JP2007114145A - Form variable radiation detector - Google Patents

Form variable radiation detector Download PDF

Info

Publication number
JP2007114145A
JP2007114145A JP2005308381A JP2005308381A JP2007114145A JP 2007114145 A JP2007114145 A JP 2007114145A JP 2005308381 A JP2005308381 A JP 2005308381A JP 2005308381 A JP2005308381 A JP 2005308381A JP 2007114145 A JP2007114145 A JP 2007114145A
Authority
JP
Japan
Prior art keywords
shape
radiation detector
variable
radiation
detector according
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005308381A
Other languages
Japanese (ja)
Inventor
Akira Takaoka
章 高岡
Hiroshi Shiomi
大志 潮見
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2005308381A priority Critical patent/JP2007114145A/en
Publication of JP2007114145A publication Critical patent/JP2007114145A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01TMEASUREMENT OF NUCLEAR OR X-RADIATION
    • G01T1/00Measuring X-radiation, gamma radiation, corpuscular radiation, or cosmic radiation
    • G01T1/16Measuring radiation intensity
    • G01T1/169Exploration, location of contaminated surface areas

Abstract

<P>PROBLEM TO BE SOLVED: To provide a radiation detector which measures surface contamination of a sample having a complicated form with a simple structure. <P>SOLUTION: A scintillation fiber 1 which emits fluorescence when radiation enters is wired upon a form variable substrate 2, such as a flexible plastic sheet of which a agent or joining material is applied to the surface. One of its ends is bundled at a bundle part 4, and the whole fiber is covered by a thin shading film 3. The fiber is connected to a photomultiplier 5 as a photo detecting element. A signal is amplified with a preamplifier 6 by radiation incidence, and the signal is enabled to be taken out. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

この発明は、原子力炉施設、核燃料施設、核燃料再処理施設、放射性同位元素使用施設、放射線発生装置使用施設等において、放射性表面汚染モニタ等に使用される放射線検出器に関するものである。   The present invention relates to a radiation detector used for a radioactive surface contamination monitor or the like in a nuclear reactor facility, a nuclear fuel facility, a nuclear fuel reprocessing facility, a radioactive isotope use facility, a radiation generator use facility or the like.

従来、種々の形状が存在するものの放射性表面汚染測定には被検体の形状を検出する形状検出手段を備え、その形状に基づいて放射線検出素子を駆動させる必要があった。(例えば特許文献1参照)また、局部的な形状を認識するセンサを用いて被検体の形状を認識しつつ放射線測定器を走査して放射能を測定する必要があった。(例えば特許文献2参照)   Conventionally, although various shapes exist, radioactive surface contamination measurement has been provided with shape detection means for detecting the shape of the subject, and it has been necessary to drive the radiation detection element based on the shape. (For example, refer to Patent Document 1) Further, it was necessary to measure the radioactivity by scanning the radiation measuring instrument while recognizing the shape of the subject using a sensor that recognizes the local shape. (For example, see Patent Document 2)

特開平6−186342号公報JP-A-6-186342 特開平9−127247号公報JP-A-9-127247

以上のように、種々の形状が存在するものの放射性表面汚染測定には放射線検出器以外に何らかの形状検出手段を必要とするため、測定装置そのものが大掛かりなものになるという問題があった。   As described above, although there are various shapes, the measurement of the radioactive surface contamination requires some shape detection means in addition to the radiation detector, and there is a problem that the measuring apparatus itself becomes large.

この発明は前記のような問題を解決するためになされたものであり、簡便な構成で複雑な形状を有した被検体の表面汚染を測定する放射線検出器を提供することを目的とする。   The present invention has been made to solve the above-described problems, and an object of the present invention is to provide a radiation detector that measures the surface contamination of a subject having a complicated shape with a simple configuration.

この発明に係わる形状可変型放射線検出器は、形状可変基板、この形状可変基板上に配置され、放射線が入射すると蛍光を発するシンチレーションファイバと、このシンチレーションファイバを覆う遮光膜と、前記シンチレ−ションファイバの端面に光学的に接続され、前記蛍光を電気信号に変換する光検出素子と、この光検出素子からの電気信号を増幅する増幅器とを備えたものである。   A variable shape radiation detector according to the present invention includes a variable shape substrate, a scintillation fiber that is arranged on the variable shape substrate and emits fluorescence when radiation is incident thereon, a light shielding film that covers the scintillation fiber, and the scintillation fiber. A light detection element that is optically connected to the end face of the light source and converts the fluorescence into an electric signal, and an amplifier that amplifies the electric signal from the light detection element.

この発明の形状可変型放射線検出器によれば、形状が複雑な被検体の表面形状に沿って検出器を配することができるため、被検体表面からの距離が短くなり効率よく被検体からの放射線を測定することができる。   According to the variable shape radiation detector of the present invention, since the detector can be arranged along the surface shape of the subject having a complicated shape, the distance from the subject surface is shortened and the subject can be efficiently separated from the subject. Radiation can be measured.

