JP2007112563A - Gas pressure detecting device and powdery and granular material transporting device using the same - Google Patents

Gas pressure detecting device and powdery and granular material transporting device using the same Download PDF

Info

Publication number
JP2007112563A
JP2007112563A JP2005305086A JP2005305086A JP2007112563A JP 2007112563 A JP2007112563 A JP 2007112563A JP 2005305086 A JP2005305086 A JP 2005305086A JP 2005305086 A JP2005305086 A JP 2005305086A JP 2007112563 A JP2007112563 A JP 2007112563A
Authority
JP
Japan
Prior art keywords
transport
granular material
gas pressure
outside air
closing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005305086A
Other languages
Japanese (ja)
Other versions
JP4934311B2 (en
Inventor
Kazunari Hanaoka
一成 花岡
Toru Ueda
亨 上田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Matsui Mfg Co Ltd
Original Assignee
Matsui Mfg Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsui Mfg Co Ltd filed Critical Matsui Mfg Co Ltd
Priority to JP2005305086A priority Critical patent/JP4934311B2/en
Publication of JP2007112563A publication Critical patent/JP2007112563A/en
Application granted granted Critical
Publication of JP4934311B2 publication Critical patent/JP4934311B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a gas pressure detecting device capable of preventing inflow of outside air and promptly detecting pressure fluctuation in a transport condition so as to facilitate adjustment of secondary air, and a powdery and granular material transporting device capable of performing stable transport by using this gas pressure detecting device. <P>SOLUTION: This gas pressure detecting device is provided with a closed body 62 comprising a closed body main part 62A movably inserted into a cylindrical body 61 in which a gas flow is generated and an annular flange part 62B provided in the upper part of the closed body main part 62A and closing an outside air port 61A of the cylindrical body 61 in the transport condition; a fixed shaft 64 facing inside of the cylindrical body 61 and capable of moving the closed body 62 in accordance with pressure fluctuation by the gas flow; and an elastic body 65 energizing the fixed shaft 64 or the closed body 62 to open the outside air port 61A of the cylindrical body 61 in a normal condition. The annular flange part 62B of the closed body 62 resists the energizing force of the elastic body 65 to close the outside air port 61A of the cylindrical body 61 in the transport condition, and opens the outside air port 61A of the cylindrical body 61 by the energizing force of the elastic body 65 in a non-transport condition. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、気体の流れによる圧力変動を信号として検出し、この検出信号を必要とする装置に送る気体圧力検出装置と、この気体圧力検出装置を用いて、合成樹脂原料の粉粒体等を気体の流れにより輸送する粉粒体輸送装置に関する。   The present invention detects a pressure fluctuation due to a gas flow as a signal, and sends a gas pressure detection device that sends the detection signal to a device that requires the detection signal, and using this gas pressure detection device, a granular material of a synthetic resin material, etc. The present invention relates to a granular material transport device transported by a gas flow.

従来、この種の粉粒体輸送装置とそれに用いる気体圧力検出装置としては、特許文献1(特開2000−153922号公報)に記載されているようなものが知られている。この特許文献1に記載されたものを図7ないし図9に基づいて以下に説明する。   Conventionally, as this kind of granular material transport device and the gas pressure detection device used therefor, those described in Patent Document 1 (Japanese Patent Laid-Open No. 2000-153922) are known. What was described in this patent document 1 is demonstrated below based on FIG. 7 thru | or FIG.

図7において、粉粒体輸送装置は、合成樹脂成形材料として粉粒体が貯留された2基の粉粒体貯留槽101,101と、粉粒体貯留槽101,101の下部に開閉装置105,105を介して接続された輸送管114と、輸送管114の終端に接続されて気体と粉粒体とを分離する捕集器131と、捕集器131を介して輸送管114の内圧を負圧とすることによって輸送管114内に空気の気体流を生じさせ、粉粒体貯留槽101,101に貯留された粉粒体を輸送管114を介して捕集器131へ気体流で輸送する吸引装置139とを主な構成としている。   In FIG. 7, the granular material transport device includes two granular material storage tanks 101 and 101 in which the granular material is stored as a synthetic resin molding material, and an opening and closing device 105 below the granular material storage tanks 101 and 101. , 105 connected to the end of the transport pipe 114, the collector 131 connected to the end of the transport pipe 114 to separate the gas and the granular material, and the internal pressure of the transport pipe 114 through the collector 131 By making the negative pressure, a gas flow of air is generated in the transport pipe 114, and the powder stored in the powder storage tanks 101, 101 is transported by a gas flow to the collector 131 through the transport pipe 114. The suction device 139 is a main component.

そして、前記粉粒体貯留槽101の下部に接続された開閉装置105は、輸送管114の始端側に設けられた輸送管路内の圧力変動を検出する圧力検出手段112の検出信号に応じて開閉装置105を開閉制御する第1制御装置110と信号線111Aで接続されている。また、開閉装置105はモーター等の作動装置109で作動されるもので、該作動装置109はマイクロコンピューターを有する第1制御装置110に信号線111Aで接続されている。   The opening / closing device 105 connected to the lower part of the granular material storage tank 101 is in response to a detection signal of the pressure detection means 112 that detects pressure fluctuation in the transport pipe provided on the start end side of the transport pipe 114. It is connected to a first control device 110 that controls opening and closing of the opening and closing device 105 through a signal line 111A. The opening / closing device 105 is operated by an operating device 109 such as a motor, and the operating device 109 is connected to a first control device 110 having a microcomputer by a signal line 111A.

また、捕集器131に接続された吸引装置139には、吸引装置139を作動させるための動力源であるモーター等の作動装置142が接続され、作動装置142は信号線111Bを介してマイクロコンピューター等を有する第2制御装置143に接続されている。   The suction device 139 connected to the collector 131 is connected to an operation device 142 such as a motor as a power source for operating the suction device 139. The operation device 142 is connected to the microcomputer via a signal line 111B. Etc. are connected to a second control device 143.

前記捕集器131は、粒粉貯留槽101内の粉粒体を輸送管114を介し、気体と粉粒体とが混合された状態で気力輸送されたものから粉粒体だけを分離捕集する機能を有しており、その内部に貯留された粉粒体の量を検知する検知器151が設けられている。   The collector 131 separates and collects only the granular material from what is pneumatically transported in a state where the granular material in the granular powder storage tank 101 is mixed with the gas and the granular material via the transport pipe 114. The detector 151 which detects the quantity of the granular material stored in the inside is provided.

この検知器151は、捕集器131の下部に接続された透明筒149に対向して設けてあるとともに、前記第2制御装置143に信号線111Bを介して接続されている。   The detector 151 is provided opposite to the transparent tube 149 connected to the lower portion of the collector 131, and is connected to the second control device 143 via a signal line 111B.

しかして、捕集器131の下部の透明筒149に接続される図示しない成形機によって、捕集器131内の粉粒体が消費されて所定の量に至ると、検知器151が第2制御装置143に対して信号線111Bを介してエンプティ検出信号を出力し、この検出信号を受信した第2制御装置143は、作動装置142に対して信号線111Bを介し作動信号を出力して作動装置142を作動させる。この作動装置142が作動することによって吸引装置139が捕集器131内及び輸送管114内の内圧を減圧する。   Therefore, when the granular material in the collector 131 is consumed and reaches a predetermined amount by a molding machine (not shown) connected to the transparent cylinder 149 below the collector 131, the detector 151 performs the second control. The empty control signal is output to the device 143 through the signal line 111B, and the second control device 143 that has received the detection signal outputs the operation signal to the operating device 142 through the signal line 111B to operate the operating device. 142 is activated. By operating the operating device 142, the suction device 139 reduces the internal pressure in the collector 131 and the transport pipe 114.

輸送管114内の内圧が減圧されると、前記圧力検出手段112がこの減圧を検知し、信号線111Aを介して第1制御装置110に対して減圧検出信号を出力する。この減圧検出信号を第1制御装置110が受信すると、第1制御装置110は作動装置109により粉粒体貯留槽101,101の開閉装置105,105を開動作させて、輸送管114内に粉粒体貯留槽101,101内の粉粒体を放出し、この放出された粉粒体は輸送管114を介して捕集器131へ吸引輸送され、かつ気体と分離されて貯留されることになる。   When the internal pressure in the transport pipe 114 is reduced, the pressure detecting means 112 detects the reduced pressure and outputs a reduced pressure detection signal to the first control device 110 via the signal line 111A. When the first control device 110 receives this decompression detection signal, the first control device 110 opens the opening / closing devices 105 and 105 of the granular material storage tanks 101 and 101 by the actuating device 109 and puts the powder into the transport pipe 114. The granular material in the granular material storage tanks 101 and 101 is discharged, and the discharged granular material is sucked and transported to the collector 131 through the transport pipe 114 and stored separately from the gas. Become.

