JP2007113967A - Method of evaluating reliability of structure deteriorated due to aging - Google Patents

Method of evaluating reliability of structure deteriorated due to aging Download PDF

Info

Publication number
JP2007113967A
JP2007113967A JP2005303685A JP2005303685A JP2007113967A JP 2007113967 A JP2007113967 A JP 2007113967A JP 2005303685 A JP2005303685 A JP 2005303685A JP 2005303685 A JP2005303685 A JP 2005303685A JP 2007113967 A JP2007113967 A JP 2007113967A
Authority
JP
Japan
Prior art keywords
probability density
density function
combination
finite element
characteristic variable
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005303685A
Other languages
Japanese (ja)
Other versions
JP4771465B2 (en
Inventor
Masato Nakajima
正人 中島
Hirosuke Yamamoto
広祐 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Central Research Institute of Electric Power Industry
Original Assignee
Central Research Institute of Electric Power Industry
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Central Research Institute of Electric Power Industry filed Critical Central Research Institute of Electric Power Industry
Priority to JP2005303685A priority Critical patent/JP4771465B2/en
Publication of JP2007113967A publication Critical patent/JP2007113967A/en
Application granted granted Critical
Publication of JP4771465B2 publication Critical patent/JP4771465B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Testing Of Devices, Machine Parts, Or Other Structures Thereof (AREA)
  • Testing Resistance To Weather, Investigating Materials By Mechanical Methods (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To evaluate reliability of a structure, while taking deterioration due to aging of the structure into consideration, even when information about the load and the strength has not been obtained completely. <P>SOLUTION: In this method, a probability density function is deduced for each characteristic variable, based on investigation data an actual condition of the deteriorated structure due to aging and a questionnaire investigation data to an expert, relative occurrence of ease for each combination of values in the characteristic variables is calculated, based on the probability density in each characteristic variables, finite element analysis is carried out for each combination, probability density function of a generation stress is deduced, based on the generation stress for each combination, obtained as a result of the finite element analysis and the relative occurrence of ease for each combination, and a breakage probability and a safety index are calculated, based on the probability density function of the generation stress and the probability density function of the strength that has been set, based on the existing data. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、経年劣化した構造物の信頼性評価方法に関する。さらに詳述すると、本発明は、経年劣化により部材の腐食等が生じた構造物の信頼性評価方法に関する。   The present invention relates to a method for evaluating the reliability of a structure that has deteriorated over time. More specifically, the present invention relates to a method for evaluating the reliability of a structure in which member corrosion or the like has occurred due to aging.

本発明において、構造物の経年劣化に係る変数を特性変数と表現する。   In the present invention, a variable related to aging of a structure is expressed as a characteristic variable.

経年化した土木構造物の合理的な維持管理計画を策定するためには、設計段階と同様に、想定される地震、風及び波浪等の外的事象並びに劣化及び操作により発生する負荷等の内的事象を考慮したリスク評価が必要である。そして、そのリスク評価においては、まず、対象構造物の現在及び将来の信頼性を定量的に把握することが必要である。土木分野における構造信頼性理論の適用については例えば非特許文献1にまとめられている。   In order to formulate a rational maintenance plan for an aged civil engineering structure, as in the design stage, it is necessary to include external events such as earthquakes, winds, and waves, as well as loads caused by deterioration and operation. Risk assessment that takes into account typical events is necessary. In the risk assessment, first, it is necessary to quantitatively grasp the current and future reliability of the target structure. The application of structural reliability theory in the civil engineering field is summarized in Non-Patent Document 1, for example.

土木学会構造工学委員会:構造工学シリーズ2 構造物のライフタイムリスクの評価,1988年.Japan Society of Civil Engineers Structural Engineering Committee: Structural Engineering Series 2 Evaluation of Lifetime Risk of Structures, 1988.

しかしながら、実構造物の中には複数の部材からなり荷重−変位関係が非線形挙動を示すものが存在する。加えて特に屋外構造物の場合は、荷重及び強度に関する情報が完全に得られることは稀である。このため、全ての確率変数の特性を把握し、その結合確率密度関数を基に破壊確率を厳密に算出することは実際上、困難である。したがって、非特許文献1の信頼性の評価は、どのような構造物に対しても広く適用することができる汎用的な方法であるとは言い難い。   However, some actual structures include a plurality of members and the load-displacement relationship exhibits nonlinear behavior. In addition, particularly for outdoor structures, it is rare that complete information on load and strength is obtained. For this reason, it is practically difficult to grasp the characteristics of all random variables and to strictly calculate the fracture probability based on the bond probability density function. Therefore, it is difficult to say that the reliability evaluation of Non-Patent Document 1 is a general-purpose method that can be widely applied to any structure.

そこで、本発明は、荷重及び強度に関する情報が完全に得られない場合でも、構造物の経年劣化を考慮しつつ構造物の信頼性を評価することが可能な方法を提供することを目的とする。   Therefore, an object of the present invention is to provide a method capable of evaluating the reliability of a structure while taking into account the aging of the structure even when information on the load and strength is not completely obtained. .

かかる目的を達成するため、本発明の経年劣化した構造物の信頼性評価方法は、経年劣化した構造物の実態に関する調査データ並びに専門家へのアンケート調査データを基に特性変数毎の確率密度関数を推定すると共に特性変数毎の確率密度から特性変数の値の組み合わせ毎の相対的な起こり易さを算出し、この組み合わせ毎に行った有限要素解析で得られた発生応力の頻度分布を組み合わせ毎の相対的な起こり易さを用いて変換した発生応力の頻度分布から確率密度関数を推定し、この発生応力の確率密度関数と既存データから設定した強度の確率密度関数とに基づいて破壊確率と安全性指標を算出する。   In order to achieve such an object, the reliability evaluation method for an aged structure according to the present invention is a probability density function for each characteristic variable based on survey data on the actual condition of an aged structure and questionnaire survey data for experts. Is calculated from the probability density for each characteristic variable, and the relative likelihood of each characteristic variable value combination is calculated, and the frequency distribution of the generated stress obtained by the finite element analysis performed for each combination is calculated for each combination. The probability density function is estimated from the frequency distribution of the generated stress converted using the relative likelihood of occurrence, and the fracture probability and the probability density function based on the probability density function of the generated stress and the strength probability density function set from existing data are calculated. Calculate safety indicators.

したがって、この構造物の信頼性評価方法によると、専門家へのアンケート調査を行い、そのアンケート調査データに基づいて特性変数の値の確率密度関数を推定する。また、特性変数の値の組み合わせ毎の相対的な起こり易さを算出し、その相対的な起こり易さを考慮した発生応力の値の確率密度関数を推定する。更に、発生応力の確率密度関数と強度の確率密度関数とに基づいて破壊確率と安全性指標を算出して構造物の信頼性の評価を行う。   Therefore, according to the reliability evaluation method for this structure, a questionnaire survey is performed on experts, and the probability density function of the value of the characteristic variable is estimated based on the questionnaire survey data. Further, the relative probability of occurrence for each combination of characteristic variable values is calculated, and the probability density function of the value of the generated stress in consideration of the relative probability of occurrence is estimated. Further, the fracture probability and the safety index are calculated based on the probability density function of the generated stress and the probability density function of the strength, and the reliability of the structure is evaluated.