実施の形態1.
以下、この発明の実施の形態1を図1に基づいて説明する。図1は、片端が束になっている形状可変型放射線検出器100について説明するもので、放射線が入射すると蛍光を発するプラスチックシンチレータで構成される。
実施の形態1の形状可変型放射線検出器100は、上記のようなシンチレーションファイバ1を、配線材接着のため表面に粘着剤または接着剤が塗布された、例えば可とう性のプラスチックシート等の形状可変基板2の上に配線し、片端を束線部4にて束線し全体を薄い遮光膜3で覆い、光検出素子である光電子増倍管5に接続し放射線入射により信号を前置増幅器6にて増幅して信号を取り出せるようにしたものである。
なお、光電子増倍管5と前置増幅器6は光検出部ケース7に収納した形とすることで小型化が図れる。
Embodiment 1 FIG.
A first embodiment of the present invention will be described below with reference to FIG. FIG. 1 illustrates a variable shape radiation detector 100 in which one end is bundled, and is composed of a plastic scintillator that emits fluorescence when radiation enters.
The shape variable radiation detector 100 according to the first embodiment includes a scintillation fiber 1 as described above, for example, a shape of a flexible plastic sheet or the like in which an adhesive or an adhesive is applied to the surface for bonding a wiring material. Wiring is performed on the variable substrate 2, one end is bundled by a bundled wire portion 4, the whole is covered with a thin light-shielding film 3, connected to a photomultiplier tube 5 that is a light detection element, and a signal is preamplified by radiation incidence. 6 so that the signal can be extracted by amplification.
Note that the photomultiplier tube 5 and the preamplifier 6 can be reduced in size by being housed in the light detection unit case 7.

前記のように構成することによって、形状可変型放射線検出器100が実現でき、形状可変基板2上に配置したシンチレーションファイバ1に放射線が入射することによって発光し、遮光膜3で外部との光との識別がつけられた状態で光電子増幅器5へ入射し前置増幅器6で増幅して放射線の入射に対応した信号が外部に取り出せる。
このような形状可変型放射線検出器を用いれば、形状が複雑な被検体の表面形状に沿って検出器を配することができるため、被検体表面から形状可変型放射線検出器の距離が短くなり効率よく被検体からの放射線を測定することができ、そのため測定の短時間化が可能となり、また光電子増幅器と前置増幅器を組み込むことで小型化が図れる。
また、形状可変型であるため折りたたんでの持ち運びも可能であり、必要箇所へ必要時のみ運搬することや収納時の省スペース化も図れる。
なお、形状可変基板2として、例えばタングステン含有の合成樹脂・スーパーシールデイングレジン(三菱電機株式会社の商品名)による0.5mm厚のプラスチックシートを用いると、β線の検出効率をより高くでき、また遮光膜3として、例えば0.1mm厚のカーボン含有導電性PTFE(四フッ化エチレン樹脂)を用いると、帯電発光による誤検出が少ない形状可変型放射線検出器100が得られる。
By configuring as described above, the variable shape radiation detector 100 can be realized, and light is emitted when the radiation enters the scintillation fiber 1 disposed on the variable shape substrate 2, and the light shielding film 3 emits light from the outside. In this state, the signal is incident on the optoelectronic amplifier 5 and amplified by the preamplifier 6, and a signal corresponding to the incident radiation can be extracted to the outside.
If such a variable shape radiation detector is used, the detector can be arranged along the surface shape of the subject having a complicated shape, so the distance from the subject surface to the variable shape radiation detector is shortened. The radiation from the subject can be measured efficiently, so that the measurement time can be shortened, and miniaturization can be achieved by incorporating an optoelectronic amplifier and a preamplifier.
Moreover, since it is a variable shape type, it can be folded and carried, so that it can be transported to a required location only when necessary and space saving can be achieved.
In addition, if the 0.5 mm-thick plastic sheet made of, for example, a tungsten-containing synthetic resin / super seal dein resin (trade name of Mitsubishi Electric Corporation) is used as the variable shape substrate 2, the β-ray detection efficiency can be further increased. Further, when a carbon-containing conductive PTFE (tetrafluoroethylene resin) having a thickness of 0.1 mm is used as the light-shielding film 3, for example, the variable shape radiation detector 100 with few false detections due to charged light emission can be obtained.

実施の形態2.
前記実施の形態1では束線部4を1つにして、1つの光電子増倍管5に光学接続させるようにしたが、図2はU型に配線した帯状シンチレーションファイバを用いた形状可変型放射線検出器101を示すもので、U字型に配線した2束の帯状シンチレーションファイバ1,1の一端と他端でそれぞれ束線部4a,4bを一括して設け、それぞれの一括した束線部4a,4bに光電子増倍管5a,5bをそれぞれ光学接続し、それぞれを前置増幅器6a,6bに接続し、光検出部ケース7aに光電子増倍管5aと前置増幅器6aを収納し、光検出部ケース7bに光電子増倍管5bと前置増幅器6bを収納し、それぞれの出力を受ける測定部側(図示せず)で同時計数できるようにしたものである。
Embodiment 2. FIG.
In the first embodiment, one bundled wire portion 4 is provided and optically connected to one photomultiplier tube 5, but FIG. 2 shows a variable shape radiation using a strip scintillation fiber wired in a U shape. A detector 101 is shown, and bundled portions 4a and 4b are collectively provided at one end and the other end of two bundles of strip scintillation fibers 1 and 1 wired in a U-shape, and each bundled bundle portion 4a is provided. , 4b are optically connected to the photomultiplier tubes 5a and 5b, respectively, are connected to the preamplifiers 6a and 6b, and the photomultiplier tube 5a and the preamplifier 6a are housed in the photodetection unit case 7a to detect light. The photomultiplier tube 5b and the preamplifier 6b are housed in the unit case 7b so that they can be counted simultaneously on the measurement unit side (not shown) that receives the respective outputs.

