JP2007112660A - Acetylene black, its production method and catalyst for fuel battery - Google Patents

Acetylene black, its production method and catalyst for fuel battery Download PDF

Info

Publication number
JP2007112660A
JP2007112660A JP2005305415A JP2005305415A JP2007112660A JP 2007112660 A JP2007112660 A JP 2007112660A JP 2005305415 A JP2005305415 A JP 2005305415A JP 2005305415 A JP2005305415 A JP 2005305415A JP 2007112660 A JP2007112660 A JP 2007112660A
Authority
JP
Japan
Prior art keywords
acetylene black
platinum
particles
acetylene
catalyst
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005305415A
Other languages
Japanese (ja)
Other versions
JP4362116B2 (en
Inventor
Takushi Sakashita
拓志 坂下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denka Co Ltd
Original Assignee
Denki Kagaku Kogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denki Kagaku Kogyo KK filed Critical Denki Kagaku Kogyo KK
Priority to JP2005305415A priority Critical patent/JP4362116B2/en
Publication of JP2007112660A publication Critical patent/JP2007112660A/en
Application granted granted Critical
Publication of JP4362116B2 publication Critical patent/JP4362116B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Carbon And Carbon Compounds (AREA)
  • Catalysts (AREA)
  • Pigments, Carbon Blacks, Or Wood Stains (AREA)
  • Inert Electrodes (AREA)
  • Fuel Cell (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide acetylene black having the specific surface area of ≥500 m<SP>2</SP>/g and the crystal layer thickness (Lc) of ≥25 Å, and to provide a catalyst for a fuel battery having high reaction efficiency. <P>SOLUTION: In the acetylene black, the specific surface area is 500 to 1,100 m<SP>2</SP>/g, and the crystal layer thickness (Lc) measured by X-ray diffraction is 25 to 40 Å. In the method for producing acetylene black, gaseous acetylene is brought into incomplete combustion reaction after its water content is reduced to ≤5 mg/L by absolute humidity, and the obtained acetylene black is subjected to oxidation treatment. The catalyst for a fuel battery is obtained by carrying platinum particles and/or platinum alloy particles on the acetylene black. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、高比表面積かつ高結晶性のアセチレンブラックとその製造方法、及びそれを用いた燃料電池用触媒に関する。   The present invention relates to acetylene black having a high specific surface area and high crystallinity, a method for producing the same, and a catalyst for a fuel cell using the same.

固体高分子型燃料電池のセル構造は、ガス流路を施したセパレーターの間にガス拡散層、触媒層、電解質膜を挟んだ構造となっている。この触媒層は白金粒子及び/又は白金合金粒子(以下、「白金等粒子」という。)が担持されたカーボンブラックから構成されており、白金等粒子はカーボンブラック表面に高分散で担持されている。ここで、担持とは、カーボンブラック表面に別の粒子が化学結合又は物理結合により付着した状態のことである。水素、酸素等の原料ガスは白金等粒子と接触して活性化され水を生成するため、触媒層の白金等粒子は高分散で担持されている方が反応効率が高い。逆に、白金等粒子がカーボンブラックに低分散で担持されていると、すなわち凝集して担持されていると、原料ガスと白金等粒子の接触面積が小さくなり、反応効率が低下してしまう。   The cell structure of the polymer electrolyte fuel cell has a structure in which a gas diffusion layer, a catalyst layer, and an electrolyte membrane are sandwiched between separators provided with gas flow paths. This catalyst layer is composed of carbon black on which platinum particles and / or platinum alloy particles (hereinafter referred to as “platinum particles”) are supported, and the platinum particles are supported on the carbon black surface in a highly dispersed manner. . Here, the term “supported” refers to a state in which another particle is attached to the carbon black surface by a chemical bond or a physical bond. Since the source gas such as hydrogen and oxygen is activated by contact with the platinum particles to generate water, the reaction efficiency is higher when the platinum particles in the catalyst layer are supported in a highly dispersed state. On the other hand, if the particles such as platinum are supported on carbon black with low dispersion, that is, if they are aggregated and supported, the contact area between the source gas and the particles such as platinum is reduced, and the reaction efficiency is lowered.

白金等粒子の反応効率を高くするには、高比表面積のカーボンブラックがよく、従来、ファーネスブラックが使用されてきた。しかし、ファーネスブラックは結晶性が低いので長期安定性が十分でなく、また原料由来の不純物、例えば硫黄、塩素、カリウム、鉛、ナトリウム、カルシウムなどが数10ppm〜数%オーダーで含まれている場合が多く、長期安定性を一段と阻害させていた。   In order to increase the reaction efficiency of particles such as platinum, carbon black having a high specific surface area is good, and furnace black has been conventionally used. However, since furnace black has low crystallinity, long-term stability is not sufficient, and impurities derived from raw materials such as sulfur, chlorine, potassium, lead, sodium, calcium, etc. are contained in the order of several tens of ppm to several percent. There were many, and long-term stability was inhibited further.