以上説明したように、本発明の構造物の信頼性評価方法によれば、専門家へのアンケート調査データに基づいて特性変数の値の確率密度関数を推定することにより、構造物の荷重に関する情報が完全に与えられない場合でも、膨大な回数の計算を行うことなく構造物の信頼性を評価することができるので、多様な構造物の評価を行うことが可能で汎用性の向上を図ることが可能である。また、特性変数の値の組み合わせ毎の相対的な起こり易さを考慮した発生応力の値の確率密度関数を推定することにより、より実際の状態に対応した発生応力を想定することができるので、構造物の信頼性評価の精度向上が可能である。   As described above, according to the structure reliability evaluation method of the present invention, information on the load of the structure is obtained by estimating the probability density function of the value of the characteristic variable based on questionnaire survey data to experts. Even if it is not given completely, the reliability of the structure can be evaluated without performing a huge number of calculations, so it is possible to evaluate various structures and improve versatility. Is possible. In addition, by estimating the probability density function of the value of the generated stress considering the relative likelihood of each combination of characteristic variable values, the generated stress corresponding to the actual state can be assumed, It is possible to improve the accuracy of the reliability evaluation of structures.

以下、本発明の構成を図面に示す最良の形態に基づいて詳細に説明する。   Hereinafter, the configuration of the present invention will be described in detail based on the best mode shown in the drawings.

図1から図6に、本発明の構造物の信頼性評価方法の実施形態の一例を示す。なお、本実施形態では、信頼性評価を行う構造物(以下、評価対象構造物と呼ぶ)として、図2に示すダム洪水吐きラジアルゲート(以下、単にラジアルゲートと表記する)1を例に挙げている。なお、本実施形態のラジアルゲートは左右対称であるので、スキンプレート4に面と向かったときのラジアルゲートの右側半分のみを信頼性評価の対象としている。   1 to 6 show an example of an embodiment of a structure reliability evaluation method of the present invention. In the present embodiment, a dam spillway radial gate (hereinafter simply referred to as a radial gate) 1 shown in FIG. 2 is taken as an example of a structure for which reliability evaluation is performed (hereinafter referred to as an evaluation target structure). ing. In addition, since the radial gate of this embodiment is left-right symmetric, only the right half of the radial gate when facing the surface to the skin plate 4 is an object of reliability evaluation.

この構造物の信頼性評価方法は、図1のフローに示すように、有限要素解析を行うための三次元有限要素解析モデルを作成する工程(S1)と、特性変数毎に頻度分布を作成する工程(S2)と、特性変数毎の確率密度関数を推定する工程(S3)と、特性変数の値の組み合わせ毎の有限要素解析を行う工程(S4)と、特性変数の値の組み合わせ毎の起こり易さを算出する工程(S5)と、有限要素解析による最小主応力の頻度分布を作成する工程(S6)と、最小主応力の確率密度関数を推定する工程(S7)と、強度の確率密度関数を設定する工程(S8)と、構造物の信頼性を評価する工程(S9)とで構成されている。   In this structure reliability evaluation method, as shown in the flow of FIG. 1, a step (S1) of creating a three-dimensional finite element analysis model for performing finite element analysis and a frequency distribution for each characteristic variable are created. Step (S2), step (S3) for estimating a probability density function for each characteristic variable, step (S4) for performing finite element analysis for each combination of characteristic variable values, and occurrence for each combination of characteristic variable values A step of calculating easiness (S5), a step of creating a frequency distribution of minimum principal stress by finite element analysis (S6), a step of estimating a probability density function of minimum principal stress (S7), and a probability density of strength It comprises a function setting step (S8) and a step of evaluating the reliability of the structure (S9).

(1)三次元有限要素解析モデルの作成(S1)
まず、有限要素解析を行うための三次元有限要素解析モデルを作成する。有限要素解析自体並びに有限要素解析を行うための解析モデルの作成は周知の技術であり、本発明の有限要素解析並びに解析モデルの作成も従来の方法と同様であるのでここでは詳細については省略する。
(1) Creation of 3D finite element analysis model (S1)
First, a three-dimensional finite element analysis model for performing finite element analysis is created. Finite element analysis itself and creation of an analysis model for performing finite element analysis are well-known techniques, and finite element analysis and creation of an analysis model according to the present invention are the same as in the conventional method, and therefore details are omitted here. .

なお、三次元有限要素解析モデルの要素数並びに節点数に特に制限はなく、評価対象構造物の大きさ、有限要素解析に要する作業量及び必要とされる解析結果の精度等を考慮して作業者が適当な要素数並びに節点数を設定する。具体的には例えば、要素数も節点数もそれぞれ数千のオーダーで三次元有限要素解析モデルを作成することが考えられるが、これに限られるものではなく、これより少ない要素数・節点数でも良いし又はこれより多い要素数・節点数でも良い。更に、評価対象構造物が左右対称である場合には、構造物全体を解析モデル化するようにしても良いし、又は、本実施形態のように構造物の左右いずれかの片側半分のみを解析モデル化するようにしても良い。   There are no particular restrictions on the number of elements and the number of nodes in the 3D finite element analysis model, and the work takes into account the size of the structure to be evaluated, the amount of work required for finite element analysis, and the accuracy of the required analysis results The person sets an appropriate number of elements and number of nodes. Specifically, for example, it is conceivable to create a three-dimensional finite element analysis model in the order of thousands of elements and nodes. However, the present invention is not limited to this, and a smaller number of elements / nodes can be used. The number of elements / nodes may be good or larger. Furthermore, when the structure to be evaluated is symmetrical, the entire structure may be converted into an analysis model, or only one of the left and right halves of the structure is analyzed as in this embodiment. You may make it model.

本実施形態では、図2に示すように、ラジアルゲート1の主桁2、脚柱3、スキンプレート4、並びに脚柱間連結部材5及び縦桁6等の補助部材の一部は三次元薄肉シェル要素でモデル化し、その他の補助部材7は三次元梁要素でモデル化する。なお、本実施形態の三次元有限要素解析モデルの要素数は6184、節点数は5882である。   In the present embodiment, as shown in FIG. 2, some of the auxiliary members such as the main girder 2, the leg column 3, the skin plate 4, the inter-leg column connecting member 5, and the stringer 6 of the radial gate 1 are three-dimensional thin-walled. The other auxiliary member 7 is modeled by a three-dimensional beam element. The three-dimensional finite element analysis model of this embodiment has 6184 elements and 5882 nodes.

