JP2007114111A - Nmr probe and nmr device - Google Patents

Nmr probe and nmr device Download PDF

Info

Publication number
JP2007114111A
JP2007114111A JP2005307377A JP2005307377A JP2007114111A JP 2007114111 A JP2007114111 A JP 2007114111A JP 2005307377 A JP2005307377 A JP 2005307377A JP 2005307377 A JP2005307377 A JP 2005307377A JP 2007114111 A JP2007114111 A JP 2007114111A
Authority
JP
Japan
Prior art keywords
nmr
heat
bobbin
coil
nmr probe
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2005307377A
Other languages
Japanese (ja)
Inventor
Hikoshige Ishikawa
石川彦成
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jeol Ltd
Original Assignee
Jeol Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jeol Ltd filed Critical Jeol Ltd
Priority to JP2005307377A priority Critical patent/JP2007114111A/en
Publication of JP2007114111A publication Critical patent/JP2007114111A/en
Withdrawn legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide an NMR probe and an NMR device for inexpensively and efficiently dissipating heat of a magnetic gradient coil in the NMR probe to the outside without being followed by eddy current. <P>SOLUTION: This NMR probe is equipped with a heat sink for dissipating heat of the magnetic gradient coil provided on a bobbin insufficient in heat exhaust to the outside. The heat sink is made by arranging a plurality of metal wires in a plate shape to get them lined up in the axial direction of the NMR probe, with the metal wires insulated from each other by insulative coatings. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、NMRプローブおよびNMR装置に関し、特に、磁場勾配コイルの放熱性を高めたNMRプローブおよびNMR装置に関する。   The present invention relates to an NMR probe and an NMR apparatus, and more particularly to an NMR probe and an NMR apparatus with improved heat dissipation of a magnetic field gradient coil.

NMR装置は、試料に強力な静磁場を印加して、試料中の核スピンを持った原子核の磁気モーメントに静磁場方向を軸とする歳差運動を惹起させた上で、静磁場方向に直交する向きの高周波磁場を印加して、原子核の磁気モーメントの歳差運動を励起し、その後、原子核の磁気モーメントの歳差運動が励起状態から基底状態に戻る際に放出されるNMR信号を、試料に固有な周波数を持った高周波磁界として観測する分析装置である。   An NMR device applies a strong static magnetic field to a sample, causes precession about the static magnetic field direction to occur in the magnetic moment of the nucleus with nuclear spin in the sample, and is orthogonal to the static magnetic field direction. A high frequency magnetic field is applied to excite the precession of the magnetic moment of the nucleus, and then the NMR signal emitted when the precession of the nuclear magnetic moment returns from the excited state to the ground state, It is an analyzer that observes as a high-frequency magnetic field having a frequency unique to.

従来のNMRプローブと、静磁場を発生する超伝導磁石との位置関係を、図1に示す。図中、1は超伝導磁石である。超伝導磁石1の内部には、超伝導線により、図示しない主コイルが巻回されている。主コイルは、通常、液体ヘリウム等を蓄えることができる図示しない断熱容器中に置かれ、極低温に冷却されている。   The positional relationship between a conventional NMR probe and a superconducting magnet that generates a static magnetic field is shown in FIG. In the figure, 1 is a superconducting magnet. Inside the superconducting magnet 1, a main coil (not shown) is wound with a superconducting wire. The main coil is usually placed in a heat insulating container (not shown) that can store liquid helium or the like, and is cooled to a cryogenic temperature.

NMRプローブ2は、このような超伝導磁石1の外側に配置される鍔状のベース部と、超伝導磁石1の内側に挿入される筒状部とで構成され、筒状部は、通常、この超伝導磁石1の中心軸に沿って貫通された筒状の室温ボア3の内部に向けて、下側の開口部から上方向に向けて挿入される。   The NMR probe 2 is composed of a bowl-shaped base portion arranged outside the superconducting magnet 1 and a cylindrical portion inserted inside the superconducting magnet 1. The superconducting magnet 1 is inserted in the upward direction from the lower opening toward the inside of the cylindrical room temperature bore 3 penetrating along the central axis.