図8,図9に示すのは、前述した圧力検出手段112の詳細な構成を示す縦断面図である。図8は、粉粒体貯留槽101から捕集器131への非輸送状態時の圧力検出手段を示し、図9は粉粒体貯留槽101から捕集器131への輸送状態時の圧力検出手段を示している。前記圧力検出手段112は、粉粒体貯留槽101が輸送管114に接続される部位よりも更に粉粒体の輸送方向に対して上流側の輸送管114の始端側の立ち上がり部114Aに設けられている。   8 and 9 are longitudinal sectional views showing the detailed configuration of the pressure detecting means 112 described above. FIG. 8 shows the pressure detection means in the non-transport state from the granular material storage tank 101 to the collector 131, and FIG. 9 shows the pressure detection in the transport state from the granular material storage tank 101 to the collector 131. Means are shown. The pressure detection means 112 is provided at the rising portion 114A on the start end side of the upstream transport pipe 114 with respect to the transport direction of the granular material further than the part where the granular material storage tank 101 is connected to the transport pipe 114. ing.

前記圧力検出手段112は、輸送管114の始端側の立ち上がり部114Aの開口114Bを閉塞するように設けられ、略中央部分に外気導入口120Aを形成した閉塞板受部120と、輸送管114の立ち上がり部114Aから内方位置に内嵌して設けられた閉塞板ガイド筒124と、閉塞板ガイド筒124の内筒124Aに摺動自在に遊嵌されたロッド123と、該ロッド123の上端に固定され、閉塞板ガイド筒124と閉塞板受部120との間に配置されるとともに、その外径が輸送管114の内径より小さく前記外気導入口120Aよりも大きい円盤状の閉塞板121と、常態時(非輸送状態時)において閉塞板121の表面で外気導入口120Aを閉塞する方向に付勢する、閉塞板ガイド筒124と閉塞板121との間に介在したコイルバネ等のバネ152とから構成されている。前記バネ152のバネ受けは、閉塞板ガイド筒124の内筒124Aと外筒124Bとの間に放射状に設けられたアーム124Cがその機能を担う。   The pressure detecting means 112 is provided so as to close the opening 114B of the rising portion 114A on the start end side of the transport pipe 114, and includes a closing plate receiving part 120 in which an outside air introduction port 120A is formed at a substantially central portion, and the transport pipe 114. A closing plate guide tube 124 fitted inward from the rising portion 114A, a rod 123 slidably fitted in the inner tube 124A of the closing plate guide tube 124, and an upper end of the rod 123 A disc-shaped closing plate 121 that is fixed and disposed between the closing plate guide cylinder 124 and the closing plate receiving portion 120 and whose outer diameter is smaller than the inner diameter of the transport pipe 114 and larger than the outside air inlet 120A; It is interposed between the closing plate guide cylinder 124 and the closing plate 121 that urges the outside air introduction port 120 </ b> A in the direction of closing the outside air introduction port 120 </ b> A on the surface of the closing plate 121 in a normal state (non-transport state). And a spring 152. such as a coil spring. The spring receiver of the spring 152 has the function of arms 124C provided radially between the inner cylinder 124A and the outer cylinder 124B of the closing plate guide cylinder 124.

また、外気導入口120Aを形成する閉塞板受部120の鍔部120Bには、リミットスイッチ128が取付ブラケット129を介して固定されている。しかも、リミットスイッチ128のON/OFF動作を担う検出杆128Aが、常態時には、閉塞板121の平面に対して前記外気導入口120Aを介して当接し、前記バネ152の付勢力によって、検出杆128Aがリミットスイッチ128内に押圧されてOFF状態を保持する。   Further, a limit switch 128 is fixed to the flange portion 120B of the closing plate receiving portion 120 that forms the outside air introduction port 120A via a mounting bracket 129. In addition, the detection rod 128A responsible for the ON / OFF operation of the limit switch 128 abuts against the flat surface of the closing plate 121 through the outside air introduction port 120A in a normal state, and the detection rod 128A is applied by the biasing force of the spring 152. Is pressed into the limit switch 128 to hold the OFF state.

そして、上記従来の圧力検出手段112においては、粉粒体貯留槽101から捕集器131への非輸送状態時では、輸送管114の内圧は外気圧と同等の状態にあり、図8に示すように、バネ152の付勢力によって、外気導入口120Aを閉塞板121で閉塞した状態を保持する。   And in the said conventional pressure detection means 112, in the non-transport state from the granular material storage tank 101 to the collector 131, the internal pressure of the transport pipe 114 is in a state equivalent to the external air pressure, and is shown in FIG. As described above, the external air introduction port 120 </ b> A is kept closed by the closing plate 121 by the biasing force of the spring 152.

次に、捕集器131内の粉粒体が消費されて所定の量に至ると、検知器151が第2制御装置143に対して信号線111Bを介してエンプティ検出信号を出力し、その検出信号を受信した第2制御装置143は、作動装置142に対して信号線111Bを介し作動信号を出力して作動装置142を作動させるとともに、予め設定された回数だけ電磁弁147を開く。作動装置142が作動することによって吸引装置139が捕集器131内及び輸送管114内の内圧を減圧する。   Next, when the granular material in the collector 131 is consumed and reaches a predetermined amount, the detector 151 outputs an empty detection signal to the second control device 143 via the signal line 111B, and the detection. The second control device 143 that has received the signal outputs an operation signal to the actuator 142 via the signal line 111B to operate the actuator 142 and opens the electromagnetic valve 147 a preset number of times. When the operation device 142 is operated, the suction device 139 reduces the internal pressure in the collector 131 and the transport pipe 114.

輸送管114内の圧力が減圧されると、閉塞板121は圧力検出手段112のバネ152の付勢力に抗して輸送管114内を降下されて外気導入口120Aが開放される(図9参照)。この時、前記検出杆128Aが閉塞板121の降下に追随することによってリミットスイッチ128がON状態となる。このようにリミットスイッチ128がON状態となると、リミットスイッチ128から信号線111Aを通じて減圧検出信号が第1制御装置110に出力され、該第1制御装置110が前記減圧検出信号の受信を受けると、粉粒体貯留槽101の開閉装置105に対して開動作指示信号を送信し、開閉装置105を所定時間の間を閉状態から開状態として、前記粉粒体貯留槽101内の粉粒体を輸送管114内に放出する。つまり、前記リミットスイッチ128は、圧力検出手段112の閉塞板121の上下移動を検出するスイッチとして機能するのである。   When the pressure in the transport pipe 114 is reduced, the closing plate 121 is lowered in the transport pipe 114 against the biasing force of the spring 152 of the pressure detecting means 112, and the outside air inlet 120A is opened (see FIG. 9). ). At this time, when the detection rod 128A follows the lowering of the closing plate 121, the limit switch 128 is turned on. When the limit switch 128 is turned on in this way, a pressure reduction detection signal is output from the limit switch 128 to the first control device 110 through the signal line 111A, and when the first control device 110 receives the pressure reduction detection signal, An opening operation instruction signal is transmitted to the opening / closing device 105 of the granular material storage tank 101, and the opening / closing device 105 is changed from the closed state to the open state for a predetermined time, so that the granular material in the granular material storage tank 101 is removed. Release into the transport tube 114. That is, the limit switch 128 functions as a switch that detects the vertical movement of the closing plate 121 of the pressure detecting means 112.

しかしながら、上記従来の圧力検出手段112では、作動装置142が作動することによって、吸引装置139が捕集器131内及び輸送管114内の内圧を減圧して輸送状態となると、輸送管114の内圧と外気圧との差がバネ152の付勢力に打ち勝って、図9に示すように、閉塞板121が外気導入口120Aと離間し、当該外気導入口120Aを介して外気と輸送管114内とが連通する状態となる結果、外気導入口120Aから二次空気としての外気が輸送管121内の気体流に加わることになり、閉塞板121が圧力変動への反応が穏やかとなるため、粉粒体の輸送がスムーズに行えなくなる、つまり安定輸送が阻害されるといった問題があった。   However, in the conventional pressure detecting means 112, when the operating device 142 is operated, the suction device 139 reduces the internal pressure in the collector 131 and the transport pipe 114 to enter the transport state, so that the internal pressure of the transport pipe 114 is reached. 9 overcomes the biasing force of the spring 152, and as shown in FIG. 9, the closing plate 121 is separated from the outside air introduction port 120A, and the outside air and the inside of the transport pipe 114 are separated via the outside air introduction port 120A. As a result, the outside air as secondary air is added to the gas flow in the transport pipe 121 from the outside air inlet 120A, and the reaction of the blocking plate 121 to the pressure fluctuation becomes gentle. There was a problem that the body could not be transported smoothly, that is, stable transportation was hindered.

また、接点を開閉するリミットスイッチ128の構造上、接点の開閉時の力が開閉する時の力と前後の力で大きな差があることと、バラツキがあることが分かっている。この状態で使用しつづけると5万回も越える使用では初期設定させた状態では開閉動作ができなくなることもあった。    Further, it has been found that due to the structure of the limit switch 128 that opens and closes the contact, there is a large difference between the force at the time of opening and closing the contact and the force before and after and the variation. If it continues to be used in this state, when it is used more than 50,000 times, the opening / closing operation may not be possible in the state of initial setting.

