JP2007113021A - Inorganic phosphor and its manufacturing method - Google Patents
Inorganic phosphor and its manufacturing method Download PDFInfo
- Publication number
- JP2007113021A JP2007113021A JP2007026533A JP2007026533A JP2007113021A JP 2007113021 A JP2007113021 A JP 2007113021A JP 2007026533 A JP2007026533 A JP 2007026533A JP 2007026533 A JP2007026533 A JP 2007026533A JP 2007113021 A JP2007113021 A JP 2007113021A
- Authority
- JP
- Japan
- Prior art keywords
- phosphor
- inorganic phosphor
- ethanol
- particles
- sample
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Luminescent Compositions (AREA)
Abstract
Description
本発明は、無機蛍光体及びその製造方法に関する。 The present invention relates to an inorganic phosphor and a method for producing the same.
CRTなどのディスプレイ装置や蛍光灯には古くから種々の蛍光体が使用されており、それら蛍光体の諸特性を向上させる技術が多く開示されている。蛍光体の諸特性の中でも輝度特性は最も重要な特性の1つであり、高輝度である蛍光体が望まれている。 Various phosphors have been used for a long time in display devices such as CRTs and fluorescent lamps, and many techniques for improving various characteristics of these phosphors have been disclosed. Among the various characteristics of the phosphor, the luminance characteristic is one of the most important characteristics, and a phosphor having high luminance is desired.
さらに、従来は電子線、紫外線により発光したが、こうした特別な励起源を必要としない蛍光体が存在すれば新たな用途が生み出される。省エネルギーの観点からも今後必要である。例えば昼光下で光る蛍光体といえば有機蛍光体があげられるが、それ自身着色しているため、純粋に発光を得る事は出来ず、保存性も低かった。 In addition, conventional phosphors that emit light by electron beams and ultraviolet rays can be used for new applications if there is a phosphor that does not require such a special excitation source. It is necessary in the future from the viewpoint of energy saving. For example, an organic phosphor can be mentioned as a phosphor that shines in daylight. However, since the phosphor itself is colored, it is not possible to obtain pure emission, and storage stability is low.
また、製法の面では従来の金属酸化物を混合して、溶融させる方法では、賦活剤を各粒子にコントロールして入れる事が困難であった。そのため過剰と思われる量の賦活剤を原材料として必要としていたが、確実に利用出来ればコストダウンにもつながるため、粒子設計の技術が求められている。 Further, in terms of the production method, it has been difficult to control the activator into each particle in the conventional method of mixing and melting a metal oxide. For this reason, an excessive amount of activator was required as a raw material, but if it can be used reliably, it will lead to cost reduction, and a particle design technique is required.
従来の一般的な蛍光体製造方法(原料粉末を乾式で混合し、微量のフラックスと共に焼成)では、個々の蛍光体粒子の微視的な制御が困難で、結果として巨視的な輝度等の性能が十分に満足できるものではなかった。 In the conventional general phosphor manufacturing method (mixing raw material powder dry and firing together with a small amount of flux), it is difficult to control the individual phosphor particles microscopically, resulting in macroscopic brightness and other performance. Was not satisfactory enough.
緻密かつ均質で高輝度な蛍光面を形成することを目的として、粒子表面から中心へ向かう方向に沿って濃度分布を有する蛍光体粒子が開示されているが(例えば、特許文献1参照)、内部組成が著しく均一である粒子や、各組成の含有率の粒子間分布等を規定した蛍光体粒子はこれまでに開示されていない。 For the purpose of forming a dense, homogeneous and high-luminance phosphor screen, phosphor particles having a concentration distribution along the direction from the particle surface toward the center have been disclosed (for example, see Patent Document 1). So far, particles having a remarkably uniform composition and phosphor particles defining the distribution of the content of each composition have not been disclosed.
一方、輝度等の諸特性向上を目的とする無機蛍光体の製造方法として、金属アルコキシドの溶液状態で混合調製する工程を含む製造方法が開示されているが(例えば、特許文献2参照)、より効果の高い詳細な実施態様は開示されていない。また、金属アルコキシドを含む混合溶液を加水分解して複合酸化物ゾル水溶液を合成する工程を含む製造方法が開示されているが(例えば、特許文献3参照)、この場合の目的物は蛍光性多孔質粒子であり、本発明の目的物とは異なるものである。 On the other hand, as a method for producing an inorganic phosphor for the purpose of improving various properties such as luminance, a production method including a step of mixing and preparing a metal alkoxide in a solution state is disclosed (for example, see Patent Document 2). Detailed embodiments that are highly effective are not disclosed. Moreover, although the manufacturing method including the process of hydrolyzing the mixed solution containing a metal alkoxide and synthesizing a composite oxide sol aqueous solution is disclosed (for example, refer to Patent Document 3), the target product in this case is a fluorescent porous material. The particles are different from the object of the present invention.
上記のように、輝度等の諸特性向上を目的として種々の無機蛍光体を構成する組成や蛍光体の製造方法等に工夫を施した技術が多く開示されているが、十分に満足できるものは得られていない。
従って本発明は、CRTなどのディスプレイ装置や蛍光灯、更にその他の種々の装置や材料に無機蛍光体を適用するに当たって、それぞれの用途に応じて要求される諸特性を満たしながら、特に小粒径で輝度の高い無機蛍光体を提供することを目的とする。更に、焼成後の分級や機械的粉砕が不要であり且つコストの低い、極めて均質性に優れ高輝度な無機蛍光体の製造方法を提供することを目的とする。 Therefore, the present invention has a particularly small particle size while satisfying various characteristics required for each application in applying an inorganic phosphor to a display device such as a CRT, a fluorescent lamp, and various other devices and materials. An object of the present invention is to provide an inorganic phosphor having high brightness. It is another object of the present invention to provide a method for producing an inorganic phosphor which is unnecessary in classification and mechanical pulverization after firing and is low in cost and excellent in homogeneity and having high brightness.
本発明の上記目的は、以下の構成により達成することができる。 The above object of the present invention can be achieved by the following configuration.
1.無機蛍光体粒子の母核と賦活部分を構成する組成の含有率の粒子間分布の変動係数が50%以下であることを特徴とする無機蛍光体。 1. An inorganic phosphor characterized in that the variation coefficient of the interparticle distribution of the content ratio of the composition constituting the mother nucleus and the activation part of the inorganic phosphor particles is 50% or less.
2.前記無機蛍光体の平均粒径が1.0μm以下である事を特徴とする前記1に記載の無機蛍光体。 2. 2. The inorganic phosphor according to 1 above, wherein an average particle size of the inorganic phosphor is 1.0 μm or less.
3.前記無機蛍光体の粒径分布の変動係数が100%以下である事を特徴とする前記1又は2に記載の無機蛍光体。 3. 3. The inorganic phosphor as described in 1 or 2 above, wherein the coefficient of variation in particle size distribution of the inorganic phosphor is 100% or less.
4.前記1〜3のいずれか1項に記載の無機蛍光体を、ゾルゲル法により無機蛍光体の前駆体を形成し、その後、該無機蛍光体の前駆体を焼成することにより製造することを特徴とする無機蛍光体製造方法。 4). The inorganic phosphor according to any one of 1 to 3 is produced by forming a precursor of an inorganic phosphor by a sol-gel method, and then firing the precursor of the inorganic phosphor. An inorganic phosphor manufacturing method.
5.前記ゾルゲル法により無機蛍光体の前駆体を形成する際、少なくとも1種類の原料添加速度を3.0ml/min以下として添加することを特徴とする前記4に記載の無機蛍光体製造方法。 5. 5. The method for producing an inorganic phosphor as described in 4 above, wherein when the precursor of the inorganic phosphor is formed by the sol-gel method, at least one raw material addition rate is added at 3.0 ml / min or less.
6.無機蛍光体の前駆体を形成後、該無機蛍光体の前駆体の焼成時間が15分/g以下であることを特徴とする前記4又は5に記載の無機蛍光体製造方法。 6). 6. The method for producing an inorganic phosphor as described in 4 or 5 above, wherein after the precursor of the inorganic phosphor is formed, the firing time of the precursor of the inorganic phosphor is 15 minutes / g or less.
7.前記無機蛍光体の前駆体の焼成後に粉砕およびまたは分級の工程を経ないことを特徴とする前記4〜6のいずれか1項に記載の無機蛍光体製造方法。 7). 7. The method for producing an inorganic phosphor according to any one of 4 to 6, wherein a step of pulverization and / or classification is not performed after the firing of the precursor of the inorganic phosphor.
本発明により、CRTなどのディスプレイ装置や蛍光灯、更にその他の種々の装置や材料に無機蛍光体を適用するに当たって、それぞれの用途に応じて要求される諸特性を満たしながら、特に小粒径で輝度の高い無機蛍光体を提供し、更に、焼成後の分級や機械的粉砕が不要であり且つコストの低い、極めて均質性に優れ高輝度な無機蛍光体の製造方法を提供することができた。 According to the present invention, when applying an inorganic phosphor to a display device such as a CRT, a fluorescent lamp, and various other devices and materials, while satisfying various properties required according to each application, particularly with a small particle size. It was possible to provide an inorganic phosphor having high brightness, and further to provide a method for producing an inorganic phosphor having high homogeneity and high brightness, which does not require classification and mechanical grinding after firing and is low in cost. .
以下に本発明を更に詳しく説明する。本発明の無機蛍光体の励起波長は380nm〜430nmが好ましいが、より好ましくは390nm〜420nm、更に好ましくは400nm〜410nmである。蛍光体は元来、電子線や水銀、アルゴン、キセノンの輝線を励起源として用い、それ以外の励起源は長年現れず、専用の使い方しかされてこなかった。しかし、より低エネルギーで励起する事が出来れば、昼光下で用いる事も可能となり、減法混色で構成された描画に蛍光を加えるなどの新たな用途が生まれる。例えば能動発光液晶などはカラーフィルターを現在の蛍光体で作ろうとすると、バックライトをブラックライトあるいはより短波な紫外線にしなければならず、液晶分子の寿命が短くなってしまうが、本発明の蛍光体は既存のバックライトを用いる事が出来、液晶分子の寿命も実用的なレベルが確保出来る。また、色変換方式の有機ELにも用いる事が出来る。有機蛍光体では寿命が短かったり、色再現域が狭かったり問題があるが、本発明の蛍光体を用いればCRTに準ずる色再現域を確保でき、寿命も長い。また、装飾用、描画用蛍光色としても使用可能である。その際、400nm付近の励起であれば、吸収による着色は人間の目には問題にならないレベルである。 The present invention is described in more detail below. The excitation wavelength of the inorganic phosphor of the present invention is preferably 380 nm to 430 nm, more preferably 390 nm to 420 nm, still more preferably 400 nm to 410 nm. Originally, phosphors used emission lines of electron beams, mercury, argon, and xenon as excitation sources, and other excitation sources have not appeared for many years and have been used exclusively. However, if it can be excited with lower energy, it can be used in daylight, and a new application such as adding fluorescence to a drawing composed of subtractive color mixture will be born. For example, for an active light-emitting liquid crystal, if the color filter is made of the current phosphor, the backlight must be made into black light or shorter ultraviolet rays, and the lifetime of the liquid crystal molecules will be shortened. Can use an existing backlight, and the lifetime of liquid crystal molecules can be secured at a practical level. It can also be used for color conversion organic EL. Organic phosphors have problems such as short lifetime and narrow color gamut, but if the phosphor of the present invention is used, a color gamut equivalent to CRT can be secured and the lifetime is long. It can also be used as a decorative or drawing fluorescent color. At that time, if excitation is around 400 nm, coloring due to absorption is at a level that does not cause a problem for the human eye.
