JP2007114547A - Microscope apparatus - Google Patents

Microscope apparatus Download PDF

Info

Publication number
JP2007114547A
JP2007114547A JP2005306772A JP2005306772A JP2007114547A JP 2007114547 A JP2007114547 A JP 2007114547A JP 2005306772 A JP2005306772 A JP 2005306772A JP 2005306772 A JP2005306772 A JP 2005306772A JP 2007114547 A JP2007114547 A JP 2007114547A
Authority
JP
Japan
Prior art keywords
image
magnification
projection magnification
test object
projection
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005306772A
Other languages
Japanese (ja)
Inventor
Yasuo Suzuki
康夫 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nikon Corp
Original Assignee
Nikon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikon Corp filed Critical Nikon Corp
Priority to JP2005306772A priority Critical patent/JP2007114547A/en
Publication of JP2007114547A publication Critical patent/JP2007114547A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Microscoopes, Condenser (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a microscope apparatus capable of efficiently measuring an inspection object. <P>SOLUTION: The microscope apparatus 1 includes: an imager 7 for imaging the inspection object 12 through an objective lens 5 of prescribed magnification; a variable magnification optical system 6 for varying the projection magnification of the inspection object image from the objective lens 5 to the imager 7; a controller 8 for controlling the variable magnification optical system 6 and controlling the imager 7 while varying the projection magnification so as to continuously image the inspection object image; an image processor 9 for joining the inspection object images while distorting the inspection object images so that the visual field center part may have the highest projection magnification and the projection magnification becomes lower as it comes closer to the peripheral visual field from the center part, and forming one synthesized image; and a monitor apparatus 10 for displaying the synthesized image. The monitor apparatus 10 is configured to distort respective inspection object images so that the projection magnification may become nearly the same on the vicinity of the joint in the case of joining the inspection object images of different projection magnifications. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、ズーム式やターレット式等の変倍光学系を有する顕微鏡装置に関する。   The present invention relates to a microscope apparatus having a variable magnification optical system such as a zoom type or a turret type.

被検物に光源からの光を照射して映し出される画像の画像処理を行い、被検物の表面高さや形状の測定等を行う顕微鏡装置として、例えば、モニタ装置に表示された被検物の表面上に座標入力画面を重ね合わせて座標データを入力し、その座標で指示された被検部位の高さの情報を取得するものがある(例えば、特許文献1を参照)。
特開平7−159128号公報
As a microscope apparatus that performs image processing of an image displayed by irradiating light from a light source onto a test object and measures the surface height and shape of the test object, for example, a test object displayed on a monitor device There is a technique in which coordinate data is input by superimposing a coordinate input screen on the surface, and information on the height of the test site indicated by the coordinates is acquired (for example, see Patent Document 1).
JP 7-159128 A

ところで、上記のような測定顕微鏡装置では、測定時には、一般に高倍率で観察するため、1回の撮像で得られる撮像視野は小さく、被検物面の測定すべき被検部位が広範囲に点在する場合など測定位置が探しづらかった。このため、従来の顕微鏡装置では、測定者はまず低倍率の対物レンズを選択して、この低倍率下でステージや被検物などを調整して被検物の最適な視野を得た後に、対物レンズを高倍率に切り換えて被検物の高さや形状測定を行わねばならず、測定作業に多くの手間と時間が必要となり、使い勝手が悪いという問題点があった。   By the way, in the measurement microscope apparatus as described above, since observation is generally performed at a high magnification at the time of measurement, an imaging field of view obtained by one imaging is small, and a wide range of test sites to be measured on the test object surface is scattered. It was difficult to find the measurement position. For this reason, in a conventional microscope apparatus, the measurer first selects a low-magnification objective lens, and after adjusting the stage and the specimen under this low magnification to obtain the optimum field of view of the specimen, The objective lens must be switched to a high magnification to measure the height and shape of the test object, which requires a lot of labor and time for measurement work, and is not easy to use.

本発明は、このような問題に鑑みてなされたものであり、効率良く被検物の測定ができる顕微鏡装置を提供することを目的とする。   The present invention has been made in view of such problems, and an object of the present invention is to provide a microscope apparatus that can efficiently measure a test object.

