JP2007115467A - Discharge lamp - Google Patents

Discharge lamp Download PDF

Info

Publication number
JP2007115467A
JP2007115467A JP2005304212A JP2005304212A JP2007115467A JP 2007115467 A JP2007115467 A JP 2007115467A JP 2005304212 A JP2005304212 A JP 2005304212A JP 2005304212 A JP2005304212 A JP 2005304212A JP 2007115467 A JP2007115467 A JP 2007115467A
Authority
JP
Japan
Prior art keywords
phosphor
ratio
particle diameter
primary particle
particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005304212A
Other languages
Japanese (ja)
Inventor
Toshinobu Kashima
敏信 鹿島
Koji Kikuchihara
功次 菊地原
Wakako Shinno
和香子 新野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Stanley Electric Co Ltd
Original Assignee
Stanley Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Stanley Electric Co Ltd filed Critical Stanley Electric Co Ltd
Priority to JP2005304212A priority Critical patent/JP2007115467A/en
Publication of JP2007115467A publication Critical patent/JP2007115467A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Luminescent Compositions (AREA)
  • Vessels And Coating Films For Discharge Lamps (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a discharge lamp having a phosphor layer, with high brightness and high light transmittance. <P>SOLUTION: The discharge lamp is composed of a discharge tube, an ultraviolet-ray source arranged inside the discharge tube, and a phosphor layer applied on an inner wall of the discharge tube. The phosphor layer contains BaMgAl<SB>10</SB>O<SB>17</SB>:Eu<SP>+2</SP>as blue-color phosphor, of which, a ratio of the size of secondary particles as an aggregation of primary particles to that of the primary particles ranges between 1.7 and 2.0. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、放電ランプに関し、特に蛍光体層に紫外線を照射して蛍光体を励起、発光させる放電ランプに関する。   The present invention relates to a discharge lamp, and more particularly to a discharge lamp that excites and emits light by irradiating a phosphor layer with ultraviolet rays.

例えば、液晶表示装置のバックライト,小型照明装置などに冷陰極放電ランプが用いられている。ガラス管内壁上に蛍光体層を形成し、希ガスや水銀等の放電に由来する紫外光により、蛍光体を励起し、発光させる。蛍光体層は、放電ランプに用いた状態で、輝度が高く、光透過率が高いことが望ましい。   For example, a cold cathode discharge lamp is used for a backlight of a liquid crystal display device, a small illumination device, and the like. A phosphor layer is formed on the inner wall of the glass tube, and the phosphor is excited and emitted by ultraviolet light derived from a discharge such as a rare gas or mercury. It is desirable that the phosphor layer has a high luminance and a high light transmittance when used in a discharge lamp.

カラー表示装置には、例えば赤、緑、青の3色発光の蛍光体が使用される。明るさだけでなく、その照明の下での色の見え方の良さすなわち効率と演色性の高さの両方が要求される。両者を共に満足させるために3波長形蛍光ランプが広く用いられている。3波長型蛍光ランプの蛍光体として、例えば、発光波長ピークが450nm付近にあり、青色に発光する2価ユーロピウム付活アルミン酸バリウム・マグネシウム(BAM)蛍光体BaMgAl1017:Eu+2、発光波長ピークが545nm付近にあり、緑色に発光するセリウム・テルビウム付活リン酸ランタン蛍光体LaPO:Ce,Tb,発光波長ピークが611nm付近にあり、赤色に発光するユーロピウム付活酸化イットリウム蛍光体Y:Euが用いられる。 For the color display device, for example, phosphors emitting three colors of red, green, and blue are used. Not only the brightness but also the appearance of the color under the illumination, that is, both efficiency and high color rendering properties are required. In order to satisfy both, a three-wavelength fluorescent lamp is widely used. As a phosphor of the three-wavelength fluorescent lamp, for example, a divalent europium-activated barium magnesium aluminate (BAM) phosphor BaMgAl 10 O 17 : Eu +2 having an emission wavelength peak near 450 nm and emitting blue light, emission wavelength A cerium / terbium-activated lanthanum phosphate phosphor LaPO 4 : Ce, Tb, which emits green light, has a peak in the vicinity of 545 nm, a europium-activated yttrium oxide phosphor Y 2 having an emission wavelength peak in the vicinity of 611 nm and emitting red light. O 3 : Eu is used.