放射線の入射による発光ならば光電子増倍管5aへ入射した時間に対して前後所定時間(例えば1nsec程度)以内の時間帯に光電子増倍管5bにも入射する。この場合のみ放射線の入射があったことと判定する同時計数処理により、光電子増倍管の自ら発するノイズパルスを除去することが可能となり、光電子増倍管のノイズレベルに近接したレベルまで、または、そのノイズレベル領域に入り込んで低エネルギー放射線を測定することが可能になる。
また、検出下限の計測範囲は通常の周辺環境によるバックグランドでの計測値からどれくらい多く計測できるかに依存する。すなわち周辺環境によるバックグランドでの計数のゆらぎはバックグランドの平均標準偏差の3倍以上の計数値が得られれば識別可能となり、それが検出下限となる。従って、周辺環境によるバックグランドの計数が小さいほど検出感度を高めることができる。
同時計数方式を採用することで光電子増倍管の自ら発するノイズを除去できるため周辺環境によるバックグランドでの計数値が小さくでき、検出感度を高めることができる。
なお、この実施の形態2では2束のU字型シンチレーションファイバ1,1を用いているため、1束の場合に比べてより広い範囲の放射線測定が行うことが可能であり、必要に応じて2束以上用いることも可能である。
In the case of light emission due to the incidence of radiation, the light enters the photomultiplier tube 5b within a predetermined time period (for example, about 1 nsec) before and after the time when it enters the photomultiplier tube 5a. Only in this case, it is possible to remove the noise pulse generated by the photomultiplier tube itself, by the simultaneous counting process for determining that radiation has been incident, to a level close to the noise level of the photomultiplier tube, or It becomes possible to enter the noise level region and measure low energy radiation.
In addition, the measurement range of the lower limit of detection depends on how much can be measured from the measured values in the background due to the normal surrounding environment. In other words, the fluctuation of the count in the background due to the surrounding environment can be identified if a count value that is three times or more the average standard deviation of the background is obtained, and that is the lower limit of detection. Therefore, the detection sensitivity can be increased as the background count due to the surrounding environment is smaller.
By adopting the coincidence counting method, noise generated by the photomultiplier tube itself can be removed, so that the count value in the background due to the surrounding environment can be reduced and the detection sensitivity can be increased.
In the second embodiment, since two bundles of U-shaped scintillation fibers 1 and 1 are used, it is possible to perform radiation measurement in a wider range than in the case of one bundle, and if necessary Two or more bundles can be used.

実施の形態3.
図3は、時間差測定装置及び計数装置と組合わせた形状可変型放射線検出器を示す概略構成図で、実施の形態2の形状可変型放射線検出器101における前置増幅器に6a,6Bに時間差測定及び計数装置9を接続することによって放射線入射の位置及び入射放射線量の計測ができるようにしたものである。
時間差測定装置では、まず光電子増倍管5a、前置増幅器6aを経由して入射する信号に対して、光電子増倍管5b、前置増幅器6bからの入射信号を遅延ファイバに-より一定時間遅らせて入射させ、光電子増倍管5a、前置増幅器6aを経由して入射した信号から、所定の時間以内に光電子増倍管5b、前置増幅器6bから信号が入射した場合にのみ後段にパルス信号を発生させる。またその際にその時間差も併せて測定しておくと共に、その装置からのパルスを計数装置で計測するようにする。
また、その測定した時間差によって光電子増倍管5aへの入射に対して光電子増倍管5bへの入射の遅れ時間が判明する。なお、一定時間遅らせて光電子増倍管5aへ入射させることにより、入射の時間差を大きくすることができ時間測定の精度が向上する。このようにすることで放射線入射による光発生源の位置が算出できる。
これにより、放射線検出器101のうちのどこに放射線が入射したかの位置(図3の左右方向)を特定することが可能となり、位置を特定する目的で被測定対象物をポイントで計測し順次場所を変えて測定する方法に対して、一括で測定し放射能箇所を特定することができる。
Embodiment 3 FIG.
FIG. 3 is a schematic configuration diagram showing a variable shape radiation detector combined with a time difference measuring device and a counting device. The preamplifier in the variable shape radiation detector 101 according to the second embodiment has time differences measured at 6a and 6B. In addition, by connecting a counting device 9, the position of radiation incident and the amount of incident radiation can be measured.
In the time difference measuring device, first, the incident signal from the photomultiplier tube 5b and the preamplifier 6b is delayed by a delay fiber for a certain time with respect to the signal incident through the photomultiplier tube 5a and the preamplifier 6a. From the signal incident via the photomultiplier tube 5a and the preamplifier 6a, and only when the signal is incident from the photomultiplier tube 5b and the preamplifier 6b within a predetermined time, a pulse signal is sent to the subsequent stage. Is generated. At that time, the time difference is also measured, and the pulses from the device are measured by a counting device.
Further, the delay time of the incidence on the photomultiplier tube 5b with respect to the incidence on the photomultiplier tube 5a is determined by the measured time difference. In addition, by making it enter into the photomultiplier tube 5a after being delayed for a certain time, the time difference of incidence can be increased and the accuracy of time measurement is improved. In this way, the position of the light generation source due to radiation incidence can be calculated.
As a result, it is possible to specify the position (the left-right direction in FIG. 3) where the radiation is incident on the radiation detector 101, and the object to be measured is measured with points for the purpose of specifying the position. It is possible to specify the radioactive site by measuring in a lump for the method of measuring by changing.

