric generator of the second embodiment, heat conduction from the fin member 2 to the heat receiving substrate 1A of the thermoelectric generator module 1 is performed extremely well. Demonstrate high power generation performance.

図7は、本発明の第4実施形態に係る熱電発電装置の概略構造を示している。この熱電発電装置は、高融点金属皮膜4で全面が覆われたマット状の低融点金属体5を備えたものであり、このマット状の低融点金属体5は、フィン部材2の凹部2Cや溝2Dまたは突条2Eが省略された平坦な対向面2Aと熱電発電モジュール1の受熱基板1Aとの間に挟持されている。そして、熱電発電モジュール1の放熱基板1Bには放熱ブロック3が接触している。   FIG. 7 shows a schematic structure of a thermoelectric generator according to the fourth embodiment of the present invention. This thermoelectric generator is provided with a mat-like low-melting-point metal body 5 whose entire surface is covered with a high-melting-point metal film 4. The flat opposed surface 2A from which the groove 2D or the protrusion 2E is omitted is sandwiched between the heat receiving substrate 1A of the thermoelectric power generation module 1. The heat dissipation block 3 is in contact with the heat dissipation board 1 </ b> B of the thermoelectric module 1.

第4実施形態の熱電発電装置においては、フィン部材2が例えば250℃以上の高温になると、錫(Sn)を成分とする低融点金属体5が高融点金属皮膜4の内側で均一に溶融し、この溶融した低融点金属体4の柔軟性により、モリブデン(Mo)を成分とする高融点金属皮膜4が熱電発電モジュール1の受熱基板1Aの受熱面1A1に密着する。従って、第4実施形態の熱電発電装置においても、フィン部材2から熱電発電モジュール1の受熱基板1Aへの熱伝導が極めて良好に行われるようになり、高い発電性能を発揮する。   In the thermoelectric generator of the fourth embodiment, when the fin member 2 reaches a high temperature of, for example, 250 ° C. or higher, the low melting point metal body 5 containing tin (Sn) as a component is uniformly melted inside the high melting point metal film 4. Due to the flexibility of the molten low melting point metal body 4, the high melting point metal film 4 containing molybdenum (Mo) as a component adheres closely to the heat receiving surface 1A1 of the heat receiving substrate 1A of the thermoelectric power generation module 1. Accordingly, also in the thermoelectric generator of the fourth embodiment, heat conduction from the fin member 2 to the heat receiving substrate 1A of the thermoelectric generator module 1 is performed extremely well, and high power generation performance is exhibited.

図8は、本発明の第5実施形態に係る熱電発電装置の概略構造を示している。この熱電発電装置は、図7に示した第4実施形態の熱電発電装置と同様に構成された熱電発電モジュール1、フィン部材2および放熱ブロック3を備えている。ここで、フィン部材2の平坦な対向面2Aの中央部には、低融点金属体5を含浸したマット状の多孔質弾性体6が設置されている。この多孔質弾性体6の表面およびその周囲に露出するフィン部材2の対向面2Aには高融点金属皮膜4が被覆されている。そして、この高融点金属皮膜4が熱電発電モジュール1の受熱基板1Aに圧接している。   FIG. 8 shows a schematic structure of a thermoelectric generator according to the fifth embodiment of the present invention. This thermoelectric power generation device includes a thermoelectric power generation module 1, a fin member 2, and a heat dissipation block 3 that are configured in the same manner as the thermoelectric power generation device of the fourth embodiment shown in FIG. Here, a mat-like porous elastic body 6 impregnated with a low-melting-point metal body 5 is installed at the center of the flat facing surface 2A of the fin member 2. A refractory metal coating 4 is coated on the surface of the porous elastic body 6 and the opposing surface 2A of the fin member 2 exposed around the surface. The refractory metal film 4 is in pressure contact with the heat receiving substrate 1 </ b> A of the thermoelectric power generation module 1.

低融点金属体5は、例えば錫(Sn)を成分としている。また、高融点金属皮膜4は、例えばモリブデン(Mo)のメッキ層で構成されており、酸化防止皮膜として機能する。そして、多孔質弾性体6は、例えばスチールウール、金属メッシュ、炭素繊維の織布または不織布などで構成されている。なお、多孔質弾性体6を構成するこれらの材料は、ニッケル被覆されているのが好ましい。   The low melting point metal body 5 includes, for example, tin (Sn) as a component. The refractory metal film 4 is made of, for example, a molybdenum (Mo) plating layer and functions as an antioxidant film. The porous elastic body 6 is made of, for example, steel wool, metal mesh, carbon fiber woven fabric or non-woven fabric. In addition, it is preferable that these materials constituting the porous elastic body 6 are coated with nickel.

第5実施形態の熱電発電装置では、フィン部材2が例えば250℃以上の高温になると、多孔質弾性体6に含浸された錫(Sn)を成分とする低融点金属体5が高融点金属皮膜4の内側で溶融する。その結果、多孔質弾性体6が弾性を発現して高融点金属皮膜4を均一な面圧で押圧し、高融点金属皮膜4が熱電発電モジュール1の受熱基板1Aの受熱面1A1に密着する。従って、第5実施形態の熱電発電装置においても、フィン部材2から熱電発電モジュール1の受熱基板1Aへの熱伝導が極めて良好に行われるようになり、高い発電性能を発揮する。   In the thermoelectric generator of the fifth embodiment, when the fin member 2 reaches a high temperature of, for example, 250 ° C. or higher, the low melting point metal body 5 containing tin (Sn) impregnated in the porous elastic body 6 as the high melting point metal film. Melt inside 4 As a result, the porous elastic body 6 exhibits elasticity and presses the refractory metal film 4 with a uniform surface pressure, so that the refractory metal film 4 is in close contact with the heat receiving surface 1A1 of the heat receiving substrate 1A of the thermoelectric power generation module 1. Accordingly, also in the thermoelectric generator of the fifth embodiment, heat conduction from the fin member 2 to the heat receiving substrate 1A of the thermoelectric generator module 1 is performed extremely well, and high power generation performance is exhibited.