そこで、ファーネスブラックよりも格段に不純物の少ないアセチレンブラックを用いることが考えられるが、通常のアセチレンブラックの比表面積は30〜200m/gであり、高比表面積のファーネスブラック等に比べると担持面積が狭いため、白金等粒子が凝集して担持されてしまい、高い分散状態で担持することができない。したがって、アセチレンブラックの高比表面積化が必要となる。アセチレンブラックの高比表面積化は、アセチレンブラックを500℃以上の温度で空気、酸素等により表面を酸化することによって可能であるが(特許文献1)、このようにして製造された比表面積が500m/g以上のアセチレンブラックは結晶性が低く、長期安定性が保てない問題があった。 Therefore, it is conceivable to use acetylene black, which has much less impurities than furnace black, but the specific surface area of normal acetylene black is 30 to 200 m 2 / g, and the supported area compared to furnace black with a high specific surface area. However, the particles such as platinum are aggregated and supported, and cannot be supported in a highly dispersed state. Therefore, it is necessary to increase the specific surface area of acetylene black. A specific surface area of acetylene black can be increased by oxidizing the surface of acetylene black with air, oxygen or the like at a temperature of 500 ° C. or more (Patent Document 1). The specific surface area thus produced is 500 m. Acetylene black of 2 / g or more has a problem that the crystallinity is low and long-term stability cannot be maintained.

アセチレンブラックを高結晶化する方法として、加熱炉にて焼成処理することが提案されている(特許文献2)。この方法では、昇温から冷却に至るまでの高温状態が長くなるので、アセチレンブラックの結晶格子が再配向し、規則正しい黒鉛化構造となって比表面積が大幅に低下する。したがって、500m/g以上の高比表面積を維持しつつ、X線回折により測定された結晶層厚み(Lc)を25Å以上にすることができなかった。
特開昭61−66759公報 特許第2996539号公報
As a method for highly crystallizing acetylene black, firing treatment in a heating furnace has been proposed (Patent Document 2). In this method, since the high temperature state from the temperature rise to the cooling becomes long, the crystal lattice of acetylene black is reoriented, resulting in a regular graphitized structure, and the specific surface area is greatly reduced. Therefore, while maintaining a high specific surface area of 500 m 2 / g or more, the crystal layer thickness (Lc) measured by X-ray diffraction could not be 25 mm or more.
JP-A-61-66759 Japanese Patent No. 29996539

本発明の目的は、比表面積が500m/g以上、X線回折により測定された結晶層厚み(Lc)が25Å以上のアセチレンブラックを提供することである。また、本発明の他の目的は、高反応効率の燃料電池用触媒を提供することである。 An object of the present invention is to provide acetylene black having a specific surface area of 500 m 2 / g or more and a crystal layer thickness (Lc) measured by X-ray diffraction of 25 mm or more. Another object of the present invention is to provide a fuel cell catalyst having high reaction efficiency.

本発明は、比表面積が500〜1100m/g、X線回折により測定された結晶層厚み(Lc)が25〜40Åであることを特徴とするアセチレンブラックである。また、本発明は、アセチレンガスを、その含水率を絶対湿度で5mg/L以下に減じてから酸素ガスで不完全燃焼反応をさせ、得られたアセチレンブラックを酸化処理することを特徴とする上記アセチレンブラックの製造方法である。更に本発明は、上記のアセチレンブラックに白金粒子及び/又は白金合金粒子(白金等粒子)が担持されてなることを特徴とする燃料電池用触媒である。 The present invention is acetylene black characterized by having a specific surface area of 500 to 1100 m 2 / g and a crystal layer thickness (Lc) measured by X-ray diffraction of 25 to 40 mm. The present invention is also characterized in that the acetylene gas is subjected to an incomplete combustion reaction with oxygen gas after reducing its moisture content to 5 mg / L or less in absolute humidity, and the obtained acetylene black is oxidized. It is a manufacturing method of acetylene black. Furthermore, the present invention provides a fuel cell catalyst characterized in that platinum particles and / or platinum alloy particles (platinum particles, etc.) are supported on the acetylene black.

本発明のアセチレンブラックは、比表面積が500〜1100m/gの高比表面積を有し、結晶層厚み(Lc)が25〜40Åの高結晶であるので、高反応効率のものとなる。本発明のアセチレンブラックの製造方によれば、本発明のアセチレンブラックを容易に製造することができる。また、本発明の燃料電池用触媒は、高反応効率であるので、これを用いた燃料電池は、初期の出力電圧が高まり、しかもその出力電圧を長期に亘って持続する。 Since the acetylene black of the present invention has a high specific surface area of 500 to 1100 m 2 / g and a high crystal having a crystal layer thickness (Lc) of 25 to 40 mm, it has high reaction efficiency. According to the method for producing acetylene black of the present invention, the acetylene black of the present invention can be easily produced. In addition, since the fuel cell catalyst of the present invention has high reaction efficiency, the fuel cell using the fuel cell has an initial output voltage that is increased, and the output voltage is maintained for a long time.