NMRプローブ2の測定部外周には、超伝導磁石1が発生する強い静磁場の歪みを補正し、均一度の高い静磁場に成形するシムコイルを巻回したシムボビン(シム型枠)4が設けられている。シムボビン4は、超伝導磁石1の室温ボア3内に挿入された室温シム5の先端に配置される。室温シム5は、NMRプローブ2の外周を取り囲むようにして、超伝導磁石1に設けられた室温ボア3の下側の開口部から上方向に向けて、NMRプローブ2と同軸状に挿入されている。   A shim bobbin (shim mold) 4 is provided on the outer periphery of the measurement portion of the NMR probe 2. The shim bobbin 4 is formed by winding a shim coil for correcting a strong static magnetic field generated by the superconducting magnet 1 and forming a static magnetic field with high uniformity. ing. The shim bobbin 4 is disposed at the tip of a room temperature shim 5 inserted into the room temperature bore 3 of the superconducting magnet 1. The room temperature shim 5 is inserted coaxially with the NMR probe 2 from the lower opening of the room temperature bore 3 provided in the superconducting magnet 1 so as to surround the outer periphery of the NMR probe 2. Yes.

図2は、NMRプローブを拡大した図である。図中、6は、試料管に入ったNMR試料である。試料6を取り囲むようにして、NMRプローブ先端の検出コイル部7に、検出コイル8と磁場勾配(FG)コイル9が設置されている。検出コイル部7の下方は、NMR周波数に対する同調コイルを内蔵した同調回路部10になっていて、検出コイル部7と同調回路部10の外側は、金属製のプローブカバー11で頑丈に保護されている。   FIG. 2 is an enlarged view of the NMR probe. In the figure, 6 is an NMR sample in a sample tube. A detection coil 8 and a magnetic field gradient (FG) coil 9 are installed in the detection coil section 7 at the tip of the NMR probe so as to surround the sample 6. Below the detection coil unit 7 is a tuning circuit unit 10 incorporating a tuning coil for the NMR frequency, and the outside of the detection coil unit 7 and the tuning circuit unit 10 is firmly protected by a metal probe cover 11. Yes.

NMR信号を測定する際には、検出コイル8からパルス状の高周波磁場が試料6に印加されると同時に、FGコイル9からは、パルス状の勾配磁場が試料6に印加される。高周波磁場と勾配磁場を印加後、試料6から放出されるNMR信号を、所定のタイミングで、検出コイル8により検出する。検出されたNMR信号は、同調回路部10に送られ、同調回路部10に設けられた前置増幅器によって増幅されて、NMRプローブの外部に取り出される。   When measuring the NMR signal, a pulsed high-frequency magnetic field is applied from the detection coil 8 to the sample 6, and at the same time, a pulsed gradient magnetic field is applied from the FG coil 9 to the sample 6. After applying the high frequency magnetic field and the gradient magnetic field, the NMR signal emitted from the sample 6 is detected by the detection coil 8 at a predetermined timing. The detected NMR signal is sent to the tuning circuit unit 10, amplified by a preamplifier provided in the tuning circuit unit 10, and taken out of the NMR probe.

FGコイル9は、通常、非金属製の内ボビン12と非金属製の外ボビン13に巻回されて、図3のような2重コイルで構成される。これらの2重コイルは、主に、内側コイルで測定に必要な勾配磁場を発生させ、外側コイルでプローブカバー11などの周辺金属に流れる渦電流による不要磁場をキャンセルしている。図3は、Z勾配コイルの例である。X、Y勾配コイルは、フレキシブルプリント基板で構成される場合もある。   The FG coil 9 is usually wound around a non-metallic inner bobbin 12 and a non-metallic outer bobbin 13 and is constituted by a double coil as shown in FIG. These double coils mainly generate a gradient magnetic field required for measurement by an inner coil, and cancel an unnecessary magnetic field due to an eddy current flowing in a peripheral metal such as the probe cover 11 by an outer coil. FIG. 3 is an example of a Z gradient coil. The X and Y gradient coils may be formed of a flexible printed circuit board.

米国特許第5508613号公報。U.S. Pat. No. 5,508,613.

米国特許第5289151号公報。U.S. Pat. No. 5,289,151.