特許文献1は、粒径が小さく、真球に近い蛍光体、および緻密で均質な蛍光面をするために、平均粒径が0.5〜15μmであり、長径と短径との比が1.0〜1.5であるLn:R(LnはLa,Gd,Lu、Yの少なくとも1種、Rはランタニド族の少なくとも1種)の組成式で表される透明球状粒子と、0.001〜0.5重量%の割合で透明球状粒子の表面に付着し,同一構成元素を含む粒径0.2μm以下の超微粒子とを含む蛍光体を提案する。この蛍光体を、原料蛍光体をキャリアガスと共に熱プラズマ中に供給し、短時間の処理の後、熱プラズマ外に出す方法で製造するためには、得られる蛍光体と異なる付活剤濃度、2〜20μmの一次粒子径を有する造粒していない原料蛍光体を用いることが望ましいと教示する。 In Patent Document 1, the average particle size is 0.5 to 15 μm and the ratio of the major axis to the minor axis is 1 in order to make a phosphor having a small particle size, a near-spherical phosphor, and a dense and homogeneous phosphor screen. Transparent spherical particles represented by a composition formula of Ln 2 O 3 : R (Ln is at least one of La, Gd, Lu, Y, and R is at least one of the lanthanide group) that is 0.0 to 1.5; A phosphor containing ultrafine particles with a particle size of 0.2 μm or less containing the same constituent elements and adhering to the surface of transparent spherical particles in a proportion of 0.001 to 0.5% by weight is proposed. In order to produce this phosphor by supplying the raw material phosphor together with the carrier gas into the thermal plasma, and after the treatment for a short period of time, the concentration of the activator is different from that of the obtained phosphor. It teaches that it is desirable to use a non-granulated raw phosphor having a primary particle size of 2-20 μm.

原料蛍光体の二次粒子径が大きすぎる場合にも、得られる蛍光体の粒径が大きくなり、実用に適さない旨も教示する。ここで、二次粒子とは、単一粒子である一次粒子が凝集した粒子を指す。   It also teaches that even when the secondary particle size of the raw material phosphor is too large, the particle size of the obtained phosphor becomes large and is not suitable for practical use. Here, the secondary particles refer to particles in which primary particles that are single particles are aggregated.

特許第3329598号公報(特開平8−134443号公報)Japanese Patent No. 3329598 (Japanese Patent Laid-Open No. 8-134443) 特開2004-206929号公報JP 2004-206929 A 特開2003-197147号公報JP 2003-197147 A

本発明の目的は、蛍光体層を有し、輝度が高く、光透過率が高い放電ランプを提供することである。   An object of the present invention is to provide a discharge lamp having a phosphor layer, high brightness, and high light transmittance.

本発明の1観点によれば、
放電管と、
前記放電管内に設けられた紫外線源と、
前記放電管内壁に塗布された蛍光体層であって、青色蛍光体として、一次粒子の集まりである二次粒子の径の一次粒子径に対する比が1.7〜2.0の範囲内であるBaMgAl1017:Eu+2を含む蛍光体層と、
を有する放電ランプ
が提供される。
According to one aspect of the present invention,
A discharge tube;
An ultraviolet light source provided in the discharge tube;
The phosphor layer applied to the inner wall of the discharge tube, and as a blue phosphor, the ratio of the diameter of secondary particles, which are a collection of primary particles, to the primary particle diameter is in the range of 1.7 to 2.0. A phosphor layer containing BaMgAl 10 O 17 : Eu +2 ;
A discharge lamp is provided.

二次粒子径の一次粒子径に対する比を1.7〜2.0の範囲内に選択することにより、高い輝度、高い透過率が得られる。   By selecting the ratio of the secondary particle diameter to the primary particle diameter within the range of 1.7 to 2.0, high luminance and high transmittance can be obtained.