本発明のアセチレンブラックは、比表面積が500〜1100m/gである。500m/g未満では、白金等粒子を十分に高分散させることができず、反応効率を高くすることができない。1100m/gを超える比表面積であると、担持液へ十分に浸せきすることが困難となるので、白金等粒子を高分散で担持させることが難しく、この場合も反応効率を高くすることができない。ここで、反応効率とは、白金等粒子の単位質量当たりの触媒活性のことであり、担持量が一定の場合、燃料電池評価における電流電位曲線を比較し、同じ電流値における電圧の高低で判断可能である。電圧が高いほど反応効率が高いことを意味している。 The acetylene black of the present invention has a specific surface area of 500 to 1100 m 2 / g. If it is less than 500 m < 2 > / g, particles, such as platinum, cannot fully disperse | distribute, and reaction efficiency cannot be made high. When the specific surface area exceeds 1100 m 2 / g, it is difficult to sufficiently immerse the particles in the supporting liquid, so that it is difficult to support particles such as platinum in a highly dispersed state, and also in this case, the reaction efficiency cannot be increased. . Here, the reaction efficiency is the catalytic activity per unit mass of particles such as platinum, and when the supported amount is constant, the current potential curve in the fuel cell evaluation is compared, and it is determined by the voltage level at the same current value. Is possible. The higher the voltage, the higher the reaction efficiency.

アセチレンブラックの結晶層厚み(Lc)は、高ければ高いほど耐食性に優れるが水への濡れ性が低下する。500m/g以上の高比表面積のアセチレンブラックにおいて結晶層厚み(Lc)が40Åを超えると、担持液への浸せきが困難となり、白金等粒子を高分散で担持させることが難しくなる。 The higher the acetylene black crystal layer thickness (Lc), the better the corrosion resistance, but the lower the wettability to water. In acetylene black having a high specific surface area of 500 m 2 / g or more, if the crystal layer thickness (Lc) exceeds 40 mm, it becomes difficult to soak in the supporting liquid, and it becomes difficult to support particles such as platinum with high dispersion.

本発明の製造方法の特徴は、反応炉内でアセチレンガスを不完全燃焼反応させて高比表面積を有するアセチレンブラックを生成させる際に、アセチレンガスの含水率を絶対湿度で5mg/L以下に減じてから不完全燃焼反応させ、その後に酸化処理を施すことである。含水率が5mg/L以下のアセチレンガスを用いることによって、反応炉内温度がより高く維持されるので、アセチレンブラックの結晶性を大きくすることができる。含水率の小さいアセチレンブラックほど反応炉内温度を高く保持することができるので好ましい。特に好ましいアセチレンブラックの含水率は、絶対湿度で4mg/L以下である。   The production method of the present invention is characterized by reducing the moisture content of acetylene gas to 5 mg / L or less in absolute humidity when acetylene gas having a high specific surface area is produced by incomplete combustion reaction of acetylene gas in a reaction furnace. After that, incomplete combustion reaction is performed, followed by oxidation treatment. By using an acetylene gas having a water content of 5 mg / L or less, the temperature in the reactor is kept higher, so that the crystallinity of acetylene black can be increased. Acetylene black having a low water content is preferable because the temperature in the reactor can be kept high. The water content of acetylene black is particularly preferably 4 mg / L or less in absolute humidity.

含水率を低下させる方法としては、例えばシリカゲル、塩化カルシウム、五酸化二リン等の吸湿剤を用いる方法、0℃以下の雰囲気に通す冷却乾燥方法などがあるが、いずれも可能である。アセチレンガスの含水率は、例えば水蒸気検知管法、カールフィッシャー法、塩化カルシウム吸収法、赤外線ガス分析法等によって測定することができる。   Examples of the method for reducing the water content include a method using a hygroscopic agent such as silica gel, calcium chloride and diphosphorus pentoxide, and a cooling and drying method through an atmosphere of 0 ° C. or lower. The water content of acetylene gas can be measured by, for example, a water vapor detector tube method, a Karl Fischer method, a calcium chloride absorption method, an infrared gas analysis method, or the like.

上記で製造された高結晶性のアセチレンブラックは、次いで酸化処理が施されて高比表面積化される。この酸化処理によって、高比表面積化とともに、結晶化がまだ十分でなかったアモルファス状カーボンが優先的に燃焼され、更なる高結晶化効果も期待できる。   The highly crystalline acetylene black produced above is then subjected to an oxidation treatment to increase the specific surface area. By this oxidation treatment, amorphous carbon, which has not been sufficiently crystallized, is preferentially burned together with a high specific surface area, and a further high crystallization effect can be expected.

酸化処理は、例えば空気、オゾン等の酸化性ガスを用いる乾式法、酸化剤を含む水溶液を利用した湿式法によって行うことができる。より均一な酸化処理と大規模な処理を行う点から乾式法が好ましい。乾式法は、温度500〜800℃に保たれた横型炉を用い、アセチレンブラックと酸化性ガスとを、好ましくはアセチレンブラックを攪拌しながら接触させる方法、上記温度の酸化性ガス雰囲気に保たれた竪型炉の頂部からアセチレンブラックを噴霧する方法などによって行うことができる。   The oxidation treatment can be performed by, for example, a dry method using an oxidizing gas such as air or ozone, or a wet method using an aqueous solution containing an oxidizing agent. The dry method is preferable from the viewpoint of performing more uniform oxidation treatment and large-scale treatment. In the dry method, a horizontal furnace maintained at a temperature of 500 to 800 ° C. was used, and the acetylene black and the oxidizing gas were preferably brought into contact with each other while stirring the acetylene black, and the oxidizing gas atmosphere at the above temperature was maintained. It can be performed by a method of spraying acetylene black from the top of the vertical furnace.