(2)特性変数毎の頻度分布の作成(S2)
次に、特性変数の頻度分布を作成する。特性変数は、評価対象構造物を構成する部材に合わせて設定する。具体的には例えば、部材の腐食量や可動部材の摩擦係数などが考えられるが、これに限られるものではなく、経年化によって構造物の信頼性に影響を与えると考えられる要因を特性変数として設定する。
(2) Creation of frequency distribution for each characteristic variable (S2)
Next, a frequency distribution of characteristic variables is created. The characteristic variable is set according to the members constituting the structure to be evaluated. Specifically, for example, the amount of corrosion of the member and the friction coefficient of the movable member can be considered, but this is not a limitation, and factors that may affect the reliability of the structure due to aging are considered as characteristic variables. Set.

そして、特性変数として設定した各要因の実態の調査データや文献に示されている事例データ等を収集し、それら実態の調査データ等を用いて特性変数のそれぞれについて頻度分布を作成する。   Then, survey data on the actual condition of each factor set as a characteristic variable, case data shown in the literature, and the like are collected, and a frequency distribution is created for each of the characteristic variables using the actual survey data and the like.

また、特性変数として設定した要因についての実態の調査データ等が、頻度分布を作成可能な程度には十分にない場合には、いわゆるエキスパート・オピニオンを反映するため、評価対象構造物等についての研究者や技術者等の専門家に対しアンケート調査を実施し、アンケート調査結果に基づき特性変数の頻度分布を作成する。なお、この場合には、アンケート調査データのみを用いて頻度分布を作成するようにしても良いし、又はアンケート調査データと前述の実態の調査データ等を組み合わせて頻度分布を作成するようにしても良い。   In addition, if the actual survey data for the factors set as characteristic variables are not sufficient to create a frequency distribution, research on the structure to be evaluated is necessary to reflect the so-called expert opinion. A questionnaire survey is conducted on experts such as engineers and engineers, and a frequency distribution of characteristic variables is created based on the questionnaire survey results. In this case, the frequency distribution may be created using only the questionnaire survey data, or the frequency distribution may be created by combining the questionnaire survey data and the above-described actual survey data. good.

更に、上記により作成した頻度分布も考慮して特性変数のそれぞれについて取り得る値の範囲を設定する。取り得る値の範囲の設定方法は特に限定されるものではなく、作業者が適宜設定する。具体的には例えば、特性変数の値別の頻度が0より大きくなっている値の最小値と最大値とから設定することが考えられるが、前述の通りこの方法に限定されるものではない。   Further, the range of possible values for each characteristic variable is set in consideration of the frequency distribution created as described above. The setting method of the range of possible values is not particularly limited, and is set as appropriate by the operator. Specifically, for example, it is conceivable to set from the minimum value and the maximum value of values whose characteristic variable values are greater than 0, but as described above, the method is not limited to this method.

本実施形態では、経年化によってラジアルゲート1の構造信頼性に影響を与える要因としてラジアルゲート1を構成する部材の腐食及びラジアルゲート支承部のトラニオンピン9の滑り摩擦抵抗の変化を考慮する。そして、ラジアルゲート1を構成する部材の平均腐食量(以下、単に平均腐食量と表記する)及びトラニオンピンの摩擦係数(以下、単に摩擦係数と表記する)の頻度分布を作成する。   In this embodiment, the corrosion of the members constituting the radial gate 1 and the change in the sliding frictional resistance of the trunnion pin 9 of the radial gate support are considered as factors that affect the structural reliability of the radial gate 1 due to aging. Then, a frequency distribution of the average corrosion amount (hereinafter simply referred to as the average corrosion amount) of the members constituting the radial gate 1 and the friction coefficient of the trunnion pin (hereinafter simply referred to as the friction coefficient) is created.

平均腐食量については、ラジアルゲート1のスキンプレート4、主桁2、脚柱3及び主桁補剛材8の四部材の腐食について考慮する。そして、これら部材の平均腐食量の頻度分布は、水力構造物の腐食実態を反映するため、水力構造物の腐食の実態の調査データや文献に示されている事例データ等を収集し、それら実態の調査データ等を用いて平均腐食量の頻度分布を作成する。   Regarding the average corrosion amount, the corrosion of the four members of the skin plate 4 of the radial gate 1, the main girder 2, the pedestal 3 and the main girder stiffener 8 is considered. Since the frequency distribution of the average corrosion amount of these members reflects the actual corrosion of the hydraulic structure, we collect the survey data of the actual condition of the hydraulic structure and the case data shown in the literature. The frequency distribution of the average corrosion amount is created using the survey data.

本実施形態では、水圧鉄管62箇所の調査データ(沼崎吉次:既設水圧鉄管の腐食・強度に関する調査,電力土木,No.151,pp.37−40,54,1977年.)、並びにゲート71箇所及び水圧鉄管37箇所の調査データ(田口泰明 等:水圧鉄管健全性調査手法調査研究報告−特殊超音波による水圧鉄管小支台部の腐食量調査−,水門鉄管,No.211,pp.54−59,2002年6月.)を用いて平均腐食量の頻度分布を作成する。   In this embodiment, the investigation data of 62 locations of hydraulic iron pipes (Koji Numazaki: Investigation on corrosion and strength of existing hydraulic iron pipes, Electric Power Engineering, No. 151, pp. 37-40, 54, 1977.) and gate 71 Data of 37 locations and hydraulic iron pipes (Taguchi Yasuaki et al .: Hydraulic steel pipe soundness investigation method research report-Corrosion survey of hydraulic iron pipe small abutment by special ultrasonic wave-, Shimon iron pipe, No. 211, pp.54 -59, June 2002.) to create a frequency distribution of the average corrosion amount.

そして、平均腐食量が取り得る値の範囲は、頻度分布も考慮して0.0mm〜2.0mmとする。   The range of values that the average corrosion amount can take is set to 0.0 mm to 2.0 mm in consideration of the frequency distribution.

また、摩擦係数の頻度分布は、いわゆるエキスパート・オピニオンを反映するため、実際の水力構造物におけるピン摩擦係数の値の範囲を聞くアンケート調査を専門家に対して実施し、そのアンケート調査データを用いて摩擦係数の頻度分布を作成する。   In addition, since the frequency distribution of the friction coefficient reflects the so-called expert opinion, a questionnaire survey was conducted to ask experts about the range of pin friction coefficient values in actual hydraulic structures, and the questionnaire survey data was used. To create a frequency distribution of the coefficient of friction.

本実施形態では、水力構造物の専門家である電力会社技術者、メーカー技術者、コンサルタント会社技術者及び研究所研究者等合計30名に対してアンケート調査を行い、そのアンケート調査データを用いて摩擦係数の頻度分布を作成する(図3)。   In the present embodiment, a questionnaire survey is conducted on a total of 30 power company engineers, manufacturer engineers, consultant company engineers, and laboratory researchers who are experts in hydraulic structures, and the questionnaire survey data is used. A frequency distribution of the friction coefficient is created (FIG. 3).