本発明の蛍光体作製には液相法が適している。固相法は各組成物が微視的に溶融し、拡散混合が起こるのを待たなければならないため、場合によっては、焼成を何度も繰り返す必要があった。これは時間的にもエネルギー的にもかなりのロスが発生する。しかし、液相法で元素をコントロールして組み込んだ前駆体を用いると、結晶化のエネルギーを与えるだけで、高輝度な蛍光体を得る事が出来る。よって、同一焼成条件で比較した場合、エネルギー的には液相法の方が圧倒的に有利である。場合によってはマクロでの結晶化が起こらなくても、元素の組み立てがコントロールしてなされれば発光させる事が出来る。例えばアルミン酸系の蛍光体など、固相法では反応しなかった温度でも、液相法の前駆体を用いれば発光させる事が出来る。 The liquid phase method is suitable for producing the phosphor of the present invention. In the solid-phase method, each composition must be melted microscopically and waiting for diffusion mixing to occur, and in some cases, firing has to be repeated many times. This causes a considerable loss in time and energy. However, when a precursor in which elements are controlled and incorporated by a liquid phase method is used, a high-luminance phosphor can be obtained only by applying crystallization energy. Therefore, when compared under the same firing conditions, the liquid phase method is overwhelmingly advantageous in terms of energy. In some cases, even if macrocrystallization does not occur, light can be emitted if the assembly of elements is controlled. For example, even when the temperature does not react in the solid phase method, such as an aluminate-based phosphor, light can be emitted by using a precursor in the liquid phase method.
ここで言う液相法とは、ゾルゲル法、共沈法、晶析法などの一般的な方法を用いる事が出来る。ゾルゲル法の溶媒は反応原料が溶解すれば何を用いてもよいが、環境面から考えてエタノールが望ましい。また、反応開始剤としては酸でも塩基でも良いが、加水分解速度の観点から塩基の方が望ましい。塩基の種類としては反応が開始すればNaOH、アンモニア等一般的なものを用いる事が出来るが、除去しやすさから考えて、アンモニアが望ましい。反応開始剤の混合方法は、先にグランドに添加されていてもよく、原料と同時に添加しても、原料に加えても良いが、均一性を高めるために、先にグランドに添加されているのが好ましい。複数の反応原料を用いる場合、原料の添加順序は同時でも異なってもよく、活性によって適切な順序を組み立てる事が出来、場合によってはダブルアルコキシドを形成してもよい。 As the liquid phase method referred to here, a general method such as a sol-gel method, a coprecipitation method, or a crystallization method can be used. Any solvent may be used as the solvent for the sol-gel method as long as the reaction raw material dissolves, but ethanol is desirable from the viewpoint of environment. The reaction initiator may be an acid or a base, but a base is more preferable from the viewpoint of hydrolysis rate. As the type of base, general substances such as NaOH and ammonia can be used if the reaction starts, but ammonia is preferable in view of ease of removal. The method of mixing the reaction initiator may be added to the ground first, may be added simultaneously with the raw material, or may be added to the raw material, but is added to the ground first to improve uniformity. Is preferred. When a plurality of reaction raw materials are used, the addition order of the raw materials may be different at the same time, an appropriate order can be assembled depending on the activity, and a double alkoxide may be formed in some cases.
晶析法、共沈法の溶媒は反応原料が溶解すれば何を用いてもよいが、過飽和度制御のしやすさから水が好ましい。複数の反応原料を用いる場合、原料の添加順序は同時でも異なってもよく、活性によって適切な順序を組み立てる事が出来る。
どの方法でも反応中は温度、添加速度、攪拌速度、pHなどを制御してもよく、反応中に超音波を照射してもよい。粒径制御のために界面活性剤やポリマーなどを添加しても構わない。原料が添加し終ったら液を濃縮、及び/または熟成してもよい。得られた沈殿はろ過、洗浄、乾燥してもよく、乾燥と同時に焼成してもよい。また、沈殿に超音波を照射してもよく、焼成せずに発光すれば焼成の工程は省く事が出来る。
Any solvent may be used as a solvent for the crystallization method and the coprecipitation method as long as the reaction raw material dissolves, but water is preferable because of easy control of the supersaturation degree. When a plurality of reaction raw materials are used, the order of addition of the raw materials may be simultaneous or different, and an appropriate order can be assembled depending on the activity.
In any method, the temperature, addition rate, stirring rate, pH, etc. may be controlled during the reaction, and ultrasonic waves may be irradiated during the reaction. A surfactant or polymer may be added to control the particle size. When the raw materials have been added, the liquid may be concentrated and / or aged. The obtained precipitate may be filtered, washed and dried, or may be fired simultaneously with drying. Further, the precipitate may be irradiated with ultrasonic waves, and if the light is emitted without firing, the firing step can be omitted.
焼成は還元雰囲気下、酸化雰囲気下のどちらでもよく、必要に応じて選ぶ事が出来る。また、本発明の蛍光体は同じ輝度を得るのに固相法に比べ、100度以上低い温度で焼成する事が可能であるため、コスト、生産性の面からも大変有利である。また、融剤のような不純物を混入しなくとも十分に焼成過程が進むため、失活する割合が減少し、発光効率の面からも有利である。 Firing can be performed in a reducing atmosphere or an oxidizing atmosphere, and can be selected as necessary. In addition, the phosphor of the present invention can be fired at a temperature lower by 100 degrees or more than the solid phase method to obtain the same luminance, which is very advantageous in terms of cost and productivity. Further, since the firing process proceeds sufficiently without mixing impurities such as flux, the rate of deactivation is reduced, which is advantageous from the viewpoint of luminous efficiency.
また、液相法では溶液の段階で各元素を均一に混合でき、反応条件を整える事で、コントロールして組み入れる事が出来るため、未反応原料が減少する。特に賦活剤の組み込み方が問題となるが、添加した賦活剤原料の70%以上、好ましくは80%以上、より好ましくは90%以上が反応に寄与することが望ましい。その結果、賦活剤の添加量を減少する事が出来る。本発明の蛍光体の賦活剤含有量は結晶母体の0.03mol%以下である事が好ましく、より好ましくは、0.025mol%、更に好ましくは0.02mol%以下である。例えば、Ba2SiO4にEuを賦活する場合、従来法では0.035mol%必要だった所、液相法では0.01mol%で十分である。これはEuの確実な取り込み、非局在化などの効果による。また、この場合、元素存在比(%)Eu/(Ba+Si+O+Eu)×100であらわすと、従来法は0.5%、液相法は0.14%であり、約1/3量ですむ。これは特にコストの面で重要である。 Further, in the liquid phase method, each element can be uniformly mixed at the solution stage, and can be controlled and incorporated by adjusting the reaction conditions, thereby reducing unreacted raw materials. Although how to incorporate the activator becomes a problem, it is desirable that 70% or more, preferably 80% or more, more preferably 90% or more of the added activator raw material contribute to the reaction. As a result, the amount of activator added can be reduced. The activator content of the phosphor of the present invention is preferably 0.03 mol% or less of the crystal matrix, more preferably 0.025 mol%, and still more preferably 0.02 mol% or less. For example, when Eu is activated in Ba 2 SiO 4 , 0.01 mol% is sufficient in the liquid phase method where 0.035 mol% was necessary in the conventional method. This is due to effects such as reliable Eu incorporation and delocalization. Further, in this case, the element abundance ratio (%) Eu / (Ba + Si + O + Eu) × 100 is 0.5% in the conventional method and 0.14% in the liquid phase method, which requires about 1/3 amount. This is particularly important in terms of cost.
本発明の無機蛍光体粒子は、母核や賦活部分を構成する組成の含有率の粒子間分布の変動係数が50%以下であるが、30%以下であることが更に好ましく、15%以下であることが最も好ましい。 In the inorganic phosphor particles of the present invention, the coefficient of variation in the interparticle distribution of the composition constituting the mother nucleus and the activation part is 50% or less, more preferably 30% or less, and 15% or less. Most preferably it is.
粒子内に含有する組成の含有率の測定方法としては、サブミクロン〜ナノメートルオーダーの高い分解能を有する二次イオン質量分析(SIMS)装置を用いて、一個一個の粒子の組成を測定することができる。蛍光体粒子を試料台に乗せ、カーボンなどを蒸着させて測定することが好ましい。また、特に粒径1μm以下の蛍光体粒子を測定する場合には、粒子を一定の厚さに押しつぶして測定することも可能である。更にその含有率の粒子間分布変動係数の算出方法としては、二次イオン質量分析(SIMS)装置により少なくとも100個の蛍光体粒子の組成含有率を測定した際の組成含有率の標準偏差を平均含有率で除した値に100を乗じて得られる値である。 As a method for measuring the content ratio of the composition contained in the particles, the composition of each particle can be measured using a secondary ion mass spectrometry (SIMS) apparatus having a high resolution of submicron to nanometer order. it can. It is preferable to measure by placing phosphor particles on a sample stage and depositing carbon or the like. In particular, when measuring phosphor particles having a particle diameter of 1 μm or less, it is also possible to measure by crushing the particles to a certain thickness. Furthermore, as a method for calculating the interparticle distribution variation coefficient of the content, the standard deviation of the composition content when measuring the composition content of at least 100 phosphor particles with a secondary ion mass spectrometry (SIMS) apparatus is averaged. It is a value obtained by multiplying the value divided by the content rate by 100.
本発明の無機蛍光体粒子は、母核や賦活部分を構成する組成の分布が粒子内で均一である粒子が粒子数で50%以上であることが好ましく、60%以上であることが更に好ましく、80%以上であることが最も好ましい。 In the inorganic phosphor particles of the present invention, the number of particles having a uniform distribution of the composition constituting the mother nucleus and the activation part is preferably 50% or more, more preferably 60% or more. 80% or more is most preferable.