乾式法においては、均一な表面酸化を行うためにも連続的に原料が撹拌され適量の酸化性ガスと均一に接触できる電気炉を使用することが好ましいが、アセチレンブラックが少量で有ればガスとの接触面の分布がそれほど大きくないため一般の電気炉でも可能である。湿式法は、酸化剤を含む水溶液にカーボンブラックを加え、50〜120℃で5〜30時間処理した後、洗浄・乾燥することによって行うことができる。酸化剤としては、例えば過酸化水素水、塩酸、硫酸、硝酸等の無機酸、例えば次亜塩素酸ナトリウム、重クロム酸カリウム等の塩などを使用することができる。   In the dry method, it is preferable to use an electric furnace in which the raw material is continuously stirred and uniformly contacted with an appropriate amount of oxidizing gas in order to perform uniform surface oxidation, but if there is a small amount of acetylene black, the gas is used. Because the distribution of contact surface with is not so large, a general electric furnace is also possible. The wet method can be performed by adding carbon black to an aqueous solution containing an oxidizing agent, treating at 50 to 120 ° C. for 5 to 30 hours, and then washing and drying. As the oxidizing agent, for example, inorganic acids such as aqueous hydrogen peroxide, hydrochloric acid, sulfuric acid and nitric acid, for example, salts such as sodium hypochlorite and potassium dichromate can be used.

本発明の燃料電池用触媒は、本発明のアセチレンブラックの表面に白金等粒子を高分散で析出(担持)させたものである。燃料電池性能の長期安定性の面から、白金等粒子はカーボンブラック表面に強く担持されていることが好ましく、その担持方法については後述する。白金等粒子の大きさとしては10〜50Åが好ましい。   The fuel cell catalyst of the present invention is obtained by precipitating (supporting) particles such as platinum with high dispersion on the surface of the acetylene black of the present invention. From the viewpoint of long-term stability of fuel cell performance, it is preferable that particles such as platinum are strongly supported on the surface of carbon black, and a method for supporting the particles will be described later. The size of particles such as platinum is preferably 10 to 50 mm.

白金等の材質としては、白金の他に白金合金が用いられる。白金合金形成金属としては、パラジウム、ロジウム、イリジウム、ルテニウム、鉄、チタン、ニッケル、コバルト、金、銀、銅、クロム、マンガン、モリブデン、タングステン、アルミニウム、ケイ素、レニウム、亜鉛、スズ等がある。これらのうち、直接メタノール型燃料電池の場合は、白金−ルテニウム合金が一酸化炭素被毒防止に有効であるので好ましい。白金合金組成の一例を示せば、白金が30〜90質量%、合金化する金属が10〜70質量%である。   As a material such as platinum, platinum alloy is used in addition to platinum. Examples of the platinum alloy-forming metal include palladium, rhodium, iridium, ruthenium, iron, titanium, nickel, cobalt, gold, silver, copper, chromium, manganese, molybdenum, tungsten, aluminum, silicon, rhenium, zinc, and tin. Among these, in the case of a direct methanol fuel cell, a platinum-ruthenium alloy is preferable because it is effective in preventing carbon monoxide poisoning. If an example of a platinum alloy composition is shown, platinum will be 30-90 mass%, and the metal to alloy will be 10-70 mass%.

アセチレンブラックへの白金等粒子の担持方法には特に制約はないが、例えば以下の方法が好ましい。アセチレンブラックを水に懸濁させてスラリーとし、これに白金等粒子を含むヘキサクロロ白金酸(IV)水溶液を加えて混合液Aとし、これに白金等粒子に対し10倍当量の水素化ホウ素ナトリウムを添加(還元処理)し、アセチレンブラックの表面に白金粒子等を析出させた後、濾過、洗浄、乾燥することによって燃料電池用触媒が製造される。   Although there is no restriction | limiting in particular in the support method of particles, such as platinum, to acetylene black, For example, the following method is preferable. Acetylene black is suspended in water to form a slurry, and an aqueous solution of hexachloroplatinic acid (IV) containing particles such as platinum is added thereto to obtain a mixed solution A. To this, 10 times equivalent sodium borohydride is added to the particles such as platinum. After adding (reducing treatment) and precipitating platinum particles and the like on the surface of acetylene black, a fuel cell catalyst is produced by filtration, washing and drying.