そして、摩擦係数が取り得る値の範囲は、頻度分布も考慮して0.0〜1.0とする。   The range of values that the friction coefficient can take is set to 0.0 to 1.0 in consideration of the frequency distribution.

(3)特性変数毎の確率密度関数の推定(S3)
次に、S2で作成した頻度分布を対象に非線形最小二乗法を用いて確率密度関数を推定する。特性変数の確率密度関数の分布形は特に限定されるものではなく、いずれの分布形を用いても良い。具体的には例えば、対数正規分布、指数分布、Rayleigh分布、Frechet分布、Weibull分布等が考えられるが、前述の通りこれらの分布形に限定されるものではない。
(3) Estimation of probability density function for each characteristic variable (S3)
Next, a probability density function is estimated using the nonlinear least square method for the frequency distribution created in S2. The distribution form of the probability density function of the characteristic variable is not particularly limited, and any distribution form may be used. Specifically, for example, a lognormal distribution, an exponential distribution, a Rayleigh distribution, a Frechet distribution, a Weibull distribution, and the like can be considered, but as described above, the distribution form is not limited thereto.

本実施形態では、平均腐食量並びに摩擦係数は対数正規分布でモデル化する(図4、図5)。   In the present embodiment, the average corrosion amount and the friction coefficient are modeled with a lognormal distribution (FIGS. 4 and 5).

(4)特性変数の値の組み合わせ毎の有限要素解析(S4)
次に、S1で作成した三次元有限要素解析モデルを用いてS2で設定した特性変数をパラメータとした有限要素解析を行い、評価対象構造物の応力評価箇所における最小主応力(圧縮応力)を算出する。そして、算出した最小主応力の値のうち絶対値が最大の最小主応力の値を抽出する。なお、前述の通り、有限要素解析自体は周知の技術であるのでここでは詳細については省略する。
(4) Finite element analysis for each combination of characteristic variable values (S4)
Next, using the three-dimensional finite element analysis model created in S1, the finite element analysis is performed using the characteristic variables set in S2 as parameters, and the minimum principal stress (compressive stress) at the stress evaluation location of the structure to be evaluated is calculated. To do. Then, the value of the minimum principal stress having the maximum absolute value among the calculated values of the minimum principal stress is extracted. As described above, since the finite element analysis itself is a well-known technique, the details are omitted here.

ここで、応力評価箇所の設定については、本実施形態では、ラジアルゲート1の非線形構造解析を行うことで破壊モード及び応力が最大となる箇所を特定すると共に、過去に起こったラジアルゲートの破損事例(川村幸司・中野俊次:和知ダムゲートの事故原因調査報告の概要,土木技術資料,Vol.10,No.9,pp.26−32,1968年9月.、U.S. Department of the Interior, Bureau of Reclamation, Mid Pacific Region:Forensic Report Excerpt Spillway Tainter Gate3 Failure, Folsom Dam, CA, USA,1996年.及び Fosker. H. et al.:Improved Diagnostics for Detecting Friction on Dam Gates,Water Power & Dam Construction,pp.39−41,2001年8月.)についても考慮した。そして、非線形構造解析結果及び過去の事故例から、ラジアルゲートの場合、巻き上げ時に起こるラジアルゲートの脚柱基部の座屈が最も問題となることを考慮し、ラジアルゲート1の脚柱3の基部を応力評価箇所Oとして設定した。なお、三次元有限要素解析モデル上では、応力評価箇所Oとして複数の要素を指定している。   Here, regarding the setting of the stress evaluation location, in this embodiment, the location where the fracture mode and the stress are maximized is specified by performing the nonlinear structural analysis of the radial gate 1, and the failure cases of the radial gate that have occurred in the past are specified. (Koji Kawamura and Shunji Nakano: Summary of the cause investigation report of the Wachi Dam Gate, Civil Engineering Data, Vol. 10, No. 9, pp. 26-32, September 1968, US Department of the Interior, Bureau of Reclamation, Mid Pacific Region: Forensic Report Excerpt Spillway Tainter Gate3 Failure, Folsom Dam, CA, USA, 1996. and Fosker. H. et al .: Improved Diagnostics for Detecting Friction on Dam Gates, Water Power & Dam Construction, pp. 39-41, August 2001.). Based on the results of nonlinear structural analysis and past accidents, in the case of a radial gate, considering that the buckling of the pedestal base of the radial gate that occurs during winding is the most problematic, the base of the pedestal 3 of the radial gate 1 is The stress evaluation location O was set. In the three-dimensional finite element analysis model, a plurality of elements are designated as stress evaluation points O.

続いて、S1で作成した三次元有限要素解析モデルを用いて平均腐食量及び摩擦係数をパラメータとした有限要素解析を行い、ラジアルゲート1の応力評価箇所Oにおける最小主応力を算出する。そして、算出した最小主応力の値のうち絶対値が最大の最小主応力の値を抽出する。   Subsequently, a finite element analysis using the average corrosion amount and the friction coefficient as parameters is performed using the three-dimensional finite element analysis model created in S1, and the minimum principal stress at the stress evaluation point O of the radial gate 1 is calculated. Then, the value of the minimum principal stress having the maximum absolute value among the calculated values of the minimum principal stress is extracted.

本実施形態のラジアルゲート1についての有限要素解析は以下の手順で行った。
(ステップ1)自重解析:ラジアルゲート1の鋼材の体積と単位重量とから各部に作用する自重を求めてこれに対する応力解析を行う。
The finite element analysis for the radial gate 1 of the present embodiment was performed according to the following procedure.
(Step 1) Self-weight analysis: The self-weight acting on each part is obtained from the volume and unit weight of the steel material of the radial gate 1, and a stress analysis is performed on this.

(ステップ2)設計洪水位負荷時の解析:ラジアルゲート1に設計洪水位を静的に作用させて応力解析を行う。   (Step 2) Analysis at design flood level load: Stress is analyzed by applying the design flood level to the radial gate 1 statically.

(ステップ3)巻き上げ荷重を負荷した解析:トラニオンピン9の摩擦に起因する巻き上げ荷重を巻き上げワイヤー取り付け部10に静的に作用させて応力解析を行う。   (Step 3) Analysis with a hoisting load applied: The hoisting load caused by the friction of the trunnion pin 9 is applied statically to the hoisting wire attachment portion 10 to perform stress analysis.