ここで、第5実施形態の熱電発電装置においては、熱電発電モジュール1とフィン部材2との間に挟持された多孔質弾性体6が熱電発電モジュール1からの反力を受けるため、溶融した低融点金属体5から高融点金属皮膜4に高い圧力が局所的に作用することがなく、高融点金属皮膜4の破損が未然に防止される。   Here, in the thermoelectric generator of the fifth embodiment, since the porous elastic body 6 sandwiched between the thermoelectric generator module 1 and the fin member 2 receives the reaction force from the thermoelectric generator module 1, High pressure does not act locally on the refractory metal film 4 from the refractory metal body 5, so that the refractory metal film 4 is prevented from being damaged.

その際、熱電発電モジュール1からの反力を受けて多孔質弾性体6が若干潰れるため、溶融した低融点金属体5の一部が多孔質弾性体6から滲み出してその周辺側へ流動するが、その流動による体積増加分は、図9に示すように、高融点金属皮膜4の肩部分4Bが膨出変形することで吸収される。   At that time, since the porous elastic body 6 is slightly crushed by receiving the reaction force from the thermoelectric power generation module 1, a part of the molten low melting point metal body 5 oozes out from the porous elastic body 6 and flows to the peripheral side thereof. However, the increase in volume due to the flow is absorbed by the bulging deformation of the shoulder portion 4B of the refractory metal film 4, as shown in FIG.

図10は、本発明の第6実施形態に係る熱電発電装置の概略構造を示している。この熱電発電装置は、図8に示した高融点金属皮膜4に代わる酸化防止皮膜7を備えたものであり、その他の部分は図8に示した第5実施形態の熱電発電装置と略同様に構成されているため、同様の構造部分については同一符号を付して詳細な説明を省略する。   FIG. 10 shows a schematic structure of a thermoelectric generator according to the sixth embodiment of the present invention. This thermoelectric power generator is provided with an anti-oxidation film 7 in place of the refractory metal film 4 shown in FIG. 8, and the other parts are substantially the same as those of the fifth embodiment shown in FIG. Since they are configured, the same structural parts are denoted by the same reference numerals, and detailed description thereof is omitted.

ここで、図10に示す第6実施形態の熱電発電装置においては、多孔質弾性体6に含浸された低融点金属体5が熱電発電モジュール1の受熱基板1Aに直接圧接している。この低融点金属体5の周囲は、熱電発電モジュール1の周側面から斜めに傾斜して張り出すように整形されている。そして、この低融点金属体5の周囲は、フィン部材2の対向面2Aから熱電発電モジュール1の周側面に跨って形成された厚さ0.1〜2mm程度の帯状の酸化防止皮膜7により密封されている。   Here, in the thermoelectric generator of the sixth embodiment shown in FIG. 10, the low melting point metal body 5 impregnated in the porous elastic body 6 is in direct pressure contact with the heat receiving substrate 1 </ b> A of the thermoelectric generator module 1. The periphery of the low-melting-point metal body 5 is shaped so as to protrude obliquely from the peripheral side surface of the thermoelectric power generation module 1. The periphery of the low-melting-point metal body 5 is sealed by a strip-shaped antioxidant film 7 having a thickness of about 0.1 to 2 mm formed from the facing surface 2A of the fin member 2 to the peripheral side surface of the thermoelectric power generation module 1. Has been.

酸化防止皮膜7は、例えば250℃以上の高温下において優れた気体バリアー性を発揮する自立性のある粘土配向皮膜からなり、酸化防止皮膜7に密封された低融点金属体5の表面の酸化を防止する。この粘土配向皮膜は、粘土粒子の積層を高度に配向させた皮膜であって、例えば、均一な粘土分散液を静置して粘土粒子を沈積させた後、分散媒である液体を遠心分離、ろ過、真空乾燥、凍結真空乾燥、又は加熱蒸発法などによって分離し、110から300℃の高温下で乾燥することで製造される。   The antioxidant film 7 is made of a self-supporting clay oriented film that exhibits excellent gas barrier properties at a high temperature of, for example, 250 ° C. or higher, and oxidizes the surface of the low-melting-point metal body 5 sealed by the antioxidant film 7. To prevent. This clay oriented film is a film in which the lamination of clay particles is highly oriented, for example, after leaving a uniform clay dispersion and depositing clay particles, the liquid as a dispersion medium is centrifuged, It is produced by separation by filtration, vacuum drying, freeze vacuum drying, heat evaporation or the like, and drying at a high temperature of 110 to 300 ° C.

第6実施形態の熱電発電装置では、フィン部材2が例えば250℃以上の高温になると、多孔質弾性体6に含浸された錫(Sn)を成分とする低融点金属体5が溶融して熱電発電モジュール1の受熱基板1Aの受熱面1A1に直接密着する。従って、第6実施形態の熱電発電装置においても、フィン部材2から熱電発電モジュール1の受熱基板1Aへの熱伝導が極めて良好に行われるようになり、高い発電性能を発揮する。   In the thermoelectric generator of the sixth embodiment, when the fin member 2 reaches a high temperature of, for example, 250 ° C. or higher, the low-melting-point metal body 5 containing tin (Sn) impregnated in the porous elastic body 6 is melted and the thermoelectric power is generated. The power generation module 1 is in direct contact with the heat receiving surface 1A1 of the heat receiving substrate 1A. Therefore, also in the thermoelectric power generation device of the sixth embodiment, heat conduction from the fin member 2 to the heat receiving substrate 1A of the thermoelectric power generation module 1 is performed extremely well, and high power generation performance is exhibited.

