JP2007112654A - Method for starting reformer, and reformer - Google Patents

Method for starting reformer, and reformer Download PDF

Info

Publication number
JP2007112654A
JP2007112654A JP2005304539A JP2005304539A JP2007112654A JP 2007112654 A JP2007112654 A JP 2007112654A JP 2005304539 A JP2005304539 A JP 2005304539A JP 2005304539 A JP2005304539 A JP 2005304539A JP 2007112654 A JP2007112654 A JP 2007112654A
Authority
JP
Japan
Prior art keywords
catalyst layer
reformer
mixed
mixed catalyst
reforming
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005304539A
Other languages
Japanese (ja)
Inventor
Takeshi Kuwabara
武 桑原
Jun Ono
小野  純
Shiro Fujishima
史郎 藤島
Shigeki Kobayashi
茂樹 小林
Takuya Moroishi
拓也 諸石
Yasushi Yoshino
靖 吉野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
T Rad Co Ltd
Original Assignee
T Rad Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by T Rad Co Ltd filed Critical T Rad Co Ltd
Priority to JP2005304539A priority Critical patent/JP2007112654A/en
Publication of JP2007112654A publication Critical patent/JP2007112654A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Hydrogen, Water And Hydrids (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To start an autoxidative and internally-heatable reformer without using a preheater. <P>SOLUTION: The method for starting the autoxidative and internally-heatable reformer 1 which has an outside preliminary reforming chamber 2 having a reforming catalyst layer 4 and an inside main reforming chamber 3 having a mixed catalyst layer 5 where a reforming catalyst and an oxidation catalyst are mixed, comprises the steps of: heating the outside of the preliminary reforming chamber 2 by a heating means 30 before starting the reformer 1 to keep the mixed catalyst layer 5 at the oxidation reaction temperature by transferring the heat from the preliminary reforming chamber; and heating the outside of the preliminary reforming chamber 2 by the heating means 30 when starting the reformer 1 to raise the temperature of the mixed catalyst layer 5 to the oxidation reaction temperature by transferring the heat from the preliminary reforming chamber and start the autoxidative and internally-heatable reformer. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、水蒸気改質触媒と酸化触媒を混合した混合触媒層を有する自己酸化内部加熱型の改質器を起動する方法及びその改質器に関する。   The present invention relates to a method of starting a self-oxidation internal heating type reformer having a mixed catalyst layer in which a steam reforming catalyst and an oxidation catalyst are mixed, and the reformer.

従来から、原料ガスと水蒸気の混合物(以下、原料−水蒸気混合物という。)を改質触媒の存在下に水蒸気改質し、水素リッチな改質ガスを生成する改質装置が知られている。
改質装置で得られる水素リッチな改質ガスは、更に含まれている僅かなCO(一酸化炭素)をCO低減手段で触媒の存在下に酸素含有ガスと反応させてCOへ変換し、特に低温で作動する固体高分子電解質型燃料電池等では、数ppmレベルまでCOを低減してから燃料電池の燃料として好適に利用される。原料ガスには、メタン等の炭化水素、メタノール等の脂肪族アルコール類、或いはジメチルエーテル等のエーテル類、都市ガスなどが用いられる。改質装置において、メタンを原料ガスとして使用した場合の水蒸気改質の反応式は、CH+2HO→CO+4Hで示すことができ、好ましい改質反応温度は、650〜750℃の範囲である。
2. Description of the Related Art Conventionally, a reformer that generates a hydrogen-rich reformed gas by steam reforming a mixture of a source gas and steam (hereinafter referred to as a source-steam mixture) in the presence of a reforming catalyst is known.
The hydrogen-rich reformed gas obtained in the reformer is further converted into CO 2 by reacting a small amount of CO (carbon monoxide) contained therein with an oxygen-containing gas in the presence of a catalyst by means of CO reduction means, In particular, solid polymer electrolyte fuel cells and the like that operate at low temperatures are suitably used as fuel for fuel cells after reducing CO to several ppm level. As the source gas, hydrocarbons such as methane, aliphatic alcohols such as methanol, ethers such as dimethyl ether, city gas, and the like are used. In the reformer, the reaction formula of steam reforming when methane is used as a raw material gas can be expressed as CH 4 + 2H 2 O → CO 2 + 4H 2 , and the preferred reforming reaction temperature is 650 to 750 ° C. It is a range.

水蒸気改質器の改質反応に必要な熱を供給する方式として外部加熱型と、内部加熱型がある。外部加熱型の改質装置は、外部に加熱部を設け、その熱源で原料ガスと水蒸気を反応させて改質ガスを生成する装置である。内部加熱型の改質装置はその供給側(上流側)に部分酸化反応層を設け、該部分酸化反応層で発生した熱を用いて下流側に配備した水蒸気改質反応層を水蒸気改質反応温度まで加熱し、該加熱された水蒸気改質触媒層で水蒸気改質反応をさせて水素リッチな改質ガスを生成する装置である。   There are an external heating type and an internal heating type as a system for supplying heat necessary for the reforming reaction of the steam reformer. The external heating type reforming apparatus is an apparatus that generates a reformed gas by providing a heating unit outside and reacting a raw material gas and water vapor with a heat source. The internal heating type reformer is provided with a partial oxidation reaction layer on the supply side (upstream side), and the steam reforming reaction layer disposed on the downstream side using the heat generated in the partial oxidation reaction layer is subjected to a steam reforming reaction. This is an apparatus for heating to a temperature and generating a hydrogen-rich reformed gas by performing a steam reforming reaction with the heated steam reforming catalyst layer.

部分酸化反応は、CH+1/2・O→CO+2Hで示すことができ、好ましい部分酸化反応の温度は250℃以上の範囲である。内部加熱型の改質装置を改良したものとして自己酸化内部加熱型の改質器が例えば特許文献1,2に記載されている。特許文献1,2の改質装置はいわゆる予備改質室と主改質室を備え、予備改質室には原料一水蒸気混合物の供給部、改質触媒層および排出部が設けられ、主改質室には前記排出部からの流出物を受け入れる供給部、酸素含有ガスの供給部、改質触媒と酸化触媒を混合した混合触媒層、シフト触媒層および改質ガスの排出部が設けられている。 The partial oxidation reaction can be represented by CH 4 + 1/2 · O 2 → CO + 2H 2 , and the preferable partial oxidation reaction temperature is in the range of 250 ° C. or higher. For example, Patent Documents 1 and 2 describe a self-oxidation internal heating type reformer as an improvement of the internal heating type reforming apparatus. The reformers of Patent Documents 1 and 2 are provided with a so-called pre-reformation chamber and a main reforming chamber, and the pre-reforming chamber is provided with a feed part of the raw material-steam mixture, a reforming catalyst layer and a discharge part. The quality chamber is provided with a supply portion for receiving the effluent from the discharge portion, an oxygen-containing gas supply portion, a mixed catalyst layer in which the reforming catalyst and the oxidation catalyst are mixed, a shift catalyst layer, and a reforming gas discharge portion. Yes.