ここで組成の分布が粒子内で均一であるとは、1つの粒子内のどこの領域においてもある組成の含有率が微視的に一定であることである。より具体的には、後述する微視的な分布の測定方法において、ある組成の各切片における含有率の差が、その組成の含有率の理論値の20%以下であることである。 Here, the distribution of the composition being uniform within the particle means that the content of a certain composition is microscopically constant in any region in one particle. More specifically, in the microscopic distribution measurement method to be described later, the difference in the content rate in each section of a certain composition is 20% or less of the theoretical value of the content rate of the composition.
粒子内に含有する組成の微視的な分布の測定方法としては、透過型電子顕微鏡(TEM)を用い、電子線を照射した際に試料から発生する特性X線を解析することにより、一個一個の粒子の内部組成分布を測定することができる。試料となる蛍光体粒子を例えば厚さ50nm程度の切片として連続的に切り出し、その切片を電子顕微鏡観察用のメッシュに乗せてカーボン蒸着を施し、透過法で観察を行うことが可能である。更に組成分布が微視的に均一である粒子の比率の算出方法としては、少なくとも100個の蛍光体粒子について透過型電子顕微鏡写真によって測定し、その比率を算出すればよい。 As a method for measuring the microscopic distribution of the composition contained in the particles, a transmission electron microscope (TEM) is used to analyze characteristic X-rays generated from the sample when irradiated with an electron beam, one by one. The internal composition distribution of the particles can be measured. It is possible to continuously cut out the phosphor particles as the sample as, for example, a section having a thickness of about 50 nm, place the section on a mesh for electron microscope observation, perform carbon deposition, and observe by the transmission method. Further, as a method for calculating the ratio of particles having a microscopically uniform composition distribution, at least 100 phosphor particles may be measured by a transmission electron micrograph and the ratio calculated.
本発明の無機蛍光体粒子は、励起波長の光を照射しても発光しない蛍光体粒子が粒子数で20%以下であることが好ましく、15%以下であることが更に好ましく、10%以下であることが最も好ましい。 In the inorganic phosphor particles of the present invention, the number of phosphor particles that do not emit light when irradiated with light having an excitation wavelength is preferably 20% or less, more preferably 15% or less, and further preferably 10% or less. Most preferably it is.
励起波長の光を照射した際に発光する光の輝度の測定方法としては、走査型近視野原子間力顕微鏡(SNOAM:Scannning Near−field Optical/Atomic−force Microscopy)を用いて、一個一個の粒子の輝度を測定することができる。蛍光体粒子を試料台に載せ、光ファイバーを介して照射する励起光の波長、及び検知する発光色の波長を設定して測定することが可能である。更に励起波長の光を照射しても発光しない粒子の比率の算出方法としては、少なくとも100個の蛍光体粒子について走査型近視野原子間力顕微鏡によって測定し、その比率を算出すればよい。 As a method for measuring the luminance of light emitted when irradiated with light having an excitation wavelength, each particle is measured using a scanning near-field atomic force microscope (SNOAM: Scanning Near-field Optical / Atomic-Force Microscopy). Can be measured. It is possible to measure by setting the wavelength of the excitation light irradiated through the optical fiber and the wavelength of the emission color to be detected by placing the phosphor particles on the sample stage. Further, as a method for calculating the ratio of particles that do not emit light even when irradiated with light of an excitation wavelength, it is only necessary to measure at least 100 phosphor particles with a scanning near-field atomic force microscope and calculate the ratio.
本発明の蛍光体は発光色が均一である事が望ましく、具体的にはXY色座標系で任意の点を中心とした半径0.055の円形内に包含される蛍光体粒子が粒子数で70%以上、好ましくは80%以上、より好ましくは90%以上であるとよい。 The phosphor of the present invention desirably has a uniform luminescent color. Specifically, the number of particles of phosphor particles included in a circle having a radius of 0.055 centered on an arbitrary point in the XY color coordinate system. 70% or more, preferably 80% or more, and more preferably 90% or more.
蛍光体の組成は本発明を満たせば何を用いてもよく、希土類元素賦活の金属酸化物、金属硫化物あるいは金属硫酸化物、ハロリン酸化合物等があげられる。以下に例をあげるがこれに限定されるものではない。
Red:
Y2O2S:Eu3+
Gd2O2S:Eu3+
YVO4:Eu3+
Y2O2S:Eu,Sm
SrTiO3:Pr
BaSi2Al2O8:Eu2+
BaMg2Al16O27:Eu2+
Y0.65Gd0.35BO3:Eu3+
La2O2S:Eu3+,Sm
Green:
Ba2SiO4:Eu2+
Zn(Ga,Al)2O4:Mn
Y3(Al,Ga)5O12:Tb
Y2SiO5:Tb
ZnS:Cu,
Zn2SiO4:Mn
Blue:
BaAl2Si2O8:Eu2+
BaMgAl14O23:Eu2+
Y2SiO5:Ce
ZnGa2O4
ZnS:Ag,Cl
本発明では、例えば個々の粒子の組成を従来には知られていない程度に粒子間及び粒子内で均一に制御することによって、より少ない蛍光体の量で高い輝度の発光を得ることができた。そしてその結果、現状の性能を得るに当たってはよりコストを低くすることが可能となった。
Any composition of the phosphor may be used as long as the present invention is satisfied, and examples thereof include rare earth element activated metal oxides, metal sulfides or metal sulfates, and halophosphate compounds. Examples are given below, but the present invention is not limited thereto.
Red:
Y 2 O 2 S: Eu 3+
Gd 2 O 2 S: Eu 3+
YVO 4 : Eu 3+
Y 2 O 2 S: Eu, Sm
SrTiO 3 : Pr
BaSi 2 Al 2 O 8 : Eu 2+
BaMg 2 Al 16 O 27 : Eu 2+
Y 0.65 Gd 0.35 BO 3 : Eu 3+
La 2 O 2 S: Eu 3+ , Sm
Green:
Ba 2 SiO 4 : Eu 2+
Zn (Ga, Al) 2 O 4 : Mn
Y 3 (Al, Ga) 5 O 12 : Tb
Y 2 SiO 5 : Tb
ZnS: Cu,
Zn 2 SiO 4 : Mn
Blue:
BaAl 2 Si 2 O 8 : Eu 2+
BaMgAl 14 O 23 : Eu 2+
Y 2 SiO 5 : Ce
ZnGa 2 O 4
ZnS: Ag, Cl
In the present invention, for example, by controlling the composition of individual particles uniformly between particles and within the particles to a level that has not been known in the past, it was possible to obtain high-luminance emission with a smaller amount of phosphor. . As a result, it is possible to further reduce the cost in obtaining the current performance.
本発明の無機蛍光体は、液相法によって製造することが好ましい。更に無機蛍光体粒子の組成によっては、液相法の中でもゾルゲル法によって製造することが最も好ましい。ゾルゲル法による製造方法に関しては後述する。 The inorganic phosphor of the present invention is preferably produced by a liquid phase method. Furthermore, depending on the composition of the inorganic phosphor particles, the sol-gel method is the most preferable among the liquid phase methods. The manufacturing method by the sol-gel method will be described later.
液相法によって無機蛍光体を製造すると、従来のような乾式ではなく溶液系での反応であるため、個々の粒子の制御、及び粒子間の均一性に顕著に優れた無機蛍光体を製造することができる。 When an inorganic phosphor is manufactured by a liquid phase method, it is a reaction in a solution system rather than a dry type as in the past, and thus an inorganic phosphor that is remarkably excellent in control of individual particles and uniformity among particles is manufactured. be able to.
参考例1
Y2SiO5:Ce,Tbを固相法で作製したものをA、Ba2SiO4:Euを固相法で作製したものをB1、液相法で作製したものをB2とする。
Reference example 1
Y 2 SiO 5 : Ce, Tb produced by the solid phase method is A, Ba 2 SiO 4 : Eu produced by the solid phase method is B1, and one produced by the liquid phase method is B2.
A及び、B1の合成方法はそれぞれの金属酸化物を化学量論量混合し、1000℃で2時間焼成した。B2はテトラエトキシシラン8.3gとユーロピウムアセチルアセトナート0.097gをエタノール150mlに溶解し、水:エタノール=150ml:150mlをアンモニアでpH10に調整した液に滴下し、滴下終了後、エバポレーターで15倍に濃縮し、0.3M硝酸バリウム水溶液295mlを添加、60℃10時間熟成後、ろ過、洗浄、乾燥し、1000℃で2時間焼成した。 In the synthesis method of A and B1, stoichiometric amounts of the respective metal oxides were mixed and baked at 1000 ° C. for 2 hours. B2 was prepared by dissolving 8.3 g of tetraethoxysilane and 0.097 g of europium acetylacetonate in 150 ml of ethanol, and adding dropwise to a solution of water: ethanol = 150 ml: 150 ml adjusted to pH 10 with ammonia. The solution was concentrated to 295 ml of a 0.3M barium nitrate aqueous solution, aged at 60 ° C. for 10 hours, filtered, washed, dried, and calcined at 1000 ° C. for 2 hours.
以下に、AとBの発光強度測定結果を示す。Aの254nm励起を基準とし、それを100とした相対強度であらわす。測定は大塚電子製PTI−2000による。 The results of measuring the emission intensity of A and B are shown below. This is expressed as a relative intensity with A as a reference and 254 nm excitation as a reference. The measurement is based on PTI-2000 manufactured by Otsuka Electronics.
このように近紫外線励起に適した蛍光体を得る事が出来た。また、固相法に比べ液相法は同一焼成条件においておよそ1.2倍以上の輝度が得られた。 Thus, a phosphor suitable for near-ultraviolet excitation could be obtained. In addition, the liquid phase method has a brightness of about 1.2 times or more under the same firing conditions as compared with the solid phase method.
参考例2
Ba2SiO4:Euの合成をEuの量を表2のように変えて行った。それ以外はB1と同様にしてB11〜B14、B2と同様にしてB21〜24を作製した。表2に固相法でEuを0.05mol%添加した場合の発光強度を100として相対強度を示す。励起波長は410nm発光波長は501nmとする。また、XY色座標系の半径5の円に入った粒子数の測定は蛍光光度計の励起光のスリットをずらし、0.2gの蛍光体に対し25個所に照射した結果とする。
Reference example 2
Ba 2 SiO 4 : Eu was synthesized by changing the amount of Eu as shown in Table 2. Otherwise, B21 to B14 and B21 to 24 were prepared in the same manner as B1 and B2. Table 2 shows the relative intensities with the emission intensity when adding 0.05 mol% of Eu by the solid phase method as 100. The excitation wavelength is 410 nm and the emission wavelength is 501 nm. Further, the measurement of the number of particles entering a circle with a radius of 5 in the XY color coordinate system is a result of irradiating 25 spots on 0.2 g of phosphor with the slit of the excitation light of the fluorometer shifted.
以上のように固相法の約1/7量の賦活剤で、同等の輝度が得られ、発光色の均一性も高い事がわかった。 As described above, it was found that the same luminance was obtained and the uniformity of the luminescent color was high with about 1/7 of the activator of the solid phase method.