このような目的を達成するため、本発明は、所定の倍率の対物レンズを介して被検物像を撮像する撮像素子と、前記対物レンズからの前記被検物像の前記撮像素子への投影倍率を可変させる変倍光学系と、前記変倍光学系を制御して投影倍率を変更させながら、前記撮像素子を制御して連続的に被検物像を撮像させる制御手段(例えば、本実施形態における制御装置8)と、視野中央部が最も投影倍率が高く、該中央部から視野周辺部に向かって投影倍率が低くなるように、前記投影倍率の異なる複数の前記被検物像に歪みを加えてこれらを繋ぎ合わせ、一つの合成画像を作成する合成手段(例えば、本実施形態における画像処理装置9)と、前記合成画像を表示する表示手段(例えば、本実施形態におけるモニタ装置10)とを備え、前記合成手段は、互いに異なる投影倍率の前記被検物像を繋ぎ合わせる際に、繋ぎ目近傍で投影倍率がほぼ一致するように、それぞれの前記被検物像に歪みを加えるように構成される。   In order to achieve such an object, the present invention provides an image sensor that captures an object image through an objective lens having a predetermined magnification, and a projection of the object image from the objective lens onto the image sensor. A variable magnification optical system that changes the magnification, and a control unit that controls the image pickup element and continuously captures an object image while changing the projection magnification by controlling the variable magnification optical system (for example, the present embodiment) The control device 8) in the embodiment and the central portion of the field of view have the highest projection magnification, and the projection magnification decreases from the center portion toward the peripheral portion of the field of view. Are combined to create one composite image (for example, the image processing device 9 in the present embodiment) and display means for displaying the composite image (for example, the monitor device 10 in the present embodiment). And comprising Forming means, when joining the test object images having different projection magnification, so that the projection magnification is substantially coincident with the joint near configured to apply the distortion to each of said test object image.

なお、前記合成手段は、視野中央部が最も投影倍率が高く、該中央部から視野周辺部に向かって前記投影倍率が低くなるように、同心円状に、前記被検物像に歪みを加えてこれらを繋ぎ合わせ、一つの合成画像を作成することが望ましい。   The synthesizing means adds a distortion to the test object image concentrically so that the central portion of the visual field has the highest projection magnification and the projection magnification decreases from the central portion toward the peripheral portion of the visual field. It is desirable to connect these to create a single composite image.

また、前記合成手段は、視野中央部が最も投影倍率が高く、該中央部から視野周辺部に向かって前記投影倍率が低くなるように、同心四角形状に、前記被検物像に歪みを加えてこれらを繋ぎ合わせ、一つの合成画像を作成することが望ましい。   Further, the synthesizing unit adds distortion to the test object image in a concentric quadrangular shape so that the projection magnification is highest at the center of the visual field and the projection magnification decreases from the central portion toward the peripheral portion of the visual field. It is desirable to connect them together to create a single composite image.

また、前記合成手段は、視野中央部に配置する、前記最も投影倍率が高い被検物像については歪みを加えないことが望ましい。   Further, it is desirable that the synthesizing means does not add distortion to the test object image arranged at the center of the visual field and having the highest projection magnification.

以上説明したように、本発明によれば、測定者は、一つの画面表示から、視野周辺部を見れば被検物の全体状態を容易に把握でき、測定場所を速やかに探し出すことができるととともに、視野中心部を見れば高い精度で焦点を合わすことができ、効率良く被検物の測定できる顕微鏡装置を実現できた。   As described above, according to the present invention, the measurer can easily grasp the entire state of the test object by looking at the periphery of the visual field from one screen display, and can quickly find the measurement location. At the same time, if the center of the visual field is viewed, the microscope can be focused with high accuracy, and a microscope apparatus capable of measuring the test object efficiently can be realized.

以下、図面を参照して本発明の好ましい実施形態について説明する。図1に示すように、本発明の顕微鏡装置1は、ランプ光源2と、コレクタレンズからなる照明光学系3と、ハーフミラー4と、所定倍率を有する対物レンズからなる結像光学系5と、ズームレンズ方式の変倍機構を有する変倍光学系6と、CCDなどの撮像素子7と、制御装置8と、画像処理装置9と、モニタ装置10と、XYステージ11とから構成される。   Hereinafter, preferred embodiments of the present invention will be described with reference to the drawings. As shown in FIG. 1, a microscope apparatus 1 of the present invention includes a lamp light source 2, an illumination optical system 3 composed of a collector lens, a half mirror 4, an imaging optical system 5 composed of an objective lens having a predetermined magnification, The zoom lens system includes a zooming optical system 6 having a zooming mechanism, an imaging device 7 such as a CCD, a control device 8, an image processing device 9, a monitor device 10, and an XY stage 11.