このように粉粒体を吸引輸送する場合には、輸送管の閉塞を防止し安定輸送するために、粉粒体貯留槽101の材料投入する部位などから粉粒体に対する輸送用の空気の混入比調整用の二次空気を供給する。このような二次空気が加わった気体流と粉粒体とが混合した状態で、輸送管114内を粉粒体が輸送されるのであるが、輸送をスムーズに行うためには、粉粒体と搬送用空気との混入比を所定の値に保つことが重要な要素となる。この混入比とは、粉粒体を単位時間に輸送した重量を、単位時間に輸送に供した空気の重量で割った値で示される。この値が大きいと輸送管114内を輸送する抵抗が大きくなり、輸送流速が遅くなることで、輸送管114が詰まってしまうといった可能性がある。   In the case of sucking and transporting the granular material in this way, in order to prevent clogging of the transport pipe and to stably transport it, mixing of air for transportation to the granular material from the part of the granular material storage tank 101 where the material is charged, etc. Supply secondary air for ratio adjustment. In such a state that the gas flow and the granular material to which the secondary air is added are mixed, the granular material is transported in the transport pipe 114. In order to smoothly transport the granular material, It is an important factor to keep the mixing ratio between the air and the carrier air at a predetermined value. This mixing ratio is represented by a value obtained by dividing the weight of the granular material transported per unit time by the weight of the air subjected to transport per unit time. If this value is large, the resistance for transporting the inside of the transport pipe 114 becomes large, and there is a possibility that the transport pipe 114 is clogged due to a slow transport flow rate.

上記従来の圧力検出手段112を粉粒体輸送装置に採用した場合、輸送管114内が減圧されると、前述したように、閉塞板121が前記外気導入口120Aと離間し、外気導入口120Aを介して外気と輸送管114内とが連通する状態となる結果、外気導入口120Aから二次空気としての外気が輸送管121内に流入されるとともに、その二次空気の流入量が閉塞板121が外気導入口120Aと離間の距離に応じて変化する虞があるなどの問題から、前述したスムーズな輸送にとって重要な要素となる二次空気量の調整が困難となり、その結果としてスムーズな粉粒体の吸引輸送が行えないといった問題を有するのである。   When the conventional pressure detecting means 112 is employed in the granular material transport device, when the inside of the transport pipe 114 is depressurized, as described above, the closing plate 121 is separated from the outside air inlet 120A, and the outside air inlet 120A. As a result, the outside air communicates with the inside of the transport pipe 114 through the outside air, so that the outside air as the secondary air flows into the transport pipe 121 from the outside air introduction port 120A, and the inflow amount of the secondary air is reduced by the blocking plate. Because of the problem that 121 may change depending on the distance from the outside air introduction port 120A, it is difficult to adjust the secondary air amount, which is an important factor for the smooth transportation described above. There is a problem that the particles cannot be sucked and transported.

特開2000−153922号公報JP 2000-153922 A

本発明は、上記課題を解決しようとするものであって、輸送状態時において外気(二次空気)の流入を防止するとともに、圧力変動を迅速に検出し、さらに上述した吸引輸送時における二次空気の調整を阻害することのない気体圧力検出装置、及び、この気体圧力検出装置を用いることにより安定した輸送の行える粉粒体輸送装置を提供することを目的とする。   The present invention is intended to solve the above-described problems, and prevents inflow of outside air (secondary air) during transportation, detects pressure fluctuation quickly, and further performs secondary transportation during suction transportation described above. It is an object of the present invention to provide a gas pressure detection device that does not hinder the adjustment of air, and a granular material transport device that can perform stable transportation by using this gas pressure detection device.

上記目的を達成するため、本発明の請求項1の気体圧力検出装置は、気体流の生じる通路に連通した筒体内に移動自在に嵌挿される閉塞体本体部と、この閉塞体本体部の上部に設けられ、気体流による圧力が輸送のために変化させられた輸送状態時には上記筒体の外気口を閉塞する環状鍔部とからなる閉塞体と、前記筒体内に臨み、かつ前記閉塞体を気体流による圧力変動に応じて移動可能とするための固定軸と、この固定軸又は閉塞体に常態時において筒体の外気口を開放するように付勢したコイルバネなどのバネ等の弾性体とを備え、前記閉塞体の環状鍔部は、輸送状態時には前記弾性体の付勢力に抗して筒体の外気口を閉塞し、気体流による圧力変動がない非輸送状態時には前記弾性体の付勢力により筒体の外気口を開放するようにしたことを特徴とする。   In order to achieve the above object, a gas pressure detecting device according to claim 1 of the present invention includes a closed body main body that is movably inserted into a cylinder communicating with a passage in which a gas flow is generated, and an upper portion of the closed body main body. A closed body comprising an annular flange that closes the outside air port of the cylinder in a transportation state in which the pressure due to the gas flow is changed for transportation; A fixed shaft for allowing movement according to pressure fluctuations caused by the gas flow, and an elastic body such as a spring such as a coil spring biased to open the outside air port of the cylindrical body in a normal state to the fixed shaft or the closed body And the annular flange of the closing body closes the outside air port of the cylinder against the urging force of the elastic body in the transport state, and attaches the elastic body in the non-transport state where there is no pressure fluctuation due to gas flow. The outside air vent of the cylinder should be opened by force It is characterized in.

これにより、圧力変動のない非輸送状態時には、閉塞体の環状鍔部は弾性体の付勢力により上動されるため、筒体伝いの外気口が開放される。気体流の発生により圧力変動が起こる輸送状態時には、閉塞体の環状鍔部が弾性体の付勢力に抗して筒体の外気口を閉塞するため、前記外気口へ外気(二次空気)が流入するのを防止できる結果、輸送用気体流のみの圧力変動が正確かつ迅速に検出できるとともに、安定した気体流を確保できる。また吸引輸送における二次空気量の調整も正確で容易となり、粉粒体の気力輸送が安定してスムーズに行える。   Thereby, in the non-transporting state where there is no pressure fluctuation, the annular flange portion of the closing body is moved up by the urging force of the elastic body, so that the outside air port extending through the cylindrical body is opened. In the transport state in which pressure fluctuation occurs due to the generation of the gas flow, the annular flange of the closing body blocks the outside air port of the cylindrical body against the urging force of the elastic body, so that outside air (secondary air) flows into the outside air port. As a result of preventing the inflow, the pressure fluctuation of only the transport gas flow can be detected accurately and quickly, and a stable gas flow can be secured. Moreover, the secondary air amount in the suction transportation can be adjusted accurately and easily, and the pneumatic transportation of the granular material can be performed stably and smoothly.

ここで、「非輸送状態時」とは、気力輸送路内例えば輸送管内を減圧するなどして輸送可能な状態にない状態を意味し、「輸送状態時」とは例えば輸送管内を減圧するなどして合成樹脂などの成形用原材料としての粉粒体を輸送する状態のことをいう。なお、気力輸送には、輸送管内を減圧して吸引輸送する場合と、加圧して加圧輸送する場合の2つの態様がある。
また、本明細書で、「筒体」とは、筒体が輸送管の一部である場合、又は、輸送管に対して別体の筒体を輸送管内と連通するように構成する場合の2つの態様を含むという意味である。具体的には、後述する実施例の第1例のように、輸送管の始端を屈曲状に折り曲げ、この折り曲げた立ち上がり部が前記筒体に相当する場合、又は、実施例の第2例に示すように、輸送管路の途中に当該輸送管内と連通する筒体を別体で溶接などによって固定する場合の2つの態様を含むことを意味している。さらに、「環状鍔部」は、図2、図3、図5及び図6に示すように閉塞体本体部62Aの上端部に一体に形成したものに限らず、閉塞体本体部62Aの上端部より下方位置の上部などでもよく、その形成位置は適宜設計変更できる。しかも環状鍔部と閉塞体本体部とは上記図示の如く一体形成のものに限らず、嵌合方式や螺合方式などによる別体の構成のものでもよい。また「弾性体」は例えばコイルバネなどのバネ等でもよく、このバネを採用する場合には、固定軸にバネ受けを設けると共に、このバネ受けと閉塞体との間にバネを配置することもできる。
Here, “in the non-transport state” means a state where the transport route, for example, the inside of the transport pipe is decompressed and is not in a transportable state, and “in the transport state” means, for example, the inside of the transport pipe is decompressed, etc. It means a state where a granular material as a raw material for molding such as a synthetic resin is transported. In addition, there are two modes of pneumatic transportation: a case where the inside of the transport pipe is decompressed and transported by suction, and a case where the transport is pressurized and transported under pressure.
Further, in this specification, the “cylindrical body” refers to a case where the cylindrical body is a part of the transport pipe, or a case where a separate cylindrical body is configured to communicate with the inside of the transport pipe. It means to include two aspects. Specifically, as in the first example of the embodiment described later, the starting end of the transport pipe is bent in a bent shape, and the bent rising portion corresponds to the cylindrical body, or in the second example of the embodiment. As shown, it is meant to include two modes in the case of fixing a cylindrical body communicating with the inside of the transport pipe separately by welding or the like in the middle of the transport pipeline. Further, the “annular collar” is not limited to the one formed integrally with the upper end of the closing body main part 62A as shown in FIGS. 2, 3, 5, and 6, but the upper end of the closing body main part 62A. The upper part of the lower position may be used, and the formation position can be appropriately changed. Moreover, the annular flange portion and the closed body main body portion are not limited to being integrally formed as shown in the figure, but may be configured separately by a fitting method or a screwing method. The “elastic body” may be, for example, a spring such as a coil spring. When this spring is employed, a spring receiver may be provided on the fixed shaft, and a spring may be disposed between the spring receiver and the closing body. .