本実施形態の有限要素解析の境界条件は、ステップ1及びステップ2ではラジアルゲート接地面11或いは巻き上げワイヤー取り付け部10で水平方向にローラー支持されていると共にトラニオンピン9で回転のみ自由であるとする。また、ステップ3では境界条件を変更してトラニオンピン9で剛結され、巻き上げワイヤー取り付け部10を自由にすると共に巻き上げワイヤー取り付け部10にトラニオンピン摩擦に伴う巻き上げ荷重を作用させる。   The boundary conditions of the finite element analysis of the present embodiment are that, in Step 1 and Step 2, the roller is supported in the horizontal direction by the radial gate ground surface 11 or the winding wire attaching portion 10 and only the rotation by the trunnion pin 9 is free. . In step 3, the boundary condition is changed and rigidly connected by the trunnion pin 9, the winding wire attachment portion 10 is made free, and the winding load accompanying the trunnion pin friction is applied to the winding wire attachment portion 10.

ここで、S4の目的は、特性変数の値を変化させた状態毎に有限要素解析を行い、その状態毎の応力評価箇所における最小主応力を算出することである。この際、特性変数はS2で設定した値の範囲で変化させる。具体的には、S2で設定した値の範囲をいくつかに区分し、値の範囲の両端の値と区分の境界の値毎に有限要素解析を行う。ここで、特性変数の値の範囲の区分数は特に限定されるものではなく、解析に要する作業量と必要とされる解析精度を考慮して作業者が適宜設定する。具体的には例えば10区分(この場合、特性変数の値を変化させたケース数は11ケース)程度とすることが考えられるが、前述の通りこれに限定されるものではない。また、特性変数の値の範囲を区分する際には範囲全体を等分するようにしても良いし又は不等分でも良い。   Here, the purpose of S4 is to perform a finite element analysis for each state in which the value of the characteristic variable is changed, and to calculate the minimum principal stress at the stress evaluation location for each state. At this time, the characteristic variable is changed within the range of the value set in S2. Specifically, the value range set in S2 is divided into several values, and finite element analysis is performed for each value at both ends of the value range and the boundary value of the division. Here, the number of divisions in the value range of the characteristic variable is not particularly limited, and is set as appropriate by the operator in consideration of the amount of work required for the analysis and the required analysis accuracy. Specifically, for example, it can be considered to be about 10 categories (in this case, the number of cases in which the value of the characteristic variable is changed is 11 cases), but is not limited to this as described above. Further, when dividing the range of the value of the characteristic variable, the entire range may be equally divided or unequal.

そして、有限要素解析は、各特性変数の値を変化させたケースの組み合わせ毎に行う。したがって、有限要素解析を行う全ケース数は各特性変数のケース数を乗じた数となる。なお、以降では、S2で設定した特性変数を特性変数Aと特性変数Bとし、特性変数Aの値のケースをケースi(i=1,2,…)、特性変数Bの値のケースをケースj(j=1,2,…)とし、更にこれらの組み合わせのケースをケース(i,j)とする。そして、ケース(i,j)毎に有限要素解析を行って評価対象構造物の応力評価箇所における最小主応力(圧縮応力)を算出し、算出した最小主応力の値のうち絶対値が最大の最小主応力の値を抽出する。   The finite element analysis is performed for each combination of cases in which the value of each characteristic variable is changed. Therefore, the total number of cases for which the finite element analysis is performed is a number obtained by multiplying the number of cases of each characteristic variable. In the following, the characteristic variables set in S2 are characteristic variable A and characteristic variable B, the case of the value of characteristic variable A is case i (i = 1, 2,...), And the case of the value of characteristic variable B is case. j (j = 1, 2,...), and a combination of these cases is referred to as case (i, j). Then, finite element analysis is performed for each case (i, j) to calculate the minimum principal stress (compressive stress) at the stress evaluation location of the structure to be evaluated, and the absolute value is the largest among the calculated minimum principal stress values. Extract the minimum principal stress value.

本実施形態では、平均腐食量の値と摩擦係数の値の組み合わせ毎に有限要素解析を行う。本実施形態については、平均腐食量の値のケースをケースi(i=1,2,…)、摩擦係数の値のケースをケースj(j=1,2,…)とし、更にこれらの組み合わせのケースをケース(i,j)とする。そして、ケース(i,j)毎に有限要素解析を行ってラジアルゲート1の応力評価箇所Oにおける最小主応力を算出し、算出した最小主応力の値のうち絶対値が最大の最小主応力の値を抽出する。   In this embodiment, a finite element analysis is performed for each combination of the average corrosion amount value and the friction coefficient value. In this embodiment, the case of the average corrosion amount is case i (i = 1, 2,...), The case of the coefficient of friction is case j (j = 1, 2,...), And combinations thereof. This case is referred to as case (i, j). Then, the finite element analysis is performed for each case (i, j) to calculate the minimum principal stress at the stress evaluation point O of the radial gate 1, and the minimum principal stress having the maximum absolute value among the calculated minimum principal stress values. Extract the value.

本実施形態では、S2で設定した通り平均腐食量の値の範囲は0.0mm〜2.0mmであり、この値の範囲を10等分して11個のケースについて有限要素解析を行う。また、摩擦係数の値の範囲は0.0〜1.0であり、この値の範囲を5等分して6個のケースについて有限要素解析を行う。したがって、本実施形態では、全部で66個(=11×6)のケースについて有限要素解析を行い、ケース毎のラジアルゲート1の応力評価箇所Oにおける最小主応力の値のうち絶対値が最大の最小主応力の値を抽出する。   In this embodiment, as set in S2, the range of the value of the average corrosion amount is 0.0 mm to 2.0 mm, and the range of this value is equally divided into 10 to perform finite element analysis for 11 cases. Moreover, the range of the value of the friction coefficient is 0.0 to 1.0, and the range of this value is equally divided into five to perform finite element analysis on six cases. Therefore, in this embodiment, a finite element analysis is performed for a total of 66 cases (= 11 × 6), and the absolute value is the largest among the values of the minimum principal stress at the stress evaluation point O of the radial gate 1 for each case. Extract the minimum principal stress value.

(5)特性変数の値の組み合わせ毎の起こり易さの算出(S5)
次に、特性変数の値の組み合わせ毎の相対的な起こり易さを算出する。特性変数の値の組み合わせ毎の相対的な起こり易さは、S3で推定した特性変数毎の確率密度関数に基づく確率密度を用いて算出する。具体的には、特性変数Aの値と特性変数Bの値の組み合わせのケース(i,j)間の相対的な起こり易さを(数1)で表す。
(5) Calculation of the likelihood of occurrence for each combination of characteristic variable values (S5)
Next, the relative likelihood of occurrence for each combination of characteristic variable values is calculated. The relative likelihood of occurrence for each combination of characteristic variable values is calculated using a probability density based on the probability density function for each characteristic variable estimated in S3. Specifically, the relative likelihood between cases (i, j) of the combination of the value of the characteristic variable A and the value of the characteristic variable B is expressed by (Equation 1).