図3は従来知られている自己酸化内部加熱型の改質器の1例を模式的に示す断面図である。改質器1は二重筒状に配置した外側の予備改質室2と内側の主改質室3を備え、予備改質室2に改質触媒層4が設けられ、主改質室3に改質触媒と酸化触媒を混合した混合触媒層5とシフト触媒層6が設けられる。なおシフト触媒層6は高温シフト触媒層7と低温シフト触媒層8により構成される。   FIG. 3 is a sectional view schematically showing an example of a conventionally known auto-oxidation internal heating type reformer. The reformer 1 includes an outer preliminary reforming chamber 2 and an inner main reforming chamber 3 arranged in a double cylinder shape, and a reforming catalyst layer 4 is provided in the preliminary reforming chamber 2. Further, a mixed catalyst layer 5 and a shift catalyst layer 6 in which a reforming catalyst and an oxidation catalyst are mixed are provided. The shift catalyst layer 6 includes a high temperature shift catalyst layer 7 and a low temperature shift catalyst layer 8.

改質触媒は原料ガスを水蒸気改質するものであり、例えばNiO−A1OあるいはNiO−SiO・A1などのNi系改質反応触媒やWO−SiO・A1やNiO−W0・SiO・A1などが使用される。混合触媒層5を構成する改質触媒は上記と同様なものが使用され、それに均一に分散される酸化触媒は原料−水蒸気混合物中の原料ガスを酸化発熱させて水蒸気改質反応に必要な温度を得るものであり、例えば白金(Pt)やロジウム(Rh)あるいはルテニウム(Ru)あるいはパラジウム(Pd)が使用される。なお改質触媒に対する酸化触媒の混合割合は、水蒸気改質すべき原料ガスの種類に応じて1〜15%程度の範囲で選択され、例えば原料ガスとしてメタンを使用する場合は5%±2%程度、メタノールの場合は2%±1%程度の混合割合とされる。 The reforming catalyst is a steam reforming of the raw material gas. For example, a Ni-based reforming reaction catalyst such as NiO—A1 2 O or NiO—SiO 2 .A1 2 O 3 or WO 2 —SiO 2 .A1 2 O 3 NiO-W0 2 · SiO 2 · A1 2 O 3 or the like is used. The reforming catalyst constituting the mixed catalyst layer 5 is the same as described above, and the oxidation catalyst uniformly dispersed therein is the temperature required for the steam reforming reaction by causing the source gas in the source-steam mixture to oxidize and generate heat. For example, platinum (Pt), rhodium (Rh), ruthenium (Ru), or palladium (Pd) is used. The mixing ratio of the oxidation catalyst to the reforming catalyst is selected in the range of about 1 to 15% according to the type of the raw material gas to be steam reformed. For example, when methane is used as the raw material gas, it is about 5% ± 2%. In the case of methanol, the mixing ratio is about 2% ± 1%.

予備改質室2の下部に原料−水蒸気混合物の供給部9が設けられ、上部に予備改質後の流出物が排出する排出部10が設けられる。主改質室3の上部には前記予備改質室2の排出部10に連通する供給部11が設けられ、下部に改質ガスの排出部12が設けられる。さらに主改質室3の上部にはプレヒーター13が連接され、主改質室3の中央部に空気等の酸素含有気体を供給する供給管14が延長される。プレヒーター13はシステム起動時に混合触媒層5を迅速に酸化反応温度まで昇温するものであり、その内部に電気ヒーターが配置されるとともに、白金(Pt)やパラジウム(Pd)等の酸化触媒が充填されている。   A raw material-steam mixture supply unit 9 is provided in the lower part of the preliminary reforming chamber 2, and a discharge unit 10 for discharging the effluent after the preliminary reforming is provided in the upper part. A supply unit 11 communicating with the discharge unit 10 of the preliminary reforming chamber 2 is provided in the upper part of the main reforming chamber 3, and a reformed gas discharge unit 12 is provided in the lower part. Further, a preheater 13 is connected to the upper portion of the main reforming chamber 3, and a supply pipe 14 for supplying an oxygen-containing gas such as air is extended to the central portion of the main reforming chamber 3. The preheater 13 rapidly raises the mixed catalyst layer 5 to the oxidation reaction temperature when the system is started up. An electric heater is disposed inside the preheater 13 and an oxidation catalyst such as platinum (Pt) or palladium (Pd) is provided. Filled.

エジェクタにより構成される吸引混合手段15の流体導入部に、図示しない水蒸気発生手段からの水蒸気、原料供給部からの原料ガスおよび酸素含有気体供給手段からの酸素含有気体(スタート空気)等が導入できるようになっている。図示の例では前記流体導入部に流量調整弁16を設けたスタート用の空気の配管、図示しない水蒸気発生手段からの水蒸気用の配管および図示しない原料ガス供給部からの原料ガス用の配管が接続される。   A water vapor from a water vapor generating means (not shown), a raw material gas from a raw material supply section, an oxygen-containing gas (start air) from an oxygen-containing gas supply means, and the like can be introduced into the fluid introduction section of the suction mixing means 15 constituted by an ejector. It is like that. In the illustrated example, a start air pipe provided with a flow rate adjusting valve 16 in the fluid introduction section, a steam pipe from a steam generation means (not shown), and a source gas pipe from a source gas supply section (not shown) are connected. Is done.

吸引混合手段15の排出部は流量調整弁17を設けた配管18を介してプレヒーター13に連通されると共に、流量調整弁19を設けた配管20を介して予備改質室2の供給部に連通される。なお予備改質室2の下部には電気ヒーターからなる加熱部21が設けられ、改質器1の停止期間中にその加熱部21からの伝熱によりシフト触媒層6を例えば200℃程度に保温して結露発生を防止している。   The discharge part of the suction mixing means 15 is communicated with the pre-heater 13 via a pipe 18 provided with a flow rate adjusting valve 17 and also connected to the supply part of the preliminary reforming chamber 2 via a pipe 20 provided with a flow rate adjusting valve 19. Communicated. A heating unit 21 composed of an electric heater is provided below the preliminary reforming chamber 2, and the shift catalyst layer 6 is kept at, for example, about 200 ° C. by heat transfer from the heating unit 21 during the stop period of the reformer 1. To prevent condensation.