図11は、本発明の第7実施形態に係る熱電発電装置の概略構造を示している。この熱電発電装置は、図8に示した高融点金属皮膜(酸化防止皮膜)4に後述する伸縮構造部が形成されたものであり、その他の部分は図8に示した第5実施形態の熱電発電装置と略同様に構成されているため、同様の構造部分については同一符号を付して詳細な説明を省略する。   FIG. 11 shows a schematic structure of a thermoelectric generator according to the seventh embodiment of the present invention. In this thermoelectric generator, the refractory metal film (antioxidation film) 4 shown in FIG. 8 is provided with a stretchable structure described later, and other parts are the thermoelectric generator of the fifth embodiment shown in FIG. Since the configuration is substantially the same as that of the power generation device, the same structural parts are denoted by the same reference numerals and detailed description thereof is omitted.

ここで、図11に示す第7実施形態の熱電発電装置においては、熱電発電モジュール1とフィン部材2との間に露出する高融点金属皮膜(酸化防止皮膜)4の4周の周壁部分にジグザグの断面形状を有するの伸縮構造部4Cが形成されている。この伸縮構造部4Cはベローズ状に形成されており、低融点金属体5の溶融に伴う局部的な体積変化を吸収できるようになっている。   Here, in the thermoelectric generator of the seventh embodiment shown in FIG. 11, a zigzag is formed on the peripheral wall portion of the four circumferences of the refractory metal coating (antioxidation coating) 4 exposed between the thermoelectric generation module 1 and the fin member 2. A telescopic structure portion 4C having a cross-sectional shape is formed. This stretchable structure portion 4 </ b> C is formed in a bellows shape and can absorb a local volume change accompanying melting of the low melting point metal body 5.

第7実施形態の熱電発電装置では、フィン部材2が例えば250℃以上の高温になると、多孔質弾性体6に含浸された低融点金属体5が溶融して多孔質弾性体6が弾性を発現するため、高融点金属皮膜(酸化防止皮膜)4が均一な面圧で熱電発電モジュール1の受熱面1A1に密着する。従って、第7実施形態の熱電発電装置においても、フィン部材2から熱電発電モジュール1の受熱基板1Aへの熱伝導が極めて良好に行われるようになり、高い発電性能を発揮する。   In the thermoelectric generator of the seventh embodiment, when the fin member 2 reaches a high temperature of, for example, 250 ° C. or higher, the low melting point metal body 5 impregnated in the porous elastic body 6 melts and the porous elastic body 6 exhibits elasticity. Therefore, the refractory metal film (antioxidation film) 4 adheres to the heat receiving surface 1A1 of the thermoelectric power generation module 1 with a uniform surface pressure. Therefore, also in the thermoelectric power generation device of the seventh embodiment, heat conduction from the fin member 2 to the heat receiving substrate 1A of the thermoelectric power generation module 1 is performed extremely well, and high power generation performance is exhibited.

ここで、前述のように多孔質弾性体6が弾性を発現して潰れると、溶融した低融点金属体5の一部が多孔質弾性体6の周囲から滲み出すため、多孔質弾性体6の周囲では低融点金属体5の体積が局部的に増加する。一方、多孔質弾性体6が潰れた状態から弾性復帰すると、多孔質弾性体6の周囲では低融点金属体5の体積が局部的に減少する。その際、高融点金属皮膜(酸化防止皮膜)4に形成されたベローズ状の伸縮構造部4Cが伸縮して多孔質弾性体6の周囲における低融点金属体5の体積変化を確実に吸収する。従って、第7実施形態の熱電発電装置によれば、高融点金属皮膜(酸化防止皮膜)4の破損を確実に防止することができる。   Here, as described above, when the porous elastic body 6 develops elasticity and is crushed, a part of the melted low-melting-point metal body 5 oozes out from the periphery of the porous elastic body 6. In the surroundings, the volume of the low melting point metal body 5 locally increases. On the other hand, when the elastic body 6 is restored from the collapsed state, the volume of the low melting point metal body 5 is locally reduced around the porous elastic body 6. At that time, the bellows-like stretchable structure portion 4 </ b> C formed on the high melting point metal film (antioxidation film) 4 expands and contracts to reliably absorb the volume change of the low melting point metal body 5 around the porous elastic body 6. Therefore, according to the thermoelectric generator of the seventh embodiment, it is possible to reliably prevent the refractory metal film (antioxidation film) 4 from being damaged.

図12は、図11に示した第7実施形態に係る熱電発電装置の変形例を示しており、高融点金属皮膜(酸化防止皮膜)4と同様の高融点金属により別途作成された伸縮構造のベローズ8が高融点金属皮膜(酸化防止皮膜)4の周辺に連続して設けられている。このベローズ8は、フィン部材2の対向面2Aにおける排気ガスの熱を受け入れ易い位置に突設されている。そして、このベローズ8は、溶融した低融点金属体5の流入、流出に応じて伸縮することにより、多孔質弾性体6の周囲における低融点金属体5の局部的な体積変化を吸収できるようになっている。   FIG. 12 shows a modification of the thermoelectric power generation device according to the seventh embodiment shown in FIG. 11, and is an elastic structure separately made of a refractory metal similar to the refractory metal coating (antioxidation coating) 4. A bellows 8 is continuously provided around the high melting point metal film (antioxidation film) 4. The bellows 8 protrudes from the facing surface 2A of the fin member 2 at a position where it can easily receive the heat of the exhaust gas. The bellows 8 expands and contracts in response to the inflow and outflow of the molten low melting point metal body 5 so that the local volume change of the low melting point metal body 5 around the porous elastic body 6 can be absorbed. It has become.