実施の形態4.
図4は、計数装置と組合わせた形状可変型放射線検出器を示す概略構成図で、実施の形態2の形状可変型放射線検出器101の束線部4を一括して光電子増倍管5に結合し、前置増幅器6に計数装置10を接続することによって入射放射線量の計測ができるようにしたものである。
これによって、形状可変型放射線検出器101に入射した放射線量を単純な構成で測定できる。
なお、この実施の形態では、位置の特定はできないが検出器の測定した範囲のいずれかの箇所に放射能が存在することで用がたり、大面積を一括で測定する簡易な測定の場面にて適用できる。
Embodiment 4 FIG.
FIG. 4 is a schematic configuration diagram showing a variable shape radiation detector combined with a counting device. The bundled wire portion 4 of the variable shape radiation detector 101 according to the second embodiment is integrated into the photomultiplier tube 5. By combining them and connecting the counting device 10 to the preamplifier 6, the incident radiation dose can be measured.
Thereby, the radiation dose incident on the variable shape radiation detector 101 can be measured with a simple configuration.
In this embodiment, the position cannot be specified, but it can be used due to the presence of radioactivity in any part of the range measured by the detector, or in a simple measurement scene where a large area is collectively measured. Can be applied.

実施の形態5.
図5は、形状可変型放射線モニタを格子状に実現するための構成を示す概略構成図である。
形状可変基板2の上にシンチレーションファイバ1を格子状に配線し、全体を薄い遮光膜で覆うと共に、たて側シンチレ−ションファイバ端面及び横側シンチレ−ションファイバ端面をそれぞれ複数束線して光電子増倍管5に光学的に接続し、その縦横複数の光電子増倍管6の信号に基づき放射線入射箇所を特定及びその測定個数で入射放射線量を計測するようにしたものである。
前記実施の形態3では測定器側には時間差測定装置が必要であったが、図5に示すように構成することによって、格子状のいずれの位置に放射線が入射したかを検知することができ、時間差測定が不要な単純な形状可変型放射線検出器102が実現できる。
Embodiment 5. FIG.
FIG. 5 is a schematic configuration diagram showing a configuration for realizing the variable shape radiation monitor in a lattice shape.
The scintillation fibers 1 are arranged in a grid pattern on the variable shape substrate 2 and covered with a thin light-shielding film, and a plurality of vertical scintillation fiber end faces and lateral scintillation fiber end faces are bundled to form photoelectrons. The photomultiplier tube 5 is optically connected, and a radiation incident location is specified on the basis of signals from a plurality of photomultiplier tubes 6 in the vertical and horizontal directions, and the incident radiation dose is measured by the number of measurement.
In the third embodiment, a time difference measuring device is required on the measuring instrument side. However, by configuring as shown in FIG. 5, it is possible to detect at which position of the lattice the radiation is incident. A simple variable shape radiation detector 102 that does not require time difference measurement can be realized.

実施の形態6.
図6は、形状可変型放射線モニタを形状不特定の被検体へ被せる場合の使用例を模式的に示す図で、同図(a)は上面図、(b)は側面図である。
図6のごとく、形状が不特定な被検体11に対して図1に示した形状可変型放射線検出器100,図2〜4に示した形状可変型放射線検出器101、図5に示した形状可変型放射線検出器102のいずれかで全体を被せるように覆い、被検体11に密着させる形で被検体11からの放射線をシンチレ−ションファイバ1に入射させ、その光を光検出部ケース7へ導き、その信号を計数することにより表面汚染の箇所及び表面汚染の程度が簡便な方法で測定できる。
Embodiment 6 FIG.
FIGS. 6A and 6B are diagrams schematically showing an example of use when a variable shape radiation monitor is placed on a subject whose shape is unspecified, wherein FIG. 6A is a top view and FIG. 6B is a side view.
As shown in FIG. 6, the variable shape radiation detector 100 shown in FIG. 1, the variable shape radiation detector 101 shown in FIGS. 2 to 4, and the shape shown in FIG. The variable radiation detector 102 is covered so as to be entirely covered, and the radiation from the subject 11 is incident on the scintillation fiber 1 so as to be in close contact with the subject 11, and the light is incident on the light detection unit case 7. By guiding and counting the signals, the location of surface contamination and the degree of surface contamination can be measured by a simple method.