自己酸化内部加熱型の改質器を起動する際には、先ず混合触媒層5を酸化反応温度に昇温しておく必要がある。そのため改質器1の起動時には、先ず図示しない水蒸気発生手段を運転開始し、加熱部21によるシフト触媒層6の保温を停止する。さらにプレヒーター13内の酸化触媒を電気ヒーターで所定温度に昇温する。プレヒーター13の酸化触媒が酸化反応可能な温度に達した時点で、流量調整弁16、17を開け、スタート用の空気と原料ガスの混合流体を吸引混合手段15から配管18でプレヒーター13に供給する。なお水蒸気が供給されない間は、例えば原料ガスをポンプで加圧して吸引混合手段15に供給することができる。   When starting up the self-oxidation internal heating type reformer, it is necessary to first raise the temperature of the mixed catalyst layer 5 to the oxidation reaction temperature. For this reason, when the reformer 1 is started, first, the operation of a steam generation means (not shown) is started, and the heat retention of the shift catalyst layer 6 by the heating unit 21 is stopped. Further, the oxidation catalyst in the preheater 13 is heated to a predetermined temperature by an electric heater. When the oxidation catalyst of the preheater 13 reaches a temperature at which the oxidation reaction can be performed, the flow rate adjusting valves 16 and 17 are opened, and the mixed fluid of starting air and source gas is supplied from the suction mixing means 15 to the preheater 13 through the pipe 18. Supply. In addition, while water vapor | steam is not supplied, source gas can be pressurized with a pump and it can supply to the suction mixing means 15, for example.

プレヒーター13に供給された原料ガスとスタート用の空気は、そこで酸化触媒の存在下に原料ガスの一部がスタート用の空気に含まれる酸素と反応(燃焼)し、その酸化熱で温度上昇した高温ガスにより混合触媒層3を昇温する。前記水蒸気発生手段で所定の圧力に昇圧した水蒸気が発生したら、その水蒸気を混合吸引手段15に供給する。それと共に原料ガス供給を加圧ポンプラインからそのバイパスラインに切り換えると、原料ガスは水蒸気の吸引力により吸引混合手段15に効率よく吸入され、排出部から原料−水蒸気混合物およびスタート空気の混合流体が流出してプレヒーター13に供給される。   The raw material gas and the starting air supplied to the preheater 13 react (combust) with a part of the raw material gas with oxygen contained in the starting air in the presence of the oxidation catalyst. The mixed catalyst layer 3 is heated with the high temperature gas. When the water vapor generated at the predetermined pressure is generated by the water vapor generating means, the water vapor is supplied to the mixing and sucking means 15. At the same time, when the source gas supply is switched from the pressurized pump line to the bypass line, the source gas is efficiently sucked into the suction mixing means 15 by the suction force of the steam, and the mixed fluid of the source-steam mixture and the start air is discharged from the discharge part. It flows out and is supplied to the preheater 13.

原料−水蒸気混合物とスタート用の空気との混合流体の流量は、水蒸気の供給配管に設けた図示しない流量調整弁による水蒸気流量の増減で調整できるが、通常、混合触媒層5の昇温を加速させるため、混合吸引手段13に水蒸気が供給されない前より原料ガスおよびスタート用の空気の流量が増加するように調整される。プレヒーター13に流量増加した原料ガスとスタート用の空気が供給されると、その酸化反応による酸化熱が増加して混合触媒層3の昇温速度も加速する。なおプレヒーター13で燃焼しなかった原料ガスの一部は残余原料ガスとしてそのまま混合触媒層3に流入する。   The flow rate of the mixed fluid of the raw material-steam mixture and the start air can be adjusted by increasing or decreasing the steam flow rate by a flow rate adjusting valve (not shown) provided in the steam supply pipe, but normally the temperature of the mixed catalyst layer 5 is accelerated. Therefore, the flow rate of the raw material gas and the starting air is adjusted to be increased before the water vapor is not supplied to the mixed suction means 13. When the source gas and the starting air whose flow rate is increased are supplied to the preheater 13, the heat of oxidation due to the oxidation reaction is increased and the heating rate of the mixed catalyst layer 3 is also accelerated. A part of the raw material gas not burned by the preheater 13 flows into the mixed catalyst layer 3 as the remaining raw material gas.

混合触媒層3が酸化反応温度に達した時点で、供給管14から運転用の酸素含有気体(酸化用の空気)を供給すると、プレヒーター13から供給される前記残余原料ガスが酸化用の空気に含まれる酸素と反応(燃焼)し、その酸化熱で混合触媒層3がさらに昇温する。次に混合触媒層3が改質反応温度に達した時点で、流量調整弁19を開けて吸引混合手段15から原料−水蒸気混合物を予備改質室2に供給する。次いで吸引混合手段15へのスタート用の空気の供給を停止すると共に、流量調整弁17を閉じてプレヒーター13の運転を停止する。以下、次第に改質器1の各部が運転温度に達した時点で平常運転状態に入る。   When the mixed catalyst layer 3 reaches the oxidation reaction temperature, when an oxygen-containing gas for operation (oxidation air) is supplied from the supply pipe 14, the remaining raw material gas supplied from the preheater 13 is oxidized air. The mixed catalyst layer 3 is further heated by the oxidation heat. Next, when the mixed catalyst layer 3 reaches the reforming reaction temperature, the flow rate adjusting valve 19 is opened, and the raw material-steam mixture is supplied from the suction mixing means 15 to the preliminary reforming chamber 2. Next, the supply of the starting air to the suction mixing means 15 is stopped, and the flow rate adjusting valve 17 is closed to stop the operation of the preheater 13. Thereafter, the normal operation state is gradually entered when each part of the reformer 1 reaches the operation temperature.

特開2001−192201号公報JP 2001-192201 A 特開2005−149860号公報JP-A-2005-149860

上記従来の起動方法ではプレヒーターを設置する必要があり、そのための起動−運転切換のための配管の切換手段も必要になる。またプレヒーターの温度監視も必要であり、システムが複雑化すると共にコストアップになるという問題がある。そこで本発明はこのような従来の自己酸化内部加熱型の改質器における問題を解決することを課題とし、そのための新しい改質器の起動方法と改質器を提供することを目的とする。   In the conventional starting method, it is necessary to install a pre-heater, and a pipe switching means for starting-operation switching is also required. In addition, it is necessary to monitor the temperature of the pre-heater, and there is a problem that the system becomes complicated and the cost increases. Accordingly, an object of the present invention is to solve the problems in such a conventional self-oxidation internal heating type reformer, and an object thereof is to provide a new reformer start-up method and a reformer.

前記課題を解決する本発明の改質器の起動方法は、改質触媒と酸化触媒を混合した混合触媒層を有する自己酸化内部加熱型の改質器を起動する方法であり、
前記改質器は改質触媒層を設けた外側の予備改質室と混合触媒層を設けた内側の主改質室を有し、前記改質器の起動前に前記予備改質室の外側を加熱手段で加熱して、その伝熱により前記混合触媒層を酸化反応温度に保温し、または改質器の起動に際して前記予備改質室の外側を加熱手段で加熱して、その伝熱により前記混合触媒層を酸化反応温度に昇温して起動することを特徴とする。
そして、前記加熱手段は電気ヒーターにより構成することができる(請求項1、2)。
The method for starting the reformer of the present invention that solves the above-described problem is a method for starting a self-oxidation internal heating type reformer having a mixed catalyst layer in which a reforming catalyst and an oxidation catalyst are mixed.
The reformer has an outer pre-reforming chamber provided with a reforming catalyst layer and an inner main reforming chamber provided with a mixed catalyst layer, and the outer side of the pre-reforming chamber before starting the reformer. Is heated by heating means, and the mixed catalyst layer is kept at the oxidation reaction temperature by heat transfer, or the outside of the preliminary reforming chamber is heated by heating means at the time of starting the reformer, and the heat transfer The mixed catalyst layer is started by raising the temperature to an oxidation reaction temperature.
And the said heating means can be comprised with an electric heater (Claims 1, 2).