B21の合成中、ゲルのろ液を採取し、残存Eu量をICPで測定したところ、検出されなかった。よって、添加したEuはすべて粒子内に組み込まれたことがわかる。さらに固相法の場合、賦活剤はゾルゲル法の7倍量の時点で輝度が同じになるので、固相法でのEu有効利用率は液相法B21を基準に考えて13%である。また、液相法ではB22、23、24と輝度に変化がみられないので、0.02ですでに飽和していることがわかる。それ以上添加することは逆にEuの局在を促進し、輝度が落ちるおそれがあるほか、コストの面からも無駄である。 During the synthesis of B21, the gel filtrate was collected and the amount of remaining Eu was measured by ICP. Therefore, it can be seen that all of the added Eu was incorporated in the particles. Further, in the case of the solid phase method, the luminance of the activator becomes the same at 7 times the amount of the sol-gel method. Therefore, the effective Eu utilization rate in the solid phase method is 13% based on the liquid phase method B21. In addition, in the liquid phase method, there is no change in luminance such as B22, 23, 24, and it can be seen that the liquid phase method is already saturated at 0.02. On the contrary, the addition of more promotes the localization of Eu, there is a possibility that the luminance is lowered, and it is useless from the viewpoint of cost.
実施例1
<試料3−1の調製>
バリウム、シリカ、ユーロピウムそれぞれの酸化物原料粉体を、バリウム:シリカ:ユーロピウム=2:1:0.005のモル比になるように混合し、1000℃で2時間焼成して、試料3−1を得た。走査型電子顕微鏡により平均粒子径及び粒径分布を測定した結果、平均粒子径は3.92μm、粒径分布は344%であった。
Example 1
<Preparation of Sample 3-1>
Barium, silica, and europium oxide raw material powders were mixed at a molar ratio of barium: silica: europium = 2: 1: 0.005 and fired at 1000 ° C. for 2 hours to obtain a sample 3-1. Got. As a result of measuring the average particle size and the particle size distribution with a scanning electron microscope, the average particle size was 3.92 μm and the particle size distribution was 344%.
<試料3−2の調製>
テトラエトキシシラン8.3gとユーロピウムアセチルアセトナート0.097gをエタノール150mlに溶解した溶液と、0.3M硝酸バリウム水溶液295mlを、水:エタノール=1:1の混合液300mlをアンモニアでpH10に調整した母液に5.0ml/minで同時に滴下した。滴下終了後、ポリオキシエチレンソルビタントリオレエートを0.75g添加し、ロータリーエバポレーターで濃縮乾固した。残った固体をエタノール中に分散・洗浄し、ろ過後、イソプロパノールを用いて再度洗浄し、乾燥後、400℃で5時間、続いて900℃で2時間焼成し、試料3−2を得た。平均粒子径は0.88μm、粒径分布は61%であった。
<Preparation of Sample 3-2>
A solution prepared by dissolving 8.3 g of tetraethoxysilane and 0.097 g of europium acetylacetonate in 150 ml of ethanol, 295 ml of a 0.3M barium nitrate aqueous solution, and 300 ml of a mixture of water: ethanol = 1: 1 were adjusted to pH 10 with ammonia. The solution was added dropwise to the mother liquor at 5.0 ml / min. After completion of the dropwise addition, 0.75 g of polyoxyethylene sorbitan trioleate was added and concentrated to dryness with a rotary evaporator. The remaining solid was dispersed and washed in ethanol, filtered, washed again with isopropanol, dried, and calcined at 400 ° C. for 5 hours and then at 900 ° C. for 2 hours to obtain Sample 3-2. The average particle size was 0.88 μm and the particle size distribution was 61%.
<試料3−3の調製>
上記試料3−2の調製方法において、テトラエトキシシランとユーロピウムアセチルアセトナートのエタノール溶液の滴下速度を3.0ml/minに変更した以外は試料3−2の調製方法と同様に調製し、試料3−3を得た。平均粒子径は0.92μm、粒径分布は68%であった。
<Preparation of Sample 3-3>
In the preparation method of Sample 3-2 above, Sample 3 was prepared in the same manner as Sample 3-2 except that the dropping rate of the ethanol solution of tetraethoxysilane and europium acetylacetonate was changed to 3.0 ml / min. -3 was obtained. The average particle size was 0.92 μm, and the particle size distribution was 68%.
<試料3−4の調製>
上記試料3−2の調製方法において、テトラエトキシシランとユーロピウムアセチルアセトナートのエタノール溶液の滴下速度を2.0ml/minに変更した以外は試料3−2の調製方法と同様に調製し、試料3−4を得た。平均粒子径は0.94μm、粒径分布は71%であった。
<Preparation of Sample 3-4>
In the preparation method of Sample 3-2 above, Sample 3 was prepared in the same manner as Sample 3-2 except that the dropping rate of the ethanol solution of tetraethoxysilane and europium acetylacetonate was changed to 2.0 ml / min. -4 was obtained. The average particle size was 0.94 μm and the particle size distribution was 71%.
<試料3−5の調製>
上記試料3−2の調製方法において、テトラエトキシシランとユーロピウムアセチルアセトナートのエタノール溶液の滴下速度を1.0ml/minに変更した以外は試料3−2の調製方法と同様に調製し、試料3−5を得た。平均粒子径は0.97μm、粒径分布は72%であった。
<Preparation of Sample 3-5>
In the preparation method of Sample 3-2 above, Sample 3 was prepared in the same manner as Sample 3-2 except that the dropping rate of the tetraethoxysilane and europium acetylacetonate ethanol solution was changed to 1.0 ml / min. -5 was obtained. The average particle size was 0.97 μm and the particle size distribution was 72%.
<組成の含有率の測定>
試料3−1〜試料3−5それぞれについて、二次イオン質量分析(SIMS)装置を用いて、100個の粒子についてシリカの含有率を測定し、その粒子間分布を算出した。また、バリウムやユーロピウムについても同様の測定を行った結果、ほぼ同様の値を得た。これらの結果を表3に示す。
<Measurement of composition content>
For each of Sample 3-1 to Sample 3-5, the content of silica was measured for 100 particles using a secondary ion mass spectrometry (SIMS) apparatus, and the distribution between the particles was calculated. Moreover, as a result of performing the same measurement also about barium and europium, the substantially same value was obtained. These results are shown in Table 3.
<輝度の測定>
試料3−1〜試料3−5それぞれについて、参考例1と同様な方法で輝度の測定を行った。試料3−1の輝度を100としたときの試料3−2〜試料3−5相対輝度を表3に示す。
<Measurement of brightness>
For each of Sample 3-1 to Sample 3-5, luminance was measured in the same manner as in Reference Example 1. Table 3 shows the relative luminance of Sample 3-2 to Sample 3-5 when the luminance of Sample 3-1 is 100.
表3より、各組成含有率の粒子間分布が狭い本発明の蛍光体粒子は、比較の粒子に対して輝度が高いことが確認された。 From Table 3, it was confirmed that the phosphor particles of the present invention having a narrow interparticle distribution of each composition content had higher luminance than the comparative particles.
参考例3
<試料4−1の調製>
バリウム、シリカ、ユーロピウムそれぞれの酸化物原料粉体を、バリウム:シリカ:ユーロピウム=2:1:0.005のモル比になるように混合し、1000℃で2時間焼成して、試料4−1を得た。走査型電子顕微鏡により平均粒子径及び粒径分布を測定した結果、平均粒子径は3.92μm、粒径分布は344%であった。
Reference example 3
<Preparation of Sample 4-1>
Barium, silica, and europium oxide raw material powders were mixed at a molar ratio of barium: silica: europium = 2: 1: 0.005 and fired at 1000 ° C. for 2 hours to obtain Sample 4-1. Got. As a result of measuring the average particle size and the particle size distribution with a scanning electron microscope, the average particle size was 3.92 μm and the particle size distribution was 344%.
<試料4−2の調製>
テトラエトキシシラン8.3gとユーロピウムアセチルアセトナート0.097gをエタノール100mlに溶解した溶液と、0.3M硝酸バリウム水溶液295mlを、水:エタノール=1:1の混合液300mlをアンモニアでpH10に調整した母液に同時に滴下した。滴下終了後、ポリオキシエチレンソルビタントリオレエートを0.75g添加し、ロータリーエバポレーターで濃縮乾固した。残った固体をエタノール中に分散・洗浄し、ろ過後、イソプロパノールを用いて再度洗浄し、乾燥後、400℃で5時間、続いて900℃で2時間焼成し、試料4−2を得た。平均粒子径は0.85μm、粒径分布は62%であった。
<Preparation of sample 4-2>
A solution prepared by dissolving 8.3 g of tetraethoxysilane and 0.097 g of europium acetylacetonate in 100 ml of ethanol, 295 ml of a 0.3M barium nitrate aqueous solution, and 300 ml of a mixture of water: ethanol = 1: 1 were adjusted to pH 10 with ammonia. It was simultaneously added dropwise to the mother liquor. After completion of the dropwise addition, 0.75 g of polyoxyethylene sorbitan trioleate was added and concentrated to dryness with a rotary evaporator. The remaining solid was dispersed and washed in ethanol, filtered, washed again with isopropanol, dried, and calcined at 400 ° C. for 5 hours and then at 900 ° C. for 2 hours to obtain Sample 4-2. The average particle size was 0.85 μm and the particle size distribution was 62%.
<試料4−3の調製>
上記試料4−2の調製方法において、テトラエトキシシランとユーロピウムアセチルアセトナートを溶解するエタノールの量を180mlに変更した以外は試料4−2の調製方法と同様に調製し、試料4−3を得た。平均粒子径は0.91μm、粒径分布は65%であった。
<Preparation of Sample 4-3>
In the preparation method of the above sample 4-2, a sample 4-3 was obtained in the same manner as the preparation method of the sample 4-2 except that the amount of ethanol for dissolving tetraethoxysilane and europium acetylacetonate was changed to 180 ml. It was. The average particle size was 0.91 μm and the particle size distribution was 65%.
<試料4−4の調製>
上記試料4−2の調製方法において、テトラエトキシシランとユーロピウムアセチルアセトナートを溶解するエタノールの量を250mlに変更した以外は試料4−2の調製方法と同様に調製し、試料4−4を得た。平均粒子径は0.96μm、粒径分布は73%であった。
<Preparation of Sample 4-4>
Sample 4-4 was prepared in the same manner as Sample 4-2 except that the amount of ethanol used to dissolve tetraethoxysilane and europium acetylacetonate was changed to 250 ml. It was. The average particle size was 0.96 μm, and the particle size distribution was 73%.