図1Aは、冷陰極放電ランプの構成例を概略的に示す断面図である。ガラス管11の内面に蛍光体被膜12を形成し、ガラス管11の両端に円筒状、有底の金属電極13を配置している。ガラス管11の両端に気密に封入した導入線14の端部が金属電極13に接続される。必要に応じて、不純物ガスを吸着する金属16が金属電極13の内部に設けられる。ガラス管11の内部には、水銀及びNe−Ar混合ガスのような放電媒体が封入されている。   FIG. 1A is a cross-sectional view schematically showing a configuration example of a cold cathode discharge lamp. A phosphor coating 12 is formed on the inner surface of the glass tube 11, and cylindrical and bottomed metal electrodes 13 are disposed on both ends of the glass tube 11. The ends of the lead-in wire 14 hermetically sealed at both ends of the glass tube 11 are connected to the metal electrode 13. A metal 16 that adsorbs the impurity gas is provided inside the metal electrode 13 as necessary. Inside the glass tube 11, a discharge medium such as mercury and Ne—Ar mixed gas is sealed.

図1Bは、蛍光体被膜12の構成を概略的に示す。赤(R),緑(G),青(B)の蛍光体粒子21が分布している。各蛍光体は、蛍光体メーカにおける製造時に、ガラス状の塊である焼結体を粉状の蛍光体にするため粉砕機やホモジナイザ、ボールミキサ等による粉砕(分散)処理を受ける。この分散処理により、適度に分散された状態の蛍光体粒子を得るが、この際BAM粒子の表面構造が壊れやすく、物理的ダメージを受けて発光効率が低下するとされている。このため、蛍光体メーカは完全に分散させず、ある程度凝集の強い状態でBAMを納品している。ユーザは各蛍光体にバインダを混合し、スラリーとし、ガラス管に塗布する。発明者は、混合処理においてはボールを用いず、回転台で容器を回転させて混合処理を行った。この混合処理においては、蛍光体粒子は物理的ダメージを受けないと考えられる。スラリー塗布後、必要に応じてベーキングなどの処理を行い、蛍光体粒子が分布した蛍光体膜を形成する。バインダは消失し、完成後のランプにはバインダは存在しない。   FIG. 1B schematically shows the configuration of the phosphor coating 12. Red (R), green (G), and blue (B) phosphor particles 21 are distributed. Each phosphor is subjected to pulverization (dispersion) processing by a pulverizer, a homogenizer, a ball mixer, or the like in order to turn a sintered body, which is a glass-like lump, into a powdery phosphor during manufacture at the phosphor manufacturer. By this dispersion treatment, phosphor particles in a moderately dispersed state are obtained. At this time, the surface structure of the BAM particles is easily broken, and the luminous efficiency is lowered due to physical damage. For this reason, phosphor manufacturers deliver BAM in a state of strong aggregation to some extent without being completely dispersed. A user mixes each phosphor with a binder to form a slurry, which is applied to a glass tube. The inventor performed the mixing process by rotating the container on a turntable without using a ball in the mixing process. In this mixing process, it is considered that the phosphor particles are not physically damaged. After applying the slurry, a treatment such as baking is performed as necessary to form a phosphor film in which phosphor particles are distributed. The binder disappears and there is no binder in the finished lamp.

稼動時には、放電により生じた紫外(UV)光23が、蛍光体粒子21に入射する。入射UV光23によって励起された蛍光体21が蛍光24を発する。蛍光24が、ガラス管11を透過して、外部に導出される。蛍光体粒子21は凝集し易い性質を有する。凝集すると、励起光、発光を透過しにくくなるので、透明バインダ物質22中に分散配置されていることが好ましいと考えられる。蛍光体粒子21の分散配置には、蛍光体粒子21の粒度分布が影響すると考えられる。本発明者は、蛍光体粒子の一次粒子径に対する二次粒子径が外部効率に影響すると考えた。   During operation, ultraviolet (UV) light 23 generated by discharge is incident on the phosphor particles 21. The phosphor 21 excited by the incident UV light 23 emits fluorescence 24. The fluorescence 24 passes through the glass tube 11 and is led out. The phosphor particles 21 have a property of being easily aggregated. Aggregation makes it difficult to transmit excitation light and light emission, and thus it is considered preferable that they are dispersedly arranged in the transparent binder material 22. It is considered that the particle size distribution of the phosphor particles 21 affects the dispersed arrangement of the phosphor particles 21. The inventor considered that the secondary particle size relative to the primary particle size of the phosphor particles affects the external efficiency.