前記課題を解決する本発明の改質器の他の起動方法は、改質触媒と酸化触媒を混合した混合触媒層を有する自己酸化内部加熱型の改質器を起動する方法であり、
前記改質器は改質触媒層を設けた外側の予備改質室と混合触媒層を設けた内側の主改質室を有し、前記改質器の起動前に前記混合触媒層を前記主改質室の上方に設けた加熱手段による輻射熱で酸化反応温度に保温し、または改質器の起動に際して前記混合触媒層を前記主改質室の上方に設けた加熱手段による輻射熱で酸化反応温度に昇温して起動することを特徴とする。
そして、前記加熱手段は電気ヒーターにより構成することができる(請求項3、4)。
Another starting method of the reformer of the present invention that solves the above problem is a method of starting a self-oxidation internal heating type reformer having a mixed catalyst layer in which a reforming catalyst and an oxidation catalyst are mixed.
The reformer has an outer pre-reforming chamber provided with a reforming catalyst layer and an inner main reforming chamber provided with a mixed catalyst layer, and the mixed catalyst layer is placed in the main reforming chamber before starting the reformer. The oxidation reaction temperature is kept at the oxidation reaction temperature by radiant heat from the heating means provided above the reforming chamber, or the mixed catalyst layer is radiated heat from the heating means provided above the main reforming chamber when starting the reformer. It is characterized in that it is started by raising the temperature to
And the said heating means can be comprised with an electric heater (Claims 3 and 4).

前記課題を解決する本発明の改質器は、改質触媒と酸化触媒を混合した混合触媒層を有する自己酸化内部加熱型の改質器であって、
前記改質器は改質触媒層を設けた外側の予備改質室と混合触媒層を設けた内側の主改質室を有し、前記予備改質室の外側に前記混合触媒層を伝熱で酸化反応温度に加熱する加熱手段を設け、または前記主改質室の上方に前記混合触媒層を輻射熱で酸化反応温度に加熱する加熱手段を設けたことを特徴とする。
そして、前記加熱手段は電気ヒーターにより構成することができる(請求項5、6)。
The reformer of the present invention that solves the above problems is a self-oxidation internal heating type reformer having a mixed catalyst layer in which a reforming catalyst and an oxidation catalyst are mixed,
The reformer has an outer pre-reforming chamber provided with a reforming catalyst layer and an inner main reforming chamber provided with a mixed catalyst layer, and the mixed catalyst layer is transferred to the outside of the pre-reforming chamber. The heating means for heating to the oxidation reaction temperature is provided, or the heating means for heating the mixed catalyst layer to the oxidation reaction temperature by radiant heat is provided above the main reforming chamber.
And the said heating means can be comprised with an electric heater (Claim 5, 6).

請求項1に記載の改質器の起動方法は、改質器の起動前に予備改質室の外側を加熱手段で加熱してその伝熱で混合触媒層を酸化反応温度に保温し、または改質器の起動に際して予備改質室の外側を加熱手段で加熱して、その伝熱で前記混合触媒層を酸化反応温度に昇温して起動することを特徴としている。そのため従来の起動方法のようにプレヒーターを設置する必要がなく、プレヒーターの切換操作や温度監視の必要がない。更にシステム構成が簡単化、軽量化し、設置コストや運転コストも低減できる。   The method for starting the reformer according to claim 1, wherein the outside of the preliminary reforming chamber is heated by a heating means before starting the reformer, and the mixed catalyst layer is kept at the oxidation reaction temperature by the heat transfer, or When the reformer is started, the outside of the preliminary reforming chamber is heated by a heating means, and the mixed catalyst layer is heated to the oxidation reaction temperature by the heat transfer and started. Therefore, it is not necessary to install a preheater as in the conventional start-up method, and there is no need to switch the preheater or monitor the temperature. Furthermore, the system configuration is simplified and lightened, and the installation cost and operation cost can be reduced.

請求項3に記載の改質器の他の起動方法は、混合触媒層を主改質室の上方に設けた加熱手段による輻射熱で酸化反応温度に保温し、または改質器の起動に際して混合触媒層を主改質室の上方に設けた加熱手段による輻射熱で酸化反応温度に昇温して起動することを特徴としている。そのため従来の起動方法のようにプレヒーターを設置する必要がなく、プレヒーターの切換操作や温度監視の必要がない。またシステム構成が簡単化、軽量化し、設置コストや運転コストも低減できる。さらに混合触媒層を直接輻射熱で加熱するため、混合触媒の保温または昇温に要する熱エネルギーが少なくてよい。   According to another method of starting the reformer according to claim 3, the mixed catalyst layer is kept at the oxidation reaction temperature by radiant heat from a heating means provided above the main reforming chamber, or the mixed catalyst is started when the reformer is started. It is characterized by starting by raising the temperature to the oxidation reaction temperature by radiant heat from a heating means provided above the main reforming chamber. Therefore, it is not necessary to install a preheater as in the conventional start-up method, and there is no need to switch the preheater or monitor the temperature. In addition, the system configuration is simplified and lightened, and the installation cost and operation cost can be reduced. Furthermore, since the mixed catalyst layer is directly heated by radiant heat, less heat energy is required to keep the mixed catalyst warm or raise its temperature.

請求項5に記載の改質器は、予備改質室の外側に前記混合触媒層を伝熱で酸化反応温度に加熱する加熱手段を設け、または主改質室の上方に前記混合触媒層を輻射熱で酸化反応温度に加熱する加熱手段を設けたことを特徴とするので、従来の改質器のようなプレヒーターを設置する必要がなく、システム構成が簡単化、軽量化し、且つ設置コストや運転コストも低減できる。   The reformer according to claim 5 is provided with a heating means for heating the mixed catalyst layer to an oxidation reaction temperature by heat transfer outside the preliminary reforming chamber, or the mixed catalyst layer above the main reforming chamber. Since the heating means for heating to the oxidation reaction temperature by radiant heat is provided, there is no need to install a pre-heater like a conventional reformer, the system configuration is simplified, the weight is reduced, and the installation cost is reduced. Operating costs can also be reduced.