特開2003−61930号公報。JP 2003-61930 A.

特開平9−51888号公報。Japanese Patent Laid-Open No. 9-51888.

特開平6−90924号公報。JP-A-6-90924.

ところで、NMR測定時、上記FGコイル9で勾配磁場を発生させる際には、FGコイルに10〜100Aのパルス電流を流している。このとき、FGコイル9に、多量の熱が発生する。この熱は、試料を加熱したり、試料温度の安定制御を乱したりするという問題を引き起こすばかりでなく、場合によってはコイルの焼損を引き起こすこともある。   By the way, at the time of NMR measurement, when the gradient magnetic field is generated by the FG coil 9, a pulse current of 10 to 100A is passed through the FG coil. At this time, a large amount of heat is generated in the FG coil 9. This heat not only causes the problem of heating the sample and disturbing the stability control of the sample temperature, but also may cause the coil to burn out in some cases.

これを防止するために、FGコイル9の発熱量に応じて、水冷、空冷等の強制冷却を実施するのであるが、水冷では、NMRプローブの構造が複雑になり、設計、制作に大きな負担となり、空冷では、所望の冷却効果が得られない場合が多い。あるいは、NMRプローブの内部空間が狭すぎて、空冷用配管すら設置困難な場合もあり、強制冷却をあきらめて、自然冷却に委ねざるを得ない場合も多い。   In order to prevent this, forced cooling such as water cooling and air cooling is performed according to the amount of heat generated by the FG coil 9, but the structure of the NMR probe is complicated by water cooling, which is a heavy burden on design and production. In many cases, the desired cooling effect cannot be obtained by air cooling. Alternatively, the internal space of the NMR probe is too narrow, and even air cooling pipes are sometimes difficult to install, and forced cooling is often given up and left to natural cooling.

放熱経路について考えると、円周方向には、線材が金属であるため熱はよく伝わるが、円筒軸方向には、線材の皮膜、もしくは非金属製ボビンを通して熱が伝わるため、円周方向に比較すると熱の伝わりは悪い。   Considering the heat dissipation path, heat is transmitted well in the circumferential direction because the wire is metal, but in the cylindrical axis direction, heat is transmitted through the wire coating or non-metallic bobbin, so it is compared with the circumferential direction. Then the transmission of heat is bad.

FGコイル9は、飛び飛びに巻回される場合が多く、実質的には、ボビンを通しての熱伝導が支配的となり、放熱効率はきわめて悪くなっている。ボビンをアルミなどの熱伝導性の高い金属にすれば、当然、冷却効率の向上が望めるが、反面、パルス勾配磁場に誘導されて渦電流を発生してしまい、パルス勾配磁場を発生するというFGコイル9の機能が果たせなくなる。すなわち、パルス勾配磁場の立ち上がり、立ち下がりのきわめて悪い状態となる。また、ボビンを耐熱性、熱伝導性に優れた窒化アルミなどのセラミックスで制作することも可能ではあるが、あまりに高価に成り過ぎる。   In many cases, the FG coil 9 is wound in a jumping manner. In practice, the heat conduction through the bobbin becomes dominant, and the heat radiation efficiency is extremely deteriorated. If the bobbin is made of a metal having high thermal conductivity such as aluminum, naturally, the cooling efficiency can be improved, but on the other hand, it is induced by the pulse gradient magnetic field to generate an eddy current, and the FG that generates the pulse gradient magnetic field. The function of the coil 9 cannot be performed. That is, the rise and fall of the pulse gradient magnetic field are extremely poor. Although it is possible to make the bobbin with ceramics such as aluminum nitride having excellent heat resistance and thermal conductivity, it is too expensive.

さらに、近年使用されるようになってきた極低温プローブでは、図2のプローブ内部を真空に引き、検出コイル8、FGコイル9、同調回路部10を10〜20Kの極低温に冷却する。この場合には、水冷、空冷ともに不可能で、温度上昇が許容範囲に入るように出力磁場を制限して使用する他はない。   Furthermore, in the cryogenic probe that has come to be used in recent years, the inside of the probe of FIG. 2 is evacuated, and the detection coil 8, the FG coil 9, and the tuning circuit unit 10 are cooled to a cryogenic temperature of 10 to 20K. In this case, neither water cooling nor air cooling is possible, and there is no other way than limiting the output magnetic field so that the temperature rise falls within an allowable range.