単一粒子の径である一次粒子径D1は、空気透過法(例えば圧力も変化させたブレーン法、特にフィッシャー社製測定機によるフィッシャー法で求めるフィッシャー径)により測定できる。一次粒子が凝集した凝集体の径である二次粒子径D2は、レーザ法によるD50値として測定できる。二次粒子径D2の一次粒子径D1に対する比R=D2/D1が小さいほど、高分散の状態と呼ぶ。比Rが大きいほど、凝集が強いことを示す。一般的に蛍光体は、分散処理により物理的ダメージを受け、蛍光強度が低下すること、一次粒子径が大きいほど、蛍光強度が大きくなることが知られている。   The primary particle diameter D1, which is the diameter of a single particle, can be measured by an air permeation method (for example, the Fischer diameter determined by the Brane method in which the pressure is also changed, in particular, the Fischer method using a measuring instrument manufactured by Fischer). The secondary particle diameter D2, which is the diameter of the aggregate obtained by aggregating the primary particles, can be measured as a D50 value by a laser method. The smaller the ratio R = D2 / D1 of the secondary particle diameter D2 to the primary particle diameter D1, the higher the dispersion state. The larger the ratio R, the stronger the aggregation. In general, it is known that the phosphor is physically damaged by the dispersion treatment, the fluorescence intensity decreases, and the fluorescence intensity increases as the primary particle diameter increases.

青色蛍光体BAMの標準品rは、一次粒子径2.8μm、二次粒子径6.0μmであり、二次粒子径の一次粒子径に対する比はR=6.0/2.8=2.1(2.14)であった。なお、一次粒子径はメーカでの空気透過法による測定値、二次粒子径は出願人によるレーザ法の測定値である。測定精度から、有効数字は2桁とする。標準品とは二次粒子径/一次粒子径(=R)の異なるサンプルを準備した。一次粒子径D1が標準品と同じ2.8μmであり、二次粒子径D2が5.7μm、比R=D2/D1=2.0(2.03)であるBAMのサンプルs1を準備した。二次粒子径は出願人によるレーザ法の測定値である。緑色蛍光体LaPO:Ce,Tb,赤色蛍光体Y:Euは同一とし、青色蛍光体として標準品BAMrを用いたランプと,青色蛍光体としてサンプルs1を用いたランプとを作成した。 The standard product r of the blue phosphor BAM has a primary particle diameter of 2.8 μm and a secondary particle diameter of 6.0 μm, and the ratio of the secondary particle diameter to the primary particle diameter is R = 6.0 / 2.8 = 2. 1 (2.14). The primary particle size is a value measured by an air permeation method at the manufacturer, and the secondary particle size is a value measured by the applicant's laser method. From the measurement accuracy, the effective number is 2 digits. Samples different from the standard product in secondary particle size / primary particle size (= R) were prepared. A BAM sample s1 having a primary particle diameter D1 of 2.8 μm, the same as the standard product, a secondary particle diameter D2 of 5.7 μm, and a ratio R = D2 / D1 = 2.0 (2.03) was prepared. The secondary particle size is a value measured by the applicant's laser method. The green phosphor LaPO 4 : Ce, Tb, the red phosphor Y 2 O 3 : Eu were the same, and a lamp using the standard product BAMr as the blue phosphor and a lamp using the sample s1 as the blue phosphor were prepared. .

図2Aは、サンプルs1を用いたランプと、標準品rを用いたランプとに関し、蛍光体膜厚を変化させたときの出力輝度を示す。サンプルs1を用いたランプは、膜厚約20μmから約37μmの領域で、標準品rを用いたランプより高い輝度を示し、最大約4.5%の輝度向上を示した。一次粒子径が同じ場合、2次粒子径を2.1から2.0に下げることにより、約4.5%の輝度向上が可能になった。   FIG. 2A shows the output luminance when the phosphor film thickness is changed for the lamp using the sample s1 and the lamp using the standard product r. The lamp using the sample s1 showed higher luminance than the lamp using the standard product r in the film thickness range of about 20 μm to about 37 μm, and showed a maximum luminance improvement of about 4.5%. When the primary particle size is the same, the luminance can be improved by about 4.5% by reducing the secondary particle size from 2.1 to 2.0.