請求項2の気体圧力検出装置は、閉塞体を非磁性体で構成するとともに、その閉塞体の一部には磁石を設けるとともに、固定軸内に前記磁石を検出する磁気検出スイッチを設け、この磁気検出スイッチによって閉塞体の固定軸に沿っての移動を検出するように構成してあることを特徴とする。   The gas pressure detection device according to claim 2 is configured such that the closing body is made of a non-magnetic body, a magnet is provided in a part of the closing body, and a magnetic detection switch for detecting the magnet is provided in a fixed shaft. The magnetic detection switch is configured to detect the movement of the closing body along the fixed axis.

これにより、従来の圧力検出手段112のリミットスイッチでは、接点を接触する前後で大きな力の変化(つまり接点による抵抗)があって、前述したような問題があったが、本発明では前記の如く磁気検出スイッチが物理的な接点の接触抵抗がなく検出することができるので、圧力変動をより敏感に検出することができるし、また閉塞体を動作させる力が均一となり、輸送路の圧力変動を安定して検出することができるようになった。   As a result, the conventional limit switch of the pressure detecting means 112 has a large change in force before and after contact with the contact (that is, resistance due to the contact), and has the above-mentioned problem. Since the magnetic detection switch can detect without physical contact resistance, pressure fluctuations can be detected more sensitively, and the force to operate the obstructing body becomes uniform, and pressure fluctuations in the transportation path can be detected. It became possible to detect stably.

なお、前記磁気検出スイッチとしては、周知のリードスイッチを採用することが好ましい。また、非磁性体とはプラスチック材で構成することができ、このプラスチック材は、その使用環境が外気温に比べて高温となるような環境で使用されることを考慮して耐熱性のものを採用することが好ましい。このような耐熱性のプラスチック材で閉塞体を形成した場合、膨張自体も少なくなるので、閉塞体が膨張して移動の際に筒体の内径に引っ掛かるなどの虞を低減することができる。   As the magnetic detection switch, it is preferable to employ a known reed switch. In addition, the non-magnetic material can be made of a plastic material, and this plastic material is made of a heat-resistant material in consideration that it is used in an environment where the use environment is higher than the outside temperature. It is preferable to adopt. When the closing body is formed of such a heat-resistant plastic material, the expansion itself is also reduced, so that the possibility that the closing body expands and is caught by the inner diameter of the cylinder during movement can be reduced.

請求項3の気体圧力検出装置は、閉塞体の閉塞体本体部は、その外径が前記筒体の内径より小さく該筒体内への嵌挿状態時に、筒体の内径と閉塞体本体部の外径との間に第1のクリアランスを形成する一方、前記環状鍔部の外径は前記筒体の内径よりも大きく設定してなり、さらに前記閉塞体本体部及び環状鍔部の中心位置に摺動孔を貫通し、この摺動孔の内径は前記固定軸の外径との間に第2のクリアランスを有する大きさに設定され、前記固定軸に対して閉塞体が摺動自在に挿入されており、前記第1のクリアランスは第2のクリアランスに比べて大きいことを特徴とする。   According to a third aspect of the present invention, there is provided the gas pressure detecting device according to the third aspect of the present invention, wherein the closed body body portion of the closed body has an outer diameter smaller than the inner diameter of the cylinder body, The first clearance is formed between the outer diameter and the outer diameter of the annular flange portion is set to be larger than the inner diameter of the cylindrical body, and further at the center position of the closure body main body portion and the annular flange portion. The sliding hole is penetrated, and the inner diameter of the sliding hole is set to a size having a second clearance between the outer diameter of the fixed shaft, and the closing body is slidably inserted into the fixed shaft. The first clearance is larger than the second clearance.

これにより、閉塞体本体部の外径と筒体の内径とで形成される第1のクリアランスが、閉塞体の摺動孔の内径と前記固定軸の外径との間に形成される第2のクリアランスに比べて大きくしてあるから、閉塞体が筒体の外気口を閉塞したり閉塞を解除する際に、閉塞体の閉塞体本体部が固定軸に沿って筒体内で移動を繰り返すが、閉塞体本体部が固定軸に沿って筒体内周壁に接触したり引っ掛ることなく上下動することができる。   As a result, a first clearance formed by the outer diameter of the closing body main body and the inner diameter of the cylindrical body is formed between the inner diameter of the sliding hole of the closing body and the outer diameter of the fixed shaft. Therefore, when the closing body closes or releases the opening of the cylinder, the closing body body of the closing body repeatedly moves along the fixed axis in the cylinder. The obturator body can move up and down along the fixed axis without touching or catching the peripheral wall of the cylinder.

請求項4の発明は、請求項1〜請求項3のいずれかの気体圧力検出装置が、気力輸送路を構成する輸送管の適宜位置に設けてなることを特徴とする粉粒体輸送装置である。   A fourth aspect of the present invention is a granular material transporting device, wherein the gas pressure detecting device according to any one of the first to third aspects is provided at an appropriate position of a transport pipe constituting an aerodynamic transport path. is there.

請求項5の発明は、請求項4の粉粒体輸送装置をより具体的に構成したものであり、この粉粒体輸送装置は、粉粒体貯留槽と、粉粒体と気体とを分離する捕集器とを輸送管で接続し、気体流発生源により前記輸送管内に生じる気体流により粉粒体貯留槽の粉粒体を前記捕集器に気力輸送する粉粒体輸送装置において、前記粉粒体貯留槽の近傍における輸送管に請求項1〜請求項3のいずれかに記載の気体圧力検出装置を設けてなることを特徴とする。   The invention of claim 5 is a more specific configuration of the granular material transport device of claim 4, and this granular material transport device separates the granular material storage tank, the granular material and the gas. In the granular material transport device that connects the collector with the transport pipe, and pneumatically transports the granular material of the granular material storage tank to the collector by the gas flow generated in the transport pipe by the gas flow generation source, The gas pressure detection device according to any one of claims 1 to 3 is provided in a transport pipe in the vicinity of the granular material storage tank.

請求項4又は請求項5の発明によれば、請求項1〜請求項3のいずれかの気体圧力検出装置で粉粒体槽の近くの圧力変化を精度良く検知することができるので、例えば、気体圧力検出装置で検出した検出信号を用いて、粉粒体貯留槽から輸送管への粉粒体放出のための開閉装置の制御を行う際には好適である。さらに、請求項1〜3の気体圧力検出装置自体の効果を享受できる。なお、気体流発生源は、狭義には後述する実施例におけるブロアー等の吸引装置39を言い、広義には該吸引装置39を作動するためのモーター等の作動装置42を含む場合がある。   According to the invention of claim 4 or claim 5, the gas pressure detection device of any one of claims 1 to 3 can accurately detect a pressure change near the powder tank, It is suitable for controlling the opening / closing device for discharging the granular material from the granular material storage tank to the transport pipe using the detection signal detected by the gas pressure detection device. Furthermore, the effect of the gas pressure detection apparatus itself of Claims 1-3 can be enjoyed. In addition, the gas flow generation source refers to a suction device 39 such as a blower in an embodiment to be described later in a narrow sense, and may include an operation device 42 such as a motor for operating the suction device 39 in a broad sense.

請求項1の気体圧力検出装置によれば、気体流による圧力変動のない非輸送状態時には、閉塞体の環状鍔部は弾性体の付勢力により上動されるので、筒体の外気口が開放される。気体流の発生により圧力変動が起こる輸送状態時には、閉塞体の環状鍔部が弾性体の付勢力に抗して筒体の外気口を閉塞するので、筒体の外気口へ外気(二次空気)が流入するのを防止できる。その結果、輸送用気体流のみの圧力変動が正確かつ迅速に検出できるとともに、安定した気体流を確保できる。また吸引輸送における二次空気量の調整も正確で容易となり、粉粒体の気力輸送が安定してスムーズに行える。   According to the gas pressure detecting device of the first aspect, in the non-transport state where there is no pressure fluctuation due to the gas flow, the annular flange of the closing body is moved up by the urging force of the elastic body, so that the outside air port of the cylinder is opened Is done. In the transport state in which pressure fluctuation occurs due to the generation of gas flow, the annular flange of the closing body closes the outside air port of the cylinder against the urging force of the elastic body, so that the outside air (secondary air) enters the outside air port of the cylinder. ) Can be prevented. As a result, the pressure fluctuation of only the transport gas flow can be detected accurately and quickly, and a stable gas flow can be secured. Moreover, the secondary air amount in the suction transportation can be adjusted accurately and easily, and the pneumatic transportation of the granular material can be performed stably and smoothly.

請求項2の気体圧力検出装置によれば、前述の如く磁気検出スイッチが物理的な接点の接触抵抗がなく検出することができるので、圧力変化をより敏感に検出することができるし、また閉塞体を動作させる力が均一となり、輸送路の圧力変動を安定して検出することができる。   According to the gas pressure detection device of claim 2, since the magnetic detection switch can detect without physical contact contact resistance as described above, pressure change can be detected more sensitively and obstruction can be detected. The force for moving the body becomes uniform, and the pressure fluctuation in the transportation path can be detected stably.