実施の形態7.
図7は、形状可変型放射線モニタを横臥人体への被せる使用例を模式的に示す図である。
図7に示すように、横臥した人体12に対しても、図1に示した形状可変型放射線検出器100,図2〜4に示した形状可変型放射線検出器101、図5に示した形状可変型放射線検出器102のいずれかで全体を被せるように覆い人体12に密着させる形で人体表面からの放射線をシンチレ−ションファイバ1に入射させ、その光を光検出部ケース7へ導き、その信号を計数することによりにより表面汚染の箇所及び表面汚染の程度が簡便な方法で測定できる。
これにより、小型検出器を手で持ってサーベイし、全身にわたって測定していた表面汚染の測定が一括で短時間で測定できるようになる。
Embodiment 7 FIG.
FIG. 7 is a diagram schematically showing an example of use in which a variable shape radiation monitor is placed on a lying human body.
As shown in FIG. 7, the deformable radiation detector 100 shown in FIG. 1, the variable shape radiation detector 101 shown in FIGS. 2 to 4, and the shape shown in FIG. The radiation from the human body is incident on the scintillation fiber 1 in such a manner that the entire surface is covered with one of the variable radiation detectors 102 so as to be in close contact with the human body 12, and the light is guided to the light detection unit case 7. By counting the signals, the location of surface contamination and the degree of surface contamination can be measured by a simple method.
As a result, it is possible to carry out a survey by holding the small detector by hand and measuring the surface contamination that has been measured over the whole body in a short time.

実施の形態8.
図8は、担架組み込みの形状可変型放射線モニタを示す概略構成図で、同図(a)は、側面図、同図(b)は平面図である。
横臥した人体が傷病者である場合等は、担架に載せて搬送が必要であるが、その際放射線管理区域から傷病者を搬送するのであれば、その人体の表面汚染を測定しなければならない。サーベイメータなどで傷病者を動かしながら測定するのではなく、図8の通り巻き取り可能な形状可変型放射線検出器100,101,102を担架13に装着した装置200による、傷病者12の横臥面及び反横臥面を測定することで傷病者及び測定者に負担がかからない測定装置を供することができる。
このようにこの実施の形態によれば、傷病者を臥した状態で覆うことで表面汚染を測定できるため傷病者を動かしサーベイメータ等で表面汚染を測定するような傷病者に苦痛を与えるような測定を排除することができ、表面汚染部位の特定、除染の短時間化が図れる。
Embodiment 8 FIG.
FIG. 8 is a schematic configuration diagram showing a variable shape radiation monitor built in a stretcher. FIG. 8A is a side view and FIG. 8B is a plan view.
When the lying human body is a victim, etc., it must be transported on a stretcher. However, if the victim is transported from the radiation control area, the surface contamination of the human body must be measured. Rather than moving the patient with a survey meter or the like, the lateral surface of the patient 12 is measured by the apparatus 200 in which the variable shape radiation detectors 100, 101, 102 that can be wound up as shown in FIG. By measuring the anti-recumbent surface, it is possible to provide a measuring device that does not put a burden on the patient and the measurer.
As described above, according to this embodiment, since the surface contamination can be measured by covering the victim in a state of jealousy, the patient is moved and the measurement that causes pain to the victim such as measuring the surface contamination with a survey meter or the like is performed. The surface contamination site can be identified and decontamination can be shortened.

実施の形態9.
図10は、ハンドフットクロスモニタに適用した形状可変型放射線モニタを模式的に示す図で、(a)は全体を示す概略斜視図、(b)はその要部を示す拡大説明図である。
人体の表面汚染の検査に用いるハンドフットクロスモニタ202において、クロス部分(衣服部分)は通常検者自身が手で持つ形の検出器で自らの汚染検査を行う煩雑さや検査の不均一さがあった。図10(a)に示すように、前記形状可変型放射線検出器100,101,102にて体型に沿う形に配置した形状可変型検出器103で自動的に測定できるハンドフットクロスモニタを構成することができる。さらに体型に添う形で自ら形状を選択できる体形選択機構18を設けることにより、より密着した形で高感度の表面汚染検査を行えるハンドフットクロスモニタ202を得ることができる。
また、図10(b)に示すように体形選択機構18でクロス部分の形状可変型放射線検出器103の開き角度を指定し、被測定者12である自分自身の体の線に沿った形で、より密着させた位置に移動させることができ、効率的な体表面衣服の表面の汚染の検査が行える。
Embodiment 9 FIG.
10A and 10B are diagrams schematically showing a variable shape radiation monitor applied to a hand foot cross monitor, where FIG. 10A is a schematic perspective view showing the whole, and FIG. 10B is an enlarged explanatory view showing the main part thereof.
In the hand foot cross monitor 202 used for the inspection of the surface contamination of the human body, the cross portion (clothing portion) is usually a detector in the form of a hand held by the examiner himself, and there is a complexity of performing his own contamination inspection and unevenness of the inspection. It was. As shown in FIG. 10 (a), the shape variable radiation detectors 100, 101, 102 constitute a hand foot cross monitor that can be automatically measured by the shape variable detector 103 arranged along the body shape. be able to. Further, by providing the body shape selection mechanism 18 that can select the shape by itself according to the body shape, it is possible to obtain the hand foot cross monitor 202 capable of performing a highly sensitive surface contamination inspection in a more closely contacted form.
Further, as shown in FIG. 10B, the opening angle of the cross-shaped variable radiation detector 103 is designated by the body shape selection mechanism 18 and along the body line of the person 12 to be measured. Therefore, it can be moved to a close contact position, and the surface contamination of the body surface clothes can be inspected efficiently.