変倍光学系6は、結像光学系5(対物レンズ)からの被検物12の像(以下、被検物像)の撮像素子7への投影倍率を可変させるためのものである。なお、結像レンズ系5と変倍光学系6は、テレセントリック光学系を構成している。   The variable magnification optical system 6 is for varying the projection magnification of the image of the test object 12 (hereinafter referred to as test object image) from the imaging optical system 5 (objective lens) onto the image sensor 7. The imaging lens system 5 and the variable magnification optical system 6 constitute a telecentric optical system.

制御装置8は、変倍光学系6を制御して投影倍率を低倍から高倍に変更させながら、撮像素子7を制御して、連続的に被検物12の像を撮像させるためのものである。   The control device 8 controls the imaging element 7 while continuously changing the projection magnification from low magnification to high magnification by controlling the variable magnification optical system 6 so as to continuously capture the image of the test object 12. is there.

画像処理装置9は、図2(A)に示すように、(モニタ装置10の表示画面の)視野中央部10aが最も投影倍率が高く、該中央部10aから視野周辺部10b,10cに向かって投影倍率が低くなるように、被検物像に歪みを加えてこれらを繋ぎ合わせ、一つの合成画像を作成するためのものである。より詳しくは、画像処理装置9は、制御装置8により撮像素子7の撮像面上にて常に低倍から高倍に投影倍率が変化する被検物像を定期的に収集し、離散的な数種類の投影倍率の被検物像を得ている。そして、上記のように収集した、互いに異なる投影倍率の被検物像を繋ぎ合わせる際に、それぞれの繋ぎ目近傍で投影倍率がほぼ一致するように、各被検物像に歪みを加えて繋ぎ合わせ、一つの合成画像を作成している。なお、本実施形態では、視野中央部に配置する、最も投影倍率が高い被検物像10aについては歪みを加えない。   As shown in FIG. 2A, the image processing device 9 has the highest projection magnification in the visual field center portion 10a (of the display screen of the monitor device 10), and extends from the central portion 10a toward the visual field peripheral portions 10b and 10c. This is for creating a single composite image by adding distortion to the test object image and connecting them so that the projection magnification is low. More specifically, the image processing device 9 periodically collects test object images whose projection magnification changes constantly from low to high on the imaging surface of the image sensor 7 by the control device 8, and includes several discrete types. An object image having a projection magnification is obtained. Then, when connecting the object images with different projection magnifications collected as described above, the respective object images are distorted and connected so that the projection magnifications are almost the same in the vicinity of each joint. Together, one composite image is created. In the present embodiment, distortion is not applied to the test object image 10a arranged at the center of the visual field and having the highest projection magnification.

ここで、本実施形態では、画像処理装置9は、同心円状に、視野中央部10aが最も投影倍率が高く、該中央部10aから視野周辺部10b,10cに向かって投影倍率が低くなるように、被検物像に歪みを加えてこれらを繋ぎ合わせて、一つの合成画像が作成されているが(図2(A)参照)、これに限定されるものではなく、例えば、同心四角形状であってもよい。   Here, in the present embodiment, the image processing apparatus 9 is concentrically arranged so that the central field of view 10a has the highest projection magnification, and the projection magnification decreases from the central part 10a toward the visual field peripheral parts 10b and 10c. Although a single composite image is created by adding distortion to the object image and joining them together (see FIG. 2 (A)), the present invention is not limited to this. There may be.

モニタ装置10は、画像処理装置9により作成された合成画像を表示するためのものである。ランプ光源2と、照明光学系(コレクタレンズ)3と、ハーフミラー4と、結像光学系(対物レンズ)5と、変倍光学系6及び撮像素子7は、顕微鏡1の鏡筒部1a内に備えられ、ベース部1bに対してZ方向(矢印Cが示す方向(高さ方向))に移動可能である。   The monitor device 10 is for displaying the composite image created by the image processing device 9. A lamp light source 2, an illumination optical system (collector lens) 3, a half mirror 4, an imaging optical system (objective lens) 5, a variable magnification optical system 6, and an image sensor 7 are provided in a lens barrel 1 a of the microscope 1. And is movable in the Z direction (the direction indicated by the arrow C (the height direction)) with respect to the base portion 1b.