さらに、一次粒子径D1が3.7μm、二次粒子径D2が7.0μm、比R=D2/D1=1.9(1.89)のBAMサンプルs2を準備できた。一次粒子径はメーカでの空気透過法による測定値、二次粒子径は出願人によるレーザ法の測定値である。一次粒子径が異なるが、サンプルs2を用いたランプも作成し、輝度を測定した。   Furthermore, a BAM sample s2 having a primary particle diameter D1 of 3.7 μm, a secondary particle diameter D2 of 7.0 μm, and a ratio R = D2 / D1 = 1.9 (1.89) was prepared. The primary particle size is a value measured by the air permeation method at the manufacturer, and the secondary particle size is a value measured by the applicant's laser method. Although the primary particle diameter was different, a lamp using the sample s2 was also prepared and the luminance was measured.

図2Bは、サンプルs2を用いたランプの輝度を標準品rを用いたランプの輝度と比較して示すグラフである。サンプルs2を用いたランプは、膜厚約19μmから約36μm以上の領域において,標準品rを用いたランプより高い輝度を示した。輝度の向上は明らかであるが、一次粒子径が異なるので単純に比較することはできない。   FIG. 2B is a graph showing the luminance of the lamp using the sample s2 compared with the luminance of the lamp using the standard product r. The lamp using the sample s2 showed higher brightness than the lamp using the standard product r in the region having a film thickness of about 19 μm to about 36 μm or more. The improvement in brightness is obvious, but the primary particle size is different and cannot simply be compared.

別のメーカにより更に種々のBAMサンプルを準備した。

Figure 2007115467
Various BAM samples were prepared by different manufacturers.
Figure 2007115467

なお、一次粒子径はメーカでの空気透過法による測定値、二次粒子径は出願人によるレーザ法の測定値である。 The primary particle size is a value measured by an air permeation method at the manufacturer, and the secondary particle size is a value measured by the applicant's laser method.

図3は、これらのBAMサンプルで単色の蛍光体塗布層を形成し、単色蛍光体塗布膜の輝度を測定した結果を示す。標準品r11の輝度が膜厚16.8μmで最大値137cd/mであった。標準品r11と同等の一次粒子径3μm前後のサンプルs11、s12、s13を見ると、最大輝度はサンプルs11(R=1.4)では膜厚10.7μmで134cd/m、サンプルs12(R=1.5)では膜厚14.1μmで136cd/m、サンプルs13(R=3.3)では膜厚24.9μmで132cd/mであった。輝度の観点から見ると、比Rが1.4、1.5および3.3はあまり良くないと考えられる。 FIG. 3 shows the results of measuring the luminance of the monochromatic phosphor coating film after forming a monochromatic phosphor coating layer with these BAM samples. The luminance of the standard product r11 was 16.8 μm and the maximum value was 137 cd / m 2 . When the samples s11, s12, and s13 having a primary particle diameter of about 3 μm equivalent to the standard product r11 are seen, the maximum luminance is 134 cd / m 2 with a film thickness of 10.7 μm and the sample s12 (R = 1) in the sample s11 (R = 1.4) .5) was 136 cd / m 2 at a film thickness of 14.1 μm, and Sample s13 (R = 3.3) was 132 cd / m 2 at a film thickness of 24.9 μm. From the viewpoint of luminance, the ratios R of 1.4, 1.5 and 3.3 are considered not so good.

一次粒子径が4μm前後のサンプルs21、s22、s23は、全体的に一次粒子径が3μm前後のサンプルs11、s12、s13より高い最大輝度を示すようである。一次粒子径は大きいほど輝度が高くなるとの一般的知見に合致する。   Samples s21, s22, and s23 having a primary particle size of about 4 μm seem to exhibit a maximum brightness higher than samples s11, s12, and s13 having a primary particle size of about 3 μm as a whole. This is consistent with the general knowledge that the larger the primary particle size, the higher the luminance.