次に、図面を参照し、本発明の改質器およびその起動方法の最良の実施形態について説明する。図1は本発明の自己酸化内部加熱型の改質器を模式的に示す断面図である。なお前述した図3の従来の改質器と同じ部分には同一符号を付し、その構造および作用についての重複する説明はできるだけ省略する。   Next, the best embodiment of the reformer of the present invention and the starting method thereof will be described with reference to the drawings. FIG. 1 is a cross-sectional view schematically showing a self-oxidation internal heating type reformer of the present invention. The same parts as those of the conventional reformer of FIG. 3 described above are denoted by the same reference numerals, and redundant description of the structure and operation is omitted as much as possible.

図1の実施形態が図3の例と異なる部分は、予備改質室2の外側に混合触媒層5を伝熱で加熱する加熱手段30を設け、その代わりにプレヒーター13やその切換手段を省略した点にあり、そのほかは同様に構成される。本実施形態では加熱手段30として電気ヒーターを用いているが、バーナー燃焼による高温の燃焼ガスが供給される加熱管でもよい。なお図1の例では電気ヒーターが外側の予備改質室2の周囲に巻き付ける方法で取り付けられる。   The embodiment of FIG. 1 differs from the example of FIG. 3 in that a heating means 30 for heating the mixed catalyst layer 5 by heat transfer is provided outside the pre-reforming chamber 2, and instead a preheater 13 and its switching means are provided. The other points are the same. In the present embodiment, an electric heater is used as the heating means 30, but a heating pipe to which a high-temperature combustion gas by burner combustion is supplied may be used. In the example of FIG. 1, the electric heater is attached by a method of winding around the outer preliminary reforming chamber 2.

次に図1の改質器1の起動方法を説明する。従来方法と同様に、改質器1の停止期間中には電気ヒーターからなる加熱部21により外側の予備改質室2の下部が加熱され、その伝熱でシフト触媒層6が例えば200℃程度に保温される。一方、混合触媒層5は加熱手段30により酸化反応温度(例えば原料ガスとしてブタンもしくはブタンを含むガスを用いる場合は260℃程度)に保温しておく。   Next, a method for starting the reformer 1 of FIG. 1 will be described. As in the conventional method, the lower part of the outer preliminary reforming chamber 2 is heated by the heating unit 21 made of an electric heater during the stop period of the reformer 1, and the shift catalyst layer 6 is about 200 ° C., for example, by the heat transfer. To keep warm. On the other hand, the mixed catalyst layer 5 is kept warm by the heating means 30 at an oxidation reaction temperature (for example, about 260 ° C. when butane or a gas containing butane is used as a raw material gas).

例えば燃料電池に水素リッチな改質ガスを燃料として供給する改質器の場合、改質器1は定期的に運転−停止を繰り返すことが多い。運転終了時における混合触媒層5の温度は高温である改質温度になっているが、改質器1の停止中にそのまま放置すると次第に冷却して酸化反応温度以下に下降する。そこで上記のように加熱手段30により混合触媒層5を保温して酸化反応温度以下にならないように維持するが、加熱手段30として電気ヒーターを用いた場合、その電力消費量は混合触媒層5の保温に要するだけの熱エネルギーを供給すればよいので、それほど多くは必要としない。なおシフト触媒層6や混合触媒層5の温度は例えば図示しないサーミスタや熱電対等の温度センサーで検出し、その温度信号が図示しない制御装置での温度監視もしくは温度制御に供される。   For example, in the case of a reformer that supplies a fuel cell with hydrogen-rich reformed gas as a fuel, the reformer 1 often repeats operation and stop periodically. The temperature of the mixed catalyst layer 5 at the end of the operation is a reforming temperature which is a high temperature, but if it is left as it is while the reformer 1 is stopped, it gradually cools and falls below the oxidation reaction temperature. Therefore, as described above, the mixed catalyst layer 5 is kept warm by the heating means 30 so as not to be equal to or lower than the oxidation reaction temperature. However, when an electric heater is used as the heating means 30, the power consumption of the mixed catalyst layer 5 is Not much is required because it is sufficient to supply the heat energy required for heat insulation. The temperature of the shift catalyst layer 6 and the mixed catalyst layer 5 is detected by a temperature sensor such as a thermistor or a thermocouple (not shown), and the temperature signal is used for temperature monitoring or temperature control by a control device (not shown).

本実施形態では改質器1の運転時に混合触媒層5の高温の熱が周囲に拡散することを抑制するため、混合触媒層5を取り囲む主改質室3の側壁外周面に断熱層3aを設けているが、このような断熱層3aを設けた場合でも、改質器1の停止中に加熱手段30による加熱を継続すると、その熱は予備改質室2内に伝熱し、その伝熱により予備改質室2と主改質室3の温度差が少なくなり、混合触媒層5からの熱拡散が抑制される。それと共に、予備改質室2への伝熱はその改質触媒4の上部空間における対流作用により混合触媒層5に伝熱されてその温度を酸化反応温度に維持することができる。なお、断熱壁3aを設けない場合には加熱手段30の熱がより効率的に混合触媒層5に伝熱される。   In this embodiment, in order to prevent high temperature heat of the mixed catalyst layer 5 from diffusing to the surroundings during operation of the reformer 1, the heat insulating layer 3 a is provided on the outer peripheral surface of the side wall of the main reforming chamber 3 surrounding the mixed catalyst layer 5. Even if such a heat insulating layer 3a is provided, if the heating by the heating means 30 is continued while the reformer 1 is stopped, the heat is transferred to the preliminary reforming chamber 2, and the heat transfer is performed. As a result, the temperature difference between the pre-reforming chamber 2 and the main reforming chamber 3 is reduced, and thermal diffusion from the mixed catalyst layer 5 is suppressed. At the same time, the heat transfer to the pre-reforming chamber 2 is transferred to the mixed catalyst layer 5 by the convection action in the upper space of the reforming catalyst 4, and the temperature can be maintained at the oxidation reaction temperature. If the heat insulating wall 3 a is not provided, the heat of the heating means 30 is more efficiently transferred to the mixed catalyst layer 5.

改質器1の起動時には、先ず図示しない水蒸気発生手段を起動し、加熱部21によるシフト触媒層6の保温および加熱手段30による混合触媒層5の保温を停止する。次いでポンプで加圧した原料ガスを吸引混合手段15に導入し、供給部9から予備改質室2を経由して混合触媒層5に原料ガスを供給する。混合触媒層5に原料ガスが充満した時点で、供給管14から酸素含有気体(酸化用の空気)を供給して混合触媒層5の酸化反応(燃焼)を開始する。   When the reformer 1 is started, first, a steam generation means (not shown) is started, and the heat retention of the shift catalyst layer 6 by the heating unit 21 and the heat retention of the mixed catalyst layer 5 by the heating means 30 are stopped. Next, the raw material gas pressurized by the pump is introduced into the suction mixing means 15, and the raw material gas is supplied from the supply unit 9 to the mixed catalyst layer 5 through the preliminary reforming chamber 2. When the mixed catalyst layer 5 is filled with the raw material gas, an oxygen-containing gas (oxidation air) is supplied from the supply pipe 14 to start the oxidation reaction (combustion) of the mixed catalyst layer 5.