白金等を白金合金とするには、白金と合金形成金属を含むヘキサクロロ白金酸(IV)が用いられる。例えばルテニウムを合金形成金属として使用する場合、所定量のルテニウムを含む三塩化ルテニウム(III)水溶液を上記混合液Aに加えて混合液Bを調製する。ルテニウムの配合量は白金に対して、10〜70質量%が好ましい。ついで、白金等粒子に対し10倍当量の水素化ホウ素ナトリウムを混合液Bに添加(還元処理)し、混合液B中でアセチレンブラックの表面に白金粒子等を析出させた後、濾過、洗浄、乾燥することによって燃料電池用触媒が製造される。   In order to use platinum or the like as a platinum alloy, hexachloroplatinic acid (IV) containing platinum and an alloy-forming metal is used. For example, when ruthenium is used as the alloy-forming metal, a mixed solution B is prepared by adding a ruthenium (III) trichloride aqueous solution containing a predetermined amount of ruthenium to the mixed solution A. The blending amount of ruthenium is preferably 10 to 70% by mass with respect to platinum. Next, sodium borohydride equivalent to 10 times the platinum particles is added to the mixed solution B (reduction treatment), and the platinum particles are precipitated on the surface of the acetylene black in the mixed solution B, followed by filtration, washing, A fuel cell catalyst is produced by drying.

白金等粒子が白金粒子、白金合金粒子のいずれであっても、それをアセチレンブラックの表面に析出させるに際し、適宜、水酸化ナトリウムの水溶液等のpH調整剤を添加することができる。白金等粒子の担持量の一例を示せば、アセチレンブラック100質量部に対して10〜80質量部である。   Regardless of whether the particles such as platinum are platinum particles or platinum alloy particles, a pH adjusting agent such as an aqueous solution of sodium hydroxide can be added as appropriate when the particles are precipitated on the surface of acetylene black. An example of the supported amount of particles such as platinum is 10 to 80 parts by mass with respect to 100 parts by mass of acetylene black.

本発明の燃料電池用触媒の評価は、例えば固体高分子型燃料電池の場合、以下のようにして行うことができる。燃料電池用触媒を四フッ化樹脂粉末と混合し、アルコールを加えてペースト状にしたものをカーボンペーパーの片面に塗布し触媒層を形成する。そして、触媒層の表面にナフィオン溶液を均一に塗布し電極とする。ナフィオン膜(パーフルオロスルホン酸電解質膜)の両面に、電極を接するように重ね合わせ、ホットプレスで熱圧着させ、電解質膜−電極接合体(MEA)を得る。MEAをセパレーター、続いて集電板で挟み込めば単セルが完成し、電子負荷装置、ガス供給装置を接続すれば燃料電池の評価を行うことができる。また、市販されている燃料電池単セル評価装置を用いれば上記評価をより簡便に行うことができる。   The evaluation of the fuel cell catalyst of the present invention can be performed as follows, for example, in the case of a polymer electrolyte fuel cell. A fuel cell catalyst is mixed with tetrafluoride resin powder, and a paste obtained by adding alcohol is applied to one side of carbon paper to form a catalyst layer. Then, a Nafion solution is uniformly applied to the surface of the catalyst layer to form an electrode. An electrode is placed on both sides of a Nafion membrane (perfluorosulfonic acid electrolyte membrane) so that the electrodes are in contact with each other and thermocompression bonded by a hot press to obtain an electrolyte membrane-electrode assembly (MEA). A single cell is completed if the MEA is sandwiched between a separator and a current collector, and a fuel cell can be evaluated by connecting an electronic load device and a gas supply device. Moreover, if the commercially available fuel cell single cell evaluation apparatus is used, the said evaluation can be performed more simply.

実施例1、2
アセチレンガスを、塩化カルシウム(1kg)を充填した脱水ラインを通過させて脱水処理を行った。アセチレンガス中の含水率は、配管に設置したサンプリング口より水蒸気検知管(光明理化学工業株式会社製「北川式ガス検知管:水蒸気」)を用いて測定した。脱水処理されたアセチレンガスを酸素ガスと共に、カーボンブラック製造炉(炉全長6m、炉直径1m)の炉頂に設置されたノズルから表1の条件で噴霧し、アセチレンの熱分解及び燃焼反応を利用してアセチレンブラックを製造した。その後、炉下部に直結されたバグフィルターからアセチレンブラックを捕集し、アセチレンブラック500gを電気炉に入れ、640℃にて空気を50L/hrで導入し、1時間酸化処理した。
Examples 1 and 2
Acetylene gas was passed through a dehydration line filled with calcium chloride (1 kg) for dehydration treatment. The moisture content in the acetylene gas was measured using a water vapor detector tube (“Kitakawa gas detector tube: water vapor” manufactured by Komyo Chemical Co., Ltd.) from a sampling port installed in the pipe. The dehydrated acetylene gas is sprayed together with oxygen gas from the nozzle installed at the top of the carbon black production furnace (furnace total length 6m, furnace diameter 1m) under the conditions shown in Table 1 to utilize the thermal decomposition and combustion reaction of acetylene. Thus, acetylene black was produced. Thereafter, acetylene black was collected from a bag filter directly connected to the lower part of the furnace, 500 g of acetylene black was put into an electric furnace, air was introduced at 640 ° C. at 50 L / hr, and oxidation treatment was performed for 1 hour.