本発明の目的は、上述した点に鑑み、渦電流を伴うことなく、NMRプローブ内のFGコイルの熱を安価に効率よく外界に逃がすことのできるNMRプローブおよびNMR装置を提供することにある。   In view of the above points, an object of the present invention is to provide an NMR probe and an NMR apparatus capable of efficiently and efficiently releasing the heat of the FG coil in the NMR probe to the outside without accompanying eddy current.

この目的を達成するため、本発明にかかるNMRプローブは、排熱が不十分なボビンに設けられたFGコイルの熱を外界に逃がすための放熱板を備えたNMRプローブであって、前記放熱板は、絶縁性の被膜で互いに絶縁された複数の金属線を前記NMRプローブの軸方向に揃えて板状に配列させて成ることを特徴としている。   In order to achieve this object, an NMR probe according to the present invention is an NMR probe comprising a heat dissipation plate for releasing heat of an FG coil provided on a bobbin with insufficient exhaust heat to the outside. Is characterized in that a plurality of metal wires insulated from each other by an insulating film are aligned in the axial direction of the NMR probe and arranged in a plate shape.

また、前記放熱板は、前記磁場勾配コイルに接触していることを特徴としている。   Further, the heat radiating plate is in contact with the magnetic field gradient coil.

また、前記放熱板は、前記ボビンに埋設されていることを特徴としている。   Moreover, the said heat sink is embed | buried under the said bobbin, It is characterized by the above-mentioned.

また、本発明にかかるNMR装置は、絶縁性の被膜で互いに絶縁された複数の金属線をNMRプローブの軸方向に揃えて板状に配列させて成る放熱板を備えたNMRプローブを備えていることを特徴としている。   In addition, the NMR apparatus according to the present invention includes an NMR probe provided with a heat radiating plate in which a plurality of metal wires insulated from each other by an insulating coating are aligned in the axial direction of the NMR probe and arranged in a plate shape. It is characterized by that.

本発明のNMRプローブおよびNMR装置によれば、排熱が不十分なボビンに設けられたFGコイルの熱を外界に逃がすための放熱板を備え、該伝熱板は、絶縁性の被膜で互いに絶縁された複数の金属線を前記NMRプローブの軸方向に揃えて板状に配列させているので、渦電流を伴うことなく、NMRプローブ内のFGコイルの熱を安価に効率よく外界に逃がすことのできる   According to the NMR probe and the NMR apparatus of the present invention, the heat sink is provided with a heat radiating plate for releasing the heat of the FG coil provided on the bobbin with insufficient exhaust heat to the outside. Since a plurality of insulated metal wires are aligned in the axial direction of the NMR probe and arranged in a plate shape, the heat of the FG coil in the NMR probe can be efficiently and inexpensively released to the outside without eddy currents. Can

以下、図面を参照しながら、本発明の実施の形態を説明する。   Hereinafter, embodiments of the present invention will be described with reference to the drawings.

まず、市販の絶縁皮膜付き自己融着線14(加熱などにより互いに接着可能な線材)を用いて、図4のような細線を平面状に並べた冷却板15を単層あるいは多層で制作する。これは、適当なボビンに絶縁皮膜付き自己融着線を巻き付けて融着し、ボビンの軸に沿って切開すれば良く、簡単に制作可能である。   First, by using a commercially available self-bonding wire 14 with an insulating film (wires that can be bonded to each other by heating or the like), a cooling plate 15 in which fine wires as shown in FIG. This can be easily produced by winding a self-bonding wire with an insulating film around a suitable bobbin, fusing it, and cutting it along the axis of the bobbin.