酸化反応が開始されるとその酸化熱で混合触媒層5は次第に昇温するが、炭素析出が生ずる温度付近(例えば400℃付近)に近づいたら原料ガスの供給を制限し、混合触媒層5がそれ以上の高温にならないように制御して水蒸気発生を待つ。なお混合触媒層5の温度維持は例えば図示しない制御装置(例えばコンピュータ装置で構成)で自動制御することができる。   When the oxidation reaction starts, the temperature of the mixed catalyst layer 5 gradually increases due to the oxidation heat. However, when the temperature approaches the temperature at which carbon deposition occurs (for example, near 400 ° C.), the supply of the raw material gas is restricted, and the mixed catalyst layer 5 Control is made so that the temperature does not become higher than that, and the generation of water vapor is awaited. The temperature maintenance of the mixed catalyst layer 5 can be automatically controlled by, for example, a control device (for example, constituted by a computer device) not shown.

水蒸気発生手段が所定圧の水蒸気を発生できる状態に達したら、その水蒸気を吸引混合手段15に供給して原料ガスを吸引方式に切り換えると共にその流量を増加し、酸化用の空気を供給管14から混合触媒層5に供給して混合触媒層5の昇温を加速させる。なお原料ガスの流量と酸化用の空気は所定の比例関係で供給する必要があるが、その供給量は前記の制御装置で自動制御することができる。そして、これらの操作で混合触媒層5は運転可能状態になるので、その後は改質器1の各部の温度を運転温度に次第に上昇させて正常運転に移行する。   When the water vapor generating means reaches a state where it can generate water vapor of a predetermined pressure, the water vapor is supplied to the suction mixing means 15 to switch the raw material gas to the suction system and the flow rate is increased, and the oxidizing air is supplied from the supply pipe 14. The temperature of the mixed catalyst layer 5 is accelerated by supplying the mixed catalyst layer 5. Note that the flow rate of the source gas and the oxidizing air need to be supplied in a predetermined proportional relationship, but the supply amount can be automatically controlled by the control device. Then, the mixed catalyst layer 5 becomes operable by these operations, and thereafter, the temperature of each part of the reformer 1 is gradually raised to the operating temperature and the normal operation is started.

上記の説明では、改質器1の停止中に加熱手段30を運転して混合触媒層5を酸化反応温度に保温しているが、前記のように断熱壁3aを設けないとき等には、改質器1の起動時に加熱手段30の運転を開始して混合触媒層5を酸化反応温度に昇温することもできる。その場合には混合触媒層5が酸化反応温度に達した時点で加熱手段30を停止し、それ以降は前記保温方式の場合と同様な手順で起動操作する。   In the above description, the heating means 30 is operated while the reformer 1 is stopped to keep the mixed catalyst layer 5 at the oxidation reaction temperature. However, when the heat insulating wall 3a is not provided as described above, It is also possible to start the operation of the heating means 30 at the start of the reformer 1 and raise the temperature of the mixed catalyst layer 5 to the oxidation reaction temperature. In that case, the heating means 30 is stopped when the mixed catalyst layer 5 reaches the oxidation reaction temperature, and thereafter, the starting operation is performed in the same procedure as in the case of the heat retention method.

図2は本発明の自己酸化内部加熱型の別の改質器を模式的に示す断面図である。なお前述した図3の従来の改質器または図1の改質器と同じ部分には同一符号を付し、その構造および作用についての重複する説明はできるだけ省略する。   FIG. 2 is a sectional view schematically showing another reformer of the self-oxidation internal heating type of the present invention. The same parts as those of the conventional reformer of FIG. 3 or the reformer of FIG. 1 are denoted by the same reference numerals, and redundant description of the structure and operation is omitted as much as possible.

図2の実施形態が図1の例と異なる部分は、予備改質室2の外側に混合触媒層5を伝熱で加熱する加熱手段30を設ける代わりに、主改質室3の上方に混合触媒層5を輻射熱で加熱する加熱手段31とスタート用の空気を供給する供給部32を設けた点にあり、そのほかは同様に構成される。本実施形態では加熱手段31を電気ヒーターにより構成するが、バーナー燃焼による高温の燃焼ガスが供給される加熱管でもよい。なお電気ヒーターは主改質室3の上部外側または内側に取り付けられる。   The embodiment of FIG. 2 differs from the example of FIG. 1 in that it is mixed above the main reforming chamber 3 instead of providing the heating means 30 for heating the mixed catalyst layer 5 by heat transfer outside the pre-reforming chamber 2. The other features are the same, except that a heating means 31 for heating the catalyst layer 5 with radiant heat and a supply section 32 for supplying start air are provided. In the present embodiment, the heating means 31 is constituted by an electric heater, but it may be a heating pipe to which a high-temperature combustion gas by burner combustion is supplied. The electric heater is attached to the upper outside or inside of the main reforming chamber 3.

次に図2の改質器1の起動方法を説明する。従来方法と同様に、改質器1の停止中は加熱部21で外側の予備改質室2の下部が加熱され、その伝熱でシフト触媒層6が例えば200℃程度に保温される。本実施形態では先ず図示しない水蒸気発生手段を起動し、加熱部21の保温を停止して加熱手段31を起動する。加熱手段31による上方からの輻射熱は混合触媒5の上面を直接加熱するので、混合触媒5の上層部の温度がより早く酸化反応温度に達する。   Next, the starting method of the reformer 1 of FIG. 2 is demonstrated. Similarly to the conventional method, while the reformer 1 is stopped, the lower part of the outer preliminary reforming chamber 2 is heated by the heating unit 21, and the shift catalyst layer 6 is kept at, for example, about 200 ° C. by the heat transfer. In the present embodiment, first, a water vapor generating means (not shown) is activated, the heat retention of the heating unit 21 is stopped, and the heating means 31 is activated. Since the radiant heat from above by the heating means 31 directly heats the upper surface of the mixed catalyst 5, the temperature of the upper layer portion of the mixed catalyst 5 reaches the oxidation reaction temperature more quickly.

混合触媒層5の少なくとも上層部分が酸化反応温度に達した後、水蒸気発生手段が所定圧の水蒸気を発生できる状態に達した時点で、その水蒸気を吸引混合手段15に供給する。吸引混合手段15に水蒸気が供給されると原料ガスが吸引混合され、予備改質室2の供給部9に原料−水蒸気混合物が供給される。原料−水蒸気混合物は予備改質室2を経由して主改質室3の混合触媒層5に達する。混合触媒層5が原料−水蒸気混合物で充満した時点で供給部32からスタート用空気を供給すると、主として酸化反応温度に達している混合触媒層5の上層部において酸化反応が開始する。   After at least the upper layer portion of the mixed catalyst layer 5 reaches the oxidation reaction temperature, when the water vapor generating means reaches a state where it can generate water vapor of a predetermined pressure, the water vapor is supplied to the suction mixing means 15. When water vapor is supplied to the suction mixing means 15, the raw material gas is sucked and mixed, and the raw material-water vapor mixture is supplied to the supply unit 9 of the preliminary reforming chamber 2. The raw material-steam mixture reaches the mixed catalyst layer 5 in the main reforming chamber 3 via the preliminary reforming chamber 2. When the start air is supplied from the supply unit 32 when the mixed catalyst layer 5 is filled with the raw material-steam mixture, the oxidation reaction starts mainly in the upper layer portion of the mixed catalyst layer 5 that has reached the oxidation reaction temperature.