(数1)wi,j=f(a)×f(b)
ここに、wi,j:ケース(i,j)の相対的な起こり易さ、f(a):特性変数Aの値がa(特性変数Aのケースi)のときの確率密度、f(b):特性変数Bの値がb(特性変数Bのケースj)のときの確率密度。
(Equation 1) w i, j = f A (a i ) × f B (b j )
Where w i, j is the relative likelihood of case (i, j), and f A (a i ) is the probability density when the value of characteristic variable A is a i (case i of characteristic variable A) , F B (b j ): probability density when the value of the characteristic variable B is b j (case j of the characteristic variable B).

(6)最小主応力の頻度分布の作成(S6)
次に、S4で算出した特性変数の値の組み合わせのケース(i,j)毎の評価対象構造物の応力評価箇所における最小主応力の絶対値最大とS5で算出した特性変数の値の組み合わせのケース(i,j)毎の相対的な起こり易さwi,jを用いて最小主応力の頻度分布を作成する。具体的には、有限要素解析の結果算出されたケース(i,j)の最小主応力の頻度としてケース(i,j)の相対的な起こり易さwi,jの値を積み上げる。このようにすることにより、この頻度分布は、ケース(i,j)間の相対的な起こり易さの大小が考慮されたより現実的な頻度分布となる。
(6) Creation of frequency distribution of minimum principal stress (S6)
Next, the combination of the absolute value maximum of the minimum principal stress at the stress evaluation point of the structure to be evaluated and the value of the characteristic variable calculated in S5 for each case (i, j) of the combination of the characteristic variable values calculated in S4. The frequency distribution of the minimum principal stress is created using the relative likelihood w i, j for each case (i, j). Specifically, the value of the relative likelihood w i, j of case (i, j) is accumulated as the frequency of the minimum principal stress of case (i, j) calculated as a result of finite element analysis. By doing in this way, this frequency distribution becomes a more realistic frequency distribution in consideration of the relative ease of occurrence between cases (i, j).

(7)最小主応力の確率密度関数の推定(S7)
次に、S6で作成した最小主応力の頻度分布を対象に非線形最小二乗法を用いて確率分布の形を推定する。最小主応力の確率密度関数の分布形は特に限定されるものではなく、いずれの分布形を用いても良い。具体的には例えば、対数正規分布、指数分布、Rayleigh分布、Frechet分布、Weibull分布等が考えられるが、前述の通りこれらの分布形に限定されるものではない。
(7) Estimating probability density function of minimum principal stress (S7)
Next, the shape of the probability distribution is estimated using the nonlinear least square method for the frequency distribution of the minimum principal stress created in S6. The distribution form of the probability density function of the minimum principal stress is not particularly limited, and any distribution form may be used. Specifically, for example, a lognormal distribution, an exponential distribution, a Rayleigh distribution, a Frechet distribution, a Weibull distribution, and the like can be considered, but as described above, the distribution form is not limited thereto.

本実施形態では、対数正規分布を用いて最小主応力の確率密度関数を推定する。   In this embodiment, the probability density function of the minimum principal stress is estimated using a lognormal distribution.

(8)強度の確率密度関数の設定(S8)
降伏強度を確率変数として扱う場合、その分布形は、評価対象構造物の降伏強度の実態の調査データや文献に示されている事例データ等を収集し、それら実態の調査データ等に基づき設定することが可能である。
(8) Setting of probability density function of intensity (S8)
When yield strength is treated as a random variable, the distribution form is set based on the survey data of the actual yield strength of the structure to be evaluated, case data shown in the literature, etc. It is possible.

本実施形態では、経年化した水力鋼構造物の実態を反映すると共に経年化した水力鋼構造物の維持管理として厳しい材料条件を課すため、水力鋼構造物の降伏強度の実態の調査データや文献に示されている事例データ等を収集し、それら実態の調査データ等を用いて強度の確率密度関数を設定する。具体的には、昭和20年代に設置された水圧鉄管の降伏強度の実績値(沼崎吉次:昭和20年代の溶接管の強度について,電力土木,No.167,pp.76−79,1980年.)を用い、確率密度関数の分布形を正規分布として強度の確率密度関数を設定する。   In this embodiment, in order to reflect the actual state of an aged hydraulic steel structure and impose severe material conditions for the maintenance of an aged hydraulic steel structure, survey data and literature on the actual yield strength of the hydraulic steel structure Is collected, and the probability density function of intensity is set using the survey data of the actual situation. Specifically, the actual value of the yield strength of the hydraulic iron pipes installed in the Showa 20s (Yoshi Numasaki: About the strength of welded pipes in the Showa 20s, Electric Power Engineering, No. 167, pp. 76-79, 1980 )), The probability density function of intensity is set with the distribution form of the probability density function as a normal distribution.

以上により算出した本実施形態の応力の確率密度関数(S7)と強度の確率密度関数(S8)は図6に示す通りとなる。   The stress probability density function (S7) and strength probability density function (S8) of the present embodiment calculated as described above are as shown in FIG.

(9)構造物の信頼性の評価(S9)
本手法では、1次ガウス2次モーメント法を用いて、構造物の破壊確率及び安全性指標βを算出する。なお、1次ガウス近似法自体は周知の技術であるのでここでは詳細については省略する(例えば、Hasofer,A.M. and N.C.Lind:Exact Invariant Second-Moment Code Format,J. Eng. Mech. Div.,ASCE,Vol.100,No.EM1,pp.111−121,1974年.)。
(9) Evaluation of structure reliability (S9)
In this method, the failure probability of the structure and the safety index β are calculated using a first-order Gaussian second-moment method. Since the first-order Gaussian approximation itself is a well-known technique, details are omitted here (for example, Hasofer, AM and NC Lind: Exact Invariant Second-Moment Code Format, J. Eng. Mech. Div., ASCE, Vol. 100, No. EM1, pp. 111-121, 1974.).

具体的には、まず、(数2)に示すように、性能関数Z=g(X,…,X)を限界状態表面g(X,…,X)=0上の点x=(x ,…,x )周りにTaylor展開する。 Specifically, first, as shown in (Expression 2), the performance function Z i = g (X 1 ,..., X n ) is changed to a point on the limit state surface g (X 1 ,..., X n ) = 0. Taylor expansion is performed around x 0 = (x 0 1 ,..., x 0 n ).

Figure 2007113967
Figure 2007113967

(数2)の右辺の級数を一次項で打ち切ると(数3)が得られる。   If the series on the right side of (Equation 2) is truncated at the first-order term, (Equation 3) is obtained.

Figure 2007113967
Figure 2007113967

(数3)中の確率変数が全て正規確率変数で近似されると仮定した場合、(数3)は正規確率変数の線形一次関数となるのでZも正規確率変数となる。つまり、Zの平均値μZiと標準偏差σZiを求めることができれば、破壊確率Pは(数3)を使わずに(数4)により計算することができる。 Assuming that all the random variables in (Equation 3) are approximated by normal random variables, (Equation 3) is a linear linear function of the normal random variables, and Z i is also a normal random variable. That is, if the average value μ Zi and standard deviation σ Zi of Z i can be obtained, the failure probability P f can be calculated by (Equation 4) without using (Equation 3).