<試料4−5の調製>
上記試料4−2の調製方法において、テトラエトキシシランとユーロピウムアセチルアセトナートを溶解するエタノールの量を300mlに変更した以外は試料4−2の調製方法と同様に調製し、試料4−5を得た。平均粒子径は0.98μm、粒径分布は77%であった。
<Preparation of Sample 4-5>
Sample 4-5 was prepared in the same manner as Sample 4-2 except that the amount of ethanol used to dissolve tetraethoxysilane and europium acetylacetonate was changed to 300 ml. It was. The average particle size was 0.98 μm and the particle size distribution was 77%.
<内部組成分布の測定>
試料4−1〜試料4−5それぞれについて、透過型電子顕微鏡(TEM)を用いて、100個の粒子について内部組成の分布を測定し、微視的に均一な粒子の比率を算出した。これらの結果を表4に示す。
<Measurement of internal composition distribution>
For each of Sample 4-1 to Sample 4-5, the distribution of the internal composition of 100 particles was measured using a transmission electron microscope (TEM), and the ratio of microscopically uniform particles was calculated. These results are shown in Table 4.
<輝度の測定>
実施例1と同様に、試料4−1〜試料4−5それぞれについて、輝度の測定を行った。試料4−1の輝度を100としたときの試料4−2〜試料4−5相対輝度を表4に示す。
<Measurement of brightness>
In the same manner as in Example 1, the luminance of each of the samples 4-1 to 4-5 was measured. Table 4 shows the relative luminance of Sample 4-2 and Sample 4-5 when the luminance of Sample 4-1 is 100.
表4より、内部組成分布が微視的に均一な粒子比率の多い蛍光体粒子は、均一な粒子比率の少ない蛍光体粒子に対して輝度が高いことが確認された。 From Table 4, it was confirmed that the phosphor particles having a fine particle ratio with a uniform internal composition distribution have higher luminance than the phosphor particles having a small uniform particle ratio.
実施例2
<内部組成分布の測定>
実施例1で調製した試料3−1〜試料3−5について、走査型近視野原子間力顕微鏡(SNOAM)を用いて、100個の粒子について輝度を測定し、発光しない粒子の比率を算出した。これらの結果を表5に示す。
Example 2
<Measurement of internal composition distribution>
For Sample 3-1 to Sample 3-5 prepared in Example 1, the luminance was measured for 100 particles using a scanning near-field atomic force microscope (SNOAM), and the ratio of particles that did not emit light was calculated. . These results are shown in Table 5.
<輝度の測定>
実施例1と同様に、試料3−1〜試料3−5それぞれについて、輝度の測定を行った。試料3−1の輝度を100としたときの試料3−2〜試料3−5相対輝度を表5に示す。
<Measurement of brightness>
Similarly to Example 1, the luminance was measured for each of Sample 3-1 to Sample 3-5. Table 5 shows the relative luminance of Sample 3-2 to Sample 3-5 when the luminance of Sample 3-1 is 100.
表5より、励起光を照射しても発光しない粒子比率の少ない蛍光体粒子は、比較の粒子に対して輝度が高いことが確認された。 From Table 5, it was confirmed that the phosphor particles having a small particle ratio that does not emit light even when irradiated with excitation light have higher luminance than the comparative particles.
参考例4
蛍光体6−1 Ba2SiO4:Eu2+の合成
上記蛍光体は以下に示される、液相法合成フローにて一次粒子を作製した。テトラエトキシシランとユーロピウム(3価)アセチルアセトナート錯体をエタノールに溶解したものを溶液A、トリエトキシアルミニウムをエタノールに溶解したものを溶液Bとする。この溶液A,Bをアンモニアを加えた水−エタノール中に約1ml/minの速度で攪拌しながら滴下し、ゾルを調製した。得られたゾルをエバポレーターで約15倍に濃縮し、これに0.033mol/lのバリウム硝酸塩水溶液を500ml添加し、ゲル化させた。
Reference example 4
Synthesis of Phosphor 6-1 Ba 2 SiO 4 : Eu 2+ The phosphor was prepared as primary particles by the liquid phase synthesis flow shown below. Solution A in which tetraethoxysilane and europium (trivalent) acetylacetonate complex are dissolved in ethanol is solution A, and solution in which triethoxyaluminum is dissolved in ethanol is solution B. The solutions A and B were added dropwise to water-ethanol to which ammonia was added with stirring at a rate of about 1 ml / min to prepare a sol. The obtained sol was concentrated about 15 times with an evaporator, and 500 ml of 0.033 mol / l barium nitrate aqueous solution was added thereto to cause gelation.
得られた湿潤ゲルは、密閉容器中、40℃で10分間熟成させた。その後撹拌を行っているエタノール(約300ml)中に1ml/minで添加、ろ紙(Advantec5A)を用いた濾過により分取し、室温で乾燥した。 The obtained wet gel was aged at 40 ° C. for 10 minutes in a closed container. Thereafter, the mixture was added to ethanol (about 300 ml) with stirring at 1 ml / min, separated by filtration using filter paper (Advantec 5A), and dried at room temperature.
乾燥ゲルは、2%H2−N2雰囲気中、1000℃で2時間の熱処理を施し蛍光体6−1を得た。 The dried gel was subjected to heat treatment at 1000 ° C. for 2 hours in a 2% H 2 —N 2 atmosphere to obtain phosphor 6-1.
蛍光体6−2 Ba2SiO4:Eu2+の合成
上記蛍光体は以下に示される、液相法合成フローにて一次粒子を作製した。テトラエトキシシランとユーロピウム(3価)アセチルアセトナート錯体をエタノールに溶解したものを溶液A、トリエトキシアルミニウムをエタノールに溶解したものを溶液Bとする。この溶液A,Bをアンモニアを加えた水−エタノール中に約1ml/minの速度で攪拌しながら滴下し、ゾルを調製した。得られたゾルをエバポレーターで約15倍に濃縮し、これに0.033mol/lのバリウム硝酸塩水溶液を500ml添加し、ゲル化させた。
Synthesis of Phosphor 6-2 Ba 2 SiO 4 : Eu 2+ The phosphor was produced as primary particles by the liquid phase synthesis flow shown below. Solution A in which tetraethoxysilane and europium (trivalent) acetylacetonate complex are dissolved in ethanol is solution A, and solution in which triethoxyaluminum is dissolved in ethanol is solution B. The solutions A and B were added dropwise to water-ethanol to which ammonia was added with stirring at a rate of about 1 ml / min to prepare a sol. The obtained sol was concentrated about 15 times with an evaporator, and 500 ml of 0.033 mol / l barium nitrate aqueous solution was added thereto to cause gelation.
得られた湿潤ゲルは、密閉容器中で60℃で10時間熟成させた。その後撹拌を行っているエタノール(約300ml)中に1ml/minで添加、ろ紙(Advantec5A)を用いた濾過により分取し、室温で乾燥した。 The obtained wet gel was aged at 60 ° C. for 10 hours in a closed container. Thereafter, the mixture was added to ethanol (about 300 ml) with stirring at 1 ml / min, separated by filtration using filter paper (Advantec 5A), and dried at room temperature.
乾燥ゲルは、2%H2−N2雰囲気中、1000℃で2時間の熱処理を施し蛍光体6−2を得た。 The dried gel was heat-treated at 1000 ° C. for 2 hours in a 2% H 2 —N 2 atmosphere to obtain phosphor 6-2.
蛍光体6−3 Ba2SiO4:Eu2+の合成
上記蛍光体は以下に示される、液相法合成フローにて一次粒子を作製した。テトラエトキシシランとユーロピウム(3価)アセチルアセトナート錯体をエタノールに溶解したものを溶液A、トリエトキシアルミニウムをエタノールに溶解したものを溶液Bとする。この溶液A,Bをアンモニアを加えた水−エタノール中に約1ml/minの速度で攪拌しながら滴下し、ゾルを調製した。得られたゾルをエバポレーターで約15倍に濃縮し、これに0.033mol/lのバリウム硝酸塩水溶液を500ml添加し、ゲル化させた。
Synthesis of Phosphor 6-3 Ba 2 SiO 4 : Eu 2+ The phosphor was produced as primary particles by the liquid phase synthesis flow shown below. Solution A in which tetraethoxysilane and europium (trivalent) acetylacetonate complex are dissolved in ethanol is solution A, and solution in which triethoxyaluminum is dissolved in ethanol is solution B. The solutions A and B were added dropwise to water-ethanol to which ammonia was added with stirring at a rate of about 1 ml / min to prepare a sol. The obtained sol was concentrated about 15 times with an evaporator, and 500 ml of 0.033 mol / l barium nitrate aqueous solution was added thereto to cause gelation.
得られた湿潤ゲルは、密閉容器中で攪拌をしながら60℃で10時間熟成させた。その後撹拌を行っているエタノール(約300ml)中に1ml/minで添加、ろ紙(Advantec5A)を用いた濾過により分取し、室温で乾燥した。 The obtained wet gel was aged at 60 ° C. for 10 hours with stirring in a closed container. Thereafter, the mixture was added to ethanol (about 300 ml) with stirring at 1 ml / min, separated by filtration using filter paper (Advantec 5A), and dried at room temperature.
乾燥ゲルは、2%H2−N2雰囲気中、1000℃で2時間の熱処理を施し蛍光体6−3を得た。 The dried gel was heat-treated at 1000 ° C. for 2 hours in a 2% H 2 —N 2 atmosphere to obtain phosphor 6-3.
次に得られた蛍光体6−1の10gに、トルエン/エタノール=1/1の混合溶液(300g)で溶解されたブチラール(BX−1)30gを加え、攪拌した後、Wet膜厚200μmでガラス上に塗布した。得られた塗布済みガラスを100℃のオーブンで4時間加熱乾燥して、蛍光膜6−1を作製した。 Next, to 10 g of the obtained phosphor 6-1, 30 g of butyral (BX-1) dissolved in a mixed solution of toluene / ethanol = 1/1 (300 g) was added and stirred, and then the wet film thickness was 200 μm. It was applied on glass. The obtained coated glass was heat-dried in an oven at 100 ° C. for 4 hours to produce a phosphor film 6-1.
また、これと同じ方法で蛍光体6−2を塗設した蛍光膜6−2、蛍光体6−3を塗設した蛍光膜6−3を作製した。 In addition, a phosphor film 6-2 coated with phosphor 6-2 and a phosphor film 6-3 coated with phosphor 6-3 were produced by the same method.
これら蛍光膜に波長147nmの紫外線および405nmの近紫外線を照射し蛍光強度を測定し、蛍光膜6−1の値をそれぞれ100とした相対強度で表した。 These fluorescent films were irradiated with ultraviolet rays having a wavelength of 147 nm and near-ultraviolet rays having a wavelength of 405 nm, and the fluorescence intensity was measured. The values were expressed as relative intensities where the value of the fluorescent film 6-1 was 100, respectively.