図12に示す熱電発電装置では、溶融した低融点金属体5の体積が多孔質弾性体6の周囲で局部的に変化する際、高融点金属皮膜(酸化防止皮膜)4の伸縮構造部4Cが伸縮すると共にベローズ8も伸縮して低融点金属体5の大きな体積変化を確実に吸収する。従って、図12に示す熱電発電装置によれば、高融点金属皮膜(酸化防止皮膜)4の破損をより確実に防止することができる。   In the thermoelectric generator shown in FIG. 12, when the volume of the molten low melting point metal body 5 locally changes around the porous elastic body 6, the stretchable structure portion 4 </ b> C of the high melting point metal film (antioxidation film) 4 is formed. The bellows 8 expands and contracts as well as expands and contracts, and reliably absorbs a large volume change of the low melting point metal body 5. Therefore, according to the thermoelectric power generator shown in FIG. 12, damage to the refractory metal film (antioxidation film) 4 can be more reliably prevented.

また、ベローズ8が排気ガスの熱を受け入れ易い位置に設置されているため、熱電発電装置の作動停止に伴い低融点金属体5が徐々に固化する際には、ベローズ8内の低融点金属体5が最後に固化することとなり、その時点までベローズ8の伸縮機能が維持される。   In addition, since the bellows 8 is installed at a position where the heat of the exhaust gas can be easily received, when the low melting point metal body 5 is gradually solidified as the thermoelectric generator is stopped, the low melting point metal body in the bellows 8 is used. 5 is solidified last, and the expansion / contraction function of the bellows 8 is maintained until that time.

図13は、第8実施形態に係る熱電発電装置を示している。この熱電発電装置は、図8に示した高融点金属皮膜(酸化防止皮膜)4に後述する伸縮構造部が形成されたものであり、その他の部分は図8に示した第5実施形態の熱電発電装置と略同様に構成されているため、同様の構造部分については同一符号を付して詳細な説明を省略する。   FIG. 13 shows a thermoelectric generator according to the eighth embodiment. In this thermoelectric generator, the refractory metal film (antioxidation film) 4 shown in FIG. 8 is provided with a stretchable structure described later, and other parts are the thermoelectric generator of the fifth embodiment shown in FIG. Since the configuration is substantially the same as that of the power generation device, the same structural parts are denoted by the same reference numerals and detailed description thereof is omitted.

ここで、図13に示す第8実施形態の熱電発電装置においては、高融点金属皮膜(酸化防止皮膜)4の周辺の一辺に連続する単一の伸縮構造部4Dが高融点金属皮膜(酸化防止皮膜)4と一体に形成されている。この伸縮構造部4Dは、概略四角形の平面形状をなすベローズ状に形成されており、フィン部材2の対向面2Aにおける排気ガスの熱を受け入れ易い位置に配置されている。そして、この伸縮構造部4Dは、溶融した低融点金属体5の流入、流出に応じて伸縮することにより、多孔質弾性体6の周囲における低融点金属体5の局部的な体積変化を吸収できるようになっている。   Here, in the thermoelectric power generation device of the eighth embodiment shown in FIG. 13, a single stretch structure portion 4 </ b> D continuous on one side of the periphery of the refractory metal film (antioxidation film) 4 has a refractory metal film (antioxidation). Film) 4 is formed integrally. The stretchable structure portion 4D is formed in a bellows shape having a substantially square planar shape, and is disposed at a position where the heat of the exhaust gas can be easily received on the facing surface 2A of the fin member 2. And this expansion-contraction structure part 4D can absorb the local volume change of the low melting metal body 5 around the porous elastic body 6 by expanding and contracting according to the inflow and outflow of the molten low melting metal body 5. It is like that.

図14は、図13に示した断面構造を有する高融点金属皮膜(酸化防止皮膜)4の形成工程の一例を示している。まず、図14(a)に示す工程では、フィン部材2の対向面2A上にマット状の多孔質弾性体6をセットした後、その対向面2A上に鋳型Mをセットして低融点金属体5を鋳型M内に鋳込む。   FIG. 14 shows an example of a process of forming the refractory metal film (antioxidation film) 4 having the cross-sectional structure shown in FIG. First, in the step shown in FIG. 14A, after setting the mat-like porous elastic body 6 on the facing surface 2A of the fin member 2, the mold M is set on the facing surface 2A and the low melting point metal body. 5 is cast into the mold M.

図14(b)に示す工程では、低融点金属体5を冷却して固化させた後、フィン部材2の対向面2Aから鋳型Mを取り外す。   In the step shown in FIG. 14B, the low melting point metal body 5 is cooled and solidified, and then the mold M is removed from the facing surface 2 </ b> A of the fin member 2.

図14(c)に示す工程では、固化した低融点金属体5の表面およびその周囲のフィン部材2の対向面2Aに、例えばモリブデン(Mo)をメッキして伸縮構造部4Dを有する高融点金属皮膜(酸化防止皮膜)4を形成する。   In the step shown in FIG. 14C, the surface of the solidified low-melting-point metal body 5 and the opposing surface 2A of the surrounding fin member 2 are plated with, for example, molybdenum (Mo) and have a stretchable structure portion 4D. A film (antioxidation film) 4 is formed.