更に詳しく見ると、サンプルs21(比R=1.3)は、膜厚10.8μmで輝度141cd/m、サンプルs22(比R=1.7)は膜厚15.8μmで輝度144cd/m、と標準品r11を越える輝度を示した。サンプルs23(R=3.8)では、膜厚36.8μmで輝度136cd/mであった。輝度の観点から、比R=1.3,1.7は良好な結果をもたらすと考えられる。比R=3.8はあまり良くないと考えられる。 More specifically, sample s21 (ratio R = 1.3) has a film thickness of 10.8 μm and a luminance of 141 cd / m 2 , and sample s22 (ratio R = 1.7) has a film thickness of 15.8 μm and a luminance of 144 cd / m 2. 2 and a brightness exceeding the standard product r11. In sample s23 (R = 3.8), the film thickness was 36.8 μm and the luminance was 136 cd / m 2 . From the brightness point of view, the ratio R = 1.3, 1.7 is considered to give good results. The ratio R = 3.8 is considered not very good.

図4は、これら蛍光体塗布膜の透過率を測定した結果を示す。透過率が低ければ、蛍光体で発光した光が充分外部に取り出せないことになる。横軸が膜厚を単位μmで示し、縦軸が可視領域ほぼ中央の波長550nmでの光透過率を単位%で示す。各曲線に付した符号は、図3と同じサンプルの符号である。膜厚が厚くなると、透過率が指数関数的に低下するのは、吸収のある膜の透過率の一般的な特性である。標準品r11の特性より高い透過率を示すのは、高透過率から並べて、s23(比R=3.8)、s13(比R=3.3)、s22(比R=1.7)である。標準品より透過率が低くなるのが、s12(比R=1.5)、s21(比R=1.3)、s11(比R=1.4)である。サンプルs11〜s23に関しては、若干の乱れはあるが、全体的に二次粒子径の一次粒子径に対する比R=D2/D1が減少すると共に透過率が減少している。標準品r11(比R=2.1)の透過率はサンプルs12(比R=1.5)と同等程度である。透過率の観点からは、二次粒子径の一次粒子径に対する比R=D2/D1を1.7以上にすることが望ましいであろう。   FIG. 4 shows the results of measuring the transmittance of these phosphor coating films. If the transmittance is low, the light emitted from the phosphor cannot be sufficiently extracted outside. The horizontal axis indicates the film thickness in units of μm, and the vertical axis indicates the light transmittance at a wavelength of 550 nm almost in the center of the visible region in unit%. The code | symbol attached | subjected to each curve is the code | symbol of the same sample as FIG. It is a general characteristic of the transmittance of an absorbing film that the transmittance decreases exponentially as the film thickness increases. The transmittance higher than the characteristic of the standard product r11 is shown by s23 (ratio R = 3.8), s13 (ratio R = 3.3), and s22 (ratio R = 1.7) in order from the high transmittance. is there. The transmittance is lower than the standard product in s12 (ratio R = 1.5), s21 (ratio R = 1.3), and s11 (ratio R = 1.4). Regarding the samples s11 to s23, although there is some disturbance, the ratio R = D2 / D1 of the secondary particle diameter to the primary particle diameter decreases as a whole and the transmittance decreases. The transmittance of the standard product r11 (ratio R = 2.1) is comparable to that of the sample s12 (ratio R = 1.5). From the viewpoint of transmittance, it is desirable that the ratio R = D2 / D1 of the secondary particle diameter to the primary particle diameter is 1.7 or more.

これらの結果を総合すると、蛍光体の発光から得られる輝度、外部取り出し効率の観点から、BAM蛍光体の二次粒子径の一次粒子径に対する比R=D2/D1は1.7〜2.0の範囲に設定することが好ましい。   Summing up these results, the ratio R = D2 / D1 of the secondary particle diameter of the BAM phosphor to the primary particle diameter is 1.7 to 2.0 from the viewpoint of the luminance obtained from the light emission of the phosphor and the external extraction efficiency. It is preferable to set in the range.

以上、実施例に沿って本発明を説明したが、本発明はこれらに限定されるものではない。種々の変更、改良、組み合わせなどが可能なことは、当業者に自明であろう。   As mentioned above, although this invention was demonstrated along the Example, this invention is not limited to these. It will be apparent to those skilled in the art that various modifications, improvements, combinations, and the like can be made.