このような構成の顕微鏡装置1では、落射照明が使用され、ランプ光源2から出射した照明光が、コレクタレンズからなる照明光学系3を介し、ハーフミラー4に照射される。ハーフミラー4は、入ってきた照射光のうち約半分の光を透過して残りの光を反射するものであり、該ハーフミラー4で反射された照明光は、対物レンズからなる結像光学系5により、XYステージ11に載置された被検物12の視野範囲に集光されて照射される(いわゆるケーラー照明)。   In the microscope apparatus 1 having such a configuration, epi-illumination is used, and illumination light emitted from the lamp light source 2 is applied to the half mirror 4 via the illumination optical system 3 including a collector lens. The half mirror 4 transmits about half of the incident irradiation light and reflects the remaining light. The illumination light reflected by the half mirror 4 is an imaging optical system including an objective lens. 5, the light is condensed and irradiated on the field of view of the test object 12 placed on the XY stage 11 (so-called Koehler illumination).

被検物12に集光照射された光は、該被検物12の表面で反射され、再び結像光学系(対物レンズ)5に入射して集光され、ハーフミラー4を透過し、変倍光学系6を通って、撮像素子7へ進み、該素子7の撮像面上にて結像する。そして、撮像素子7では、光の強度(明るさ)を検出して、この光の強度に応じて撮像信号を画像処理装置9に出力する。   The light focused and irradiated on the test object 12 is reflected by the surface of the test object 12, is incident again on the imaging optical system (objective lens) 5, is collected, passes through the half mirror 4, and is changed. The image passes through the double optical system 6 to the image pickup device 7 and forms an image on the image pickup surface of the device 7. The image sensor 7 detects the intensity (brightness) of light and outputs an image signal to the image processing device 9 according to the intensity of the light.

被検物12は、XYステージ11に載置され、結像光学系(対物レンズ)5の下方に配置され、該ステージ11のX方向(矢印Aが示す方向),Y方向(矢印Bが示す方向)の位置を調節することにより、測定対象部位を視野に入れる。   The test object 12 is placed on the XY stage 11 and disposed below the imaging optical system (objective lens) 5, and the X direction (direction indicated by the arrow A) and Y direction (shown by the arrow B) of the stage 11. By adjusting the (direction) position, the region to be measured is brought into the field of view.

ここで、図2(B)に基づき、画像処理装置9(マイクロプロセッサ)の画像合成処理について説明する。まず、変倍光学系6を低倍率の光学系にセットして、高倍率に向けて駆動する(ステップS1)。次に、予めセットしておいた複数の所定倍率になったことを検出し、撮像素子7は所定のレイトで画像を取得する(ステップS2)。なお、変倍光学系6がズームレンズ方式の場合には、その変倍機構にセンサを設けておき、所定の倍率を検知できる。また、ターレット方式の場合には、切換機構31の各倍率レンズに相当する位置にセンサを設け、所定倍率を検知できる。   Here, the image composition processing of the image processing device 9 (microprocessor) will be described with reference to FIG. First, the variable magnification optical system 6 is set in a low magnification optical system and driven toward a high magnification (step S1). Next, it is detected that a plurality of predetermined magnifications are set in advance, and the image sensor 7 acquires an image at a predetermined rate (step S2). When the zoom optical system 6 is a zoom lens system, a sensor is provided in the zoom mechanism so that a predetermined magnification can be detected. In the case of the turret method, a sensor is provided at a position corresponding to each magnification lens of the switching mechanism 31 so that a predetermined magnification can be detected.