この発明の実施の形態1に係わる形状可変型放射線検出器を示す概略構成図である。It is a schematic block diagram which shows the shape-variable type radiation detector concerning Embodiment 1 of this invention. この発明の実施の形態2に係わる形状可変型放射線検出器を示す概略構成図である。It is a schematic block diagram which shows the shape variable type | mold radiation detector concerning Embodiment 2 of this invention. この発明の実施の形態3に係わる形状可変型放射線検出器を示す概略構成図である。It is a schematic block diagram which shows the shape-variable type radiation detector concerning Embodiment 3 of this invention. この発明の実施の形態4に係わる形状可変型放射線検出器を示す概略構成図である。It is a schematic block diagram which shows the shape-variable type radiation detector concerning Embodiment 4 of this invention. この発明の実施の形態5に係わる形状可変型放射線検出器を示す概略構成図である。It is a schematic block diagram which shows the shape-variable type radiation detector concerning Embodiment 5 of this invention. この発明の実施の形態6に係わる形状可変型放射線モニタの使用例を模式的に示す説明図である。It is explanatory drawing which shows typically the usage example of the shape-variable type radiation monitor concerning Embodiment 6 of this invention. この発明の実施の形態7に係わる形状可変型放射線モニタの使用例を模式的に示す説明図である。It is explanatory drawing which shows typically the usage example of the shape-variable type radiation monitor concerning Embodiment 7 of this invention. この発明の実施の形態8に係わる形状可変型放射線モニタを示す概略構成図である。It is a schematic block diagram which shows the shape-variable type radiation monitor concerning Embodiment 8 of this invention. この発明の実施の形態9に係わるハンドフットクロスモニタを示す概略構成図である。It is a schematic block diagram which shows the hand foot cross monitor concerning Embodiment 9 of this invention.

符号の説明Explanation of symbols

1 シンチレーションファイバ
2 形状可変基板
3 遮光膜
4 束線部
5 光電子増倍管
6 前置増幅器
7 光検出部ケース
9 時間差測定及び計数装置
10 計数装置
11 被検体
12 人体
13 担架
18 体形選択機構
100,101,102 形状可変型放射線検出器
103 形状可変型放射線検出器
201 形状可変型放射線モニタ
202 形状可変型放射線モニタ
203 ハンドフットクロスモニタ
DESCRIPTION OF SYMBOLS 1 Scintillation fiber 2 Shape variable board | substrate 3 Light-shielding film 4 Bundling part 5 Photomultiplier tube 6 Preamplifier 7 Photodetection part case 9 Time difference measurement and counting apparatus 10 Counting apparatus 11 Subject 12 Human body 13 Stretcher 18 Body shape selection mechanism 100, 101, 102 Shape variable radiation detector 103 Shape variable radiation detector 201 Shape variable radiation monitor 202 Shape variable radiation monitor 203 Hand foot cross monitor

Claims (11)