請求項3の気体圧力検出装置によれば、閉塞体本体部の外径と筒体の内径とで形成される第1のクリアランスが、閉塞体の摺動孔の内径と前記固定軸の外径との間に形成される第2のクリアランスに比べて大きくしてあるから、閉塞体が筒体の外気口を閉塞したり閉塞を解除する際に、閉塞体本体部が固定軸に沿って筒体内で移動を繰り返すが、閉塞体本体部が固定軸に沿って筒体内周壁に接触したり引っ掛ることなく上下動することができる。   According to the gas pressure detection device of claim 3, the first clearance formed by the outer diameter of the closing body main body and the inner diameter of the cylinder has the inner diameter of the sliding hole of the closing body and the outer diameter of the fixed shaft. Therefore, when the closing body closes or releases the outside air port of the cylinder, the closing body main body portion moves along the fixed axis. Although the movement is repeated in the body, the closed body main body can move up and down along the fixed axis without contacting or catching on the peripheral wall of the cylinder.

請求項4又は請求項5の粉粒体輸送装置によれば、請求項1〜請求項3のいずれかの気体圧力検出装置の作用効果を奏するだけでなく、粉粒体の気力輸送が安定してスムーズに行うことができる粉粒体輸送装置を提供することができる。   According to the granular material transport device of claim 4 or claim 5, not only the effect of the gas pressure detection device of any one of claims 1 to 3 is exhibited, but also the pneumatic transport of the granular material is stabilized. Therefore, it is possible to provide a granular material transport apparatus that can be performed smoothly.

本発明の実施例の第1例を図1〜図3に基づいて以下に説明する。
図1は本発明の実施例1における気体圧力検出装置を用いた粉粒体輸送装置の概略構成図、図2は同実施例1における気体圧力検出装置の非輸送状態時の要部縦断面図、図3は同実施例1における気体圧力検出装置の輸送状態時の要部縦断面図である。
A first example of an embodiment of the present invention will be described below with reference to FIGS.
FIG. 1 is a schematic configuration diagram of a granular material transport device using a gas pressure detection device according to a first embodiment of the present invention, and FIG. 2 is a longitudinal sectional view of a main part of the gas pressure detection device according to the first embodiment when not transported. FIG. 3 is a longitudinal sectional view of an essential part of the gas pressure detection device in the transport state in the first embodiment.

図1において、粉粒体輸送装置は、気体圧力検出装置60(図7の圧力検出手段112に相当する)の部分を除いて、図7のものと同様に構成してある。すなわち、合成樹脂成形材料として粉粒体が貯留された2基の粉粒体貯留槽1、1と、粉粒体貯留槽1、1の下部にロータリーフィーダー等の開閉装置5、5を介して接続された輸送管14と、輸送管14の終端に接続されて気体と粉粒体とを分離する捕集器31と、捕集器31を介して輸送管の内圧を負圧とすることによって輸送管14内に空気の気体流を生じさせ、粉粒体貯留槽1、1に貯留された粉粒体を輸送管14を介して捕集器31側へ気体流で輸送する吸引装置39とを主な構成としている。   In FIG. 1, the granular material transport device is configured in the same manner as that in FIG. 7 except for the gas pressure detection device 60 (corresponding to the pressure detection means 112 in FIG. 7). That is, two powder storage tanks 1 and 1 in which powder is stored as a synthetic resin molding material, and a lower part of the powder storage tank 1 and 1 via opening and closing devices 5 and 5 such as a rotary feeder. By connecting the transport pipe 14, the collector 31 connected to the terminal end of the transport pipe 14 to separate the gas and the granular material, and making the internal pressure of the transport pipe negative through the collector 31. A suction device 39 for generating a gas flow of air in the transport pipe 14 and transporting the powder stored in the powder storage tanks 1 and 1 to the collector 31 side via the transport pipe 14 by a gas flow; The main structure.

そして、前記粉粒体貯留槽1の下部に接続された開閉装置5は、輸送管14の始端側に設けられた輸送管路内の圧力変動を検出する気体圧力検出装置60の検出信号に応じて開閉装置5を開閉制御する第1制御装置10と信号線11Aで接続されている。この開閉装置5は、粉粒体貯留槽1の下方の輸送管14との間に設けられるロータリーベーンフィーダー等の開閉バルブ5Aと、当該開閉バルブ5Aを開閉作動するためのモーター等の開閉動力源5Bとから構成されている。また、開閉動力源5Bはマイクロコンピューター・シーケンサー等を有する第1制御装置10に信号線11Aによって接続されている。   And the opening / closing device 5 connected to the lower part of the said granular material storage tank 1 respond | corresponds to the detection signal of the gas pressure detection apparatus 60 which detects the pressure fluctuation in the transport pipe line provided in the start end side of the transport pipe 14. The signal line 11A is connected to the first control device 10 that controls the opening and closing of the opening and closing device 5. The opening / closing device 5 includes an opening / closing valve 5A such as a rotary vane feeder provided between the powder storage tank 1 and a transport pipe 14 below, and an opening / closing power source such as a motor for opening / closing the opening / closing valve 5A. 5B. The open / close power source 5B is connected to a first control device 10 having a microcomputer sequencer or the like by a signal line 11A.

また、捕集器31に接続された気体流発生源としての吸引装置39には、吸引装置39を作動させるための動力源であるモーター等の作動装置42が接続され、該作動装置42は信号線11Bを介してマイクロコンピューター等を有する第2制御装置43に接続されている。   Further, an operating device 42 such as a motor as a power source for operating the suction device 39 is connected to the suction device 39 as a gas flow generation source connected to the collector 31. It is connected to a second control device 43 having a microcomputer or the like via a line 11B.

吸引装置39は、ブロアーやコンプレッサーなどが用いられ、吸引管32を介して捕集器31の上部に接続され、捕集器31を通じて輸送管14内に空気を吸引し輸送管14内を負圧状態にして気体流を発生させる。その排気気体は吸引装置39の排気口40から大気に開放している。
吸引管32の途中には大気導入口36を形成するとともに、該大気導入口36に電磁弁37が接続されている。この電磁弁37は信号線11Bを介して第2制御装置43に接続されており、電磁弁37を開くことによって吸引管32内を大気に開放させることができる。
The suction device 39 uses a blower, a compressor, or the like, and is connected to the upper portion of the collector 31 via the suction tube 32. Air is sucked into the transport tube 14 through the collector 31 and negative pressure is generated in the transport tube 14. A gas stream is generated in the state. The exhaust gas is open to the atmosphere from the exhaust port 40 of the suction device 39.
An air introduction port 36 is formed in the middle of the suction pipe 32, and an electromagnetic valve 37 is connected to the air introduction port 36. The electromagnetic valve 37 is connected to the second control device 43 via the signal line 11B, and the inside of the suction pipe 32 can be opened to the atmosphere by opening the electromagnetic valve 37.

捕集器31は、粒粉貯留槽1内の輸送管14を介し、気体と粉粒体とが混合された状態で気力輸送されたものから粉粒体だけを分離捕集する機能を有している。この捕集器31の内部の上部には、粉粒体の通過は許容せず気体の通過は許容する多孔板33を内装しており、これによって気体は吸引管32側へ排出され、粉粒体は入口34から出口35へ供給されて行く。また、捕集器31の出口には透明筒49が接続され、この透明筒49の下端には図1で点線で示すように、合成樹脂成形材料たる粉粒体を成形するための射出成形機などの成形機55が接続されている。   The collector 31 has a function of separating and collecting only the granular material from what is pneumatically transported in a state where the gas and the granular material are mixed through the transport pipe 14 in the granular powder storage tank 1. ing. In the upper part of the collector 31, a porous plate 33 that does not allow the passage of powder and allows the passage of gas is built in, so that the gas is discharged to the suction pipe 32 side. The body is fed from the inlet 34 to the outlet 35. Further, a transparent tube 49 is connected to the outlet of the collector 31, and an injection molding machine for forming a granular material, which is a synthetic resin molding material, at the lower end of the transparent tube 49 as shown by a dotted line in FIG. A molding machine 55 such as is connected.

透明筒49には、捕集器31内の粉粒体量を検知する反射型光電スイッチ等の検知器51が対向して設けてある。そして、この検知器51は第2制御装置43に信号線11Bを介して接続されている。これにより、透明筒49内に粉粒体がなくなると、検知器51が検知してその検知信号を第2制御装置43に送る。   The transparent cylinder 49 is provided with a detector 51 such as a reflective photoelectric switch that detects the amount of powder in the collector 31. The detector 51 is connected to the second control device 43 via the signal line 11B. As a result, when there is no powder in the transparent tube 49, the detector 51 detects and sends the detection signal to the second control device 43.

そして、捕集器31内の粉粒体が成形機55によって消費されて所定の量に至ると、検知器51が第2制御装置43に対して信号線11Bを介してエンプティ検出信号を出力し、この検出信号を受信した第2制御装置43は、作動装置42に対して信号線11Bを介し作動信号を出力して作動装置42を作動させる。この作動装置42が作動することによって、吸引装置39が捕集器31内及び輸送管14の内圧を減圧する。   When the granular material in the collector 31 is consumed by the molding machine 55 and reaches a predetermined amount, the detector 51 outputs an empty detection signal to the second control device 43 via the signal line 11B. The second control device 43 that has received the detection signal outputs an operation signal to the operation device 42 via the signal line 11B to operate the operation device 42. When the operating device 42 is operated, the suction device 39 reduces the internal pressure of the collector 31 and the transport pipe 14.