続けて、上記ステップS2で取得された画像データを画像処理装置9の記憶装置に順次記憶し(ステップS3)、変倍光学系6が所定の高倍率になったか否かを判断する(ステップS4)。ここで、変倍光学系6が所定の高倍率になっていないと判断された場合は、ステップS2に戻る。一方、変倍光学系6が所定の高倍率になったと判断された場合は、ステップS5に進み、画像処理装置9の記憶装置内に記憶された低倍から高倍の画像データに基づいて1枚の画像を合成処理する(ステップS5)。ステップS5について、より詳しく説明すると、画像処理装置9では、図2(A)に示すように、視野中央部10aが最も投影倍率が高く、該中央部10aから視野周辺部10b,10cに向かって投影倍率が低くなるように、同心円状に且つ繋ぎ目近傍では投影倍率がほぼ一致するように、被検物像に歪みを加えてこれらを繋ぎ合わせ、一つの合成画像が作成される。このように作成された合成画像は、上記ステップS1からステップS5の処理が繰り返して行われ、モニタ装置10にて順次画面表示されて(ステップS6)、本処理は終了する。   Subsequently, the image data acquired in step S2 is sequentially stored in the storage device of the image processing device 9 (step S3), and it is determined whether or not the variable magnification optical system 6 has a predetermined high magnification (step S4). ). Here, if it is determined that the variable magnification optical system 6 does not have a predetermined high magnification, the process returns to step S2. On the other hand, if it is determined that the variable magnification optical system 6 has reached a predetermined high magnification, the process proceeds to step S5, and one sheet is obtained based on the low-magnification to high-magnification image data stored in the storage device of the image processing device 9. Are synthesized (step S5). Step S5 will be described in more detail. In the image processing device 9, as shown in FIG. 2A, the visual field center portion 10a has the highest projection magnification, and from the central portion 10a toward the visual field peripheral portions 10b and 10c. In order to reduce the projection magnification, the test object images are distorted and joined together so that the projection magnifications are concentric and substantially coincide with each other in the vicinity of the joint, thereby creating one composite image. The composite image created in this way is repeatedly subjected to the processing from step S1 to step S5 and is sequentially displayed on the monitor device 10 (step S6), and this processing ends.

本実施形態の変倍光学系6は、低倍率の光学系に設定されているときには低NA(開口数NA)の光学性能を有しており、また高倍率の光学系に設定されているときには低倍率時に比べて相対的に高NAの光学性能を有するようにレンズ系が構成されている。そのため、モニタ装置10上の合成画像は、該合成画像の視野周辺部が低倍率(変倍光学系6の低倍率)の画像に対応することになる。その結果、合成画像の視野周辺部10b,10cは低NAのため焦点深度が深く、その周辺部の画像がフォーカスインジケータの役割を果たすことになり、合成画像の高倍率画像部分(視野中心部10a)のピント調整が容易になる。なお、この鏡筒部1aにおけるZ軸方向のピント調整は、測定者がマニュアル操作で行ってもよいし、電動により行ってもよい。   The variable magnification optical system 6 of the present embodiment has a low NA (numerical aperture NA) optical performance when set to a low magnification optical system, and when set to a high magnification optical system. The lens system is configured to have a relatively high optical performance compared to that at the time of low magnification. For this reason, the synthesized image on the monitor device 10 corresponds to an image having a low-magnification (low-magnification optical system 6 magnification) in the periphery of the visual field of the synthesized image. As a result, the visual field peripheral portions 10b and 10c of the composite image have a low depth of focus, and thus the depth of focus is deep, and the peripheral image plays the role of a focus indicator. ) Is easy to adjust. The focus adjustment in the Z-axis direction in the lens barrel 1a may be performed manually by the measurer or electrically.

測定者は、上記のように作成された合成画像が映るモニタ装置10の画面を見て、視野周辺部から被検物12の全体状態を容易に把握して、XYステージ11をXY方向に移動して、測定場所を速やかに探し出すことができる。さらに、同じ画面の視野中心部から、鏡筒部1aをZ方向に移動して、高い精度で焦点を合わすことができる。そして、被検物12の視野中心部10aにおいて、パターンの幅や座標位置情報などのデータを取得し、形状等の公知の形状測定ができる。このように、本発明の顕微鏡装置1では、効率良く被検物12の測定ができる。   The measurer looks at the screen of the monitor device 10 on which the composite image created as described above appears, and easily grasps the entire state of the test object 12 from the periphery of the visual field, and moves the XY stage 11 in the XY directions. Thus, the measurement location can be quickly found. Furthermore, it is possible to focus with high accuracy by moving the lens barrel 1a in the Z direction from the center of the visual field on the same screen. And in the visual field center part 10a of the to-be-tested object 12, data, such as a pattern width and coordinate position information, are acquired, and well-known shape measurements, such as a shape, can be performed. Thus, in the microscope apparatus 1 of the present invention, the test object 12 can be measured efficiently.