混合触媒層5の上層部での酸化反応が開始されると、その酸化熱は混合触媒層5全体に拡散し、その下層部も次第に酸化反応温度に昇温される。混合触媒層5の全体が酸化反応温度に達した時点で、スタート用の空気を停止して供給管から酸化用の空気を供給し、さらに混合触媒層5を昇温して改質器1を運転状態に移行していく。   When the oxidation reaction in the upper layer portion of the mixed catalyst layer 5 is started, the oxidation heat diffuses throughout the mixed catalyst layer 5, and the lower layer portion is also gradually heated to the oxidation reaction temperature. When the entire mixed catalyst layer 5 reaches the oxidation reaction temperature, the starting air is stopped and the oxidizing air is supplied from the supply pipe, and the temperature of the mixed catalyst layer 5 is raised to raise the reformer 1. Transition to the operating state.

これまで説明した図2の改質器1の起動方法は、改質器1の起動時に加熱手段31を起動する方法であるが、改質器1の停止中に混合触媒層5を酸化反応温度に保温しておいて起動する方法でもよい。その場合は、改質器1が停止すると、停止時に改質温度にあった混合触媒層5の温度は次第に下降し、酸化反応温度になった時点で図示しない制御装置が加熱手段31に加熱信号を出力して混合触媒層5の保温動作に入る。なお改質器1の停止中に加熱手段31の輻射熱を混合触媒層5の上面に照射すると、輻射熱により加熱された上層部の温度が下層部に伝熱し、結果として混合触媒層5の全体がほぼ酸化反応温度に保温される。   The start-up method of the reformer 1 of FIG. 2 described so far is a method of starting the heating means 31 when the reformer 1 is started, and the mixed catalyst layer 5 is subjected to the oxidation reaction temperature while the reformer 1 is stopped. Alternatively, the method may be started by keeping warm. In that case, when the reformer 1 is stopped, the temperature of the mixed catalyst layer 5 that was at the reforming temperature at the time of stopping gradually decreases, and when it reaches the oxidation reaction temperature, a control device (not shown) sends a heating signal to the heating means 31. Is output, and the mixed catalyst layer 5 enters the heat retaining operation. When the upper surface of the mixed catalyst layer 5 is irradiated with the radiant heat of the heating means 31 while the reformer 1 is stopped, the temperature of the upper layer heated by the radiant heat is transferred to the lower layer, and as a result, the entire mixed catalyst layer 5 is The temperature is kept at about the oxidation reaction temperature.

混合触媒層5を改質器1の停止中に混合触媒層5を保温した場合の起動方法を説明すると、先ず、改質器1の起動時に図示しない水蒸気発生手段を起動し、加熱手段31による混合触媒層5の保温を停止する。次に水蒸気発生手段から水蒸気の供給が可能になった時点で、その水蒸気を吸引混合手段15に供給すると、吸引混合手段15から原料−水蒸気混合物が原料−水蒸気混合物は予備改質室2を経由して主改質室3の混合触媒層5に供給される。   The starting method when the mixed catalyst layer 5 is kept warm while the reformer 1 is stopped will be described. First, when the reformer 1 is started, a steam generating means (not shown) is started and the heating means 31 is used. The heat retention of the mixed catalyst layer 5 is stopped. Next, when the supply of water vapor from the water vapor generating means becomes possible, when the water vapor is supplied to the suction mixing means 15, the raw material-steam mixture is supplied from the suction mixing means 15 through the preliminary reforming chamber 2. Then, it is supplied to the mixed catalyst layer 5 in the main reforming chamber 3.

混合触媒層5が原料−水蒸気混合物で充満した時点で供給管14から酸化用の空気を供給すると、酸化反応温度に達している混合触媒層5は酸化反応を開始する。そしてその酸化熱により混合触媒層5をさらに昇温して改質器1を次第に運転状態に移行させる。なお保温方式を採用する場合はスタート用の空気を使用しなくてよいので、図2に示す供給部32は不要になる。   When the air for oxidation is supplied from the supply pipe 14 when the mixed catalyst layer 5 is filled with the raw material-steam mixture, the mixed catalyst layer 5 that has reached the oxidation reaction temperature starts an oxidation reaction. Then, the mixed catalyst layer 5 is further heated by the oxidation heat, and the reformer 1 is gradually shifted to the operating state. In the case of adopting the heat retaining method, it is not necessary to use start air, so the supply unit 32 shown in FIG. 2 is not necessary.

本発明の改質器およびその起動方法は、自己酸化内部加熱型の改質器に利用できる。   The reformer and the start-up method of the present invention can be used for a self-oxidation internal heating type reformer.

従来の自己酸化内部加熱型の改質器の1例を模式的に示す断面図。Sectional drawing which shows typically an example of the conventional self-oxidation internal heating type reformer. 本発明の自己酸化内部加熱型の改質器を模式的に示す断面図。Sectional drawing which shows typically the auto-oxidation internal heating type reformer of this invention. 本発明の自己酸化内部加熱型の他の改質器を模式的に示す断面図。Sectional drawing which shows typically the self-oxidation internal heating type other reformer of this invention.

符号の説明Explanation of symbols

1 改質器
2 予備改質室
3 主改質室
3a 断熱壁
4 改質触媒層
5 混合触媒層
6 シフト触媒層
7 高温シフト触媒層
8 低温シフト触媒層
9 供給部
10 排出部
11 供給部
12 排出部
13 プレヒーター
14 供給管
15 吸引混合手段
16、17 流量調整弁
18 配管
19 流量調整弁
20 配管
21 加熱部
30、31 加熱手段
32 供給部
DESCRIPTION OF SYMBOLS 1 Reformer 2 Preliminary reforming chamber 3 Main reforming chamber 3a Heat insulation wall 4 Reforming catalyst layer 5 Mixed catalyst layer 6 Shift catalyst layer 7 High temperature shift catalyst layer 8 Low temperature shift catalyst layer 9 Supply unit 10 Discharge unit 11 Supply unit 12 Discharge unit 13 Preheater 14 Supply pipe 15 Suction mixing means 16, 17 Flow rate adjustment valve 18 Pipe 19 Flow rate adjustment valve 20 Pipe 21 Heating part 30, 31 Heating means 32 Supply part