このような工程により形成された高融点金属皮膜(酸化防止皮膜)4を有する第8実施形態の熱電発電装置(図13参照)では、フィン部材2が例えば250℃以上の高温になると、多孔質弾性体6に含浸された低融点金属体5が溶融して多孔質弾性体6が弾性を発現するため、高融点金属皮膜(酸化防止皮膜)4が均一な面圧で熱電発電モジュール1の受熱面1A1に密着する。従って、第8実施形態の熱電発電装置においても、フィン部材2から熱電発電モジュール1の受熱基板1Aへの熱伝導が極めて良好に行われるようになり、高い発電性能を発揮する。   In the thermoelectric generator of the eighth embodiment (see FIG. 13) having the refractory metal film (antioxidation film) 4 formed by such a process, when the fin member 2 reaches a high temperature of, for example, 250 ° C. or higher, the porous member 2 becomes porous. Since the low melting point metal body 5 impregnated in the elastic body 6 melts and the porous elastic body 6 exhibits elasticity, the high melting point metal film (antioxidation film) 4 receives heat from the thermoelectric module 1 with a uniform surface pressure. Adheres to the surface 1A1. Therefore, also in the thermoelectric generator of the eighth embodiment, heat conduction from the fin member 2 to the heat receiving substrate 1A of the thermoelectric generator module 1 is performed extremely well, and high power generation performance is exhibited.

ここで、前述のように多孔質弾性体6が弾性を発現して潰れると、溶融した低融点金属体5の一部が多孔質弾性体6の周囲から滲み出すため、多孔質弾性体6の周囲では低融点金属体5の体積が局部的に増加する。一方、多孔質弾性体6が潰れた状態から弾性復帰すると、多孔質弾性体6の周囲では低融点金属体5の体積が局部的に減少する。その際、高融点金属皮膜(酸化防止皮膜)4に形成されたベローズ状の伸縮構造部4Dが伸縮して多孔質弾性体6の周囲における低融点金属体5の体積変化を確実に吸収する。従って、第8実施形態の熱電発電装置によれば、高融点金属皮膜(酸化防止皮膜)4の破損を確実に防止することができる。   Here, as described above, when the porous elastic body 6 develops elasticity and is crushed, a part of the melted low-melting-point metal body 5 oozes out from the periphery of the porous elastic body 6. In the surroundings, the volume of the low melting point metal body 5 locally increases. On the other hand, when the elastic body 6 is restored from the collapsed state, the volume of the low melting point metal body 5 is locally reduced around the porous elastic body 6. At that time, the bellows-like stretchable structure portion 4D formed on the high melting point metal film (antioxidation film) 4 expands and contracts to reliably absorb the volume change of the low melting point metal body 5 around the porous elastic body 6. Therefore, according to the thermoelectric generator of the eighth embodiment, it is possible to reliably prevent the refractory metal film (antioxidation film) 4 from being damaged.

また、伸縮構造部4Dが排気ガスの熱を受け入れ易い位置に設置されているため、熱電発電装置の作動停止に伴い低融点金属体5が徐々に固化する際には、伸縮構造部4D内の低融点金属体5が最後に固化することとなり、その時点まで伸縮構造部4Dの伸縮機能が維持される。   In addition, since the expansion / contraction structure 4D is installed at a position where the heat of the exhaust gas can be easily received, when the low melting point metal body 5 is gradually solidified as the thermoelectric generator is stopped, the expansion / contraction structure 4D The low melting point metal body 5 is solidified last, and the expansion / contraction function of the expansion / contraction structure portion 4D is maintained until that point.

図15は、図13に示した第8実施形態に係る熱電発電装置の変形例を示しており、熱回収手段としてのフィン部材2の各フィン2Bの向きは、図13に示した各フィン2Bの向きと直交している。そして、ベローズ状の伸縮構造部4Dは、各フィン2B間に高温の排気ガスが点線矢印のように流入する側のフィン部材2の高温側の部位に配置されている。一方、多孔質弾性体6と共に低融点金属体5を覆う高融点金属皮膜(酸化防止皮膜)4は、各フィン2B間から高温の排気ガスが流出する側のフィン部材2の低温側の部位に配置されている。   FIG. 15 shows a modification of the thermoelectric generator according to the eighth embodiment shown in FIG. 13, and the direction of each fin 2B of the fin member 2 as the heat recovery means is the fin 2B shown in FIG. It is orthogonal to the direction. And the bellows-like expansion-contraction structure part 4D is arrange | positioned in the site | part of the high temperature side of the fin member 2 of the side into which hot exhaust gas flows in between each fin 2B like a dotted line arrow. On the other hand, the high melting point metal film (antioxidation film) 4 covering the low melting point metal body 5 together with the porous elastic body 6 is disposed on the low temperature side portion of the fin member 2 on the side from which the high temperature exhaust gas flows out between the fins 2B. Has been placed.

図15に示した熱電発電装置によれば、図13に示した第8実施形態に係る熱電発電装置と同様に、フィン部材2から熱電発電モジュール1の受熱基板1Aへの熱伝導が極めて良好に行われるため、高い発電性能を発揮することができる。また、ベローズ状の伸縮構造部4Dが伸縮して多孔質弾性体6の周囲における低融点金属体5の体積変化を確実に吸収するため、高融点金属皮膜(酸化防止皮膜)4の破損を確実に防止することができる。   According to the thermoelectric generator shown in FIG. 15, the heat conduction from the fin member 2 to the heat receiving substrate 1 </ b> A of the thermoelectric generator module 1 is extremely good as in the thermoelectric generator according to the eighth embodiment shown in FIG. 13. Since it is performed, high power generation performance can be exhibited. In addition, since the bellows-like stretchable structure 4D stretches and contracts to absorb the volume change of the low melting point metal body 5 around the porous elastic body 6, the high melting point metal film (antioxidation film) 4 is surely damaged. Can be prevented.