前記の如く輸送管14内の内圧が減圧されると、前記気体圧力検出装置60がこの減圧を検知し、信号線11Aを介して前記第1制御装置10に対して減圧検出信号を出力する。この減圧検出信号を第1制御装置10が受信すると、第1制御装置10は開閉動力源5Bにより粉粒体貯留槽1,1の開閉装置5,5を開動作させて、輸送管14内に粉粒体貯留槽1,1内の粉粒体を放出し、この放出された粉粒体は輸送管14を介して捕集器31へ吸引輸送され、かつ輸送気体と分離されて貯留されることになる。   When the internal pressure in the transport pipe 14 is reduced as described above, the gas pressure detection device 60 detects this pressure reduction and outputs a pressure reduction detection signal to the first control device 10 via the signal line 11A. When the first control device 10 receives the decompression detection signal, the first control device 10 opens the opening and closing devices 5 and 5 of the granular material storage tanks 1 and 1 with the opening and closing power source 5B, and enters the transport pipe 14. The granular material in the granular material storage tanks 1 and 1 is discharged, and the discharged granular material is sucked and transported to the collector 31 through the transport pipe 14, and is separated from the transport gas and stored. It will be.

以上のように、本発明の粉粒体輸送装置は、従来例のものと同様に、第1制御装置10と第2制御装置43とを、それぞれ粉粒体の輸送元と輸送先に分離して設けて、それぞれ独立制御することが可能となるように構成しているため、第1,第2制御装置10、43を信号線で繋ぐなどの設置上の作業を低減できるだけでなく、制御装置を制御する制御プログラムとしても、一つの制御装置で粉粒体貯留槽1の開閉装置5と作動装置42の両者を一括制御する場合に比べて簡易なものとすることができる利点がある。それだけでなく、本発明は、請求項1〜3のいずれかに記載の気体圧力検出装置を用いているので、前述したような利点を有する。   As described above, the granular material transport device of the present invention separates the first control device 10 and the second control device 43 into the transport source and the transport destination of the granular material, respectively, as in the conventional example. And can be independently controlled, so that not only the installation work such as connecting the first and second control devices 10 and 43 with signal lines can be reduced, but also the control device There is an advantage that the control program for controlling the control can be simplified as compared with the case where the opening / closing device 5 and the operation device 42 of the granular material storage tank 1 are collectively controlled by a single control device. In addition, the present invention uses the gas pressure detection device according to any one of claims 1 to 3, and thus has the advantages as described above.

図2,図3に示すのは、前述した気体圧力検出装置60の詳細な構成を示す縦断面図である。この気体圧力検出装置60は、気力輸送路を構成する輸送管14の始端側を屈曲状に上方に折り曲げた立ち上がり部14Aである筒体61内に一部が移動自在に嵌挿される。すなわち、この気体圧力検出装置60は、気体流の生じる通路に連通した筒体61内に移動自在に嵌挿される閉塞体本体部62Aと、この閉塞体本体部62Aの上部に設けられ、気体流による圧力が輸送のために変化させられた輸送状態時には上記筒体61の外気口61Aを閉塞する環状鍔部62Bとからなる閉塞体62と、前記筒体61内に臨み、かつ前記閉塞体62を気体流による圧力変動に応じて移動可能とするための固定軸64と、この固定軸64又は閉塞体62に常態時において筒体61の外気口61Aを開放するように付勢した弾性体65と、閉塞体62の一部に設けた磁石63Bと、この磁石63Bを検出するために固定軸64内に設けた磁気検出スイッチ63Aとを備えている。   2 and 3 are longitudinal sectional views showing a detailed configuration of the gas pressure detection device 60 described above. A part of the gas pressure detection device 60 is movably inserted into a cylindrical body 61 that is a rising portion 14 </ b> A in which a start end side of a transport pipe 14 constituting an aerodynamic transport path is bent upward in a bent shape. That is, the gas pressure detection device 60 is provided on a closed body main body 62A that is movably inserted into a cylinder 61 communicating with a passage in which a gas flow is generated, and an upper portion of the closed body main body 62A. In the transportation state in which the pressure due to the transportation is changed for transportation, a closed body 62 comprising an annular flange 62B that closes the outside air port 61A of the cylindrical body 61, and facing the cylindrical body 61, and the closed body 62 Is fixed to the fixed shaft 64 so as to be movable in accordance with the pressure fluctuation caused by the gas flow, and the elastic body 65 urged to open the outside air port 61A of the cylindrical body 61 in the normal state to the fixed shaft 64 or the closed body 62. And a magnet 63B provided in a part of the closing body 62 and a magnetic detection switch 63A provided in the fixed shaft 64 for detecting the magnet 63B.

閉塞体62は、非磁性体で構成されており、円柱状の閉塞体本体部62Aと、この閉塞体本体部62Aの上部に設けられるとともに、筒体61の内径より大径とした環状鍔部62Bとからなり、気体流の発生及び停止による輸送管14内の圧力変動に応じて上下に移動する。閉塞体62が下動した時に、その環状鍔部62Bは、筒体61の開口端部である外気口61Aを図3に示すように閉塞する。   The closing body 62 is made of a non-magnetic material, and is provided with a cylindrical closing body main body 62A and an annular flange portion that is provided above the closing body main body 62A and has a diameter larger than the inner diameter of the cylindrical body 61. 62B, and moves up and down according to the pressure fluctuation in the transport pipe 14 due to the generation and stop of the gas flow. When the closing body 62 moves down, the annular flange 62B closes the outside air port 61A, which is the open end of the cylindrical body 61, as shown in FIG.

固定軸64は、一端を輸送管14に固定されたブラケット66の他端にナットなどの締結具67で固定されている。この固定軸64に沿って閉塞体62が外気口61Aに対して相対位置移動可能に構成するとともに、固定軸64にはコイルバネ等の弾性体65を設けて常態時には閉塞体62が外気口61Aを閉塞しないように付勢してある。図2と図3で68は弾性止めである。   The fixed shaft 64 is fixed to the other end of the bracket 66 whose one end is fixed to the transport pipe 14 by a fastener 67 such as a nut. The closing body 62 is configured to be movable relative to the outside air port 61A along the fixed shaft 64, and an elastic body 65 such as a coil spring is provided on the fixed shaft 64, and the closing body 62 normally opens the outside air port 61A. It is energized not to block. In FIGS. 2 and 3, reference numeral 68 denotes an elastic stopper.

前記閉塞体62の閉塞体本体部62Aは、その外径r1が筒体61の内径Rより小さく筒体61内への嵌挿状態時に、筒体61の内径Rと閉塞体本体部62Aの外径r1との間に第1のクリアランスMを設けている。   The closed body 62A of the closed body 62 has an outer diameter r1 that is smaller than the inner diameter R of the cylinder 61, and the outer diameter R1 of the cylinder 61 and the outside of the closed body main part 62A when inserted into the cylinder 61. A first clearance M is provided between the diameter r1.

しかも、環状鍔部62Bの外径r2は筒体61の内径Rよりも大きく設定してなり、閉塞体本体部62A及び環状鍔部62Bの中心位置に摺動孔62Cを貫通し、該摺動孔62Cの内径r3は固定軸64の外径Lとの間に第2のクリアランスmを形成しており、固定軸64に対して閉塞体62が摺動自在に挿入されている。そして、第1のクリアランスMは、第2のクリアランスmに比べて大きく設定することによって、閉塞体62が筒体61の外気口61Aを閉塞したり閉塞を解除したり繰り返す際に、閉塞体62の閉塞体本体部62Aの一部が固定軸64に沿って筒体61内で移動を繰り返し、閉塞体本体部62Aの外径r1が筒体61の内径Rに接触して移動を妨げる虞を防止できる。すなわち、閉塞体本体部62Aが固定軸64に沿って移動する場合、その遊び(ガタツキ)は、第2のクリアランスmに影響されるので、この遊びを第2のクリアランスmより大きい第1のクリアランスMで吸収するのである。このために、筒体61の内径Rと閉塞体本体部62Aの外径r1との間に、第1のクリアランスMを形成しているのである。   Moreover, the outer diameter r2 of the annular flange 62B is set to be larger than the inner diameter R of the cylindrical body 61, and penetrates the sliding hole 62C at the center position of the closing body main body 62A and the annular flange 62B. A second clearance m is formed between the inner diameter r3 of the hole 62C and the outer diameter L of the fixed shaft 64, and the closing body 62 is slidably inserted into the fixed shaft 64. The first clearance M is set to be larger than the second clearance m, so that the closed body 62 is closed when the closed body 62 closes or releases the closed air port 61A of the cylindrical body 61. There is a possibility that a part of the closed body main part 62A repeatedly moves in the cylinder 61 along the fixed shaft 64, and the outer diameter r1 of the closed body main part 62A contacts the inner diameter R of the cylindrical body 61 to hinder the movement. Can be prevented. That is, when the closing body main part 62A moves along the fixed shaft 64, the play (backlash) is affected by the second clearance m, so that the play has a first clearance larger than the second clearance m. It absorbs with M. Therefore, a first clearance M is formed between the inner diameter R of the cylindrical body 61 and the outer diameter r1 of the closing body main body 62A.