Figure 2007113967
Figure 2007113967

本発明では、正規確率変数としてみなせない変数については非正規確率変数として扱って安全性指標を計算する。ここで、(数3)を各確率変数の平均値μxjで書き直すと(数5)の通りとなる。 In the present invention, variables that cannot be regarded as normal random variables are treated as non-normal random variables, and the safety index is calculated. Here, when (Equation 3) is rewritten with the average value μ xj of each random variable, ( Equation 5) is obtained.

Figure 2007113967
Figure 2007113967

ここで、ある任意の点xを性能関数Z=0上の点とすると(数6)が成り立つ。 Here, if an arbitrary point x * is a point on the performance function Z i = 0, (Expression 6) is established.

Figure 2007113967
Figure 2007113967

(数7)によりZの平均値μを求め、(数8)によりZの分散σを求める。 The average value μ z of Z i is obtained from (Equation 7), and the variance σ z of Z i is obtained from (Equation 8).

Figure 2007113967
Figure 2007113967

Figure 2007113967
Figure 2007113967

ただし、(数8)のαは(数9)の通りである。 However, α j in ( Equation 8) is as (Equation 9).

Figure 2007113967
Figure 2007113967

そして、安全性指標βを(数10)により算出する。   Then, the safety index β is calculated by (Equation 10).

(数10)β=μ/σ (Equation 10) β = μ z / σ z

以上により算出した破壊確率Pが小さいほど、また安全性指標βが大きいほどラジアルゲート1の構造信頼性は高いと評価する。 Smaller failure probability P f is calculated by the above, also structural reliability of the radial gate 1 larger the safety index β is evaluated as high.

なお、上述の形態は本発明の好適な形態の一例ではあるがこれに限定されるものではなく、本発明の要旨を逸脱しない範囲において種々変形実施可能である。本実施形態では、特性変数の数を二つとしているが、これに限られず、三つ以上の特性変数を設定するようにしても良い。この場合には、特性変数の値の組み合わせ毎の相対的な起こり易さを多次元確率分布から算出する。   In addition, although the above-mentioned form is an example of the suitable form of this invention, it is not limited to this, A various deformation | transformation implementation is possible in the range which does not deviate from the summary of this invention. In the present embodiment, the number of characteristic variables is two. However, the number is not limited to this, and three or more characteristic variables may be set. In this case, the relative likelihood for each combination of characteristic variable values is calculated from the multidimensional probability distribution.

また、本実施形態では、ダムの静水圧荷重として設計洪水位の場合の荷重を負荷しているが、ダムの静水圧荷重はこれに限られるものではなく、構造信頼性評価の目的に合わせてダムの水位を設定して構造信頼性の評価を行うようにすれば良い。更に、地震動による荷重を考慮するようにしても良く、この場合には震度に基づいて地震動による荷重を負荷する。この場合も、構造信頼性評価の目的に合わせて震度を設定して地震動による荷重を負荷し、構造信頼性の評価を行うようにすれば良い。   In the present embodiment, the load at the design flood level is applied as the hydrostatic pressure load of the dam. However, the hydrostatic pressure load of the dam is not limited to this and is adapted to the purpose of the structural reliability evaluation. The structural reliability should be evaluated by setting the water level of the dam. Furthermore, a load due to seismic motion may be considered. In this case, a load due to seismic motion is applied based on the seismic intensity. In this case as well, the seismic intensity may be set in accordance with the purpose of the structural reliability evaluation, a load due to the earthquake motion may be applied, and the structural reliability may be evaluated.

更に、本実施形態では、強度の経年による変化は考慮していないが、これに限られず、経過年数により強度が低下するような経過期間別の確率密度関数を推定するようにしても良い。   Furthermore, in the present embodiment, changes due to aging of the intensity are not taken into consideration, but the present invention is not limited to this, and a probability density function for each elapsed period in which the intensity decreases depending on the elapsed years may be estimated.

本発明の構造物の信頼性評価方法の実施形態の一例を示すフローチャートである。It is a flowchart which shows an example of embodiment of the reliability evaluation method of the structure of this invention. 本実施形態のラジアルゲートの全体概要と共に三次元有限要素解析モデル(要素分割図)を示す斜視図である。It is a perspective view which shows a three-dimensional finite element analysis model (element division figure) with the whole radial gate outline | summary of this embodiment. 本実施形態のトラニオンピン摩擦係数の頻度分布図である。It is a frequency distribution figure of the trunnion pin friction coefficient of this embodiment. 本実施形態のラジアルゲートの平均腐食量の確率密度関数を示す図である。It is a figure which shows the probability density function of the average corrosion amount of the radial gate of this embodiment. 本実施形態のトラニオンピン摩擦係数の確率密度関数を示す図である。It is a figure which shows the probability density function of the trunnion pin friction coefficient of this embodiment. 本実施形態の応力評価箇所Oにおける応力と強度の確率密度関数を示す図である。It is a figure which shows the probability density function of the stress and intensity | strength in the stress evaluation location O of this embodiment.

符号の説明Explanation of symbols

1 ラジアルゲート
2 主桁
3 脚柱
9 トラニオンピン
1 radial gate 2 main girder 3 pedestal 9 trunnion pin

Claims (1)

経年劣化した構造物の実態に関する調査データ並びに専門家へのアンケート調査データを基に特性変数毎の確率密度関数を推定すると共に前記特性変数毎の確率密度から前記特性変数の値の組み合わせ毎の相対的な起こり易さを算出し、前記組み合わせ毎に行った有限要素解析で得られた発生応力の頻度分布を前記組み合わせ毎の相対的な起こり易さを用いて変換した前記発生応力の頻度分布から確率密度関数を推定し、該発生応力の確率密度関数と既存データから設定した強度の確率密度関数とに基づいて破壊確率と安全性指標を算出する経年劣化した構造物の信頼性評価方法。   Estimating the probability density function for each characteristic variable based on the survey data on the actual condition of the structure deteriorated over time and the questionnaire survey data to experts, and the relative value for each combination of the characteristic variables from the probability density for each characteristic variable From the frequency distribution of the generated stress obtained by converting the frequency distribution of the generated stress obtained by the finite element analysis performed for each combination using the relative likelihood of the combination for each combination. A reliability evaluation method for an aged structure that estimates a probability density function and calculates a fracture probability and a safety index based on a probability density function of the generated stress and a probability density function of strength set from existing data.
JP2005303685A 2005-10-18 2005-10-18 Reliability evaluation method for aged structures Active JP4771465B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005303685A JP4771465B2 (en) 2005-10-18 2005-10-18 Reliability evaluation method for aged structures

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005303685A JP4771465B2 (en) 2005-10-18 2005-10-18 Reliability evaluation method for aged structures