参考例5
蛍光体7−1 Ba2SiO4:Eu2+の合成
上記蛍光体は以下に示される、液相法合成フローにて一次粒子を作製した。テトラエトキシシランとユーロピウム(3価)アセチルアセトナート錯体をエタノールに溶解したものを溶液A、トリエトキシアルミニウムをエタノールに溶解したものを溶液Bとする。この溶液A,Bをアンモニアを加えた水−エタノール中に約1ml/minの速度で攪拌しながら滴下し、ゾルを調製した。得られたゾルをエバポレーターで約15倍に濃縮し、これに0.033mol/lのバリウム硝酸塩水溶液を500ml添加し、ゲル化させた。
Reference Example 5
Synthesis of Phosphor 7-1 Ba 2 SiO 4 : Eu 2+ The phosphor was produced as primary particles by the liquid phase synthesis flow shown below. Solution A in which tetraethoxysilane and europium (trivalent) acetylacetonate complex are dissolved in ethanol is solution A, and solution in which triethoxyaluminum is dissolved in ethanol is solution B. The solutions A and B were added dropwise to water-ethanol to which ammonia was added with stirring at a rate of about 1 ml / min to prepare a sol. The obtained sol was concentrated about 15 times with an evaporator, and 500 ml of 0.033 mol / l barium nitrate aqueous solution was added thereto to cause gelation.
得られた湿潤ゲルは、密閉容器中、60℃で10時間熟成させた。その後撹拌を行っているエタノール(約300ml)中に1ml/minで添加、ろ紙(Advantec5A)を用いた濾過により分取し、室温で乾燥した。 The obtained wet gel was aged at 60 ° C. for 10 hours in a closed container. Thereafter, the mixture was added to ethanol (about 300 ml) with stirring at 1 ml / min, separated by filtration using filter paper (Advantec 5A), and dried at room temperature.
乾燥ゲルは、2%H2−N2雰囲気中、1000℃で2時間の熱処理を施し蛍光体7−1を得た。 The dried gel was subjected to heat treatment at 1000 ° C. for 2 hours in a 2% H 2 —N 2 atmosphere to obtain phosphor 7-1.
蛍光体7−2 Ba2SiO4:Eu2+の合成
上記蛍光体は以下に示される、液相法合成フローにて一次粒子を作製した。テトラエトキシシランとユーロピウム(3価)アセチルアセトナート錯体をエタノールに溶解したものを溶液A、トリエトキシアルミニウムをエタノールに溶解したものを溶液Bとする。この溶液A,Bをアンモニアを加えた水−エタノール中に約1ml/minの速度で攪拌しながら滴下し、ゾルを調製した。得られたゾルをエバポレーターで約15倍に濃縮し、これに0.033mol/lのバリウム硝酸塩水溶液を500ml添加し、ゲル化させた。
Synthesis of Phosphor 7-2 Ba 2 SiO 4 : Eu 2+ The phosphor was produced as primary particles by the liquid phase synthesis flow shown below. Solution A in which tetraethoxysilane and europium (trivalent) acetylacetonate complex are dissolved in ethanol is solution A, and solution in which triethoxyaluminum is dissolved in ethanol is solution B. The solutions A and B were added dropwise to water-ethanol to which ammonia was added with stirring at a rate of about 1 ml / min to prepare a sol. The obtained sol was concentrated about 15 times with an evaporator, and 500 ml of 0.033 mol / l barium nitrate aqueous solution was added thereto to cause gelation.
得られた湿潤ゲルに、20KHzの超音波を1時間照射し、さらに密閉容器中で60℃で10時間させた。ろ紙(Advantec5A)を用いた濾過により分取し、室温で乾燥した。 The obtained wet gel was irradiated with ultrasonic waves of 20 KHz for 1 hour and further allowed to stand at 60 ° C. for 10 hours in a sealed container. The solution was collected by filtration using filter paper (Advantec 5A) and dried at room temperature.
乾燥ゲルは、2%H2−N2雰囲気中、1000℃で2時間の熱処理を施し蛍光体7−2を得た。 The dried gel was heat-treated at 1000 ° C. for 2 hours in a 2% H 2 —N 2 atmosphere to obtain phosphor 7-2.
蛍光体7−3 Ba2SiO4:Eu2+の合成
上記蛍光体は以下に示される、液相法合成フローにて一次粒子を作製した。テトラエトキシシランとユーロピウム(3価)アセチルアセトナート錯体をエタノールに溶解したものを溶液A、トリエトキシアルミニウムをエタノールに溶解したものを溶液Bとする。この溶液A,Bをアンモニアを加えた水−エタノール中に約1ml/minの速度で攪拌しながら滴下し、ゾルを調製した。得られたゾルをエバポレーターで約15倍に濃縮し、これに0.033mol/lのバリウム硝酸塩水溶液を500ml添加し、ゲル化させた。
Synthesis of Phosphor 7-3 Ba 2 SiO 4 : Eu 2+ The phosphor was produced as primary particles by the liquid phase synthesis flow shown below. Solution A in which tetraethoxysilane and europium (trivalent) acetylacetonate complex are dissolved in ethanol is solution A, and solution in which triethoxyaluminum is dissolved in ethanol is solution B. The solutions A and B were added dropwise to water-ethanol to which ammonia was added with stirring at a rate of about 1 ml / min to prepare a sol. The obtained sol was concentrated about 15 times with an evaporator, and 500 ml of 0.033 mol / l barium nitrate aqueous solution was added thereto to cause gelation.
得られた湿潤ゲルは、密閉容器中、60℃で10時間熟成させた。その後撹拌を行っているエタノール(約300ml)中に1ml/minで添加、ろ紙(Advantec5A)を用いた濾過により分取し、室温で乾燥した。 The obtained wet gel was aged at 60 ° C. for 10 hours in a closed container. Thereafter, the mixture was added to ethanol (about 300 ml) with stirring at 1 ml / min, separated by filtration using filter paper (Advantec 5A), and dried at room temperature.
乾燥ゲルは、2%H2−N2雰囲気中、1000℃で15分間の熱処理を施し蛍光体7−3を得た。 The dried gel was subjected to heat treatment at 1000 ° C. for 15 minutes in a 2% H 2 —N 2 atmosphere to obtain phosphor 7-3.
蛍光体7−4 Ba2SiO4:Eu2+の合成
上記蛍光体は以下に示される、液相法合成フローにて一次粒子を作製した。テトラエトキシシランとユーロピウム(3価)アセチルアセトナート錯体をエタノールに溶解したものを溶液A、トリエトキシアルミニウムをエタノールに溶解したものを溶液Bとする。この溶液A,Bをアンモニアを加えた水−エタノール中に約1ml/minの速度で攪拌しながら滴下し、ゾルを調製した。得られたゾルをエバポレーターで約15倍に濃縮し、これに0.033mol/lのバリウム硝酸塩水溶液を500ml添加し、ゲル化させた。
Synthesis of Phosphor 7-4 Ba 2 SiO 4 : Eu 2+ The phosphor was produced as primary particles by the liquid phase synthesis flow shown below. Solution A in which tetraethoxysilane and europium (trivalent) acetylacetonate complex are dissolved in ethanol is solution A, and solution in which triethoxyaluminum is dissolved in ethanol is solution B. The solutions A and B were added dropwise to water-ethanol to which ammonia was added with stirring at a rate of about 1 ml / min to prepare a sol. The obtained sol was concentrated about 15 times with an evaporator, and 500 ml of 0.033 mol / l barium nitrate aqueous solution was added thereto to cause gelation.
得られた湿潤ゲルに、20KHzの超音波を1時間照射し、さらに密閉容器中で60℃で10時間させた。ろ紙(Advantec5A)を用いた濾過により分取し、室温で乾燥した。 The obtained wet gel was irradiated with ultrasonic waves of 20 KHz for 1 hour and further allowed to stand at 60 ° C. for 10 hours in a sealed container. The solution was collected by filtration using filter paper (Advantec 5A) and dried at room temperature.
乾燥ゲルは、2%H2−N2雰囲気中、1000℃で15分間熱処理を施し蛍光体7−4を得た。 The dried gel was heat-treated at 1000 ° C. for 15 minutes in a 2% H 2 —N 2 atmosphere to obtain phosphor 7-4.
次に得られた蛍光体7−1の10gに、トルエン/エタノール=1/1の混合溶液(300g)で溶解されたブチラール(BX−1)30gを加え、攪拌した後、Wet膜厚200μmでガラス上に塗布した。得られた塗布済みガラスを100℃のオーブンで4時間加熱乾燥して、蛍光膜7−1を作製した。 Next, 30 g of butyral (BX-1) dissolved in a mixed solution of toluene / ethanol = 1/1 (300 g) was added to 10 g of the obtained phosphor 7-1 and stirred, and then the wet film thickness was 200 μm. It was applied on glass. The obtained coated glass was heat-dried in an oven at 100 ° C. for 4 hours to produce a fluorescent film 7-1.
また、これと同じ方法で蛍光体7−2を塗設した蛍光膜7−2、蛍光体7−3を塗設した蛍光膜7−3、蛍光体7−4を塗設した蛍光膜7−4を作製した。 Further, in the same manner, the phosphor film 7-2 coated with the phosphor 7-2, the phosphor film 7-3 coated with the phosphor 7-3, and the phosphor film 7- coated with the phosphor 7-4. 4 was produced.
これら蛍光膜に波長147nmの紫外線および405nmの近紫外線を照射し蛍光強度を測定し、蛍光膜7−1の値をそれぞれ100とした相対強度で表した。 These fluorescent films were irradiated with ultraviolet rays having a wavelength of 147 nm and near-ultraviolet rays having a wavelength of 405 nm, and the fluorescence intensity was measured. The values were expressed as relative intensities where the value of the fluorescent film 7-1 was 100, respectively.
表7より平均粒径が1.0μmより小さい蛍光体を使用した蛍光膜7−2及び7−4は、平均粒径が1.0μmより大きい蛍光体を使用した蛍光膜7−1及び7−3より紫外光(147nm)および近紫外光(405nm)の両光源においても発光強度が高いことがわかる。また、焼成時の加温時間を少なくすることによって、より小粒径の蛍光体が得られた。 According to Table 7, phosphor films 7-2 and 7-4 using phosphors having an average particle diameter smaller than 1.0 μm are phosphor films 7-1 and 7− using phosphors having an average particle diameter larger than 1.0 μm. 3 shows that both the ultraviolet light (147 nm) and near ultraviolet light (405 nm) light sources have high emission intensity. In addition, a phosphor having a smaller particle diameter was obtained by reducing the heating time during firing.
参考例6
蛍光体8−1(固相法) Sr10(PO4)6Cl2:Eu2+の合成
組成式:Sr10(PO4)6Cl2:Eu2+で表される無機蛍光体を製造するにあたり、以下の方法で製造した。
Reference Example 6
Phosphor 8-1 (solid phase method) Sr 10 (PO 4 ) 6 Cl 2 : Eu 2+ Synthesis composition formula: Inorganic phosphor represented by Sr 10 (PO 4 ) 6 Cl 2 : Eu 2+ In doing so, it was produced by the following method.