比較例1
アセチレンガスを脱水ラインを通さなかったこと以外は、実施例2と同様にしてアセチレンブラックを製造した。
Comparative Example 1
Acetylene black was produced in the same manner as in Example 2 except that the acetylene gas was not passed through the dehydration line.

得られたアセチレンブラックについて、以下の物性を測定した。それらの結果を表1に示す。
(1)比表面積:JIS K 6217に従い測定した。
(2)DBP吸収量:JIS K 6217に従い測定した。
(3)Lc:Cu−Kα線を用いたX線回折法における(002)面の回折線より、式、Lc(Å)=(180・K・λ)/(π・β・COSθ)、により測定した。 ただし、K=形状因子0.9、λ=X線の波長(1.54Å)、θ=(002)回折線吸収バンドにおける極大値を示す角度、β=(002)回折線吸収バンドにおける半価幅を角度で示したものである。
(4)粗粒分:JIS K 1469に従い測定した。
(5)熱酸化温度:熱重量天秤にて空気雰囲気中で昇温し、全体質量の5質量%が燃焼により減少したときの温度を測定した。
About the obtained acetylene black, the following physical properties were measured. The results are shown in Table 1.
(1) Specific surface area: Measured according to JIS K 6217.
(2) DBP absorption: measured according to JIS K 6217.
(3) From the diffraction line on the (002) plane in the X-ray diffraction method using Lc: Cu—Kα ray, the equation, Lc (Å) = (180 · K · λ) / (π · β · COSθ) It was measured. Where K = form factor 0.9, λ = wavelength of X-ray (1.54Å), θ = angle indicating maximum value in (002) diffraction line absorption band, β = half value in (002) diffraction line absorption band The width is shown in angle.
(4) Coarse grain: Measured according to JIS K 1469.
(5) Thermal oxidation temperature: The temperature was raised in an air atmosphere with a thermogravimetric balance, and the temperature when 5% by mass of the total mass was reduced by combustion was measured.

つぎに、アセチレンブラックを燃料電池用触媒として評価するため、白金−ルテニウム合金を以下の方法で担持させた。すなわち、アセチレンブラックを塩化白金酸及び塩化ルテニウム水溶液に混合した。混合割合は、質量比で、アセチレンブラック/白金/ルテニウム=40/40/20とした。混合液を80℃で30分間撹拌した後、室温まで冷却した。0.5Mの水素化ホウ素ナトリウムを5回に分けて添加し白金及びルテニウムを合金として析出させ、濾過、洗浄後、乾燥して触媒を得た。得られた触媒について、白金−ルテニウム合金の粒径をTEM観察により1000個の粒子について測定し、その平均値を求め、表1に示した。   Next, in order to evaluate acetylene black as a catalyst for a fuel cell, a platinum-ruthenium alloy was supported by the following method. That is, acetylene black was mixed with chloroplatinic acid and a ruthenium chloride aqueous solution. The mixing ratio was acetylene black / platinum / ruthenium = 40/40/20 by mass ratio. The mixture was stirred at 80 ° C. for 30 minutes and then cooled to room temperature. 0.5M sodium borohydride was added in 5 portions to precipitate platinum and ruthenium as an alloy, filtered, washed and dried to obtain a catalyst. With respect to the obtained catalyst, the particle size of the platinum-ruthenium alloy was measured for 1000 particles by TEM observation, and the average value thereof was determined and shown in Table 1.

参考例1は、アセチレンブラックの代わりに、ケッチェンEC(ケッチェンブラックインターナショナル社製商品名)を使用したこと以外は、同様にして白金−ルテニウム合金を担持させた。   In Reference Example 1, a platinum-ruthenium alloy was supported in the same manner except that Ketjen EC (trade name, manufactured by Ketjen Black International) was used instead of acetylene black.

得られた燃料電池用触媒1gにナフィオンを2500mg混合してペーストとし、カーボンペーパーに塗布した後、80℃で乾燥して燃料極とした。Pt−ブラックを酸素極に用い、ナフィオン膜を挟んで燃料極と重ね合わせて135℃で10分間、9.8MPaでプレスし、MEAを得た。セパレーター、集電板で挟み込み一体化して、燃料電池を構成した。この燃料電池を90℃条件下で、メタノールを4ml/min、空気を60ml/minで導入し500mA/cmの定電流駆動で連続的に1000時間作動させたときの出力電圧を測定した。初期の出力電圧と1000時間後の出力電圧の結果を表1に示す。 2500 g of Nafion was mixed with 1 g of the obtained fuel cell catalyst to form a paste, applied to carbon paper, and then dried at 80 ° C. to obtain a fuel electrode. Pt-black was used for the oxygen electrode, and was superimposed on the fuel electrode with the Nafion membrane in between and pressed at 135 ° C. for 10 minutes at 9.8 MPa to obtain MEA. The fuel cell was configured by sandwiching and integrating the separator and the current collector plate. The output voltage was measured when the fuel cell was continuously operated for 1000 hours at a constant current of 500 mA / cm 2 by introducing methanol at 4 ml / min and air at 60 ml / min at 90 ° C. Table 1 shows the results of the initial output voltage and the output voltage after 1000 hours.