ここで、図15に示した熱電発電装置では、ベローズ状の伸縮構造部4Dがフィン部材2の高温側の部位に配置され、多孔質弾性体6と共に低融点金属体5を覆う高融点金属皮膜(酸化防止皮膜)4がフィン部材2の低温側の部位に配置されているため、熱電発電装置の作動停止に伴い低融点金属体5が徐々に固化する際には、高融点金属皮膜(酸化防止皮膜)4内の低融点金属体5が先に固化し、伸縮構造部4D内の低融点金属体5が最後に固化することとなり、その時点まで伸縮構造部4Dの伸縮機能が維持される。従って、図15に示した熱電発電装置によれば、高融点金属皮膜(酸化防止皮膜)4の破損を一層確実に防止することができる。   Here, in the thermoelectric generator shown in FIG. 15, the high-melting-point metal film in which the bellows-like stretchable structure 4 </ b> D is disposed at the high temperature side portion of the fin member 2 and covers the low-melting-point metal body 5 together with the porous elastic body 6. Since the (antioxidation coating) 4 is disposed at the low temperature side portion of the fin member 2, when the low melting point metal body 5 is gradually solidified as the thermoelectric generator is stopped, the high melting point metal coating (oxidation) The low melting point metal body 5 in the prevention film 4 is solidified first, and the low melting point metal body 5 in the stretchable structure part 4D is solidified last, and the stretchable function of the stretchable structure part 4D is maintained until that point. . Therefore, according to the thermoelectric generator shown in FIG. 15, the refractory metal film (antioxidation film) 4 can be more reliably prevented from being damaged.

本発明に係る熱電発電装置は、前述した各実施形態に限定されるものではない。例えば、高融点金属皮膜(酸化防止皮膜)4の周縁部をフィン部材2の対向面2Aに係止する係止手段としては、図2に示した溝2D、図4に示した突条2E、図6に示した段差部2Fに代わる止ねじを採用し、この止ねじによって高融点金属皮膜(酸化防止皮膜)4の周縁部をフィン部材2の対向面2Aに止着してもよい。   The thermoelectric generator according to the present invention is not limited to the above-described embodiments. For example, as locking means for locking the peripheral portion of the refractory metal film (antioxidation film) 4 to the facing surface 2A of the fin member 2, the groove 2D shown in FIG. 2, the protrusion 2E shown in FIG. A set screw in place of the stepped portion 2F shown in FIG. 6 may be adopted, and the peripheral portion of the refractory metal film (antioxidation film) 4 may be fixed to the facing surface 2A of the fin member 2 by this set screw.

また、図12に示したベローズ8や図13に示した伸縮構造部4Dの内部の溶融した低融点金属体5の流動性を確保するため、ベローズ8や伸縮構造部4Dの表面には、断熱材で覆うなどの適宜の断熱処理を施して放熱ブロック3側からの冷気を遮断するのが好ましい。   Further, in order to ensure the fluidity of the melted low melting point metal body 5 inside the bellows 8 shown in FIG. 12 and the elastic structure 4D shown in FIG. 13, the surface of the bellows 8 and the elastic structure 4D is insulated. It is preferable to shield the cool air from the heat radiating block 3 side by performing an appropriate heat treatment such as covering with a material.

本発明の第1実施形態に係る熱電発電装置を構成する熱電発電モジュールの概略構造を示す斜視図である。It is a perspective view which shows schematic structure of the thermoelectric power generation module which comprises the thermoelectric power generating apparatus which concerns on 1st Embodiment of this invention. 第1実施形態に係る熱電発電装置の概略構造を示す縦断面図である。It is a longitudinal section showing a schematic structure of a thermoelectric power generator concerning a 1st embodiment. 図2に示したフィン部材の製造工程を示す縦断面図である。It is a longitudinal cross-sectional view which shows the manufacturing process of the fin member shown in FIG. 本発明の第2実施形態に係る熱電発電装置の概略構造を示す縦断面図である。It is a longitudinal cross-sectional view which shows schematic structure of the thermoelectric power generating apparatus which concerns on 2nd Embodiment of this invention. 図4に示したフィン部材の製造工程を示す縦断面図である。It is a longitudinal cross-sectional view which shows the manufacturing process of the fin member shown in FIG. 本発明の第3実施形態に係る熱電発電装置の概略構造を示す縦断面図である。It is a longitudinal cross-sectional view which shows schematic structure of the thermoelectric power generating apparatus which concerns on 3rd Embodiment of this invention. 本発明の第4実施形態に係る熱電発電装置の概略構造を示す縦断面図である。It is a longitudinal cross-sectional view which shows schematic structure of the thermoelectric power generating apparatus which concerns on 4th Embodiment of this invention. 本発明の第5実施形態に係る熱電発電装置の概略構造を示す縦断面図である。It is a longitudinal section showing a schematic structure of a thermoelectric generator concerning a 5th embodiment of the present invention. 第5実施形態に係る熱電発電装置の作用を示す縦断面図である。It is a longitudinal cross-sectional view which shows the effect | action of the thermoelectric power generator which concerns on 5th Embodiment. 本発明の第6実施形態に係る熱電発電装置の概略構造を示す縦断面図である。It is a longitudinal cross-sectional view which shows schematic structure of the thermoelectric power generating apparatus which concerns on 6th Embodiment of this invention. 本発明の第7実施形態に係る熱電発電装置の概略構造を示す縦断面図である。It is a longitudinal cross-sectional view which shows schematic structure of the thermoelectric power generating apparatus which concerns on 7th Embodiment of this invention. 第7実施形態に係る熱電発電装置の変形例の概略構造を示す縦断面図である。It is a longitudinal cross-sectional view which shows schematic structure of the modification of the thermoelectric power generating apparatus which concerns on 7th Embodiment. 本発明の第8実施形態に係る熱電発電装置の概略構造を示す縦断面図である。It is a longitudinal cross-sectional view which shows schematic structure of the thermoelectric power generating apparatus which concerns on 8th Embodiment of this invention. 図13に示した高融点金属皮膜(酸化防止皮膜)の形成工程を示す縦断面図である。It is a longitudinal cross-sectional view which shows the formation process of the high melting-point metal membrane | film | coat (antioxidation membrane | film | coat) shown in FIG. 第8実施形態に係る熱電発電装置の変形例の概略構造を示す斜視図である。It is a perspective view which shows schematic structure of the modification of the thermoelectric power generating apparatus which concerns on 8th Embodiment.