これをFGコイルの表面に接着し、さらにヒートシンク16(放熱フィン)に接続すれば、放熱効率は大幅に上昇する。図3の例では、前述のように、軸方向の熱伝導は、実質上ボビンの熱伝導率に支配されてしまうが、図5のように絶縁皮膜付き自己融着線14で制作した冷却板15をFGコイル9に接触させ、線材14の向きをボビンの軸方向に合わせてボビン表面に巻き付ければ、たとえ細い線材であっても、比較上、きわめて高い熱伝導性が軸方向に確保可能である。   If this is adhered to the surface of the FG coil and further connected to the heat sink 16 (heat dissipating fin), the heat dissipating efficiency is greatly increased. In the example of FIG. 3, as described above, the heat conduction in the axial direction is substantially governed by the thermal conductivity of the bobbin, but the cooling plate made of the self-bonding wire 14 with an insulating film as shown in FIG. If 15 is brought into contact with the FG coil 9 and the wire 14 is wound around the bobbin surface in accordance with the axial direction of the bobbin, comparatively high thermal conductivity can be ensured in the axial direction even for a thin wire. It is.

例えば、ボビンがエポキシ樹脂(熱伝導率0.3W/m・K)で内径がφ30mm、厚みが1mmとすれば、その1mmで1Kの温度差を与える伝熱量は0.028W/Kとなる。一方、図4に示すような形状をした、φ1mm、幅10mm(ボビンの周長の1/10)の銅線の束(熱伝導率400W/m・K)を用いた場合、同様に1mmで1Kの温度差を与える伝熱量は0.31W/Kと約11倍改善される。実際には、より太い線材、より広い幅の冷却板が使用可能であるため、冷却効果は数十倍に及ぶ。   For example, if the bobbin is an epoxy resin (thermal conductivity 0.3 W / m · K), the inner diameter is 30 mm, and the thickness is 1 mm, the heat transfer amount that gives a temperature difference of 1 K per 1 mm is 0.028 W / K. On the other hand, when a bundle of copper wires (thermal conductivity 400 W / m · K) having a shape as shown in FIG. 4 and having a diameter of 1 mm and a width of 10 mm (1/10 of the bobbin circumference) is used, similarly, 1 mm The amount of heat transfer that gives a temperature difference of 1K is improved by about 11 times to 0.31 W / K. Actually, since a thicker wire and a wider cooling plate can be used, the cooling effect is several tens of times.

なお、ヒートシンク16の位置は、図5のようにボビンの下側でなく、ボビンの上側など別の場所でもよく、放熱板15をプローブカバー11に接触させて放熱フィンとしても良い。また、放熱板15をヒートシンク16に接続しなくても、周囲の空気への放熱面積の増加により、放熱板15のない場合に比べ、冷却能は向上する。   The position of the heat sink 16 may not be the lower side of the bobbin as shown in FIG. 5, but may be another place such as the upper side of the bobbin, or the heat radiating plate 15 may be brought into contact with the probe cover 11 to serve as a heat radiating fin. Even if the heat radiating plate 15 is not connected to the heat sink 16, the cooling capacity is improved as compared with the case without the heat radiating plate 15 due to an increase in the heat radiating area to the surrounding air.

なお、本案では、絶縁皮膜付き自己融着線14の向きをボビンの軸方向に合わせてボビン表面に巻き付けているので、ボビンの周方向への電流が制限され、渦電流が発生しないことは言うまでもない。また、自己融着線はきわめて安価に購入できる。   In the present plan, since the direction of the self-bonding wire 14 with the insulating film is wound around the bobbin surface in accordance with the axial direction of the bobbin, it goes without saying that the current in the circumferential direction of the bobbin is limited and no eddy current is generated. Yes. Also, self-bonding wires can be purchased at a very low cost.