図1A,1Bは、冷陰極放電ランプの構成を概略的に示す断面図、その一部拡大図である。1A and 1B are a cross-sectional view schematically showing a configuration of a cold cathode discharge lamp, and a partially enlarged view thereof. 図2A,2Bは、青色蛍光体BAMのみ、二次粒子径の一次粒子径に対する比Rを標準品rより小さくし、緑色蛍光体、赤色蛍光体は同一の蛍光体を用いたサンプルs1、s2の膜厚に対する輝度を、標準品rの輝度と対比して示すグラフである。In FIGS. 2A and 2B, only the blue phosphor BAM, the ratio R of the secondary particle diameter to the primary particle diameter is made smaller than that of the standard product r, and the samples s1, s2 using the same phosphor for the green phosphor and the red phosphor It is a graph which shows the brightness | luminance with respect to the film thickness of contrast with the brightness | luminance of the standard goods r. 図3は、青色蛍光体についてのみ、標準品r11、サンプルs11〜s13、s21〜s23の膜厚に対する輝度の変化を示すグラフである。FIG. 3 is a graph showing the change in luminance with respect to the film thickness of the standard product r11, samples s11 to s13, and s21 to s23 only for the blue phosphor. 図4は、青色蛍光体についてのみ、標準品r11、サンプルs11〜s13、s21〜s23の膜厚に対する透過率の変化を示すグラフである。FIG. 4 is a graph showing a change in transmittance with respect to the film thickness of the standard product r11, samples s11 to s13, and s21 to s23 only for the blue phosphor.

符号の説明Explanation of symbols

11 ガラス管
12 蛍光体被膜
13 金属電極
14 導入線
16 金属物質
r 標準品
s サンプル
11 Glass tube 12 Phosphor coating 13 Metal electrode 14 Lead wire 16 Metal material r Standard product s Sample

Claims (2)

放電管と、
前記放電管内に設けられた紫外線源と、
前記放電管内壁に塗布された蛍光体層であって、青色蛍光体として、一次粒子の集まりである二次粒子の径の一次粒子径に対する比が1.7〜2.0の範囲内である2価ユーロピウム付活アルミン酸バリウム・マグネシウムBaMgAl1017:Eu+2を含む蛍光体層と、
を有する放電ランプ。
A discharge tube;
An ultraviolet light source provided in the discharge tube;
The phosphor layer applied to the inner wall of the discharge tube, and as a blue phosphor, the ratio of the diameter of secondary particles, which are a collection of primary particles, to the primary particle diameter is in the range of 1.7 to 2.0. A phosphor layer containing divalent europium activated barium aluminate / magnesium BaMgAl 10 O 17 : Eu +2 ;
Having a discharge lamp.
前記蛍光体層が、さらに、緑色蛍光体として、セリウム・テルビウム付活リン酸ランタン蛍光体LaPO:Ce,Tb,赤色蛍光体として、ユーロピウム付活酸化イットリウム蛍光体Y:Euを含む請求項1記載の放電ランプ。 The phosphor layer further contains, as a green phosphor, a cerium / terbium-activated lanthanum phosphate phosphor LaPO 4 : Ce, Tb, and a red phosphor as a europium-activated yttrium oxide phosphor Y 2 O 3 : Eu. The discharge lamp according to claim 1.
JP2005304212A 2005-10-19 2005-10-19 Discharge lamp Pending JP2007115467A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005304212A JP2007115467A (en) 2005-10-19 2005-10-19 Discharge lamp

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005304212A JP2007115467A (en) 2005-10-19 2005-10-19 Discharge lamp

Publications (1)

Publication Number Publication Date
JP2007115467A true JP2007115467A (en) 2007-05-10

Family

ID=38097472

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005304212A Pending JP2007115467A (en) 2005-10-19 2005-10-19 Discharge lamp

Country Status (1)

Country Link
JP (1) JP2007115467A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010126869A1 (en) * 2009-05-01 2010-11-04 Osram Sylvania Inc. Phosphor blend and fluorescent lamp containing same