固定軸64内に埋設された磁気検出スイッチ63Aと、閉塞体62の摺動孔62Cの所定箇所に設けた磁石63Bとは、センサ63を構成するが、磁気検出スイッチ63Aが閉塞体62の固定軸64に沿って移動するのに追随して、磁石63Bが移動するのを検出するように構成している。この磁気検出スイッチ63Aとしては、周知のリードスイッチを採用することができる。   The magnetic detection switch 63A embedded in the fixed shaft 64 and the magnet 63B provided at a predetermined position of the sliding hole 62C of the closing body 62 constitute a sensor 63. The magnetic detection switch 63A fixes the closing body 62. Following the movement along the axis 64, the movement of the magnet 63B is detected. As this magnetic detection switch 63A, a known reed switch can be employed.

この発明に係る気体圧力検出装置は、閉塞体62の環状鍔部62Bが、輸送状態時には弾性体65の付勢力に抗して筒体61の外気口61Aを閉塞し、気体流による圧力変動がない非輸送状態時には弾性体65の付勢力により筒体61の外気口61Aを開放するようにしている。
次に、上記実施例の作用について簡単に説明する。
In the gas pressure detecting device according to the present invention, the annular flange 62B of the closing body 62 closes the outside air port 61A of the cylindrical body 61 against the urging force of the elastic body 65 in the transporting state, and pressure fluctuation due to the gas flow occurs. In a non-transporting state, the outside air port 61A of the cylindrical body 61 is opened by the urging force of the elastic body 65.
Next, the operation of the above embodiment will be briefly described.

図2に示す如く、圧力変動のない非輸送状態時には、弾性体65の付勢力により、輸送管14と一体に形成される筒体61の外気口61Aと、環状鍔部62Bとの間に一定のストロークSが形成され、このストロークSの隙間から外気が流入可能な状態となっている。
この場合、閉塞体62下部に設けた磁石63Bは、固定軸64に内装した磁気検出スイッチ63Aに近接してセンサー63のON作動が行われる。
As shown in FIG. 2, in a non-transporting state where there is no pressure fluctuation, the elastic body 65 is biased by a biasing force between the outside air port 61A of the cylindrical body 61 formed integrally with the transport pipe 14 and the annular flange 62B. The stroke S is formed, and the outside air can flow from the gap of the stroke S.
In this case, the magnet 63 </ b> B provided at the lower part of the closing body 62 is close to the magnetic detection switch 63 </ b> A built in the fixed shaft 64 and the sensor 63 is turned on.

そして、モーター等の作動装置42を作動させることによって、吸引装置39が捕集器31及び輸送管14内を減圧すると、図3に示すように、この内圧変化によって、閉塞体62の閉塞体本体部62Aが筒体61内に弾性体65の付勢力に抗して降下し、環状鍔部62Bが外気口61Aを閉塞することによって、ストロークSがゼロになり、外気口61Aからの外気の流入が遮断された輸送状態となる。この場合、磁石63Bは磁気検出スイッチ63Aとは離間し、磁気を検出しなくなり、センサ63のOFF作動が行われる。前記ストロークSの大きさは適宜設定できるが、その輸送状態に至るまでの内圧変化で閉塞体62が下降移動して外気口61Aを塞ぐことができる程度の大きさに設定されている。例えば、輸送のための圧力変化が大きければ大きいほど、ストロークSは大きく設定することができるのである。   When the suction device 39 depressurizes the collector 31 and the transport pipe 14 by operating the operation device 42 such as a motor, as shown in FIG. The portion 62A descends against the urging force of the elastic body 65 in the cylindrical body 61, and the annular flange 62B closes the outside air port 61A, so that the stroke S becomes zero and the inflow of outside air from the outside air port 61A. Will be in a transported state where is blocked. In this case, the magnet 63B is separated from the magnetism detection switch 63A, does not detect magnetism, and the sensor 63 is turned off. The size of the stroke S can be set as appropriate, but is set to such a size that the closing body 62 can be moved downward by the change in internal pressure until the transportation state is reached and the outside air port 61A can be closed. For example, the larger the pressure change for transportation, the larger the stroke S can be set.

なお、上記実施例の第1例では、2基の粉粒体貯留槽1、1から粉粒体を気力輸送する粉粒体輸送装置に適用した場合について説明したが、一基又は三基以上の粉粒体貯留槽1を設けた粉粒体輸送装置に適用することもできるのは勿論である。   In addition, in the 1st example of the said Example, although the case where it applied to the granular material transport apparatus which pneumatically conveys a granular material from the two granular material storage tanks 1 and 1 was demonstrated, one group or three or more sets Of course, the present invention can also be applied to a granular material transport apparatus provided with the granular material storage tank 1.

図4〜図6に基づいて本発明の実施例の第2例について説明する。   A second example of the embodiment of the present invention will be described with reference to FIGS.

前述した第1例では、粉粒体貯留槽1、1の更に輸送路上流側まで輸送管14を延設し、この延長した輸送管14の始端側を上方に折り曲げてその立ち上がり部14Aを、気体圧力検出装置60を嵌挿する筒体61としたが、この第2例の気体圧力検出装置60では両粉粒体貯留槽1、1との間の輸送管14に輸送管内と連通するように、気体圧力検出装置60の筒体61を設けたものである。この取り付け位置以外の構成は、前述した実施例の第1例と同様であるので繰り返しの説明を省略する。
なお、前記気体圧力検出装置60の取付位置は、第1例、第2例の位置に限らず、粉粒体貯留槽1、1の更に上流側又は下流側の輸送管60の部位等に設けても良い。
また、前記各実施例では、気体圧力検出装置を粉粒体貯留槽1からの粉粒体輸送に適用した場合を例示しているが、これに限らず、前記粉粒体貯留槽1を加熱ヒータを備えた乾燥器からの粉粒体輸送に適用することもできる。この場合には、前記閉塞体62を耐熱性素材から構成することが好ましい。これにより、高温な状態での粉粒体の気力輸送装置に対しても、その圧力変化を正確に検知することができるとともに、耐久性が向上することになる。
In the first example described above, the transport pipe 14 is further extended to the upstream side of the transport path of the granular material storage tanks 1, 1, and the rising end portion 14 </ b> A is bent upward at the starting end side of the extended transport pipe 14. The cylindrical body 61 into which the gas pressure detection device 60 is inserted is used. However, in the gas pressure detection device 60 of the second example, the transport pipe 14 between the powder storage tanks 1 and 1 communicates with the inside of the transport pipe. In addition, a cylindrical body 61 of the gas pressure detection device 60 is provided. Since the configuration other than the attachment position is the same as that of the first example of the above-described embodiment, repeated description will be omitted.
The mounting position of the gas pressure detection device 60 is not limited to the position of the first example and the second example, but is provided at a part of the transport pipe 60 on the further upstream side or the downstream side of the granular material storage tanks 1 and 1. May be.
Moreover, although the said each Example has illustrated the case where a gas pressure detection apparatus is applied to the granular material transport from the granular material storage tank 1, not only this but the said granular material storage tank 1 is heated. It can also be applied to the transportation of powder from a dryer provided with a heater. In this case, the closing body 62 is preferably made of a heat resistant material. Thereby, the pressure change can be accurately detected even for the pneumatic transportation device for the granular material in a high temperature state, and the durability is improved.

本発明にかかる気体圧力検出装置とそれを用いた粉粒体輸送装置は、輸送管内の圧力変化を検出後に外気の流入を防止することができるので、合成樹脂材料の粉粒体の気力輸送に限らず他の粉粒体を輸送対象物とする気力輸送装置にも利用することができる。   The gas pressure detection device according to the present invention and the granular material transport device using the gas pressure detection device can prevent the inflow of outside air after detecting the pressure change in the transport pipe. Not limited to this, it can also be used in an aerodynamic transport device that uses other powder and granular materials as transport objects.

本発明の実施例1における気体圧力検出装置を用いた粉粒体輸送装置の概略構成図である。It is a schematic block diagram of the granular material transport apparatus using the gas pressure detection apparatus in Example 1 of this invention. 本発明の実施例1における気体圧力検出装置の非輸送状態時の要部縦断面図である。It is a principal part longitudinal cross-sectional view at the time of the non-transport state of the gas pressure detection apparatus in Example 1 of this invention. 本発明の実施例1における気体圧力検出装置の輸送状態時の要部縦断面図である。It is a principal part longitudinal cross-sectional view at the time of the transport state of the gas pressure detection apparatus in Example 1 of this invention. 本発明の実施例2における気体圧力検出装置を用いた粉粒体輸送装置の概略構成図である。It is a schematic block diagram of the granular material transport apparatus using the gas pressure detection apparatus in Example 2 of this invention. 本発明の実施例2における気体圧力検出装置の非輸送状態時の縦断面図である。It is a longitudinal cross-sectional view at the time of the non-transport state of the gas pressure detection apparatus in Example 2 of this invention. 本発明の実施例2における気体圧力検出装置の輸送状態時の要部縦断面図である。It is a principal part longitudinal cross-sectional view at the time of the transport state of the gas pressure detection apparatus in Example 2 of this invention. 従来の気体圧力検出手段を適用した粉粒体輸送装置の概略構成図である。It is a schematic block diagram of the granular material transport apparatus to which the conventional gas pressure detection means is applied. 従来の気体圧力検出手段の非輸送状態時の要部縦断面図である。It is a principal part longitudinal cross-sectional view at the time of the non-transport state of the conventional gas pressure detection means. 従来の気体圧力検出手段の輸送状態時の要部縦断面図である。It is a principal part longitudinal cross-sectional view at the time of the transport state of the conventional gas pressure detection means.