Publications (2)

Publication Number Publication Date
JP2007113967A true JP2007113967A (en) 2007-05-10
JP4771465B2 JP4771465B2 (en) 2011-09-14

Family

ID=38096304

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005303685A Active JP4771465B2 (en) 2005-10-18 2005-10-18 Reliability evaluation method for aged structures

Country Status (1)

Country Link
JP (1) JP4771465B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102384856A (en) * 2011-08-15 2012-03-21 东南大学 Probabilistic finite element method (PFEM)-based steel-bridge fatigue reliability evaluation method
JP2012058209A (en) * 2010-09-13 2012-03-22 Chugoku Electric Power Co Inc:The Method for identifying monitoring part of corrosion progress in structure and monitoring method for corrosion progress in structure
KR101420304B1 (en) 2013-09-26 2014-07-17 주식회사 피도텍 Method for reliability analysis
KR101444723B1 (en) 2013-09-26 2014-09-26 주식회사 피도텍 Method for optimized design
CN105756020A (en) * 2016-05-03 2016-07-13 西北农林科技大学 Concise chart method for reasonable arrangement of supporting arm in longitudinal framework of arc-shaped steel gate
KR101705249B1 (en) * 2016-02-19 2017-02-10 울산과학기술원 Interface, system and method for reliability analysis of structure using finite element method
CN110400608A (en) * 2019-06-13 2019-11-01 浙江大学建筑设计研究院有限公司 The assessment method that cement-based material intensity changes with age
JP2022037394A (en) * 2020-08-25 2022-03-09 日立造船株式会社 Abnormality detection device, sluice system, and abnormality detection method

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101911167B1 (en) * 2017-02-27 2018-10-24 포항공과대학교 산학협력단 Empirical design formulation method for prediction of ultimate compressive strength of stiffened panel

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002296252A (en) * 2001-03-29 2002-10-09 Topy Ind Ltd Method and system for diagnosing fatigue of cantilevered or arch-shaped structure, and amplitude-measuring instrument used for diagnosis
JP2005092718A (en) * 2003-09-19 2005-04-07 Yokohama Rubber Co Ltd:The Method and program for dynamic analysis of composite material and device for dynamic analysis of composite material

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002296252A (en) * 2001-03-29 2002-10-09 Topy Ind Ltd Method and system for diagnosing fatigue of cantilevered or arch-shaped structure, and amplitude-measuring instrument used for diagnosis
JP2005092718A (en) * 2003-09-19 2005-04-07 Yokohama Rubber Co Ltd:The Method and program for dynamic analysis of composite material and device for dynamic analysis of composite material

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
山本広祐, 中島正人, 丸山成人: "ラジアルゲートの経年劣化に関わる解析的ケーススタディ", 土木学会年次学術講演会講演概要集 共通セッション, vol. 56, JPN6011015060, October 2001 (2001-10-01), JP, pages 350 - 351, ISSN: 0001877628 *

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012058209A (en) * 2010-09-13 2012-03-22 Chugoku Electric Power Co Inc:The Method for identifying monitoring part of corrosion progress in structure and monitoring method for corrosion progress in structure
CN102384856A (en) * 2011-08-15 2012-03-21 东南大学 Probabilistic finite element method (PFEM)-based steel-bridge fatigue reliability evaluation method
KR101420304B1 (en) 2013-09-26 2014-07-17 주식회사 피도텍 Method for reliability analysis
KR101444723B1 (en) 2013-09-26 2014-09-26 주식회사 피도텍 Method for optimized design
KR101705249B1 (en) * 2016-02-19 2017-02-10 울산과학기술원 Interface, system and method for reliability analysis of structure using finite element method
CN105756020A (en) * 2016-05-03 2016-07-13 西北农林科技大学 Concise chart method for reasonable arrangement of supporting arm in longitudinal framework of arc-shaped steel gate
CN110400608A (en) * 2019-06-13 2019-11-01 浙江大学建筑设计研究院有限公司 The assessment method that cement-based material intensity changes with age
JP2022037394A (en) * 2020-08-25 2022-03-09 日立造船株式会社 Abnormality detection device, sluice system, and abnormality detection method
JP7395443B2 (en) 2020-08-25 2023-12-11 日立造船株式会社 Anomaly detection device, floodgate system and anomaly detection method

Also Published As

Publication number Publication date
JP4771465B2 (en) 2011-09-14

Similar Documents

Publication Publication Date Title
JP4771465B2 (en) Reliability evaluation method for aged structures
Wen et al. Framework for the vulnerability assessment of structure under mainshock-aftershock sequences
Memari et al. Performance of steel moment resisting frames with RBS connections under fire loading
Gaetani d'Aragona et al. Aftershock collapse fragility curves for non‐ductile RC buildings: a scenario‐based assessment
Nahar et al. Seismic collapse safety assessment of concrete beam-column joints reinforced with different types of shape memory alloy rebars
Foyouzat et al. Application of rigid-perfectly plastic spectra in improved seismic response assessment by Endurance Time method
Mashhadi et al. Modification of dynamic increase factor to assess progressive collapse potential of structures
Pan et al. Aftershock damage prediction of reinforced-concrete buildings using capacity spectrum assessments
Xiaohui et al. Seismic resilience assessment of corroded reinforced concrete structures designed to the Chinese codes
Estekanchi et al. Correlation between structural performance levels and damage indexes in steel frames subjected to earthquakes
Mitropoulou et al. Numerical calibration of damage indices
허정원 et al. A probabilistic fragility evaluation method of a RC box tunnel subjected to earthquake loadings
Türker et al. Finite element model calibration of steel frame buildings with and without brace
Vahdani et al. Seismic vulnerability assessment of steel moment-resisting frames based on local damage
Rozaina et al. Vulnerability study of public buildings subjected to earthquake event
Huang et al. Damage assessment of RC frame structures under mainshockaftershock seismic sequences
Pourgharibshahi et al. Reliability-based assessment of deteriorating steel moment resisting frames
Dukes et al. Sensitivity study of design parameters used to develop bridge specific fragility curves
Fayaz et al. Performance assessment of bridges under a sequence of seismic excitations
JAMSHIDI et al. Collapse analysis by endurance time method
Zhou et al. State-dependent aftershock resilience analysis of reinforced concrete structures considering the effect of corrosion
Song et al. Mainshock-aftershock fragility surfaces analysis of reinforced concrete frame structures using a double incremental dynamic analysis approach
Otárola et al. Seismic fragility analysis of deteriorating reinforced concrete buildings from a life-cycle perspective
Ebrahimi et al. The effect of axial force variations on nonlinear modeling and seismic response of reinforced concrete structures
Ruiz-García et al. Response of essential facilities under narrow-band mainshock–aftershock seismic sequences

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20081016

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110228

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110329

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110530

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110615

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110617

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140701

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4771465

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250