符号の説明Explanation of symbols

1 熱電発電モジュール
1A 受熱基板
1A1 受熱面
1B 放熱基板
2 フィン部材
2A 対向面
2B フィン
2C 凹部
2D 溝
2E 突条
2F 段差部
3 放熱ブロック
4 高融点金属皮膜(酸化防止皮膜)
4A 膜厚部
4B 肩部分
4C 伸縮構造部
4D 伸縮構造部
5 低融点金属体
5A 盛上り部
6 多孔質弾性体
7 酸化防止皮膜
8 ベローズ
F 型枠
M 鋳型
DESCRIPTION OF SYMBOLS 1 Thermoelectric power generation module 1A Heat receiving board 1A1 Heat receiving surface 1B Heat radiation board 2 Fin member 2A Opposing surface 2B Fin 2C Recessed part 2D Groove 2E Projection 2F Step part 3 Heat radiation block 4 High melting point metal film (antioxidation film)
4A Film thickness part 4B Shoulder part 4C Elastic structure part 4D Elastic structure part 5 Low melting point metal body 5A Swelling part 6 Porous elastic body 7 Antioxidation film 8 Bellows F Formwork M Mold

Claims (12)

熱回収手段に接触する受熱部と熱放出手段に接触する放熱部との間に複数の熱電発電素子が配置された熱電発電モジュールを備え、この熱電発電モジュールの受熱部が酸化防止皮膜で覆われた低融点金属体を介して前記熱回収手段に接触していることを特徴とする熱電発電装置。   A thermoelectric generator module in which a plurality of thermoelectric power generation elements are arranged between a heat receiving portion that contacts the heat recovery means and a heat dissipation portion that contacts the heat release means is provided, and the heat receiving portion of the thermoelectric power generation module is covered with an antioxidant coating. A thermoelectric generator that is in contact with the heat recovery means through a low-melting-point metal body. 前記熱電発電モジュールの受熱部外面の受熱面に対面する前記熱回収手段の対向面には前記低融点金属体を収容する凹部が形成されており、この凹部に充填された低融点金属体の表面およびその周囲の対向面が前記酸化防止皮膜で覆われていることを特徴とする請求項1に記載の熱電発電装置。   The opposing surface of the heat recovery means facing the heat receiving surface on the outer surface of the heat receiving portion of the thermoelectric power generation module is formed with a recess for accommodating the low melting metal body, and the surface of the low melting metal body filled in the recess The thermoelectric power generator according to claim 1, wherein an opposing surface of the thermoelectric generator is covered with the antioxidant film. 前記低融点金属体の表面が前記凹部から盛り上がっていることを特徴とする請求項2に記載の熱電発電装置。   The thermoelectric power generator according to claim 2, wherein a surface of the low melting point metal body is raised from the recess. 前記低融点金属体の表面の盛上り部は、前記熱電発電モジュールの受熱部外面の受熱面における周縁部を除いた内側の領域に対面していることを特徴とする請求項3に記載の熱電発電装置。   4. The thermoelectric device according to claim 3, wherein the rising portion of the surface of the low-melting-point metal body faces an inner region excluding the peripheral portion of the heat receiving surface of the heat receiving portion outer surface of the thermoelectric power generation module. Power generation device. 前記熱回収手段の対向面における前記凹部の周囲には、前記酸化防止皮膜の面方向への移動を規制する係止手段が設けられていることを特徴とする請求項2〜4の何れかに記載の熱電発電装置。   The locking means for restricting the movement of the antioxidant film in the surface direction is provided around the concave portion on the facing surface of the heat recovery means. The thermoelectric generator as described. 前記係止手段が溝、突条、突起、段差および止ねじの少なくとも1つで構成されていることを特徴とする請求項5に記載の熱電発電装置。   6. The thermoelectric generator according to claim 5, wherein the locking means includes at least one of a groove, a protrusion, a protrusion, a step, and a set screw. 前記酸化防止皮膜は、前記熱電発電モジュールの受熱部外面の受熱面に接触する部分がその周囲の部分より厚く形成されていることを特徴とする請求項1〜6の何れかに記載の熱電発電装置。   The thermoelectric power generation according to any one of claims 1 to 6, wherein the antioxidant film is formed such that a portion of the thermoelectric power module that contacts the heat receiving surface of the outer surface of the heat receiving portion is thicker than the surrounding portion. apparatus. 前記低融点金属体の全面が前記酸化防止皮膜で被覆されていることを特徴とする請求項1に記載の熱電発電装置。   The thermoelectric power generator according to claim 1, wherein the entire surface of the low-melting-point metal body is covered with the antioxidant film. 前記酸化防止皮膜が金属メッキ層で構成されていることを特徴とする請求項1〜8の何れかに記載の熱電発電装置。   The thermoelectric generator according to any one of claims 1 to 8, wherein the antioxidant film is formed of a metal plating layer. 前記低融点金属体が多孔質弾性体に含浸されていることを特徴とする請求項1〜9の何れかに記載の熱電発電装置。   The thermoelectric power generator according to any one of claims 1 to 9, wherein the low-melting-point metal body is impregnated in a porous elastic body. 前記多孔質弾性体に含浸された低融点金属体の溶融に伴う局部的な体積変化を吸収する伸縮構造部が前記酸化防止皮膜に形成されていることを特徴とする請求項10に記載の熱電発電装置。   11. The thermoelectric device according to claim 10, wherein a stretchable structure portion that absorbs a local volume change accompanying melting of the low melting point metal body impregnated in the porous elastic body is formed on the antioxidant film. Power generation device. 前記伸縮構造部は、多孔質弾性体と共に低融点金属体を覆う前記酸化防止皮膜の周辺に連続する形態で形成されており、この伸縮構造部は、前記熱回収手段における前記酸化防止皮膜が配置される部位よりも高温側の部位に配置されていることを特徴とする請求項11に記載の熱電発電装置。   The stretchable structure portion is formed in a form continuous to the periphery of the antioxidant coating covering the low melting point metal body together with the porous elastic body, and the stretchable structure portion is arranged with the antioxidant coating in the heat recovery means. The thermoelectric generator according to claim 11, wherein the thermoelectric generator is disposed at a portion on a higher temperature side than the portion to be formed.
JP2006141897A 2005-06-09 2006-05-22 Thermoelectric generator Expired - Fee Related JP5166705B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006141897A JP5166705B2 (en) 2005-06-09 2006-05-22 Thermoelectric generator