1)秤量
各原料をできるだけ正確に秤量する
SrCl2 15.86g(1.00×10-1mol)
H2(PO4) 5.82g(6.00×10-2mol)
Eu2O3 1.759g(5.00×10-3mol)
2)混合
各原料をプラスチック製のボールミル容器に入れ、径3mmのTiO2ボール、及びエタノール約50mlを加えて蓋をし、1晩、回転台で回転させる。
1) Weighing Each raw material is weighed as accurately as possible SrCl 2 15.86 g (1.00 × 10 −1 mol)
H 2 (PO 4 ) 5.82 g (6.00 × 10 −2 mol)
Eu 2 O 3 1.759 g (5.00 × 10 −3 mol)
2) Mixing Each raw material is put into a plastic ball mill container, a TiO 2 ball having a diameter of 3 mm and about 50 ml of ethanol are added to the lid, and the mixture is rotated overnight on a rotating table.
3)溶媒の除去
Advantec5Cのろ紙を用いた減圧ろ過により溶媒を除去する。
3) Removal of solvent The solvent is removed by vacuum filtration using Advantec 5C filter paper.
4)自然乾燥した混合原料をるつぼに入れ、2%H2−N2雰囲気下で焼成する。
これにより蛍光体8−1(固相法)を得た。
4) The naturally dried mixed raw material is placed in a crucible and fired in a 2% H 2 —N 2 atmosphere.
Thereby, phosphor 8-1 (solid phase method) was obtained.
蛍光体8−2(ゾルゲル法) Sr10(PO4)6Cl2:Eu2+の合成
上記蛍光体は以下に示される、液相法フローにて一次粒子を作製した。炭酸ストロンチウム、燐酸水素ナトリウム、塩化ユーロピウムをそれぞれ純水に溶解し、これをアンモニアを加えた水中に約1ml/minの速度で攪拌しながら滴下し、沈殿を得た。得られた沈殿を濾過により分取し、室温で乾燥した。
Phosphor 8-2 (Sol-Gel Method) Synthesis of Sr 10 (PO 4 ) 6 Cl 2 : Eu 2+ The phosphor produced primary particles by the liquid phase method flow shown below. Strontium carbonate, sodium hydrogen phosphate, and europium chloride were each dissolved in pure water, and this was added dropwise to water added with ammonia at a rate of about 1 ml / min with stirring to obtain a precipitate. The resulting precipitate was collected by filtration and dried at room temperature.
乾燥ゲルは、2%H2−N2雰囲気中、1000℃で2時間の熱処理を施し蛍光体8−2(ゾルゲル法)を得た。 The dried gel was subjected to heat treatment at 1000 ° C. for 2 hours in a 2% H 2 —N 2 atmosphere to obtain phosphor 8-2 (sol-gel method).
次に得られた蛍光体8−1の10gに、トルエン/エタノール=1/1の混合溶液(300g)で溶解されたブチラール(BX−1)30gを加え、攪拌した後、Wet膜厚200μmでガラス上に塗布した。得られた塗布済みガラスを100℃のオーブンで4時間加熱乾燥して、蛍光膜8−1を作製した。 Next, 30 g of butyral (BX-1) dissolved in a mixed solution of toluene / ethanol = 1/1 (300 g) was added to 10 g of the obtained phosphor 8-1, and the mixture was stirred. It was applied on glass. The obtained coated glass was heat-dried in an oven at 100 ° C. for 4 hours to produce a phosphor film 8-1.
また、これと同じ方法で蛍光体8−2を塗設した蛍光膜8−2を作製した。 In addition, a phosphor film 8-2 coated with phosphor 8-2 was produced by the same method.
これら蛍光膜に波長147nmの紫外線および405nmの近紫外線を照射し蛍光強度を測定し、蛍光膜8−1の値をそれぞれ100とした相対強度で表した。 These fluorescent films were irradiated with ultraviolet rays having a wavelength of 147 nm and near-ultraviolet rays having a wavelength of 405 nm, and the fluorescence intensity was measured. The values were expressed as relative intensities where the value of the fluorescent film 8-1 was 100, respectively.
表8よりゾルゲル法で作製した蛍光体を使用した蛍光膜は、固相法で作製した蛍光体を使用した蛍光膜より紫外光(147nm)および近紫外光(405nm)の両光源においても発光強度が高いことがわかる
参考例7
蛍光体9−1(固相法) BaAl2Si2O8:Eu2+の合成
組成式:BaAl2Si2O8:Eu2+で表される無機蛍光体を製造するにあたり、以下の方法で製造した。
From Table 8, the fluorescent film using the phosphor prepared by the sol-gel method emits light in both ultraviolet light (147 nm) and near ultraviolet light (405 nm) as compared with the fluorescent film using the phosphor prepared by the solid phase method. It is understood that is high Reference Example 7
Phosphor 9-1 (solid phase method) BaAl 2 Si 2 O 8: Synthesis composition formula Eu 2+: BaAl 2 Si 2 O 8: In producing the inorganic phosphor represented by Eu 2+, the following method Manufactured with.
1)秤量
各原料をできるだけ正確に秤量する
BaCO3 3.256g(1.65×10-2mol)
SiO2 1.980g(3.30×10-2mol)
Eu2O3 0.047g(1.15×10-2mol)
Al2O3 3.36g(3.30×10-2mol)
2)混合
各原料をプラスチック製のボールミル容器に入れ、径3mmのTiO2ボール、及びエタノール約50mlを加えて蓋をし、1晩、回転台で回転させる。
1) Weighing Each raw material is weighed as accurately as possible 3.256 g (1.65 × 10 −2 mol) BaCO 3
SiO 2 1.980 g (3.30 × 10 −2 mol)
Eu 2 O 3 0.047 g (1.15 × 10 −2 mol)
Al 2 O 3 3.36 g (3.30 × 10 −2 mol)
2) Mixing Each raw material is put into a plastic ball mill container, a TiO 2 ball having a diameter of 3 mm and about 50 ml of ethanol are added to the lid, and the mixture is rotated overnight on a rotating table.
3)溶媒の除去
Advantec5Cのろ紙を用いた減圧ろ過により溶媒を除去する。
3) Removal of solvent The solvent is removed by vacuum filtration using Advantec 5C filter paper.
4)自然乾燥した混合原料をるつぼに入れ、2%H2−N2雰囲気下で焼成する。
これにより蛍光体9−1(固相法)を得た。
4) The naturally dried mixed raw material is placed in a crucible and fired in a 2% H 2 —N 2 atmosphere.
Thereby, phosphor 9-1 (solid phase method) was obtained.
蛍光体9−2(ゾルゲル法) BaAl2Si2O8:Eu2+の合成
上記蛍光体を以下に示される、液相法合成フローにて一次粒子を作製した。テトラエトキシシランとユーロピウム(3価)アセチルアセトナート錯体をエタノールに溶解し、これをアンモニアを加えた水−エタノール中に約1ml/minの速度で攪拌しながら滴下し、ゾルを調製した。得られたゾルをエバポレーターで約15倍に濃縮し、これに0.3mol/lのバリウム硝酸塩水溶液を295ml添加し、ゲル化させた。
Phosphor 9-2 (sol-gel method) Synthesis of BaAl 2 Si 2 O 8 : Eu 2+ Primary particles were prepared by the liquid phase method synthesis flow shown below for the phosphor. Tetraethoxysilane and europium (trivalent) acetylacetonate complex were dissolved in ethanol and added dropwise to water-ethanol to which ammonia was added at a rate of about 1 ml / min with stirring to prepare a sol. The obtained sol was concentrated about 15 times with an evaporator, and 295 ml of a 0.3 mol / l barium nitrate aqueous solution was added thereto for gelation.
得られた湿潤ゲルは、密閉容器中、60℃で1晩熟成させた。その後撹拌を行っているエタノール(約300ml)中に1ml/minで添加、ろ紙(Advantec5A)を用いた濾過により分取し、室温で乾燥した。 The obtained wet gel was aged overnight at 60 ° C. in a closed container. Thereafter, the mixture was added to ethanol (about 300 ml) with stirring at 1 ml / min, separated by filtration using filter paper (Advantec 5A), and dried at room temperature.
乾燥ゲルは、2%H2−N2雰囲気中、1000℃で2時間の熱処理を施し蛍光体9−2(ゾルゲル法)を得た。 The dried gel was heat-treated at 1000 ° C. for 2 hours in a 2% H 2 —N 2 atmosphere to obtain phosphor 9-2 (sol-gel method).
次に得られた蛍光体9−1の10gに、トルエン/エタノール=1/1の混合溶液(300g)で溶解されたブチラール(BX−1)30gを加え、攪拌した後、Wet膜厚200μmでガラス上に塗布した。得られた塗布済みガラスを100℃のオーブンで4時間加熱乾燥して、蛍光膜9−1を作製した。 Next, 30 g of butyral (BX-1) dissolved in a mixed solution of toluene / ethanol = 1/1 (300 g) was added to 10 g of the obtained phosphor 9-1 and stirred. It was applied on glass. The obtained coated glass was heat-dried in an oven at 100 ° C. for 4 hours to produce a phosphor film 9-1.
また、これと同じ方法で蛍光体9−2を塗設した蛍光膜9−2を作製した。
これら蛍光膜に波長147nmの紫外線および405nmの近紫外線を照射し蛍光強度を測定し、蛍光膜9−1の値をそれぞれ100とした相対強度で表した。
In addition, a phosphor film 9-2 coated with phosphor 9-2 was produced by the same method.
These fluorescent films were irradiated with ultraviolet rays having a wavelength of 147 nm and near ultraviolet rays having a wavelength of 405 nm, and the fluorescence intensity was measured.
表9よりゾルゲル法で作製した蛍光体を使用した蛍光膜は、固相法で作製した蛍光体を使用した蛍光膜より紫外光(147nm)および近紫外光(405nm)の両光源においても発光強度が高いことがわかる。 According to Table 9, the phosphor film using the phosphor prepared by the sol-gel method emits light in both ultraviolet light (147 nm) and near ultraviolet light (405 nm) light sources than the phosphor film using the phosphor prepared by the solid phase method. Is high.
参考例8
蛍光体10−1(固相法) Ba2SiO4:Eu2+の合成
組成式:Ba2SiO4:Eu2+で表される無機蛍光体を製造するにあたり、以下の方法で製造した。
Reference Example 8
Phosphor 10-1 (solid phase method) Ba 2 SiO 4: Synthesis composition formula Eu 2+: Ba 2 SiO 4: In producing the inorganic phosphor represented by Eu 2+, was prepared by the following method.