Claims (6)

改質触媒と酸化触媒を混合した混合触媒層5を有する自己酸化内部加熱型の改質器1を起動する方法において、
前記改質器1は改質触媒層4を設けた外側の予備改質室2と混合触媒層5を設けた内側の主改質室3を有し、前記改質器1の起動前に前記予備改質室2の外側を加熱手段30で加熱して、その伝熱により前記混合触媒層5を酸化反応温度に保温し、または改質器1の起動に際して前記予備改質室2の外側を加熱手段30で加熱して、その伝熱により前記混合触媒層5を酸化反応温度に昇温して起動することを特徴とする改質器の起動方法。
In a method of starting a self-oxidation internal heating type reformer 1 having a mixed catalyst layer 5 in which a reforming catalyst and an oxidation catalyst are mixed,
The reformer 1 has an outer preliminary reforming chamber 2 provided with a reforming catalyst layer 4 and an inner main reforming chamber 3 provided with a mixed catalyst layer 5. The outside of the preliminary reforming chamber 2 is heated by the heating means 30 and the mixed catalyst layer 5 is kept at the oxidation reaction temperature by the heat transfer, or when the reformer 1 is started, the outside of the preliminary reforming chamber 2 is A starting method of a reformer, characterized in that it is heated by a heating means 30 and the mixed catalyst layer 5 is heated to an oxidation reaction temperature by the heat transfer and started.
請求項1において、前記加熱手段30は電気ヒーターにより構成されることを特徴とする改質器の起動方法。   The reformer start-up method according to claim 1, wherein the heating means (30) comprises an electric heater. 改質触媒と酸化触媒を混合した混合触媒層5を有する自己酸化内部加熱型の改質器1を起動する方法において、
前記改質器1は改質触媒層4を設けた外側の予備改質室2と混合触媒層5を設けた内側の主改質室3を有し、前記改質器1の起動前に前記混合触媒層5を前記主改質室3の上方に設けた加熱手段31による輻射熱で酸化反応温度に保温し、または改質器1の起動に際して前記混合触媒層5を前記主改質室3の上方に設けた加熱手段31による輻射熱で酸化反応温度に昇温して起動することを特徴とする改質器の起動方法。
In a method of starting a self-oxidation internal heating type reformer 1 having a mixed catalyst layer 5 in which a reforming catalyst and an oxidation catalyst are mixed,
The reformer 1 has an outer preliminary reforming chamber 2 provided with a reforming catalyst layer 4 and an inner main reforming chamber 3 provided with a mixed catalyst layer 5. The mixed catalyst layer 5 is kept at the oxidation reaction temperature by radiant heat from the heating means 31 provided above the main reforming chamber 3, or when the reformer 1 is started, the mixed catalyst layer 5 is kept in the main reforming chamber 3. A reformer start-up method, wherein the start-up is performed by raising the temperature to an oxidation reaction temperature by radiant heat from a heating means 31 provided above.
請求項3において、前記加熱手段31は電気ヒーターにより構成されることを特徴とする改質器の起動方法。   4. A reformer start-up method according to claim 3, wherein said heating means (31) comprises an electric heater. 改質触媒と酸化触媒を混合した混合触媒層5を有する自己酸化内部加熱型の改質器1において、
前記改質器1は改質触媒層3を設けた外側の予備改質室2と混合触媒層5を設けた内側の主改質室3を有し、前記予備改質室2の外側に前記混合触媒層5を伝熱で酸化反応温度に加熱する加熱手段30を設け、または前記主改質室3の上方に前記混合触媒層5を輻射熱で酸化反応温度に加熱する加熱手段31を設けたことを特徴とする改質器。
In the self-oxidation internal heating type reformer 1 having the mixed catalyst layer 5 in which the reforming catalyst and the oxidation catalyst are mixed,
The reformer 1 has an outer preliminary reforming chamber 2 provided with a reforming catalyst layer 3 and an inner main reforming chamber 3 provided with a mixed catalyst layer 5. A heating means 30 for heating the mixed catalyst layer 5 to the oxidation reaction temperature by heat transfer is provided, or a heating means 31 for heating the mixed catalyst layer 5 to the oxidation reaction temperature by radiation heat is provided above the main reforming chamber 3. A reformer characterized by that.
請求項5において、前記加熱手段30,または加熱手段31は電気ヒーターで構成されることを特徴とする改質器。   6. The reformer according to claim 5, wherein the heating means 30 or the heating means 31 is composed of an electric heater.
JP2005304539A 2005-10-19 2005-10-19 Method for starting reformer, and reformer Pending JP2007112654A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005304539A JP2007112654A (en) 2005-10-19 2005-10-19 Method for starting reformer, and reformer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005304539A JP2007112654A (en) 2005-10-19 2005-10-19 Method for starting reformer, and reformer

Publications (1)

Publication Number Publication Date
JP2007112654A true JP2007112654A (en) 2007-05-10

Family

ID=38095175

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005304539A Pending JP2007112654A (en) 2005-10-19 2005-10-19 Method for starting reformer, and reformer

Country Status (1)

Country Link
JP (1) JP2007112654A (en)

Similar Documents

Publication Publication Date Title
JP2008243597A (en) Fuel cell device
JP2009004346A (en) Reformer, fuel cell system, and shut-down method for reformer
JP5135209B2 (en) HYDROGEN GENERATOR, FUEL CELL SYSTEM HAVING THE SAME, AND METHOD FOR OPERATING THE SAME
KR100759693B1 (en) Carbon monoxide remover and reformer for fuel cell
JP4189731B2 (en) Auto-oxidation internally heated steam reforming system and its startup method
JP4486832B2 (en) Steam reforming system
JP2007112654A (en) Method for starting reformer, and reformer
JP4998932B2 (en) Methanol reformer
JP2004031280A (en) Fuel processing device, fuel cell power generation system, fuel processing method and fuel cell power generation method
JP2007284265A (en) Method for stopping reforming system
JP4676819B2 (en) Method for reducing reforming catalyst
JP2006335623A (en) Reforming system
JP2006044977A (en) Hydrogen production apparatus
JP2005353347A (en) Fuel cell system
JP2007145637A (en) Method for starting reformer
JP4847053B2 (en) Load control method for reforming system
JP2005314180A (en) Method for stopping auto-oxidizable internal heating reformer
JP2005216615A (en) Fuel processing device and fuel cell power generation system
JP5133570B2 (en) Insulation method of reformer
JP6072637B2 (en) Start-up method of self-heating reformer and self-heating reforming system
JP2007284287A (en) Method for starting reforming system
JP2006315874A (en) Method for starting fuel cell power generation system
JP2004256356A (en) Method of manufacturing reformed gas and reforming apparatus used for the manufacturing method
JP2009067645A (en) Hydrogen manufacturing device and fuel cell system using the same
JP4476272B2 (en) Hydrogen production apparatus and hydrogen production method