形状可変基板と、この形状可変基板上に配置され、放射線が入射すると蛍光を発するシンチレーションファイバと、このシンチレーションファイバを覆う遮光膜と、前記シンチレ−ションファイバの端面に光学的に接続され、前記蛍光を電気信号に変換する光検出素子と、この光検出素子からの電気信号を増幅する増幅器とを備えたことを特徴とする形状可変型放射線検出器。   A shape variable substrate, a scintillation fiber that is disposed on the shape variable substrate and emits fluorescence when radiation is incident thereon, a light shielding film that covers the scintillation fiber, and an optically connected end face of the scintillation fiber, and the fluorescence A variable-shape radiation detector comprising: a photodetecting element that converts an electric signal into an electric signal; and an amplifier that amplifies the electric signal from the photodetecting element. 前記形状可変基板としてタングステン含有のプラスチックシートを用い、前記遮光膜としてカーボン含有導電性PTFE(四フッ化エチレン樹脂)を用いたことを特徴とする請求項1記載の形状可変型放射線検出器。   2. The variable shape radiation detector according to claim 1, wherein a plastic sheet containing tungsten is used as the variable shape substrate, and carbon-containing conductive PTFE (tetrafluoroethylene resin) is used as the light shielding film. シンチレ−ションファイバをU字型に配置し、このU字型シンチレーションファイバの一端と他端でそれぞれ束線部を一括して設け、それぞれの一括した束線部に前記光検出素子及び増幅器を接続したことを特徴とする請求項1または2記載の形状可変型放射線検出器。   A scintillation fiber is arranged in a U-shape, bundled portions are collectively provided at one end and the other end of the U-shaped scintillation fiber, and the light detection element and the amplifier are connected to each bundled bundle portion. The variable shape radiation detector according to claim 1, wherein the variable shape radiation detector is provided. 前記U字型シンチレ−ションファイバは2束又はそれ以上配置されていることを特徴とする請求項3記載の形状可変型放射線検出器。   4. The variable shape radiation detector according to claim 3, wherein two or more bundles of the U-shaped scintillation fibers are arranged. 前記増幅器に時間差測定装置及び計数装置を接続し、前記U字型シンチレーションファイバの一端と他端での計測の時間差を測定することにより放射線入射箇所の特定及び入射放射線量を特定するようにしたことを特徴とする請求項3または4記載の形状可変型放射線検出器。   A time difference measuring device and a counting device are connected to the amplifier, and the time difference of measurement at one end and the other end of the U-shaped scintillation fiber is measured to specify the radiation incident location and the incident radiation dose. The variable shape radiation detector according to claim 3 or 4, characterized in that: 前記前置増幅器に計数装置を接続し、放射線入射量を計測するようにしたことを特徴とする請求項3または4記載の形状可変型放射線検出器。   5. The variable shape radiation detector according to claim 3, wherein a counting device is connected to the preamplifier to measure the amount of radiation incident. 前記シンチレーションファイバを格子状に配置し、たて側シンチレ−ションファイバ端面及び横側シンチレ−ションファイバ端面をそれぞれ束線して光検出素子に光学的に接続し、その縦横複数の光検出素子からの電気信号に基づき放射線入射箇所を特定するようにしたことを特徴とする請求項1または2記載の形状可変型放射線検出器。   The scintillation fibers are arranged in a lattice pattern, and the end faces of the vertical scintillation fibers and the end faces of the horizontal scintillation fibers are bundled and optically connected to the light detection elements. 3. The variable shape radiation detector according to claim 1, wherein a radiation incident point is specified based on the electrical signal. 被検体の形状に沿って形状が自在に変化できるようにしたことを特徴とする請求項1乃至7のいずれか一つに記載の形状可変型放射線検出器。   The variable shape radiation detector according to any one of claims 1 to 7, wherein the shape can be freely changed along the shape of the subject. 被検体の形状に沿って被せて被検体からの放射能を測定できるようにしたことを特徴とする請求項1乃至7のいずれか一つに記載の形状可変型放射線検出器。   The variable shape radiation detector according to any one of claims 1 to 7, wherein the radiation from the subject can be measured by covering the subject along the shape of the subject. 傷病者を搬送する担架の床面とその上に載せた傷病者の形状に沿って被せ、該傷病者からの放射能を測定するようにしたことを特徴とする請求項1乃至7のいずれか一つに記載の形状可変型放射線検出器。   The radioactivity from the victim is measured by covering the floor of the stretcher carrying the victim and the shape of the victim placed on the floor. The variable shape radiation detector according to one. 人体の表面汚染測定において使用するハンドフットクロスモニタのクロス部分の自動測定に供することを特徴とする請求項1乃至7のいずれか一つに記載の形状可変型放射線検出器。   The variable shape radiation detector according to any one of claims 1 to 7, wherein the variable shape radiation detector is used for automatic measurement of a cross portion of a handfoot cross monitor used in surface contamination measurement of a human body.
JP2005308381A 2005-10-24 2005-10-24 Form variable radiation detector Pending JP2007114145A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005308381A JP2007114145A (en) 2005-10-24 2005-10-24 Form variable radiation detector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005308381A JP2007114145A (en) 2005-10-24 2005-10-24 Form variable radiation detector

Publications (1)

Publication Number Publication Date
JP2007114145A true JP2007114145A (en) 2007-05-10

Family

ID=38096464

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005308381A Pending JP2007114145A (en) 2005-10-24 2005-10-24 Form variable radiation detector

Country Status (1)

Country Link
JP (1) JP2007114145A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010085259A (en) * 2008-09-30 2010-04-15 Fujifilm Corp Radiation detecting apparatus and radiation image capturing system
WO2011004883A1 (en) * 2009-07-10 2011-01-13 富士電機システムズ株式会社 Surface contamination monitor
JP7444611B2 (en) 2019-01-04 2024-03-06 ザ・ボーイング・カンパニー Reconfigurable backscatter detector