本発明の効果は、特に極低温プローブにおいて顕著である。真空中に置かれた線材が発熱すると、放熱はきわめてむつかしく、温度は簡単に上昇してしまう。温度が上昇すれば、熱輻射によって放熱は可能となるが、この状態は、冷却すべき検出コイルなどの周囲の構造物の加熱につながり、不都合である。また、極低温では、一般に金属の電気抵抗が低下しているため、発熱は1/10以下に低下できるのであるが、磁場勾配コイルの放熱による温度上昇は、この効果を低減させてしまう。しかし、本発明によれば、温度上昇に伴う電気抵抗の上昇を大幅に軽減可能であり、結果的に、より大きな電流による大きな勾配磁場を得ることが可能となる。   The effect of the present invention is particularly remarkable in a cryogenic probe. When a wire placed in a vacuum generates heat, heat dissipation is very difficult and the temperature rises easily. If the temperature rises, heat radiation can be performed by heat radiation, but this state is inconvenient because it leads to heating of surrounding structures such as the detection coil to be cooled. At extremely low temperatures, the electrical resistance of metals generally decreases, so heat generation can be reduced to 1/10 or less. However, a temperature increase due to heat radiation of a magnetic field gradient coil reduces this effect. However, according to the present invention, an increase in electrical resistance accompanying a temperature increase can be greatly reduced, and as a result, a large gradient magnetic field due to a larger current can be obtained.

図5の例では、放熱板15がFGコイル9の外側に置かれていたが、これは、図6のように、放熱板15がFGコイル9の線材とボビンとの間に置かれていても良い。   In the example of FIG. 5, the heat sink 15 is placed outside the FG coil 9, but this is because the heat sink 15 is placed between the wire of the FG coil 9 and the bobbin as shown in FIG. 6. Also good.

別の例として、ボビン材料の内側に放熱板15を配置しても良い。これは、一見困難なようにも思われるが、ベークライトやガラスエポキシのような樹脂材料は、プレプリグを積層して製造することが可能で、この積層の途中に冷却板を挟み込むことは容易である。   As another example, the heat sink 15 may be disposed inside the bobbin material. Although this seems to be difficult at first glance, resin materials such as bakelite and glass epoxy can be produced by laminating prepregs, and it is easy to sandwich a cooling plate in the middle of this lamination. .

なお、被膜の施された線材は、銅線でもアルミ線でも熱伝導の良い金属であれば何でも良い。また、線材を並べて接着する場合には、自己融着線ではない線材を接着剤で接着しても良い。また、線材は、丸線でも平角線でも良い。また、FGコイルは、Z軸方向のコイルのみを例として上げたが、X、Y方向のコイルについても全く同様のことが言える。   The coated wire may be any metal such as a copper wire or an aluminum wire as long as it has a good thermal conductivity. Further, when the wires are aligned and bonded, a wire that is not a self-bonding wire may be bonded with an adhesive. The wire may be a round wire or a flat wire. Further, although the FG coil is exemplified only for the Z-axis direction coil, the same can be said for the X- and Y-direction coils.

NMRプローブとNMR装置に広く利用できる。   It can be widely used for NMR probes and NMR apparatuses.

従来のNMR装置の検出部を示す図である。It is a figure which shows the detection part of the conventional NMR apparatus. 従来のNMRプローブを示す図である。It is a figure which shows the conventional NMR probe. 従来のボビンと磁場勾配コイルとの関係を示す図である。It is a figure which shows the relationship between the conventional bobbin and a magnetic field gradient coil. 本発明にかかる放熱板の一実施例を示す図である。It is a figure which shows one Example of the heat sink concerning this invention. 本発明にかかる放熱板のボビンへの一実装例を示す図である。It is a figure which shows one example of mounting to the bobbin of the heat sink concerning this invention. 本発明にかかる放熱板のボビンへの別の実装例を示す図である。It is a figure which shows another example of mounting to the bobbin of the heat sink concerning this invention. 本発明にかかる放熱板のボビンへの別の実装例を示す図である。It is a figure which shows another example of mounting to the bobbin of the heat sink concerning this invention.

符号の説明Explanation of symbols

1:超伝導磁石、2:プローブ、3:室温ボア、4:シムボビン、5:室温シム、6:試料、7:検出コイル部、8:検出コイル、9:磁場勾配コイル、10:同調回路部、11:プローブカバー、12:内ボビン、13:外ボビン、14:自己融着線、15:放熱板(冷却板)、16:ヒートシンク
1: Superconducting magnet, 2: Probe, 3: Room temperature bore, 4: Sim bobbin, 5: Room temperature shim, 6: Sample, 7: Detection coil section, 8: Detection coil, 9: Magnetic field gradient coil, 10: Tuning circuit section , 11: probe cover, 12: inner bobbin, 13: outer bobbin, 14: self-bonding wire, 15: heat sink (cooling plate), 16: heat sink