Figure 2007112660
Figure 2007112660

表1から、本発明の実施例によって得られたアセチレンブラックは比較例のそれに比べて熱酸化温度が高く耐食性に優れていた。また、アセチレンブラックを用いて製造された燃料電池は、比較例のそれに比べて、出力電圧が高いことから、高反応効率であり、出力電圧が高く維持できることから、長期安定性に優れていた。   From Table 1, the acetylene black obtained by the Example of this invention had the high thermal oxidation temperature compared with that of the comparative example, and was excellent in corrosion resistance. In addition, the fuel cell manufactured using acetylene black has a higher output voltage than that of the comparative example, and thus has a high reaction efficiency and can maintain a high output voltage, and thus has excellent long-term stability.

本発明のアセチレンブラックは、固体高分子型燃料電池やリン酸型燃料電池等の各種燃料電池の触媒として利用することができる。   The acetylene black of the present invention can be used as a catalyst for various fuel cells such as solid polymer fuel cells and phosphoric acid fuel cells.

Claims (3)

比表面積が500〜1100m/g、X線回折により測定された結晶層厚み(Lc)が25〜40Åであることを特徴とするアセチレンブラック。 An acetylene black having a specific surface area of 500 to 1100 m 2 / g and a crystal layer thickness (Lc) measured by X-ray diffraction of 25 to 40 mm. アセチレンガスを、その含水率を絶対湿度で5mg/L以下に減じてから酸素ガスで不完全燃焼反応をさせ、得られたアセチレンブラックを酸化処理することを特徴とする請求項1に記載のアセチレンブラックの製造方法。 2. The acetylene gas according to claim 1, wherein the acetylene gas is subjected to incomplete combustion reaction with oxygen gas after reducing its moisture content to 5 mg / L or less in absolute humidity, and the obtained acetylene black is oxidized. Black manufacturing method. 請求項1に記載のアセチレンブラックに白金粒子及び/又は白金合金粒子が担持されてなることを特徴とする燃料電池用触媒。 A fuel cell catalyst comprising platinum particles and / or platinum alloy particles supported on the acetylene black according to claim 1.
JP2005305415A 2005-10-20 2005-10-20 Acetylene black, method for producing the same, and catalyst for fuel cell Active JP4362116B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005305415A JP4362116B2 (en) 2005-10-20 2005-10-20 Acetylene black, method for producing the same, and catalyst for fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005305415A JP4362116B2 (en) 2005-10-20 2005-10-20 Acetylene black, method for producing the same, and catalyst for fuel cell

Publications (2)

Publication Number Publication Date
JP2007112660A true JP2007112660A (en) 2007-05-10
JP4362116B2 JP4362116B2 (en) 2009-11-11

Family

ID=38095181

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005305415A Active JP4362116B2 (en) 2005-10-20 2005-10-20 Acetylene black, method for producing the same, and catalyst for fuel cell

Country Status (1)

Country Link
JP (1) JP4362116B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013209504A (en) * 2012-03-30 2013-10-10 Denki Kagaku Kogyo Kk Acetylene black and catalyst for fuel cell using the same
JP2014214290A (en) * 2013-04-30 2014-11-17 電気化学工業株式会社 Carbon black, and electrode for battery using the same
WO2015005011A1 (en) 2013-07-12 2015-01-15 昭和電工株式会社 Oxygen reducing catalyst, application thereof, and method for producing same
US9062175B2 (en) 2010-09-22 2015-06-23 Union Carbide Chemicals & Plastics Technology Llc Acetylene black semiconducting shield material with improved processing
WO2016047775A1 (en) * 2014-09-26 2016-03-31 電気化学工業株式会社 Carbon black and fuel cell catalyst using same
JP2016146305A (en) * 2015-02-09 2016-08-12 株式会社キャタラー Electrode for fuel cell
KR20220027400A (en) * 2020-08-27 2022-03-08 비나텍주식회사 Method for producing acetylene black fuel cell catalyst support in room temperature atmosphere
US11332623B2 (en) 2015-11-30 2022-05-17 University Of Yamanashi Carbon black, electrode catalyst and fuel cell using same, and method for producing carbon black

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106605325B (en) 2014-10-24 2020-12-25 株式会社科特拉 Electrode catalyst for fuel cell and method for producing same
CA3099779C (en) 2018-05-15 2023-07-04 N.E. Chemcat Corporation Electrode catalyst for a gas diffusion electrode of a fuel cell
EP4131517A4 (en) 2020-03-23 2024-05-15 N.E. Chemcat Corporation Catalyst for electrode, composition for forming gas diffusion electrode, gas diffusion electrode, membrane-electrode junction, and fuel cell stack
JPWO2021193257A1 (en) 2020-03-23 2021-09-30
US20230335760A1 (en) 2020-09-29 2023-10-19 N.E. Chemcat Corporation Catalyst for electrodes, composition for forming gas diffusion electrode, gas diffusion electrode, membrane electrode assembly, and fuel cell stack
KR20230079100A (en) 2020-09-29 2023-06-05 엔.이. 켐캣 가부시키가이샤 Catalysts for electrodes, compositions for forming gas diffusion electrodes, gas diffusion electrodes, membrane-electrode assemblies and fuel cell stacks
CN116830323A (en) 2021-02-09 2023-09-29 恩亿凯嘉股份有限公司 Method for producing electrode catalyst, method for producing gas diffusion electrode, and method for producing membrane-electrode assembly
US20240120503A1 (en) 2021-02-09 2024-04-11 N.E. Chemcat Corporation Method of producing electrode catalyst, method of producing gas diffusion electrode, and method of producing membrane/electrode assembly