以上のような本発明は、上記実施形態に限定されるものではなく、本発明の要旨を逸脱しない範囲であれば適宜改良可能である。以下、上記実施形態と同じ機能を有するものについては、同じ付番をしてその説明を省略する。   The present invention as described above is not limited to the above embodiment, and can be improved as appropriate without departing from the gist of the present invention. Hereinafter, those having the same functions as those of the above-described embodiment are denoted by the same reference numerals and description thereof is omitted.

例えば、本実施形態の変倍光学系6には、ズームレンズ方式の変倍機構を有して構成されているが(図2(A)参照)、これに限定されるものではなく、図3に示すように、ターレット式の切り換え機構31を有して構成してもよい。   For example, the zoom optical system 6 of the present embodiment is configured to have a zoom lens type zoom mechanism (see FIG. 2A), but the present invention is not limited to this. As shown, the turret type switching mechanism 31 may be provided.

また、図4に示すように、2つのハーフミラー32,33を配置して、高倍率用(図4中で「×10領域」で示す部分)の第1の撮像素子34と、低倍率用(図4中で「×8領域」〜「×1領域」で示す部分)の第2の撮像素子35とを分けて構成してもよい。すなわち、ランプ光源(図示略)から出射した光は、結像光学系(対物レンズ)5により被検物12の視野範囲に集光されて照射され、該被検物12の表面で反射した光は、再び結像光学系5に入射して集光され、第1のハーフミラー32を透過するか反射される。ここで第1のハーフミラー32を透過した光は、投影倍率を所定の高倍率にする光学系36を通り、視野中心部に表示するための画像を得るための第1の撮像素子34へと進むように構成する。一方、第1のハーフミラー32で反射した光は、第2のハーフミラー33を透過し、投影倍率を所定の低倍率に可変する変倍光学系37に入射し、視野中心部から周辺部に表示するための画像を得るための第2の撮像素子35へと進むように構成してもよい。このような構成により、本機構は、上記実施形態と比べて若干複雑になるものの、投影倍率の高い領域における精度をより向上させることができる。   Also, as shown in FIG. 4, two half mirrors 32 and 33 are arranged to provide a first image sensor 34 for high magnification (portion indicated by “× 10 region” in FIG. 4) and a low magnification. The second image sensor 35 in the portion (indicated by “× 8 region” to “× 1 region” in FIG. 4) may be configured separately. That is, the light emitted from the lamp light source (not shown) is condensed by the imaging optical system (objective lens) 5 on the field of view of the test object 12 and is reflected by the surface of the test object 12. Is incident on the imaging optical system 5 again and collected, and is transmitted through or reflected by the first half mirror 32. Here, the light transmitted through the first half mirror 32 passes through the optical system 36 for setting the projection magnification to a predetermined high magnification, and then to the first image sensor 34 for obtaining an image to be displayed at the center of the visual field. Configure to proceed. On the other hand, the light reflected by the first half mirror 32 is transmitted through the second half mirror 33 and enters the variable magnification optical system 37 whose projection magnification is variable to a predetermined low magnification. You may comprise so that it may progress to the 2nd image pick-up element 35 for obtaining the image for displaying. With this configuration, the mechanism can be more complicated than the above embodiment, but can further improve the accuracy in a region with a high projection magnification.

なお、図4に示す実施形態では、変倍光学系37にズーム式の変倍機構を有して構成されているが、これに限定されるものではなく、例えば、図5に示すように、ターレット式の切り換え機構38を配設して構成してもよい。このような構成により、図4の顕微鏡装置と比べて振動を抑えることができ、より投影倍率の高い領域における精度をより向上させることができる。   In the embodiment shown in FIG. 4, the zoom optical system 37 is configured to have a zoom type zoom mechanism, but the present invention is not limited to this. For example, as shown in FIG. A turret type switching mechanism 38 may be provided. With such a configuration, vibration can be suppressed as compared with the microscope apparatus of FIG. 4, and the accuracy in a region with a higher projection magnification can be further improved.