Claims (4)

排熱が不十分なボビンに設けられた磁場勾配コイルの熱を外界に逃がすための放熱板を備えたNMRプローブであって、
前記放熱板は、絶縁性の被膜で互いに絶縁された複数の金属線を前記NMRプローブの軸方向に揃えて板状に配列させて成ることを特徴とするNMRプローブ。
An NMR probe comprising a heat dissipation plate for releasing heat from a magnetic field gradient coil provided on a bobbin with insufficient exhaust heat to the outside,
The heat radiation plate is formed by arranging a plurality of metal wires insulated from each other with an insulating film in a plate shape in the axial direction of the NMR probe.
前記放熱板は、前記磁場勾配コイルに接触していることを特徴とする請求項1記載のNMRプローブ。 The NMR probe according to claim 1, wherein the heat radiating plate is in contact with the magnetic field gradient coil. 前記放熱板は、前記ボビンに埋設されていることを特徴とする請求項1または2記載のNMRプローブ。 The NMR probe according to claim 1, wherein the heat dissipation plate is embedded in the bobbin. 請求項1記載のNMRプローブを備えたことを特徴とするNMR装置。
An NMR apparatus comprising the NMR probe according to claim 1.
JP2005307377A 2005-10-21 2005-10-21 Nmr probe and nmr device Withdrawn JP2007114111A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005307377A JP2007114111A (en) 2005-10-21 2005-10-21 Nmr probe and nmr device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005307377A JP2007114111A (en) 2005-10-21 2005-10-21 Nmr probe and nmr device

Publications (1)

Publication Number Publication Date
JP2007114111A true JP2007114111A (en) 2007-05-10

Family

ID=38096431

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005307377A Withdrawn JP2007114111A (en) 2005-10-21 2005-10-21 Nmr probe and nmr device

Country Status (1)

Country Link
JP (1) JP2007114111A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011501196A (en) * 2007-10-23 2011-01-06 アブクマー インコーポレイテッド Micro coil magnetic resonance detector

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011501196A (en) * 2007-10-23 2011-01-06 アブクマー インコーポレイテッド Micro coil magnetic resonance detector

Similar Documents

Publication Publication Date Title
JP5226930B2 (en) Thermal management device and manufacturing method thereof
JP5942699B2 (en) Magnetic resonance signal detection module
JP5100994B2 (en) Inclined bore cooling and RF shielding
JP4691350B2 (en) Low eddy current cryogen circuit for superconducting magnets.
US20080001603A1 (en) Superconductor probe coil for NMR apparatus
JP2007027715A (en) Low magnetic field loss cold mass structure for superconducting magnet
JP2009027025A (en) Coil unit, and electronic instrument
JP4408296B2 (en) NMR equipment
JP5942700B2 (en) Magnetic resonance signal detection probe
JP2010513924A (en) Cooled normal metal and HTSNMR probe coils with electric field shield
JP4971685B2 (en) Nuclear magnetic resonance probe coil
JP5360638B2 (en) Superconducting magnetic field generator, method of magnetizing superconducting magnetic field generator, and nuclear magnetic resonance apparatus
JP6340403B2 (en) Easily accessible deep-temperature frozen NMR shim arrangement
JP2014230739A (en) Actively shielded, cylindrical gradient magnetic field coil apparatus with passive rf shielding for nmr device
JP2008107344A (en) Vacuum container for cooling magnetic resonance probe head
JP6546782B2 (en) AC loss measuring device
US10955512B2 (en) EPR apparatus equipped with specific RS coils and corresponding coil devices
JP2007114111A (en) Nmr probe and nmr device
JP2004212354A (en) Nuclear magnetic resonance probe
JP2008028146A (en) Thermal shield for superconducting magnet, superconducting magnet device, and magnetic resonance imaging apparatus
JP2010197055A (en) Nmr probe
JP2014532306A (en) Coiled electronic power component with heat sink support
JP2011131009A (en) Magnetic resonance imaging apparatus
JP2023012800A (en) Superconducting coil device and current introduction line
JP2006105637A (en) Nmr probe, shim device, and nmr device

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20090106