1)秤量
各原料をできるだけ正確に秤量する。
1) Weighing Weigh each raw material as accurately as possible.
BaCO3 15.783g(4.0mol)
SiO2 2.403g(2.0mol)
Eu2O3 0.704g(0.1mol)
2)混合
各原料をプラスチック製のボールミル容器に入れ、径3mmのTiO2ボール、及びエタノール約50mlを加えて蓋をし、1晩、回転台で回転させる。
BaCO 3 15.783 g (4.0 mol)
2.403 g (2.0 mol) of SiO 2
Eu 2 O 3 0.704 g (0.1 mol)
2) Mixing Each raw material is put into a plastic ball mill container, a TiO 2 ball having a diameter of 3 mm and about 50 ml of ethanol are added to the lid, and the mixture is rotated overnight on a rotating table.
3)溶媒の除去
Advantec5Cのろ紙を用いた減圧ろ過により溶媒を除去する。
3) Removal of solvent The solvent is removed by vacuum filtration using Advantec 5C filter paper.
4)自然乾燥した混合原料をるつぼに入れ、2%H2−N2雰囲気下で焼成する。
これにより蛍光体10−1(固相法)を得た。
4) The naturally dried mixed raw material is placed in a crucible and fired in a 2% H 2 —N 2 atmosphere.
Thereby, the phosphor 10-1 (solid phase method) was obtained.
蛍光体10−2(ゾルゲル法) Ba2SiO4:Eu2+の合成
上記蛍光体は以下に示される、液相法合成フローにて一次粒子を作製した。テトラエトキシシランとユーロピウム(3価)アセチルアセトナート錯体をエタノールに溶解したものを溶液A、トリエトキシアルミニウムをエタノールに溶解したものを溶液Bとする。この溶液A,Bをアンモニアを加えた水−エタノール中に約1ml/minの速度で攪拌しながら滴下し、ゾルを調製した。得られたゾルをエバポレーターで約15倍に濃縮し、これに0.033mol/lのバリウム硝酸塩水溶液を500ml添加し、ゲル化させた。
Phosphor 10-2 (Sol-Gel Method) Synthesis of Ba 2 SiO 4 : Eu 2+ The phosphor was prepared as primary particles by the liquid phase synthesis flow shown below. Solution A in which tetraethoxysilane and europium (trivalent) acetylacetonate complex are dissolved in ethanol is solution A, and solution in which triethoxyaluminum is dissolved in ethanol is solution B. The solutions A and B were added dropwise to water-ethanol to which ammonia was added with stirring at a rate of about 1 ml / min to prepare a sol. The obtained sol was concentrated about 15 times with an evaporator, and 500 ml of 0.033 mol / l barium nitrate aqueous solution was added thereto to cause gelation.
得られた湿潤ゲルは、密閉容器中、60℃で1晩熟成させた。その後撹拌を行っているエタノール(約300ml)中に1ml/minで添加、ろ紙(Advantec5A)を用いた濾過により分取し、室温で乾燥した。 The obtained wet gel was aged overnight at 60 ° C. in a closed container. Thereafter, the mixture was added to ethanol (about 300 ml) with stirring at 1 ml / min, separated by filtration using filter paper (Advantec 5A), and dried at room temperature.
乾燥ゲルは、2%H2−N2雰囲気中、1000℃で2時間の熱処理を施し蛍光体10−2(ゾルゲル法)を得た。 The dried gel was subjected to heat treatment at 1000 ° C. for 2 hours in a 2% H 2 —N 2 atmosphere to obtain phosphor 10-2 (sol-gel method).
次に得られた蛍光体10−1の10gに、トルエン/エタノール=1/1の混合溶液(300g)で溶解されたブチラール(BX−1)30gを加え、攪拌した後、Wet膜厚200μmでガラス上に塗布した。得られた塗布済みガラスを100℃のオーブンで4時間加熱乾燥して、蛍光膜10−1を作製した。 Next, to 10 g of the obtained phosphor 10-1, 30 g of butyral (BX-1) dissolved in a mixed solution of toluene / ethanol = 1/1 (300 g) was added and stirred, and then the wet film thickness was 200 μm. It was applied on glass. The obtained coated glass was heat-dried in an oven at 100 ° C. for 4 hours to produce a phosphor film 10-1.
また、これと同じ方法で蛍光体10−2を塗設した蛍光膜10−2を作製した。これら蛍光膜に波長147nmの紫外線および405nmの近紫外線を照射し蛍光強度を測定し、蛍光膜10−1の値をそれぞれ100とした相対強度で表した。 Moreover, the fluorescent film 10-2 which coated the fluorescent substance 10-2 by the same method was produced. These fluorescent films were irradiated with ultraviolet rays having a wavelength of 147 nm and near-ultraviolet rays having a wavelength of 405 nm, and the fluorescence intensity was measured. The values were expressed as relative intensities where the value of the fluorescent film 10-1 was 100, respectively.
表10よりゾルゲル法で作製した蛍光体を使用した蛍光膜は、固相法で作製した蛍光体を使用した蛍光膜より紫外光(147nm)および近紫外光(405nm)の両光源においても発光強度が高いことがわかる From Table 10, the phosphor film using the phosphor prepared by the sol-gel method emits light in both ultraviolet light (147 nm) and near ultraviolet light (405 nm) light sources than the phosphor film using the phosphor prepared by the solid phase method. Is high
Claims (7)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2007026533A JP2007113021A (en) | 2007-02-06 | 2007-02-06 | Inorganic phosphor and its manufacturing method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2007026533A JP2007113021A (en) | 2007-02-06 | 2007-02-06 | Inorganic phosphor and its manufacturing method |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2000116408A Division JP2001303039A (en) | 2000-04-18 | 2000-04-18 | Inorganic fluorescent substance and method for producing the same |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2007113021A true JP2007113021A (en) | 2007-05-10 |
Family
ID=38095487
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2007026533A Pending JP2007113021A (en) | 2007-02-06 | 2007-02-06 | Inorganic phosphor and its manufacturing method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2007113021A (en) |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1999028409A1 (en) * | 1997-12-04 | 1999-06-10 | Matsushita Electric Industrial Co., Ltd. | Method of preparing high brightness, shorter persistence zinc orthosilicate phosphor |
WO1999050880A1 (en) * | 1998-03-27 | 1999-10-07 | Matsushita Electric Industrial Co., Ltd. | Small particle terbium activated yttrium gadolinium borate phosphors and method of making |
JPH11293239A (en) * | 1998-04-13 | 1999-10-26 | Kansai Shingijutsu Kenkyusho:Kk | Image display and its production |
WO2000001784A1 (en) * | 1998-07-06 | 2000-01-13 | Matsushita Electric Industrial Co., Ltd. | Small particle blue emitting lanthanum phosphate based phosphors for display and lamp applications and method of making |
-
2007
- 2007-02-06 JP JP2007026533A patent/JP2007113021A/en active Pending
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1999028409A1 (en) * | 1997-12-04 | 1999-06-10 | Matsushita Electric Industrial Co., Ltd. | Method of preparing high brightness, shorter persistence zinc orthosilicate phosphor |
WO1999050880A1 (en) * | 1998-03-27 | 1999-10-07 | Matsushita Electric Industrial Co., Ltd. | Small particle terbium activated yttrium gadolinium borate phosphors and method of making |
JPH11293239A (en) * | 1998-04-13 | 1999-10-26 | Kansai Shingijutsu Kenkyusho:Kk | Image display and its production |
WO2000001784A1 (en) * | 1998-07-06 | 2000-01-13 | Matsushita Electric Industrial Co., Ltd. | Small particle blue emitting lanthanum phosphate based phosphors for display and lamp applications and method of making |
JP2002519502A (en) * | 1998-07-06 | 2002-07-02 | 松下電器産業株式会社 | Small particle blue emitting lanthanum phosphate based phosphors for displays and lamps and methods of forming the same |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6017385B2 (en) | Luminescent body and core-shell luminous body precursor | |
JPH08504871A (en) | Luminescent material produced by coating luminescent composition on substrate particles | |
US5851428A (en) | Phosphor and manufacturing method thereof | |
JP5415608B2 (en) | Core / shell lanthanum cerium terbium phosphate, phosphor containing said phosphate and preparation method | |
JP2009046683A (en) | Phosphor coated with metal hydroxy carbonate nanoparticles, and production method | |
EP1053560B1 (en) | Method of preparing high brightness, small particle red-emitting phosphor and the phosohor | |
JP4219514B2 (en) | Rare earth phosphate manufacturing method, rare earth phosphate phosphor, and rare earth phosphate phosphor manufacturing method | |
US6905636B2 (en) | Method for the production of europium activated yttrium gadolinium borate phosphor particles | |
JP2001303039A (en) | Inorganic fluorescent substance and method for producing the same | |
JP4923242B2 (en) | Manufacturing method of willemite crystal and manufacturing method of fluorescent substance using willemite crystal as mother crystal | |
JP2014506266A (en) | Composition comprising core-shell aluminate, phosphor obtained from this composition, and method of production | |
JP2002519502A (en) | Small particle blue emitting lanthanum phosphate based phosphors for displays and lamps and methods of forming the same | |
KR100351635B1 (en) | Process for preparing spherical blue phosphor based on aluminates | |
KR101230039B1 (en) | Silicate-based oxide phosphor and method of preparating podwer of the same | |
JP2007113021A (en) | Inorganic phosphor and its manufacturing method | |
KR20020022457A (en) | Process for preparing borate-based phosphors | |
JP2003213254A (en) | Method for producing silicate phosphor | |
KR101216550B1 (en) | Synthesizing process of phospher and manufacturin method of phospher thick film with the same | |
JP2001316663A (en) | Fluorescent substance, process for its manufacture and fluorescent layer using the same | |
KR100424861B1 (en) | Preparing process for spherical red phosphor based on borates using hydrolysis | |
KR100419863B1 (en) | Preparing method for spherical red phosphor based on borates | |
KR100687131B1 (en) | Blue Phosphor for Plasma Display and Lamp Applications and Method of Making | |
KR100992949B1 (en) | Synthesizing process of phosphor | |
KR20030046986A (en) | Green emitting phosphor by VUV excitiation and its preparation method | |
JP2004018545A (en) | Phosphor |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Effective date: 20070207 Free format text: JAPANESE INTERMEDIATE CODE: A621 |
|
A977 | Report on retrieval |
Effective date: 20100820 Free format text: JAPANESE INTERMEDIATE CODE: A971007 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20100907 |
|
A521 | Written amendment |
Effective date: 20101105 Free format text: JAPANESE INTERMEDIATE CODE: A523 |
|
RD02 | Notification of acceptance of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7422 Effective date: 20110805 |
|
A131 | Notification of reasons for refusal |
Effective date: 20111115 Free format text: JAPANESE INTERMEDIATE CODE: A131 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20120321 |