本発明の実施形態に係る顕微鏡装置の構成図である。It is a block diagram of the microscope apparatus which concerns on embodiment of this invention. 本発明の実施形態に係る顕微鏡装置のモニタ装置に表示される画面例である。It is an example of a screen displayed on the monitor apparatus of the microscope apparatus which concerns on embodiment of this invention. 本発明の実施形態に係る画像処理装置の画像合成処理に係る制御フローチャートである。It is a control flowchart concerning the image composition processing of the image processing apparatus according to the embodiment of the present invention. 本発明の他の実施形態に係る顕微鏡装置の構成図である。It is a block diagram of the microscope apparatus which concerns on other embodiment of this invention. 本発明の他の実施形態に係る顕微鏡装置の構成図である。It is a block diagram of the microscope apparatus which concerns on other embodiment of this invention. 本発明の他の実施形態に係る顕微鏡装置の構成図である。It is a block diagram of the microscope apparatus which concerns on other embodiment of this invention.

符号の説明Explanation of symbols

1 顕微鏡装置
2 ランプ光源
3 照明光学系
4 ハーフミラー
5 結像光学系(対物レンズ)
6 変倍光学系
7 撮像素子
8 制御装置(制御手段)
9 画像処理装置(合成手段)
10 モニタ装置(表示手段)
11 XYステージ
12 被検物
DESCRIPTION OF SYMBOLS 1 Microscope apparatus 2 Lamp light source 3 Illumination optical system 4 Half mirror 5 Imaging optical system (objective lens)
6 Variable magnification optical system 7 Image sensor 8 Control device (control means)
9 Image processing device (compositing means)
10 Monitor device (display means)
11 XY stage 12 Test object

Claims (4)

所定の倍率の対物レンズを介して被検物像を撮像する撮像素子と、
前記対物レンズからの前記被検物像の前記撮像素子への投影倍率を可変させる変倍光学系と、
前記変倍光学系を制御して投影倍率を変更させながら、前記撮像素子を制御して連続的に被検物像を撮像させる制御手段と、
視野中央部が最も投影倍率が高く、該中央部から視野周辺部に向かって投影倍率が低くなるように、前記投影倍率の異なる複数の前記被検物像に歪みを加えてこれらを繋ぎ合わせ、一つの合成画像を作成する合成手段と、
前記合成画像を表示する表示手段とを備え、
前記合成手段は、互いに異なる投影倍率の前記被検物像を繋ぎ合わせる際に、繋ぎ目近傍で投影倍率がほぼ一致するように、それぞれの前記被検物像に歪みを加えることを特徴とする顕微鏡装置。
An image sensor that captures an image of a test object via an objective lens having a predetermined magnification;
A variable power optical system that varies the projection magnification of the object image from the objective lens onto the image sensor,
Control means for controlling the imaging optical element and continuously imaging the test object image while changing the projection magnification by controlling the zoom optical system;
The central part of the visual field has the highest projection magnification, and the projection magnification is lowered from the central part toward the peripheral part of the visual field. A compositing means for creating one composite image;
Display means for displaying the composite image,
The synthesizing unit adds distortion to each of the test object images so that the projection magnifications substantially match in the vicinity of the joint when connecting the test object images having different projection magnifications. Microscope device.
前記合成手段は、視野中央部が最も投影倍率が高く、該中央部から視野周辺部に向かって前記投影倍率が低くなるように、同心円状に、前記被検物像に歪みを加えてこれらを繋ぎ合わせ、一つの合成画像を作成することを特徴とする請求項1に記載の顕微鏡装置。   The synthesizing means adds the distortion to the test object image concentrically so that the projection magnification is the highest at the center of the field of view and the projection magnification decreases from the center to the periphery of the field of view. The microscope apparatus according to claim 1, wherein a single composite image is created by joining together. 前記合成手段は、視野中央部が最も投影倍率が高く、該中央部から視野周辺部に向かって前記投影倍率が低くなるように、同心四角形状に、前記被検物像に歪みを加えてこれらを繋ぎ合わせ、一つの合成画像を作成することを特徴とする請求項1に記載の顕微鏡装置。   The synthesizing means applies a distortion to the test object image in a concentric quadrangular shape so that the projection magnification is the highest in the central part of the visual field and the projection magnification is reduced from the central part toward the peripheral part of the visual field. The microscope apparatus according to claim 1, wherein a single composite image is created by joining together. 前記合成手段は、視野中央部に配置する、前記最も投影倍率が高い被検物像については歪みを加えないことを特徴する請求項1〜3のいずれかに記載の顕微鏡装置。   The microscope apparatus according to any one of claims 1 to 3, wherein the synthesizing unit does not add distortion to the object image having the highest projection magnification arranged in the center of the visual field.
JP2005306772A 2005-10-21 2005-10-21 Microscope apparatus Pending JP2007114547A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005306772A JP2007114547A (en) 2005-10-21 2005-10-21 Microscope apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005306772A JP2007114547A (en) 2005-10-21 2005-10-21 Microscope apparatus