符号の説明Explanation of symbols

1 粉粒体貯留槽
5 開閉装置
10 第1制御装置
14 輸送管
31 捕集器
39 吸引装置
42 作動装置
43 第2制御装置
60 気体圧力検出装置
61 筒体
61A 外気口
62 閉塞体
62A 閉塞体本体部
62B 環状鍔部
63 センサ
63A 磁気検出スイッチ
63B 磁石
64 固定軸
65 弾性体
M 第1のクリアランス
m 第2のクリアランス
DESCRIPTION OF SYMBOLS 1 Powder storage tank 5 Switchgear 10 First controller 14 Transport pipe 31 Collector 39 Suction device 42 Actuator 43 Second controller 60 Gas pressure detector 61 Cylindrical body 61A Outside air port 62 Closed body 62A Closed body main body Part 62B annular flange 63 sensor 63A magnetism detection switch 63B magnet 64 fixed shaft 65 elastic body M first clearance m second clearance

Claims (5)

気体流の生じる通路に連通した筒体内に移動自在に嵌挿される閉塞体本体部と、この閉塞体本体部の上部に設けられ、気体流による圧力が輸送のために変化させられた輸送状態時には上記筒体の外気口を閉塞する環状鍔部とからなる閉塞体と、
前記筒体内に臨み、かつ前記閉塞体を気体流による圧力変動に応じて移動可能とするための固定軸と、
この固定軸又は閉塞体に常態時において筒体の外気口を開放するように付勢した弾性体とを備え、
前記閉塞体の環状鍔部は、輸送状態時には前記弾性体の付勢力に抗して筒体の外気口を閉塞し、気体流による圧力変動がない非輸送状態時には前記弾性体の付勢力により筒体の外気口を開放するようにしたことを特徴とする気体圧力検出装置。
A closed body main body portion that is movably fitted in a cylinder communicating with a passage in which a gas flow is generated, and an upper portion of the closed body main body portion, and in a transportation state in which the pressure due to the gas flow is changed for transportation. A closing body composed of an annular flange that closes the outside air port of the cylindrical body,
A fixed shaft that faces the cylinder and allows the closure body to move according to pressure fluctuations caused by gas flow;
An elastic body biased to open the outside air port of the cylindrical body in a normal state on the fixed shaft or the closed body;
The annular flange of the closing body closes the outside air port of the cylinder against the urging force of the elastic body in the transport state, and the cylinder by the urging force of the elastic body in the non-transport state where there is no pressure fluctuation due to gas flow. A gas pressure detecting device characterized in that an open air opening of a body is opened.
閉塞体を非磁性体で構成するとともに、その閉塞体の一部には磁石を設けるとともに、固定軸内に前記磁石を検出する磁気検出スイッチを設け、この磁気検出スイッチによって閉塞体の固定軸に沿っての移動を検出するように構成してあることを特徴とする請求項1に記載の気体圧力検出装置。   The closure body is made of a non-magnetic body, and a magnet is provided in a part of the closure body, and a magnetic detection switch for detecting the magnet is provided in a fixed shaft. The gas pressure detecting device according to claim 1, wherein the gas pressure detecting device is configured to detect movement along. 閉塞体の閉塞体本体部は、その外径が前記筒体の内径より小さく該筒体内への嵌挿状態時に、筒体の内径と閉塞体本体部の外径との間に第1のクリアランスを形成する一方、前記環状鍔部の外径は前記筒体の内径よりも大きく設定してなり、さらに前記閉塞体本体部及び環状鍔部の中心位置に摺動孔を貫通し、この摺動孔の内径は前記固定軸の外径との間に第2のクリアランスを有する大きさに設定され、前記固定軸に対して閉塞体が摺動自在に挿入されており、前記第1のクリアランスは第2のクリアランスに比べて大きいことを特徴とする請求項2に記載の気体圧力検出装置。   The closing body body portion of the closing body has a first clearance between the inside diameter of the cylinder body and the outside diameter of the closing body body portion when the outside diameter is smaller than the inside diameter of the cylinder body and is inserted into the cylinder body. The outer diameter of the annular flange is set to be larger than the inner diameter of the cylindrical body, and further passes through a sliding hole at the center position of the closing body main body and the annular flange, and this sliding The inner diameter of the hole is set to a size having a second clearance between the outer diameter of the fixed shaft, a closing body is slidably inserted into the fixed shaft, and the first clearance is The gas pressure detection device according to claim 2, wherein the gas pressure detection device is larger than the second clearance. 請求項1〜請求項3のいずれかに記載の気体圧力検出装置を、気力輸送路を構成する輸送管の適宜位置に設けてなることを特徴とする粉粒体輸送装置。   A granular material transport device comprising the gas pressure detection device according to any one of claims 1 to 3 at an appropriate position of a transport pipe constituting an aerodynamic transport path. 粉粒体貯留槽と、粉粒体と気体とを分離する捕集器とを輸送管で接続し、気体流発生源により前記輸送管内に生じる気体流により粉粒体貯留槽の粉粒体を前記捕集器に気力輸送する粉粒体輸送装置において、前記粉粒体貯留槽の近傍における輸送管に請求項1〜請求項3のいずれかに記載の気体圧力検出装置を設けてなることを特徴とする粉粒体輸送装置。   The powder storage tank and a collector for separating the powder and gas are connected by a transport pipe, and the powder in the powder storage tank is removed by a gas flow generated in the transport pipe by a gas flow source. In the granular material transport apparatus that pneumatically transports to the collector, the gas pressure detection device according to any one of claims 1 to 3 is provided in a transport pipe in the vicinity of the granular material storage tank. A granular material transport device.
JP2005305086A 2005-10-19 2005-10-19 Gas pressure detection device for granular material transport device and granular material transport device using the same Active JP4934311B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005305086A JP4934311B2 (en) 2005-10-19 2005-10-19 Gas pressure detection device for granular material transport device and granular material transport device using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005305086A JP4934311B2 (en) 2005-10-19 2005-10-19 Gas pressure detection device for granular material transport device and granular material transport device using the same

Publications (2)

Publication Number Publication Date
JP2007112563A true JP2007112563A (en) 2007-05-10
JP4934311B2 JP4934311B2 (en) 2012-05-16

Family

ID=38095093

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005305086A Active JP4934311B2 (en) 2005-10-19 2005-10-19 Gas pressure detection device for granular material transport device and granular material transport device using the same

Country Status (1)

Country Link
JP (1) JP4934311B2 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6483416A (en) * 1987-09-22 1989-03-29 Isuzu Motors Ltd Vehicle power take-out device in electronic control vehicle
JP2005233856A (en) * 2004-02-23 2005-09-02 Matsui Mfg Co Gas pressure detector, and granule transportation device using the same

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6483416A (en) * 1987-09-22 1989-03-29 Isuzu Motors Ltd Vehicle power take-out device in electronic control vehicle
JP2005233856A (en) * 2004-02-23 2005-09-02 Matsui Mfg Co Gas pressure detector, and granule transportation device using the same

Also Published As

Publication number Publication date
JP4934311B2 (en) 2012-05-16

Similar Documents

Publication Publication Date Title
US20100288021A1 (en) Apparatus and method for checking leakage from fuel vapor processing apparatus
JP5006879B2 (en) Flow control valve
JP2008525739A (en) Valve assembly having a rigid seating surface
US8771598B2 (en) Ammonia storage system
US4200412A (en) Control for pneumatic conveying system
CN108349379A (en) The solenoid component of valve
US3734313A (en) Bulk bin level indicator
JP4934311B2 (en) Gas pressure detection device for granular material transport device and granular material transport device using the same
US9840378B2 (en) Automated vacuum actuated control
CN103988005B (en) Pressure-relief valve
KR20140076828A (en) Vacuum pickup device
US20080025801A1 (en) Vacuum modulating air control valve apparatus
CN201099541Y (en) Blocking alarm system of stream inoculation device
JP3803791B2 (en) Powder transportation equipment
JP5753458B2 (en) Drying equipment
JP3790373B2 (en) Powder transportation equipment
JP4653956B2 (en) Gas pressure detection device and particulate transport device using the same
JP2006017657A (en) Gas leakage sensitivity device
KR102179857B1 (en) A mass flow meter
KR101421884B1 (en) Apparatus for omnidirectional detecting the blocking a chute
AU2018418036B2 (en) System and method for pneumatic conveying with accurate pressurization
CN205821257U (en) Gasification furnace and gasification furnace feed arrangement
CN107642416A (en) Prevent seawater from flowing into equipment for marine engine
CN212733109U (en) Negative pressure pipeline metal removing devices
CN112368224B (en) Vacuum conveyor for conveying granular and/or powdery material

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20081009

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110519

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111108

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111228

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120124

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120220

R150 Certificate of patent or registration of utility model

Ref document number: 4934311

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150224

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250