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9062175B2 (en) 2010-09-22 2015-06-23 Union Carbide Chemicals & Plastics Technology Llc Acetylene black semiconducting shield material with improved processing
JP2013209504A (en) * 2012-03-30 2013-10-10 Denki Kagaku Kogyo Kk Acetylene black and catalyst for fuel cell using the same
JP2014214290A (en) * 2013-04-30 2014-11-17 電気化学工業株式会社 Carbon black, and electrode for battery using the same
WO2015005011A1 (en) 2013-07-12 2015-01-15 昭和電工株式会社 Oxygen reducing catalyst, application thereof, and method for producing same
KR20160022353A (en) 2013-07-12 2016-02-29 쇼와 덴코 가부시키가이샤 Oxygen reducing catalyst, application thereof, and method for producing same
US10230114B2 (en) 2013-07-12 2019-03-12 Showa Denko K.K. Oxygen reduction catalyst, uses thereof and production process therefor
WO2016047775A1 (en) * 2014-09-26 2016-03-31 電気化学工業株式会社 Carbon black and fuel cell catalyst using same
JP2016146305A (en) * 2015-02-09 2016-08-12 株式会社キャタラー Electrode for fuel cell
US11332623B2 (en) 2015-11-30 2022-05-17 University Of Yamanashi Carbon black, electrode catalyst and fuel cell using same, and method for producing carbon black
KR20220027400A (en) * 2020-08-27 2022-03-08 비나텍주식회사 Method for producing acetylene black fuel cell catalyst support in room temperature atmosphere
KR102459405B1 (en) 2020-08-27 2022-10-27 비나텍주식회사 Method for producing acetylene black fuel cell catalyst support in room temperature atmosphere

Also Published As

Publication number Publication date
JP4362116B2 (en) 2009-11-11

Similar Documents

Publication Publication Date Title
JP4362116B2 (en) Acetylene black, method for producing the same, and catalyst for fuel cell
JP4656576B2 (en) Method for producing Pt / Ru alloy catalyst for fuel cell anode
JP4938165B2 (en) Fuel cell electrode catalyst
CN101884127A (en) Method for producing electrode material for fuel cell, electrode material for fuel cell, and fuel cell using the electrode material for fuel cell
JP2022169613A (en) Electrocatalyst composition comprising noble metal oxide supported on tin oxide
Wang et al. Defect engineering assisted support effect: IrO2/N defective g-C3N4 composite as highly efficient anode catalyst in PEM water electrolysis
JP6482473B2 (en) Use of anode catalyst layer
JP5623680B1 (en) Tantalum-containing tin oxide for fuel cell electrode materials
Wang et al. Pd catalyst supported on a chitosan-functionalized large-area 3D reduced graphene oxide for formic acid electrooxidation reaction
JP2007514520A (en) Noble metal oxide catalysts for water electrolysis
JP2008511098A (en) Platinum / ruthenium catalysts for direct methanol fuel cells
WO2020059504A1 (en) Anode catalyst layer for fuel cell and fuel cell using same
JP6141547B2 (en) Catalyst support, method for producing the same, and use thereof
Cheng et al. The influence of a new fabrication procedure on the catalytic activity of ruthenium–selenium catalysts
JP6097015B2 (en) Acetylene black and fuel cell catalyst using the same
WO2020059503A1 (en) Anode catalyst layer for fuel cell and fuel cell using same
WO2022138309A1 (en) Iridium-containing oxide, method for producing same and catalyst containing iridium-containing oxide
JPWO2005083818A1 (en) Fuel cell electrode catalyst and fuel cell using the same
JP6331580B2 (en) Electrode catalyst, catalyst layer precursor, catalyst layer, and fuel cell
JP6815918B2 (en) Silver acetylide and its manufacturing method
JP5862476B2 (en) Anode catalyst for fuel cell and fuel cell
KR102131291B1 (en) Electrode catalyst for fuel cells
WO2006112368A1 (en) Electrode catalyst for fuel cell and process for producing the same
JP6165359B2 (en) Catalyst carrier and method for producing the same
TW201304861A (en) Catalysts free from noble metals suitable for the electrochemical reduction of oxygen

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080620

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081111

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090113

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090401

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090629

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20090706

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090811

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090814

R150 Certificate of patent or registration of utility model

Ref document number: 4362116

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120821

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130821

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250