Publications (1)

Publication Number Publication Date
JP2007114547A true JP2007114547A (en) 2007-05-10

Family

ID=38096781

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005306772A Pending JP2007114547A (en) 2005-10-21 2005-10-21 Microscope apparatus

Country Status (1)

Country Link
JP (1) JP2007114547A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020507813A (en) * 2017-02-10 2020-03-12 ナノトロニクス イメージング インコーポレイテッドNanotronics Imaging,Inc. Camera and specimen alignment to facilitate large area imaging in microscopy

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62295015A (en) * 1986-06-16 1987-12-22 Nikon Corp Microscopic image photographing device
JPH09149305A (en) * 1995-11-17 1997-06-06 Olympus Optical Co Ltd Image pickup device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62295015A (en) * 1986-06-16 1987-12-22 Nikon Corp Microscopic image photographing device
JPH09149305A (en) * 1995-11-17 1997-06-06 Olympus Optical Co Ltd Image pickup device

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020507813A (en) * 2017-02-10 2020-03-12 ナノトロニクス イメージング インコーポレイテッドNanotronics Imaging,Inc. Camera and specimen alignment to facilitate large area imaging in microscopy
JP7029821B2 (en) 2017-02-10 2022-03-04 ナノトロニクス イメージング インコーポレイテッド Alignment of camera and specimen to facilitate large area imaging in microscopy
JP2022062236A (en) * 2017-02-10 2022-04-19 ナノトロニクス イメージング インコーポレイテッド Camera and specimen alignment to facilitate large area imaging in microscopy
JP7428406B2 (en) 2017-02-10 2024-02-06 ナノトロニクス イメージング インコーポレイテッド Camera and specimen alignment to facilitate large area imaging in microscopy

Similar Documents

Publication Publication Date Title
JP6453220B2 (en) Microscope and method for SPIM microscopy
JP6325816B2 (en) Magnification observation apparatus, magnification image observation method, magnification image observation program, and computer-readable recording medium
JP6487156B2 (en) Magnification observation apparatus, magnification image observation method, magnification image observation program, and computer-readable recording medium
JP2009163155A (en) Microscope apparatus
JP2007327836A (en) Appearance inspection apparatus and method
JP2010097768A (en) Complex type observation device
US8810799B2 (en) Height-measuring method and height-measuring device
JP2013050379A (en) Hardness-testing machine
JP5403458B2 (en) Surface shape measuring method and surface shape measuring apparatus
JP2006023476A (en) Confocal scanning type microscope
JP2010080144A (en) Compound microscope device and method of observing sample
KR101826127B1 (en) optical apparatus for inspecting pattern image of semiconductor wafer
JP2006215259A (en) Microscope system, observation method and observation program
JPH1152252A (en) Fluorescent microscope
JP2007033372A (en) Visual inspection device
JP2007114547A (en) Microscope apparatus
JP2004191183A (en) Analyzer
JPS62130305A (en) Image processing type measuring instrument
JP2007304058A (en) Micro height measuring device
JP2008014646A (en) Substrate inspection method
JP2011254027A (en) Exposure device
JP3125124U (en) Infrared microscope
JP3137634U (en) Macro micro navigation system
JP2009294465A (en) Imaging device for microscope and objective micrometer
JP2007003193A (en) Inspection method of hole formed by laser beam machining

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20081007

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110527

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20111007