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000087025A (en) * 1998-09-10 2000-03-28 Noritake Co Ltd Phosphor layer, phosphor paste, and production of phosphor paste
JP2000230173A (en) * 1999-02-10 2000-08-22 Matsushita Electric Ind Co Ltd Production of fluophor for plasma display, production of plasma display panel, and the resultant plasma display panel
JP2004162057A (en) * 2002-10-25 2004-06-10 Mitsubishi Chemicals Corp Phosphor
JP2006202515A (en) * 2005-01-18 2006-08-03 Harison Toshiba Lighting Corp Cold cathode fluorescent lamp
JP2007012470A (en) * 2005-06-30 2007-01-18 Harison Toshiba Lighting Corp Fluorescent lamp

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000087025A (en) * 1998-09-10 2000-03-28 Noritake Co Ltd Phosphor layer, phosphor paste, and production of phosphor paste
JP2000230173A (en) * 1999-02-10 2000-08-22 Matsushita Electric Ind Co Ltd Production of fluophor for plasma display, production of plasma display panel, and the resultant plasma display panel
JP2004162057A (en) * 2002-10-25 2004-06-10 Mitsubishi Chemicals Corp Phosphor
JP2006202515A (en) * 2005-01-18 2006-08-03 Harison Toshiba Lighting Corp Cold cathode fluorescent lamp
JP2007012470A (en) * 2005-06-30 2007-01-18 Harison Toshiba Lighting Corp Fluorescent lamp

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010126869A1 (en) * 2009-05-01 2010-11-04 Osram Sylvania Inc. Phosphor blend and fluorescent lamp containing same
JP2012525478A (en) * 2009-05-01 2012-10-22 オスラム・シルバニア・インコーポレイテッド Phosphor mixtures and fluorescent lamps containing the same
US10066162B2 (en) 2009-05-01 2018-09-04 Ledvance Llc Phosphor blend and fluorescent lamp containing same

Similar Documents

Publication Publication Date Title
JP5329759B2 (en) Method for evaluating and selecting phosphor, LED lamp, and method for manufacturing light emitting device
JP4905627B2 (en) Green phosphor, white LED, backlight using the same, and liquid crystal display device
JPWO2011027511A1 (en) White LED, backlight using the same, and liquid crystal display device
JPH11199867A (en) Fluorescent body, fluorescent material containing the same and their production
JP2014221890A (en) Phosphor, phosphor-containing composition, light-emitting device, image display device, and lighting device
JP2007115467A (en) Discharge lamp
JP2002038150A (en) Vacuum ultraviolet ray-exited phosphor and light- emitting device using the same
WO2006051979A1 (en) Fluorescent lamp
JP2001335777A (en) Vacuum ultraviolet ray-excited fluorophor and light emitting device using the same
JP4272973B2 (en) Vacuum ultraviolet light excited green phosphor material and light emitting device using the same
JP4517783B2 (en) Rare earth boroaluminate phosphor and light emitting device using the same
JP4329651B2 (en) Fluorescent lamp
JP2008050390A (en) Vacuum ultraviolet excitation aluminate phosphor and vacuum ultraviolet excitation light emitting device using the same
JP2009087627A (en) Fluorescent lamp and luminaire
JP2001172625A (en) Vacuum ultraviolet excitable fluorescent substance and light emitting device using the same
JP2010192254A (en) Cold-cathode fluorescent lamp, and aluminate-based phosphor
CN101271823A (en) Fluorescence lamp and its manufacture method
JP2013100388A (en) Fluorescent lamp small in used amount of rare earth element and phosphor to be used for the same
JP2001303047A (en) Vacuum ultraviolet exciting fluorescent substance and emission device using the same
JP4517781B2 (en) Rare earth boroaluminate phosphor and light emitting device using the same
JP2009102524A (en) Fluorescent body and fluorescent lamp using the same
US20170076933A1 (en) Low-pressure discharge lamp with fluorescent particles having a small particle size
JP2009280773A (en) Phosphor
JP2002038147A (en) Green phosphor and light-emitting device using the same
JP2008037883A (en) Rare earth phosphovanadate fluorescent substance and fluorescent lamp by using the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20081003

Free format text: JAPANESE INTERMEDIATE CODE: A621

A977 Report on retrieval

Effective date: 20100913

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100921

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110208