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5412882A (en) * 1977-06-30 1979-01-30 Aloka Co Ltd Strand and apparatus for detecting radiation
JPH06294871A (en) * 1993-04-09 1994-10-21 Toshiba Corp Radiation intensity distribution measuring instrument
JPH0735867A (en) * 1993-07-21 1995-02-07 Aloka Co Ltd Radioactive surface contamination detector
JPH07151860A (en) * 1993-11-29 1995-06-16 Aloka Co Ltd Apparatus for detecting radioactive surface contamination
JPH0894758A (en) * 1994-09-26 1996-04-12 Mitsubishi Electric Corp Distribution-type detector using scintillation fiber
JPH09243752A (en) * 1996-03-07 1997-09-19 Toshiba Corp Optical fiber type large area radiation monitor
JPH1039026A (en) * 1996-07-19 1998-02-13 Shimadzu Corp Radiation detector
JPH10227863A (en) * 1997-02-14 1998-08-25 Power Reactor & Nuclear Fuel Dev Corp Radioactive gas monitor
JP2000009844A (en) * 1998-06-22 2000-01-14 Hitachi Ltd Monitoring equipment for soundness of apparatus
JP2001013250A (en) * 1999-06-30 2001-01-19 Toshiba Corp Contamination-inspecting device
JP2001311777A (en) * 2000-05-01 2001-11-09 Japan Nuclear Cycle Development Inst States Of Projects Thin radiation surface contamination detector
JP2005241595A (en) * 2004-02-27 2005-09-08 Japan Nuclear Cycle Development Inst States Of Projects Radiation measuring device adaptable to surface shape to be measured

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5412882A (en) * 1977-06-30 1979-01-30 Aloka Co Ltd Strand and apparatus for detecting radiation
JPH06294871A (en) * 1993-04-09 1994-10-21 Toshiba Corp Radiation intensity distribution measuring instrument
JPH0735867A (en) * 1993-07-21 1995-02-07 Aloka Co Ltd Radioactive surface contamination detector
JPH07151860A (en) * 1993-11-29 1995-06-16 Aloka Co Ltd Apparatus for detecting radioactive surface contamination
JPH0894758A (en) * 1994-09-26 1996-04-12 Mitsubishi Electric Corp Distribution-type detector using scintillation fiber
JPH09243752A (en) * 1996-03-07 1997-09-19 Toshiba Corp Optical fiber type large area radiation monitor
JPH1039026A (en) * 1996-07-19 1998-02-13 Shimadzu Corp Radiation detector
JPH10227863A (en) * 1997-02-14 1998-08-25 Power Reactor & Nuclear Fuel Dev Corp Radioactive gas monitor
JP2000009844A (en) * 1998-06-22 2000-01-14 Hitachi Ltd Monitoring equipment for soundness of apparatus
JP2001013250A (en) * 1999-06-30 2001-01-19 Toshiba Corp Contamination-inspecting device
JP2001311777A (en) * 2000-05-01 2001-11-09 Japan Nuclear Cycle Development Inst States Of Projects Thin radiation surface contamination detector
JP2005241595A (en) * 2004-02-27 2005-09-08 Japan Nuclear Cycle Development Inst States Of Projects Radiation measuring device adaptable to surface shape to be measured

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010085259A (en) * 2008-09-30 2010-04-15 Fujifilm Corp Radiation detecting apparatus and radiation image capturing system
WO2011004883A1 (en) * 2009-07-10 2011-01-13 富士電機システムズ株式会社 Surface contamination monitor
CN102292654A (en) * 2009-07-10 2011-12-21 富士电机株式会社 Surface contamination monitor
JP5146604B2 (en) * 2009-07-10 2013-02-20 富士電機株式会社 Surface contamination monitor
US8822944B2 (en) 2009-07-10 2014-09-02 Fuji Electric Co., Ltd Surface contamination monitor
JP7444611B2 (en) 2019-01-04 2024-03-06 ザ・ボーイング・カンパニー Reconfigurable backscatter detector

Similar Documents

Publication Publication Date Title
JP4960255B2 (en) Gamma ray imaging device
US7381956B2 (en) Detector element for spatially resolved detection of gamma radiation
JP2008510132A (en) Anti-scatter grid for radiation detectors
US20060153341A1 (en) Radio-transparent real-time dosimeter for interventional radiological procedures
JP2010032214A (en) Radioactive ray detecting method and device utilizing energy and position information
Gmar et al. Development of coded-aperture imaging with a compact gamma camera
JP6524484B2 (en) Radiation measurement method and radiation measurement apparatus
JP6301386B2 (en) Radioactive contamination inspection equipment
JP2007114145A (en) Form variable radiation detector
EP2952934B1 (en) Light detecting unit and alpha ray observation device
KR101823958B1 (en) Phantom dosimeter and phantom dosimeter system using the same
JP2008122088A (en) Radioactivity measuring device
JPH09243752A (en) Optical fiber type large area radiation monitor
US7056021B2 (en) Radiographic apparatus and water calibration method
JPH03257391A (en) Measuring apparatus of x-ray irradiation distribution
JP2016223997A (en) Radiation camera
JP2000275347A (en) Dust-radiation monitoring apparatus
JP2007071602A (en) Radiation detector
KR100897154B1 (en) Gamma ray and optical dual modality imaging instrumentation
JP2006329905A (en) Line sensor, line sensor unit, and radiation nondestructive inspection system
KR101835530B1 (en) Method and device for determining the x-ray radiation attenuation caused by the object to be examined
JPH10319122A (en) Radiation image pick-up device
JP4915322B2 (en) Nuclear medicine equipment
JP2002221577A (en) Radiation measuring device
JPH0866388A (en) Radiation image pick-up device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080108

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100127

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100209

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100615