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
JP2005169725 2005-06-09
JP2005169725 2005-06-09
JP2005272261 2005-09-20
JP2005272261 2005-09-20
JP2006141897A JP5166705B2 (en) 2005-06-09 2006-05-22 Thermoelectric generator

Publications (2)

Publication Number Publication Date
JP2007116086A true JP2007116086A (en) 2007-05-10
JP5166705B2 JP5166705B2 (en) 2013-03-21

Family

ID=38097971

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006141897A Expired - Fee Related JP5166705B2 (en) 2005-06-09 2006-05-22 Thermoelectric generator

Country Status (1)

Country Link
JP (1) JP5166705B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007227458A (en) * 2006-02-21 2007-09-06 Toyota Motor Corp Thermoelectric generator
JP2012234969A (en) * 2011-04-28 2012-11-29 Jfe Steel Corp Thermoelectric power generation device and thermoelectric power generation method using the same
JP2014127617A (en) * 2012-12-27 2014-07-07 Toyota Motor Corp Thermoelectric generator
EP2854191A1 (en) * 2013-09-30 2015-04-01 Airbus Defence and Space GmbH Thermoelectric Generator with Expandable Container
KR20220087732A (en) * 2020-12-18 2022-06-27 주식회사 포스코 Thermoelectric generation apparatus
US11674858B2 (en) 2016-07-12 2023-06-13 Denso Corporation Heat flux sensor and method of manufacturing the same

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6260817A (en) * 1985-09-11 1987-03-17 Nippon Steel Corp Heating method for preventing oxidation of metallic material
JP2001194022A (en) * 2000-01-06 2001-07-17 Central Res Inst Of Electric Power Ind Thermal stress relaxing pad and thermoelectric conversion system using it and peltier cooling system
JP2005137188A (en) * 2003-10-06 2005-05-26 Toyota Motor Corp Exhaust emission control system

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6260817A (en) * 1985-09-11 1987-03-17 Nippon Steel Corp Heating method for preventing oxidation of metallic material
JP2001194022A (en) * 2000-01-06 2001-07-17 Central Res Inst Of Electric Power Ind Thermal stress relaxing pad and thermoelectric conversion system using it and peltier cooling system
JP2005137188A (en) * 2003-10-06 2005-05-26 Toyota Motor Corp Exhaust emission control system

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007227458A (en) * 2006-02-21 2007-09-06 Toyota Motor Corp Thermoelectric generator
JP2012234969A (en) * 2011-04-28 2012-11-29 Jfe Steel Corp Thermoelectric power generation device and thermoelectric power generation method using the same
JP2014127617A (en) * 2012-12-27 2014-07-07 Toyota Motor Corp Thermoelectric generator
EP2854191A1 (en) * 2013-09-30 2015-04-01 Airbus Defence and Space GmbH Thermoelectric Generator with Expandable Container
US11674858B2 (en) 2016-07-12 2023-06-13 Denso Corporation Heat flux sensor and method of manufacturing the same
KR20220087732A (en) * 2020-12-18 2022-06-27 주식회사 포스코 Thermoelectric generation apparatus
KR102518949B1 (en) * 2020-12-18 2023-04-05 주식회사 포스코 Thermoelectric generation apparatus

Also Published As

Publication number Publication date
JP5166705B2 (en) 2013-03-21

Similar Documents

Publication Publication Date Title
JP5166705B2 (en) Thermoelectric generator
JP3676504B2 (en) Thermoelectric module
JP6049752B2 (en) Newly structured bus bar
JP5956608B2 (en) Thermoelectric module
JP2007221895A (en) Thermal power generator
JP4867388B2 (en) Thermoelectric generator
JP2006332188A (en) Thermoelectric power generation module
JP2012156227A (en) Casing for thermoelectric power generation module and manufacturing method therefor
JP2010157645A (en) Thermoelectric power generation unit
JP2010245265A (en) Thermoelectric module
JP2010027986A (en) Thermoelectric conversion module and its production process
JP2005117755A (en) Generator
JP2003046147A (en) Thermoelectric element module and method of manufacturing the same
JPH08335722A (en) Thermoelectric conversion module
JP6024642B2 (en) Thermoelectric conversion device and manufacturing method thereof
US7111666B2 (en) Heat sink
JP2019161831A (en) Thermoelectric generator
JP6428749B2 (en) Thermoelectric generator
JP4815914B2 (en) Thermoelectric generator
WO2017212822A1 (en) Thermoelectric generator
KR20100003494A (en) Thermoelectric cooling device with flexible copper band wire
JP5834758B2 (en) Semiconductor module
JPH08306965A (en) Thermoelectric conversion module for generation
WO2017126264A1 (en) Thermoelectric power generation device
JPH08204241A (en) Thermoelectric conversion system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080709

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100728

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110524

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110615

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110823

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111020

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20111027

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20111222

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121030

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121221

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151228

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 5166705

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151228

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees